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ABSTRACT

This thesis is concerned primarily with the issue of heterozygote advantage. One of the

ways in which it is believed that heterozygote advantage manifests itself is by the reduced effect

that environmental changes have on heterozygous individuals, thus rendering their traits less

variable than those of homozygotes. In the analyses described in this thesis, no consistent

support for or refutation of this hypothesis has been obtained. The reasons for these

indeterminate findings are discussed in detail as each methodology is evaluated.

Three data sets have been analysed in this thesis. The first consisted of. 414 mother-

newborn baby pairs for which nine quantitative traits and the genotypes of several polymorphic

loci were available. This set was used in chapter 3. The second consisted of 43 same-sex twin

pairs for which height, Ie and six genotypes had been ascertained. The third data set consisted

of 99 pairs of dizygous twins and the variable of interest was lung function. These two sets

were used in chaPter 4.

The first data set was used to investigate more appropriate statistical methods for

analysing variances of several related traits. In particular, interest lay in finding statistical

methods which were more appropriate than those used in earlier work on this problem'

Methods such as multivariate parametric and nonparametric tests for equality of dispersion

matrices were found to be superior to multivariate coefficients of variation and principal

components analysis. The appropriateness of the data to the problem of examining

heterozygote advantage has also been discussed'

These data were also used to consider an adaptive distances model, an alternative

approach suggested in the literature. The problems of fîtting this model in practice have been

discussed fully in chaPter 3.

In the final part of chapter 3 a new way of estimating heritability using multivariate

analysis of variance (MANOVA) has been suggested. The third data set was also used to

estimate heritability by the MANOVA method but was less successful and these results appear

in the final part of chaPter 4.



Most of chapter 4 is concerned with modifying a pedigree model to include components

of variance for heterozygotes and homozygotes. The pedigrees used were the twin pairs of the

second data set.

previous research reported in the literature has found that if the alleles at a locus act

additively on a particular trait and if there are several such loci all acting additively then the

va¡iance of the trait wilt decrease with increasing heterozygosity, even though there may be no

heterozygote advantag e per se. Other research has shown that this effect depends on the relative

frequencies of different alleles, when there are more than two alleles at each locus. In chapter 2

of this thesis, algebraic calculations and computer simulations have been used to show that

these effects change if the assumptions of additivity are relaxed.
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1 . LITERATURE REVIEW

1.1 Introduction

In his book, l,erner (1954) developed a thesis to explain the processes underlying

genetic homeostasis to establish a connection between genetic and developmental homeostasis

and to suggest that the mosr likely mechanism for both types of homeostasis \ilas the superiority

in fitness of the heterozygous over the homozygous genotypes'

l.erner defined homeostasis as the property of the organism to adjust itself to variable

conditions or, alternatively, as the self-regulatory mechanisms of the organism which permit it

to stabilize itself in fluctuating inner and outer environments. He stated that developmental

homeostasis, or ontogenetic self-regulaúon, was based on "the greater ability of the

heterozygote to stay within the norms of canalized development", while genetic homeostasis, or

self-regulation of populations, was based on "natural selection favouring intermediate rather

than extreme phenotYPes".

Iæmer suggested that an ideal test of whether heterozygotes were better canalized than

homozygotes would consist of examining the environmental variability in fitness of the two

types. Since useful fitness data were not usually available, individual phenotypic characters

would have to be used instead to investigate the buffering capacity of homozygotes and

heterozygotes. He discussed several different ways in which this buffering capacity could

express iself. First, under normal environmental conditions the variability of some traits

would be less among heterozygotes than among homozygotes. Second, when there has been a

change in the environment or a mutant has appeared, the extent of phenotypic difference from

the original form would be less for the heterozygotes than for the homozygotes. Third, the

variation in expression of bilateral or serially arranged characters would be less in heterozygotes

than in homozygotes. Finally, the amplitude of expression of repeatable reactions to some

stimulus would be less for heterozygotes than for homozygotes.

Experimental evidence obtained by Lernerrelated to marker genes which had major

morphological effects and which were therefore likely to influence fitness directly. Since that

time genes determining widespread biochemical polymorphisms have been discovered (Harris
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lg66,I-ewontin and Hubby, 1966) and have been used extensively to test for heterozygote

advantage.

Mitton and Grant (1984) summarize a number of studies which looked at protein

heterozygosity and developmental stability - morphological variability in marine fish, sparrows

and monarch butterfly, fluctuating asyrnmetry in rainbow trout, the number of fin rays in the

guppy and the plaice and flucruating asymmetry among populations of side-blotched lizards.

Then they turn their attention to protein heterozygosity and grcwth rate where studies have been

conducted on marine invertebrates, the tiger salamander, deer, pigs, sheep, quaking aspen,

conifers and humans. These studies have all been conducted within populations and in almost

all cases the more heterozygous individuals have exhibited some advantage in growth

characteristics.

However, there have been some problems associated with these studies, not the least of

which is statistical methodology. Mitton and Grant do not address this issue. Many

researchers collect several measurements of morphological characters or meristic traits for each

individual and wish to analyse them as a group. The search for methods of analysis has

sometimes resulted in the misuse of some statistical techniques and even in the spurious

invention of others. Suitable statistical methods will be discussed in Section 1.4 of this

chapter.

Once results have been obtained there may be some diffrculty in interpreting them and

fitting them into the spectrum of other results. Studies conducted by other researchers will be

discussed and appraised in two sections - Section 1.2 consists of studies performed on various

organisms to give a general picture, while Section 1.3 consists only of studies performed on

humans.

1.2 Investigation of various organisms

As Zink,smith and Patton (1985) point out, I-,erner's hypothesized inverse relationship

between individual heterozygosity and va¡iance (developmental homeostasis) does not

necessarily carry over to the same relationship between the population heterozygosity averaged

over all individuals and the variance ¿unong populations (genetic homeostasis). What is tme on



J

an individual basis may not be true when comparing several populations because environmental

variance may be negligible or may change from one population to the next.

Zi¡¡ et al. (íbid.) also summa¡ize three assumptions which are not mutually exclusive

and which occur in the literature relating to investigations of homeostasis. They are:

(Ð the degree of heterozygosity of the loci examined reflects the heterorygosity of the

whole genome;

(ü) the loci examined are in linkage disequilibrium with the loci controlling the traits whose

variances are being measu¡ed;

(üi) the loci examined are directly involved in the expression of the traits being measured.

They conclude that the frst assumption is an unlikely one for positive results given the

small numbers of loci which are usually examined. Other researchers agree with this. For

instance, Mitton and pierce (1980) and Chakraborty (1981) have shown that the conelation

between heterozygosity of a few observed loci and that of the whole genome is small. Smouse

(1986) argues that nothing can be gained from invoking sections of the genome which are

segregating independently of the loci under observation. His view is that loci closely linked to

the loci under observation may be responsible for the fitness-homozygosity relationships found

by several authors and so what are of interest are "observed segments of chromosome" rather

than "observed loci". Zink et al. (ibid.) suggest that Lerner's hypothesis could be tested using

individual heterozygosity if either of the second two assumptions holds.

It is somewhat surprising that they then investigate the relationship beween average

heterozygosity and morphometric variation across several populations of fox sparrows and

pocket gophers when they have already pointed out that it is impossible to predict what this

relationship should be.

Because of the uncertainty of the predictions under the hypothesis of genetic

homeostasis, it is worth looking at some of the studies of this hypothesis which have been

reported in the literature. I-e,ary,Allendorf and Knudsen (1985a) bred 14 families from a single

population of rainbow trout which had been raised in isolation for several generations. The 14

families were raised in very similar environments in a hatchery. The experimental conditions

for this study do not tend to favour fluctuations in the environment which is nearly constant for
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all of the 14 families . Leary, et at. (ibid.) measured eight meristic characters and point out that

much of the va¡iation of these characters is controlled by additive genetic variation. They plot

mean family asymmebT/ for the meristic traits against mean family heterozygosity for 13

isozyme loci and find a significant negative relationship. However, with minimal

environmental fluctuations, it is a matter for speculation just what buffering effect

heterozygosity would need to afford. In fact I-eary et al. (ibid.) continued their investigation of

these fish by examining individuals with extreme I'ertebral counts in more detail and found a

signifrcantly higher average number of heterozygous loci among them than among those

individuals with normal counts. So perhaps these results demonstrate the problem of

examining individuals versus populations.

Soulé (lg/g)reports a signifrcant negative correlation between fluchrating asymmetry of

four morphological characrers and heterozygosity of 18 loci for 15 populations of side-blotched

lizards. He argues that this sort of relationship is hard to detect at an individual level because an

individual may have different directions of and degrees of asymmetry for different characters.

He also argues that the loci which control different traits within an individual may not be

equally heterozygous, but this does not preclude a difference in average level of asymmetry

among populations. Reference is made to a study by Soulé, Yang,'Weiler and Gorman(1973)

in which they examined eight species of Awlís lizards and 13 populations of Uta lizards and

found a positive correlation beween va¡iance of morphological traits and mean percentage

heterozygosity for respectively 19 and Z}locicontrolling enzymes and other proteins. They

state that the morphological data provide information on variation environmental heterogeneity

whereas the electrophoretic data provide information on a much smaller fraction of the genome

but their variation is almost exclusively genetic. They conclude that the positive correlation

supports the hypothesis that both types of data are estimating overall genetic variation and, in

consequence, that the sample of enzymes and structural proteins measured is representative of

all gene products. Thus they support the assumption that heterozygosity of the sample reflects

the heterozygosity of all loci.

Possible manifestations of homeostasis considered so fa¡ have been variance of

morphological traits and fluctuating asymmetry of bilateral characters. Another one examined
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by Hawkins, Bayne and Day (1936) is growth rate. They found a positive correlation between

mean heterozygosity for five enzyme loci and shell length of mussels of similar age. However,

they also found the same relationship for one of the single loci which implies that this locus is

directly involved in the growth mechanism, i.e. the third assumption of Zfuik et al. applies

here.

Leary, Allendorf and Knudsen (1985b) compare a hatchery population of rainbow trout

with four wild populations for fluctuating asynìmetry and find that the wild populations have

similar values of mean asymmetry per individual. However, the hatchery fish are significantly

more asymmetric than the wild population from the same stream. They conjecture that because

of their previous frnding of a negative correlation between heterozygosity and asyntmetry (see

later), the salmonids' asymmetry is very sensitive to inbreeding. Thus they conclude that the

loci measu¡ed reflect the heterozygosity of the whole genome, in accordance with assumption

(i) of Zink et al.

Danzmann, Ferguson, Allendorf and Knudsen (1986) have also studied the rainbow

trout. They frnd that developmental stability is associated with developmental rate, viz. frsh

which develop faster have less time for accidents during critical periods of development and are

therefore more stable and so they use hatching time as a measure of developmental stability.

They use families of fish from the same population and bred in very similar environments to

find a negative correlation between average number of heterozygous loci and mean hatching

time. The mean hatching time for heterozygotes at both of ¡wo loci is significantly lower than

for homozygotes over all families. They conclude that similar resea¡ch using other strains of

rainbow trout will reveal whether the enzyme products of a particular locus directly influence

the developmental rate or whether the locus marks a chromosome segment containing other loci

which control development rate. They further add that if heterozygotes are more buffered

against environmental insult then under some conditions, e.g. high temperatures, they may

develop more slowly.

Many resea¡chers have tackled the issue of homeostasis on an individual level. A

significant relationship between heterozygosity and developmental stability seems more likely

when the organism under investigation is a poikilotherm rather than a homeotherm. For
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instance, Handford (1930) found no difference in variation of 11 merical characters between

heterozygotes and homozygotes at each of four enzyme loci for sp¿urows. He also found no

difference in va¡iation across classes of individuals heterozygous for different numbers of loci.

Fleischer, Johnston and Klitz (1983) also examined sparrows; they measured 14

skeletal variables and two or four enzyme polymorphisms for different goups of birds. They

compared pooled variances of the skeletal variables for individuals with 0, 1 and 2 or more

heterozygous loci and obtained significant results for the three of the eight groups.

The problem with both of these papers on sparrows is that their results rely on the use

of amodificationof Lævene'stest,whichwillbediscussedlater(seeSection 1.4). Evenif the

results of Fleischer, Johnston and Klitz (1933) were significant, the trend could be due to the

effect of pooling over loci as described by Chakraborty and Ryman (1983). (This will be

discussed in detail in Chapter 2.) They mistakenly discount this effect because rank orderings

of homozygote and heterozygote means for the individual loci do not show a predominance of

sandwiching of the heterozygote means. It will be shown in Chapter 2 that the rank ordering of

the means at a locus is irrelevant since, whether the alleles at a given locus act additively or with

dominance, the genotypic variance will decrease as heterozygosity increases if the loci

considered have some effect on the quantitative trait. If there is dominance the heterozygote

mean will theoretically eq,ual one of the homozygote means. There will also be some

phenotypic variation and so, regardless of the theoretical order which the means should take, in

practice they may take any ordering.

The research which has been done on trout indicates that heterozygosity at several

different enzyme loci reflects that of the whole genome. The usual measures of developmental

stability are fluctuating asymmetry and growth rate.

I-eary,Allendorf and Knudsen (1983) examined five bilateral meristic characters and the

genotypes of 40 loci in a sample from a population of rainbow trout; of the 40 loci only eight

had at least five heterozygotes in the sample. A significant negative correlation was found

between the proportion of heterozygous loci and the proportion of asymmetric characters and

there was also a signihcant negative correlation between the number of heterozygous loci and

the magnitude of the asymmetry. Heterozygotes at seven of the eight loci considered separately
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had a smaller mean proportion of asymmetric traits, but these means were significant for only

two loci. f-eary et al. (1983) suggest that there may be a significant mechanism for asyrnmetry

conrolled by these two loci.

Danzmann et al. (1986) also find a mechanism conrolled by a specific locus. A very

signifrcant proportion of trout which hatch early are heterozygous (alb) atthe Pgml-t locus,

late-hatchers being predominantly homozy gotes (ala). This implies ttrat the presence of the b

gene speeds up the hatching time. Other frndings by this group have been discussed earlier.

I-e¿,ry et at. (1985a) in their study of rainbow trout, reported earlier, find that there is a

much stronger negative correlation between proportion of individuals asymmetric and the

heritability of bilateral characters than there is between the coefficient of variation (cv) and

heritability of meristic cha¡acters and this "suggests that asymmetry is the better estimator of the

amount of developmental noise and environmental variability affecting a trait." They make the

very important point that cv has an additive genetic component whereas fluctuating asymmetry

does not and so the laner may be a better measure of developmental stability.

Research on poikilothermic and a few homeothermic animals suggests that fluctuating

asymmetry and development time are better measures of environmental variability than the

variance of meristic characters. When considering artifrcially bred populations one may

reasonably assume that the degree of heterozygosity at some enzyme loci reflects that of the

whole genome but often one or two of the loci examined seem to be directly involved in the

expression of the trait and it may be coincidental that heterozygosity at such loci results in lower

variance or less asymmetry of the trait. Most studies of natural populations consider genetic

homeostasis and it is more difficult to d¡aw conclusions.

1 .3 Research relating to humans

Let us now turn to human populations to see what has been discovered. Some

researchers have deliberately set out to look for the presence or absence of developmental

homeostasis while others have commented on the effects of heterozygosity in passing. On the

whole, there is little evidence to support an inverse relationship between variance of a

quantitative trait and degree of heterozygosity.
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propping, Friedl, Huschka, schlor, Reiner, Læe-vaupel, Conzelmann and Sandhoff

(1986) find an associarion between reduced arylsulphatase A (ASA) activities and

neuropsychiatric disorders; the reduced ASA activity is indicative of a person being

heterozygous for an ASA defrciency allele. The def,rciency allele is deleterious in the

homozygous state. Chronic disease states such as severe mental retardation and dementia do

not seem to be affected by these alleles. Heterozygotes would appear to be at a sele¡tive

disadvantage to the homozygotes for the normal allele. Thus we have a situation involving

enzyme loci which are directly involved in the expression of a trait but which exhibit the

opposite of developmental homeostasis.

In the same vein, Beckman, Beckman and Perris (1980) find a disproportionate number

of Gc 2-l heterorygotes among a sample of schizophrenics. They conclude that there is no

evidence for an association between the Gc 2 allehe and schizophrenia, as was previously

thought but that some particular type of the syndrome may be associated with Gc 2-1 group.

This is another example of heterozygote disadvantage.

In an effort to frnd a general relationship between heterorygosity and developmental

stability, several researchers have studied a variety of loci and a number of quantitative traits.

For instance, Chalsaborty, Ferrell, Barton and Schull (1986) investigated the relationship

between several fertility patameters (number of pregnancies, number of live births, surviving

offspring at one year and surviving children at the time of the survey) and heterozygosity at 17

loci among the Aymara of Chile and Bolivia. The polymorphisms were pooled to give a single

value of heterozygosity for each individual GIET). Ethnicity and altitude significantly affect

some of the fertility parameters, but there are no signifrcant effects for IIET and no significant

correlations between HET and the fertility parameters. Eleven of the most polymorphic loci

were examined individually to see how much of the variance of each fertility parameter was

explained. by heterozygosity at a given locus. No general pattern emerged but the Rh

polymorphisms have significant effects on a few variables. Chakraborty et al. stggested a

specific mechanism for these effects, but were unable to test it with their data.

Ward, Sarfarazi, Azini-Garakani and Beardmore (1985) consider the variances of

human birth weight for homozygotes and heterozygotes at each of f,rve loci and find no



Fourth line from bottom, insert after "variance."

Their conclusion implies that there is an inverse relationship between the size of the modal

class, as defined, and va¡iance.
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signif,rcant differences be¡ween the heterorygotes and homorygotes. They also find that the low

birth weight infants do not exhibit a higher degree of homozygosity than those of normal birth

weight. They conclude that, although it is subject to stabilizing selection (Jltzn, Gravina and

Tenenato, 1981), human birth weight may not be a good trait to use in such investigations

because foetal genotype plays such a small part in its determination. Maternal genotype is a

more important contributor to human birth weight (Robson, 1955; Morton, 1955) and is, in

fact, used later in this thesis in a similar investigation. Maternal age and parity also strongly

affect birth weight (Millis and Seng, 1954).

Another study of newborns was conducted by Bonini, Gloria-Bottini, Lucarelli,

polzoneni, Santoro and Va¡veri (1979) in which the genotypes for several loci (ABO, Rh(D),

pGM1, ACPI, ADA) in a group of light for dates (LFD) and preterm (PT) babies were

compared with the genotypes of the adult population. LFD babies showed a higher proportion

of homozygotes than the adult population at all loci; LFD babies also showed a higher

proportion of homozygotes than PT babies at all loci except ADA where both were high. Bottini

et aI. conjecture that different homozygotes may show a diverse susceptibility towards growth

retatdation. For instance, among LFD babies there is an exces s of PGM122 ho orygotes and

alsoanexcess of ACfiB homozygotes,butnoexcess of PGMlrl orACSA.

Livshits and Kobyliansky (1934) purported to show an inverse relationship between

variance of morphological traits and degree of heterozygosity for seven loci. The latter was

determined by counting the number of loci for which an individual was heterozygous. They

divided the range of values of a morphological trait into three classes -

Vl = (X - .67s, F+ .67s), B = (--,1- .67s) and T = (F+.67s, "')

and then they ascertained what proportion of each heterozygosity class lay in the modal

category. 'When they found a relationship betrveen degtee of heterozygosity and size of modal

class M, they mistakenly attributed this to an inverse relationship benreen heterozygosity and

variance. A simple example will show that this is a non sequitur (see Table 1-1). Samples of

size 10 are drawn from a population of 100 (see Snedecor and Cochran, 1967, Table 3-2-l)

which can be divided into three classes as follows: 9 : (0,23),¡¡1= (23.3,36-7), T = (37, 60)

with 25, 50 and 25 elements respectively. One can see ¡s¡¡ Table 1-1 that there is no direct
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relationship between size of modal class, M, *4varial t
differenceS among the variances of samples 1, 2,4 and
or 8. However, thére is a significant difference between
also 5 and 6 even although these three samples all have

ith Livshits and Kobyliansþ (ibid) that the relationship which
heterozygosity and modal class size implies an inverse
and degree of heter zYgositY.

Ashton (1986) administered a banery of cognitive ability tests to a large number of

individuals from two different racial backgrounds and also ascertained phenotypes for eighteen

polymorphisms. He found that scores for verbal and spatial tests were higher with increasing

homozygosity, but that speed and memory tests were not affected by zygosity. His conclusion

was that there was a distinct advantage in being homozygous, but that this was offset by the

very small probability of being so. This must be tempered by the fact that he did not analyse

the variances of these test scores, but the means and so little can be said about the ability of the

homozygote to maintain superior test scores under environmental insult.

Several resea¡chers have considered enzymatic acitivity associated with the common

phenotypes of electrophoretically determined genetic polymorphisms. Usually the coÍlmon

phenotypes were due to codominant alleles at an autosomal locus and were examples of

isozyme loci being directly involved in the expression of a particular trait.

Scacchi, Corbo, Calzolari, Laconi, Palmarino and Lucarelli (1985) presented data

showing the glucose dehydrogenase (GDH) phenotypes of human placentae and the

corresponding GDH enzyme activities. A summary of their results is presented in table l-2. It

can be seen that there is no trend in standard deviations or coefficients of va¡iation across

phenotypes. Since raw data have not been presented it is not possible to pool phenotypes into

homozygotes and heterozYgotes.

Golden and Sensabaugh (1986) have investigated the red cell acid phosphatase

polymorphism (ACP1) and the associated phenotypic expression of phosphotransferase activity

ratios. Their results together with coefficients of variation are shown in table 1-3. Since many

researchers pool all heterozygous genotypes and all homozygous genotypes, the mean standard

deviation and coeff,rcient of variation were calculated for each of these two pooled classes.

Here is a situation which at face value displays the reverse of developmental

homeostasis with heterozygotes more variable than homozygotes.
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Another study examining the specific effects of a polymorphic locus was conducted by

Daiger, Miller and Chakraborty (1984). They measured the concentration of human group

specific component (Gc) which is the plasma protein used to transport vitamin D. They also

determined electrophoretically the alleles at the Gc locus for pairs of monozygous twins,

dirygous twins and unrelated controls. Their frndings were that environmental variance was

much higher among females than males and that there were significant differences in group

specific component concentration among the different genotypes at the Gc locus, with

concentration decreasing from Gc|L to CC2 ø G¿2. Here is another situation in which a

specifrc locus affects a particular quantitative trait.

Szathmary (1987) extended these results to show that fasting insulin level, after

adjusting for body mass index, was significantly affected by Gc genotype, the mean insulin

level being lower among Gcl1 individuals than among GcL2.

The metabolically active form of vitamin D is involved in the regulation of insulin level.

The serum group specific component (Gc) binds vitamin D, but the relationship between Gc

and vitamin D is not clear cut. Szathmary (íbid.) suggested that the mechanism conrolling the

Gc polymorphism would best be examined by studying Gc concentration, vitamin D and

insulin.

Two papers examine the relationship between levels of cr1-antitrypsin (AAT), the major

serum protease inhibitor, and alleles of the protease inhibitor locus (Pi). It is thought that

differences in levels of AAT affect its elastase inhibitory capacity (EIC) and elastase, in turn,

plays a role in tissue desruction in such conditions as emphysema and chronic obstructive lung

disease (Oakeshott, Muir, Clark, Martin,'Wilson and Whidield 1985). They point out that the

S and Z alhelesof the pi locus are associated with reduced levels of AAT and also with greater

susceptibility to respiratory conditions.

Beckman and Beclsnan (1980) tabulated means and standard deviations of AAT levels

for M1, M2 and M3 homozygotes and heterozygotes of the Pi locus. Apptying Bartlett's test to

the variances revealed no signifrcant difference among homozygot 
"t U?: 1.69, P > .05), a

significant difference among heterozygo tes 1y"l= 6.91, P< .05) and a significant difference
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among all pt M subrypes fX? = 37.05, P < .001). The shortcomings of Bartlett's test should

be noted (see Section 1.4) but it was not possible to perform a more robust test since the raw

data were not available.

Oakeshott et al. (1985) presented means and standard errors for AAT and EIC for the

same M subtypes of the Pi locus as above. They did not carry out any tests for homogeneity

of variances but claimed that M subtype homozygotes in their sample "show lower means and

higher variances for EIC, AAT... than the M subtype heterozygotes." However, Bartlett's test

revealed no difference among variances of EIC for any subtypes Q? = 6.81, P > '05) and

differences among the AAT variances appeared to be due to one high homozygote variance

fX? = lg.g3,p < .01). Once again, in the absence of the raw data, it is not possible to apply a

more suitable test for homogeneity of variance. Perhaps this is a case of different homozygotes

showing a diverse suscepribility to environmental insult as conjectured by Boltini et al. It

seems that heterozygosity at the Pi locus does not offer any buffering effect through lower

variance of EIC nor through lower levels of EIC; the mean for heterozygotes is 15.68 and for

homozygotes, 1.5.75.

Boerwinkle, Chakraborty and Sing (1986) suggested that the best way to study the

genetics of a quantitative phenotype in humans was to use the "measured genotype" approach.

This involves ascertaining individuals' genotypes at loci which are known or hypothesized a

priorí to be involved in the aetiology of the phenotype of interest and then relating variability at

these loci to variability in that phenotype. This method is becoming more accurate because of

increased understanding of the aetiology of quantitative phenotypes and better techniques for

ascertaining genotypes at relevant loci.

Boerwinkle et al. porntout that loci with large effects on the individual do not contribute

greatly to population phenotypic variance because some genotypes are rare and that the

contribution of common alleles at marker loci is small because of miniscule effects on individual

differences. Thus they hypothesize that loci having alleles at polymorphic frequencies and

having moderate phenotypic effects contribute the majority of the genetic
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variance for many quantitative phenotypes. They predict that the unmeasured polygenic

random component will be reduced as more alleles are identified at more loci. Consequently,

fundamental questions about quantitative phenotypic variability will be addressed.

Their comments taken in conjunction with all of the above evidence seem to support the

idea that there is little point in examining several loci picked appatently at random to investigate

phenotypic variability. One should be considering those loci which are involved in the

aeriology of the trait in question. Chakraborty (1937) also supports this approach. It should be

noted that choice of loci is non-random in two separate ways: first, only those which can be

assayed are examined; secondly, only those shown to be polymorphic in a given sample can be

considered. Both of these factors are likely to causo bias, of unpredictable direction and

magnitude.

In summary, many studies have found no relationship between heterozygosity and

variance of quantitative traits. When such a relationship does exist, it can often be attributed to

a particular allele at some locus. The statistical methodology used is often inadequate for the

task.

1.4 Statistical techniques

Testing for differences in developmental homeostasis between homozygotes and

heterozygotes will often involve testing for difference among variances of quantitative üaits of

genotypic classes of polymorphisms. Consequently, it is necessary to examine statistical

techniques for testing equality of variances for the-univariate and multivariate cases and also for

situations when the traits are distributed normally or have unknown distributions. Let us begin

with the univariate case.

A widely used test for determining whether variances from two or more samples are

equal is Levene's test (Levene, 1960). This test supposes that we have c independent samples

with observations: Xkl,..., 
"ono 

k = 1, ..., c,

where the Xn. have an unknown distribution with mean Ho and variance d.

The null hypothesis is H6: &, = ... = o?

and the altemative: Hr: ol * o! rc, some slt



t4

Weformanewvariable7*u=lXkâ-Xk.l a = 1, "'ilk,k= 1,

c
(N-c) i nn (2,*.-2..)2

c

(k-1) 
? ì (r*" -z*.)'

where N= i,n'
k=l ^

and'W is distributed as F with (c-1) and (N-c) degrees of freedom.

In other words, Levene's test involves performing a one-way analysis of variance of the

Z,o values. This test is robust for symmetric distributions with sample sizes of at least ten

(Kotz, Johnson and Read, 1983).

Two modifications have been suggested for Levene's test. Instead of W,'W' is

obtained using sample medians instead of means. Conover, Johnson and Johnson (1981) have

recommended this modification since it is also robust for asymmetric disributions.

Alternatively W" may be obtained using 10% trimmed means in place of sample means. Both

of these modifications are robust when the distributions have very heavy tatls (ibid.). On the

occasions when all three test statistics a¡e robust (e.g. symmetric distributions with large

sample sizes) then'W, calculated from the sample means, typically has greatest power.

Handford (1930) proposes a multivariate extension to l,evene's test. This extension

involves lumping all of the traits together to form a single measurement for each individual.

Let Xf), ...,*(fl be the no observations from sample k

where *f;'' = ("P,...,"!"f . =l,...,nk

rhen rorm a new va¡iable Yf) = 
[å g*' - f tT'l]U

where l$) ir rhe mean of rait i in sample k, and Vf;) is the single value for case a of sample k.

Since there were two samples, Handford performed a r test on the 
"!o) 

't and Fleischer,

Then'W =

Johnston and Klitz (1983) also used this test.
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However, neither Handford (1980) nor Fleischer et al. (1983) examine the

distributional properties of the 
"!o) 

'r. One obvious problem is that if some of the p traits have

heavy-tailed distributions then more weight will be given to them than to other traits. It might

have beenpreferable to useyr) = 
=3r1"çr-x 

P I or v$) = Ë | 

"P- 
i $) I *n"r"x (p

is the mean and Í f) it ,ft" median of trait i in sample k.

Handford proposes his test as an alternative to principal components. Other researchers

have reduced a large number of variables to one by using the first principal component. See,

for insrance Fleischer et al. (1983),Zink et al. (1985). Handford's main objection is that there

is no objective method available for deciding how many of the principal components should be

used. Anderson (1984) gives three tests using characteristic roots which would be appropriate

for deciding which principal components to include. However, the underlying distribution of

the multivariate randomva¡iables must be multivariate normal to conduct these tests validly. In

the event that the underlying distribution precludes the use of these tests, Morison (1967) gives

a formula for determining the maximum amount of variance explained by the first principal

component. However, this formula is imprecise when the covariance matrix has widely

differing diagonal elements. The sample estimate of the proportion of the variance accounted

for in the first principal component is given by /r/tr(S) where S is the sample covariance matrix,

/1 is the first characteristic root of S and tr(S), the trace of S, is the sum of the diagonal

elements of S. If this proportion is large enough, say at least'l}%o, then there seems little point

in resorting to the abovementioned tests if all that we want is some overall measure of variance.

Problems arise when the p traits are measured on widely differing scales. Linear

compounds of the original quantities have little meaning and so an alternative is to use

standardised measurements. Now the ith principal component explains the largest portion of

the variance not already explained by the previous (i-1) principal components and maximizing

the variance of standardised measurements has an artificial quality. Fu¡thermore the sampling

theory of principal components obtained from a correlation matrix is much more complex than

that obtained using a covariance matrix (Morrison, 1967). Gower (1987) recommends taking

logarithms of uncentred data since normalisers are much influenced by sampling vagaries.
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Either method diminishes the role of outliers. Sometimes taking logarithms gives more

meaning to the first principal component, e.g. if it were

Y = ul log Xt + arlogXt+ at log X,

where X, is length,XZis breadth and X, is depth, then Y represents some measure of volume,

i.e. tog ("i, "T "Tl 
but such an interpretarion is not always possible.

(. ' 
L t)

If the sample variance-covariance matrix is S, then lSl, the determinant of S, is called

the generalized sample variance and this is another way of assigning a single numerical value to

the variation expressed by S (Johnson and Wichern, 1982).

s1t st2 .... st p
st2 szz -...

$=

stp sp p

where p is the number of variables, n iS the number of observations and

tn
tij = ñi I CXiu-Xi) (X¡¿-X¡)

If X (pxn) is the matrix of observations, then we can form the matrix of deviation

vectors

e1 Xrr-Xt X1p-Xl ....Xtn- X

p1-Xp Xpz-Xp

and lSl = (n-l)P (volume)2

where volume is the volume generated in n space by the p deviation vectors €¡--,€p. Clearly

n _ô
the length of ei - I (Xia-XÐ- =

æl

Thus lSl or volume increases as the length of any ei,í.e.r/-s¡, increases and also as

vectors of the same length are moved until they are at right angles to one another. lsl will be

small if only one of the s¡1 is small and/or if one of the deviation vectors lies nearly in the

I

e xon-\

(n-1)s¡i.
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hyperplane formed by the others. In fact the generalized variance is zero if and only if at least

one deviation vector lies in the hyperplane formed by a linear combination of all the others.

To overcome the problem caused by an unduly large or small s¡, the sample correlation

matrix, R, may be used to calculate the generalized sample variance of the standardized

variables, lRl. The standardized deviation vectors will all have the same length and so the

generalized sample variance of the standardized variables *ill F large when the deviation

vectors are nearly perpendicular. If r)¡¡ is the angle between *"rand f ei, the,,
Y ùii \ "JJ

cos(rli¡) = rij, the sample correlation coefficient. Thus lRl is large when all the r¡¡ are îear zeÍo

and small when one or more of the r¡¡ is nea¡ +1 or -1.

In summary, a very small generalized sample variance will occur if one of the p

variables has a comparatively small variance or if ¡wo of the variables are highly correlated.

Van Valen (lgl4)introduces a multivariate coeff,rcient of variation CVn = ]El
IX

where s2 = slt + s22+...* spp = tr (S)

and lFl =

This has the advantage of alllowing very different organisms to be compared but does

not address the problem of differing scales for the p variates. He indicates that Reyment (1960)

proposed an analogous statistic using lSl instead of s. A combined coefficient of variation

using lSl wilt have the same shortcomings as the generalized inverse itself.

Rather than reduce the variance-covariance matrix to a single numerical value, it is

possible to tesr for equality of dispersion matrices. Anderson (1984) discusses criteria for

testing equality of covariance matrices from several populations which are normally distributed.

The test statistic is a multivariate extension of Bartlett's test for the univariate case @artlett,

1937). An exact distribution for the test statistic can be derived when there are only two

bivariate populations. But for other cases an asymptotic expansion must be used to find

probabilities.

2
iX

1l=
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Suppose there are c p-variate populations. Let
"(t)

, r= 1r...,n¡, k=1,...rc bean
a

observation from the kth population NlpG), Et). The hypothesis to be tested is

Hg:Ð1 ->2 =...=Ic=I

c
)nt = N

k=1

k = 1,..., c

I,rut

and

and

Ak = ät" 
,Í, - * rtr) (x (k) - x (k))'

zN--c r

[nu-l./

c
il

k=1

is Pr [2progLi=rl = w tx? <zl +<,rz 
fet 

{xt*o < zl - p, lx? t tl)+ 01n-3)

c
A - LAr.

I

Then the test statistic is V1 =

2p2 + 3p-L

lç-

The asymptotic distribution obtained for

lp(n¡-1)
Vt"

t(

1 1

where p=rfi+-j-l"----- r - 
[r.ã "¡-t **,,| 6(p+1)(c-1) '

ol2 depends on p, c, rl¡, N, p and is often very small in practice, and

f = Y (c-1)pþ+1).

For some values of n¡, c and p, -2Logli fras been tabulated, but otherwise Xf should be used

as the limiting distribution
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Unfortunately, the populations from which the samples a¡e drawn are often not

normally distributed. Transformations may help but it is probably more satisfactory to consider

a non parametric test.

Puri and Sen (1971) discuss rank tests for homogeneity of dispersion matrices.

They consider three hypotheses. Under ff(f tne dispersion matrices are tested for equality,

with the assumption ttrat the location vectors for the different populations are equal. The

alternative hypothesis is that not all dispersion matrices are equal. Under 
"[') 

,n" dispersion

matrices are once again tested for equality but without assuming that the location

vectors are equal. The alternative hypothesis is as before. Under 
"[') 

,O" equality of

dispersion matrices and the equality of location vectors are tested simultaneously against the

alternative that not all of the dispersion matrices are equal or that not all of the location vectors

are equal or both.

The particular dispersion matrices used in these tests are invariant under certain

transformations of the variables and not very sensitive to outlying observations.

It may be enlightening to consider a simple example to illustrate the formulation of

the dispersion matrices and the test statistic for U$). The data in this example are a subset of

dara from an example given by Morrison (1978), page 167.

Two populations have been sampled, four observations from the first and six from the

second. Three variates have been measured for each observation. The data are as follows:

Sample 1

0.92 0.80 0.85

o.43 0.3s 0.48

0.7r 0.7s 0.68

Sample 2

t.23 1.19

0.44 0.37

0.70 0.72

variate 1

vanate2

va¡iate 3

L.2l
0.61

o.74

1.40

0.50

o.73

r.I7
0.39

0.69

1.38

0.42

0.71

1.17

0.45

0.70

So n1 : 4, nz = 6, N = 10 and X$) is observation a of variate i from population k. The

observations for each variate a¡e then ranked across samples to form a rank matrix.



20

Rlo =
3
5

7
10
9

1

1

10

2
8
I

4.5
3
2

10
9
8

9
4

I
6

6
2
7

4.5
7

3.53.5 s.55.5

f nff] (x) is the marginal cumulative distribution function (c.d.f.) for variate i in

population k, i = 1,...,p, k : 1,...,c, then H1¡(x) = i 
^$'tffi 

(x) is the combined

population c.d.f. for variate i, where î,$) = nt[{. (Xn¡ = N as before). If the elements of R¡

are divided by (N+1), the values in a row represent observations from H1¡(x); we can call

them H¡1¡(x) since they are functions of sample size'

The next step is to find a function J such that J1¡(u), i = 1,...,p, is an absolutely

continuous function of u def,rned on (0,1). J1¡ (u) is normalized as follows

1 1o

iJq¡(u)du=o ilft{")au=r; i=1,"',P' (1'1)

00

Grade functionals are formed by taking J functions of H functions of ttre original

observations, i.e. J1¡ tHl¡ rxlå)n. These grade functionals are then used to construct the

C[

dispersion matrices. J is initially defined at the pointst ffif )' c[ = 1'"''N and held

. . a cr ( u < ffi *u, in practice there is a sequence of functions JN(Ð (u) which
constant torÑTT

converges to J1¡ (u) as N-)- for all 0 < u < 1 andi : 1""'P'

The purpose of the J function is to transform the matrix of ranks, R, so that the new

matrix has rows with zero means and approximately unit va¡iances.This new matrix is a score ls

matrix, E. puri and Sen (lgll)give several examples of J functions to suit different purpos"s. tt

If J is monotone then the resultant dispersion matrix will be inva¡iant under monotone
1

transformations of the coordinate va¡iables. For our example, let us use Ji¡(u) = l12 (u-Z)'

which satisf,les the conditions in (1.1). The score matrix is formed by dividing each element of -.rt
RN by N+1 and substituting this value for u in J1¡(u).

f .472 -.787 -1.417 -1.102 ; 1.417 -.315 '787
ThenErn = I t+n -J57 -1.417 .787 : 1'102 -.787 '157rv 

L t.toz 0 r.4r7 -1.417 : .787 -1.102 -'630

.472

-.63t.t57 1.102 -.315
-r.102 -.47r .472
.472 0 -.630

The test is based on Some functions obtainable from the Score matrix, EN' In practtce

the simplest functions to use are:



(j) r I nt (i) ll- nk 0)
"*,\.I,-* l;, "-,*Íf,J Lå 'ltp

nk (i)

,Èt " *,*Íf)

Insert after the expressions and before the numericar example:

s$)¡ 
"n'esents 

the corrected sum of producs of the scores for the variables i and j for one*
sample k while SN,ij it the corrected sum of products of the scores for variables i and j over all

samples' These values can be arranged in matrix form. our interest is in whether there a¡e
differences among the matricet (tlf]U) k=1,...c. If there are no differences, these matrices will

all be simila¡ to the pooled matrix, (ti,U)



ti,rj = #

Using the numerical examPle,

(i) (i)

" *^$' " *^$' -Ne(r?"

wheretÍ? = $ å

,*Ì

2l

, .14t
.08:
.891

n¡

æ1
u*'*$'

(i)

('!'J,o) = [
.686 .793 .285

r.52r -.579
r.&3 ], 

q'!'J,,) = [
.545 .278 .352

.692 .r40
.530 ]-o 

(rio,u) = [
9M .336 .146

.909 .083
.898

One can consider the N! equally likely permutations of the columns of R¡ and obtain

an exact test for rlf . uo*ever, the expressions involved are complicated and so, if N is not

small, it is more convenient to use an asymptotic permutation test. To show how this is done'

the relevant statistic wilt be calculated for the example even though N is small'

in order to decide whether there are differences among these dispersion matrices, the

variance matrix for the 

l'*ï.ïJ"iii"'"*tätf 
- tou?ö'' (j, ¡ *

'ij,i,j,(RN) = # uI, å "**$¡ 
Eñ,*,$, t*,*l? IN i? 

- sN,ij SNi'j'

for all i,i',ji' = 1,-.-.P

The notation is a result of the fact that one element of a dispersion matrix is formed from variables i

and j while another element is formed from variables i' and j', not necessarily all distinct' Thus the

covariance of two such elements is formed from variables ij,i' and j''

The dispersion matrices may be expressed as vectors by setting

¡=[(i-1)(2p-i)/2]+j fori < j = 1,....,p.

andrewriting

{t$],,,i<i = 1,...,p}

as S$) = {t.Íl', r = l,...,P(P+D/2}' k: 1,...,c
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and as

Thus VNßN) = ((vrs (RN)))r,.= r,...,p(p+r)12

where s is defined as for r, substituting i' for i and j' for j.

Then the test statistic ls

{tl,,r,i r j:1,...,p} Sl = {tl,r, r = 1,...,ptp+r)/z}

LN : å*-[t$'- t L] vñl (RN) [s$t-si]'

ana rf$) is rejected if L¡ > L¡,¿

Puri and Sen (ibid) show that for large samples LN,, -) fr,r"-rrn*rr'-

In the example Sr0 = (.904 .336 .146 .909 -.083 .898) and

vro (Rto) =

.369 275 -.135 -.Or2 -.O27 .029
.696 -.381 .348 -.004 .131

.819 -.165 -.444 -.056.362 .005 .143
.952 -.232

.370

Once this matrix has been inverted, it is easy to obtain the test statistic L1g.

Since we are primarily concemed with the changes in va¡iances of quantitative traits

among genotypes and since there is no good reason to assume that the location vectors for

different genotypes will be identical, our main interest is in the second hypothesis.

Under H[2) ttr" basic permutation argument is no longer tenable and so Puri and Sen

(ibid) derive a rank order test by centring the observations at the respective estimates of location

parameters and working with the centred observations. The assumption that the test based on
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the centred observations is asymptotically equivalent to the test based on the observations

centred at the true locations means more stringent conditions must be applied to the cumulative

distribution functions and their asssociated density functions and also the grade functionals.

This means thar Jlro¡ (u) = t¡6-t (u)l is a more suitable function, where I is the expected

value operator.

The only assumption regarding the estimates of the location parÍìmeters is that they must

be consistent and so the mean or the median of each variate in each population will suffice.

1.5 Conclusions

There are several directions one could take to further examine the issue of

heterozygosity affording some selective advantage in humans.

First, it may be useful to consider theoretical arguments and this will be done in chapter

2.

More data can be analysed to increase the pool of loci and quantitative traits which have

been examined. More appropriate statistical techniques may be used in order to obtain as much

information as possible from the data. These two approaches will be adopted simultaneously in

chapter 3 and4.
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JJt9
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34

29

39

57
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24

39
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1

2
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4

5

6

7

8

9
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11
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32
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24
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t9
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39

36
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32
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S2

B,M,T
169.8

t.5.4
151.6

3,5'2
9.0

o.8.2
1t2.3 78.0

1,8,1
2t.8

8, 1, 1 1, 8, 1

Table l-2 Glucose activity in six common phenotypes (pmol of
Scacchiet al. 198

mean s

wet

c.v.

1-1

2-2

3-3

2-l
3-r
3-2

249

26

9

r82
103

34

26.77

24.73

20.44

23.97

25.46

24.62

t2.78

12.34

10.14

12.68

12.69

tt.66

0.477

0.499

0.496

o.529

0.498

0.474

Table 1-3 Phenotype variation in phosphotransferase activity ratios. (Golden and

Sensabau 198
acív1ty

mean s.d c.v.

B

BA

A
CB

CA

C

23

22

25

8

10

1

3.74

3.49

3.38

2.94

2.74

2.43

0.25

0.46

o.22

0.33

o.34

0.067

o.t32
0.065

0.112

0.r24

homozygotes

heterozygotes

49

40

3.53

3.r9

0.36

o.52

0.102

0.163
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2. PHENOTYPIC VARIABILITY OF POLYGENIC TRAITS

2.1 Introduction

This chapter is concerned with the phenotypic variability of quantitative traits which are

controlled by many loci. However, the problems of the origin of variation (e.g. Frankham

1930) and its possible maintenance by stabilizing selection acting directly on the phenotype for

the trait of interest (e.g. Turelli 19S4) are peripheral to the relationship between heterozygosity

and variability, and will not be considered. In what follows, it will be assumed that ttre loci

which are examined a¡e directly involved in the expression of those traits being measured.

Chakraborty and Ryman (1983) have shown that the fact that, "within a population, the

least phenotypic variation exists among the most heterozygous individuals can be explained by

simple additivity of genic effects that control the quantitative character in question". In order to

show this they make a number of assumptions: allelic effects are additive and the same for each

locus, gene frequencies are the same at each locus, independent segregation at all loci and they

conhne their discussion to just two segregating alleles. They also discuss what happens when

the gene frequencies at each locus vary and when phenotypic variance includes an

environmental component.

Mani (1988) extends their argument by increasing the number of segregating alleles at

each locus. His evidence is presented as the results of simulations. He makes the same

assumptions as Chalaaborty and Ryman. So it is not surprising to frnd that the results of his

simulations for the two-allele case confîrm the results which Chalaaborty and Ryman found by

mathematical methods, i.e. the mean converges to a fxed point and the genotypic variance

decreases linearly to zero with increasing heterozygosity.

When the model is extended to three or more alleles, the mean does not converge to a

fixed point any more and the variance decreases with increasing heterozygosity only if the

alleles are present at simila¡ frequencies to one another. Such a situation occurs in a selective

model. If one allele is present at much higher frequencies than other alleles, as in a neutal

model, the va¡iance increases with increasing heterozygosity.
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Mani (ibid) concludes that increasing or decreasing variance with increasing

heterozygosity could be used to determine whether selection was at work. However, his model

assumes additivity and small environmental effects.

The resr of this chapter deals with models which I have developed by extending those of

Chakraborty and Ryman, and Mani.

2.2 Extending the two-allele model

It is possible to relax some of Chakraborty's and Ryman's assumptions and still obtain

the same effect for 2 alleles. I will use their notation (i.e. two seglegating alleles A¡ &' B¡ with

gene frequencies p and q at each ofn loci).

Suppose first that the allelic effects are not additive. For instance let the genotypes,

A¡A¡ and. AiB i , both take the value 1 and B¿ B¿ have the genotypic value 0 (i.e. complete

dominance); a homozygous individual can be A¡A¡or BtBrat each locus, i=l,....n. Suppose

an individual is homozygous for the A allele at m loci and for the B allele at n-m loci. So if the

locus effects are additive the genotypic value for the individual is m and

( å) (p')' (q')n-*
n

m=0
P6 (p2*ú)"

n,
r, l*

m=0\ ffif (å')(p2)'(q2)**

(p2*q2)n

2
o0

An individual heterozygous at k loci, with genotypic value k, will be homozygous at

n-k loci. Suppose m of these are A¡A¿, with genotypic value m, and n-k-m are B¡B¿ with

genotypic value 0.
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tr¡

n-kt
m=0

(m+k) çffi;;1 ( p2)* (2pq)k (qz)n-t-m

( [) rznt)k (pz+nz¡n-t

(npz+¡qz)

(p2*qz)

and this equals n when k = n

2
o,

K

9{r-.uroW}' (Ð ( lìo) rn'l'"(2pq)k(q2)n-k-m

([) tznølo (p'*q2)*o

and this equals 0 when k=n.

Thus the variance decreases from to to 0 as the number of

heterozygous loci, k, increases from 0 to n

The genotypic mean increases from to n as k increases from 0 to

n, regardless of whether p > q or not.

A second way of relaxing the assumption of additivity is to introduce partial dominance.

Suppose that the allelic effects of A and B are essentially additive 6u¡ with panial dominance, so

that for locus i the genic effect of A, A¡is 2, A¡B¿ is l+s and B¡ Bt is 0, s > 0.

This is heterosis if s>1.

Then the mean and variance for completely homozygous individuals are

to
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genic value k (1+s) and homozygous for A at m of the remaining (n-k) loci with genic value

2m.

ffi""dffirespectively.Supposeanindividualisheterozygousatklociwith

{tz-*t+ts) (Ð (;-) (pr)' (2pq)k (nz)n-t-m

l.tk (i) rrnnlt (nz*nz)n-t

n-k
= k + ks + z t:- (ï,,") (p2)- (qz)n-t-*

m{

= k (1+s) +

n-kt
m=0{zm+k{r+s)-k(1*r)-2(4p2*q2}t(Ð(ä-)(p2)'(2pq)k1n2¡n-k-m

G) ,rno,o (pt*q2)n-o

n-k

m={ þ t#Ì' (iu) (p')- (qz)n-t-*

( p2*q2)n-o

Thus as k, the number of heterozygous loci, increases the genotypic variance decreases

from 4np2q2/@2+û)2 to 4(n-k)p2út@2+ú)2to zero while the mean changes linearly from

2
o,

K

4
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2rry2/.p2+.2j to k(l+s) +z(n-k)p2l@2+û) to n(l+s) and this has a negative slope if p>(l+e)q

where e>0 depends on s. It should be noted that the change in genotypic variance is

independent of s, the size of the selection coefficient'

I have shown that, if there are only wo possible alleles at each locus, genotypic

variance among individuals in a population decreases with increasing heterozygosity. This is

true whether the allelic effects exhibit complete dominance, pafüal dominance, heterosis or ibit

additivity, provided that the loci have a direct effect on the trait under

investigation.

2.3 Developing a more complex model

A locus effect is defined to be the net effect of the alleles at a particular locus whether

they be acting additively, with dominance or with some heterosis. In all of the preceding work

of this chapter, it has been assumed that the locus effects were additive. Mayo (1980)

discusses the doubdul validity of this assumprion and illustrates his discussion with examples

of additive, multþlicative and asymptotic locus effects. He also points out that if appropriate

data were examined the last would be readily detectable but it would be hard to distinguish

between multiplicative and additive locus effecs.

One extension that I will make to the original model of section 2.2wtllbe the inclusion

of multþlicative locus effects.

If more than two alleles are segtegating at each locus, the property of additive allelic

effects is easily dealt wittr. However, if the alleles are not additive how do the different alleles

interact?

A classic example is the ABO blood group locus. Alleles IA and IB uecodominant to

each other (i.e. both are expressed in an IAIB genotype) and dominant to allele i. Similarly

Santachiara-Benerecetti (1970), when investigating the Babinga pygmies, found a three-allele

polymorphism at the peptidase C locus. Two allele s PEPCI and PEPC2 were codominant to each

other while the third, PEPd,was recessive.

The galactose 1-phosphate uridyltransferase locus (GALT) has three main alleles'

GALTA, GALTG and GALTD (Tedesco, lg12). If the homozygote for GALTA has an enzyme

activity of 1.0, then the activities for the possible genotypes are as follows :
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AA AD DD AG GG

1.0 0.75 0.5 0.5 0

The G allele is deleterious in that homozygous individuals exhibit galactosaemia. So this is an

example of three alleles all acting additively.

These are just three examples to indicate what feasible assumptions I have made when

constructing the model. When more than two alleles are present in the model, additive allelic

effects will mean that all alleles act additively as at the GALT focus. Dominant allelic effects,

will mean that the first allele is recessive and each of the others exhibits dominance to the first but
these others show overdominance among themselves

To determine actual values to be used in the model, adult female height was taken as an

example of a quantitative trait. Using the twin data described in chapter 4 of this thesis the

estimates of mean and standard deviation for female height were x- = 163.3 and s ='l .32.

Assuming that height is distributed normally with a range p t 3o, the range of female heights

estimated from this sample would be (141, 185). These values were used as the extremes

when determining values for allelic effects.

If allelic effects and locus effects are both additive the method for determining the

phenotypic value of an individual in the absence of environmental effects will now be

described.

Suppose there are n loci and k possible alleles for each locus. Suppose that each locus is

homozygous for the allele which has the smallest effect on the quantitative trait. Then an

individual with such a genotype will have the lower extreme value for that trait. By the same

token, an individual who is homorygous at each locus for the allele having the largest effect will

have the upper extreme value for the trait. Let us extend the model of Mani for k alleles by

assuming that the effect of allele j is 4s, so that the allele with least effect is allele 1,' k-l

contributin gzero,and allele k will have the greatest effect, contributing s, where s is a scale

parameter. If locus effects and allelic effecs are both additive then the genotypic value will be

:_1
* * 

,ä, 
^,"ì", 

Ë 
t'

where x is some base value.

Using the example of height with 10 loci and the range of heights given above we get
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x: L4l

x + 10 (2s) = 135

i.e. s : (185 - l4I)l2O

If there were three alleles per locus then a \ryoman who was homozygous for allele 2 at each

locus would have a genotypic value for height of

x + 10.2.f s

t4t + 10. 
(18s_-J41)

163.

For additive allelic and locus effects, s = (Lu -Lù l2î, x - LL and the genotypic value is
' i- 1x+s >

loci alleles k- I

respectively. as previously defined,

If locus effects are still additive but alleles exhibit

individual at the upper extreme is

at the lower

extreme will again be homozygous for the allele with smallest effect. However individuals at

the upper extreme will be heterozygous for the two dominant alleles with the biggest effects

since these are additive. If the effect of allele j i, 4, then the genotypic value for an" k-l

X +

x+n n k-3\
t---f

räi ['.H) S

s

Againx = LL and so r = e+XrËl
Individuals who are heterorygous at all loci for one of the dominant alleles and the recessive

allelewilthaveagenotypicvalueofx+ ) l+ìs, l<j<k whileindividualshomozygous
loci \K- r7

for the same dominant allele will have the same genotypic value. Thus if there are three alleles,
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a locus effect can have the values { O, }t, t, 'r-t } whereas if there are only two alleles, the

locus effect can have values 0 or s only.

Now suppose that locus effects are multiplicative. Then if alleles are additive, the

smallest genotypic value is xn while the largest is (x + 2s)n. So x = n{LL, x + 2s : n{¡g and

. = t ("./-r-u -'r/-l-r).

For the height example, with 10loci and 3 alleles, say,

x=10{141 :r.64 r=t(ro^/T8s-10ü4-L) : }(r.esS- 1.64) : o.022s

and an individual who is heterozygous at all loci for alleles 2 and 3 has a genotypic value of

(. * 1- r)ro = r.6737sro = 172.5

Finally, suppose that locus effects are multiplicative and alleles exhibit dominance.

Then an individuat at the upper extreme has genotypic value 
[. 

. 
[:-ì]n 

*nu" u'

individual at the lower extreme has genotypic value xn.

Thus,

Using the height example, with 10loci and 3 alleles, an individual homozygous for the

recessive allele (number 1) at all loci has genotypic value 141, one heterorygous at all loci for
1 = (1.6SS)1O = t54.3 as does an individual

x = tr\E, . * l2k-3-ls = n{Lu
Ik-1 /

, = (n.fi-u - "^/-Ð l+,1' 
l¿K-5 )

and

alleles 1 and 2 has value + zs

homozygous at all loci for allele2 and one heterozygous at all loci for alleles 2 and3 has the

value 185. It should be noted that an individual will not usually have the same combination of

alleles at each locus; these have been used for illustrative purposes only.

2.4 Simulations and Results

A FORTRAN 77 program was written to run on a VAX 11/780 computer. All aspects

of the progmm were verified by printing out intermediate results and performing hand

calculations for small examples. This program implemented the model described in section 2.3

by simulating genotypes for 5000 individuals, each with 10loci controlling a quantitative trait.

t )'o
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Upper and lower extremes of female height, as previously described, were used to delineate the

trait. No environmental variance was included and so genotypic and phenotypic values for an

individual were equal.

Allelic frequencies were chosen for several reasons. Equal frequencies of all alleles

represented a selective model, while one allele having a much higher frequency than other

alleles represented a neutral model. These frequencies were used by Mani (1988). The set of

frequencie, { O.ZA, 0.2,0.02} *ur used extensively in the 3-allele model since these values

were calculated by Santachiara-Benerecetti (1970) for the Babinga pygmies. The set

{ O.OO, 0.35, 0.05 } represented a less extreme version of the above frequencies.

Each simulation was repeated 50 times and the heterozygosity class means were

averaged over the 50 runs, while the heterozygosity class variances were pooled. These pooled

variances were plotted against heterozygosity score. The plots for two allele models are shown

in figure Z-l,Z-2,2-3 and2-4. Aswas predicted by Chakraborty and Ryman (1983), the

variances for additive allelic effects and additive locus effects, showed a steady decrease with

increasing heterozygosity. The same was also true when allelic effects exhibited dominance;

this was predicted by my calculations in section 2.2 Two further models with multiplicative

loci, one with dominant alleles and the other with additive alleles, both showed decreasing

variances with increasing heterozygosity. When the frequencies of the two alleles were very

different, the decrease in the variances was very shallow.

For three alleles, when all effects were additive, the results were similar to those

obtained by Mani (1983) (see frgure 2-5), i.e. there was an upward trend in variance when one

allele was much more frequent than the other two. This trend became steeper as the two rare

alleles became less frequent. There was a downward trend in variance when all alleles had

similar frequencies.

However, this pattern was not maintained when allelic and locus effects were not both

additive. For instance, figure 2-6 shows that if alleles exhibited dominance, while locus effects

remained additive, allele frequencies representing selective models, i.e. all equal, caused the

variance to remain stationary with increasing heterozygosity. On the other hand, if the allele

frequencies were very different { 0.2, 0.02, 0.78 } , the va¡iance decreased or increased
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depending on whether the least frequent allele had one of the extreme effects or a moderate

effect. Although the means have not been plotted, they increased with increasing

heterozygosity for all of these frequency combinations.

The reasons for this pattern can be illustrated by considering one locus only. If allele

one is recessive with effect 0 and alleles two and three are codominant with effects ks and s

respectively, then the mean and variance for the locus effect for heterozygotes are given in table

2-1a. Themean and variance for the locus effect for homozygotes are given in table 2-1b. The

variance of the genotype values for an individual locus is highest among the homozygotes when

allele two has the lowest frequency and at the same time is lowest among the heterozygotes. So

one can see that each additional heterozygous locus would decrease the va¡iance. The converse

is true when one of the extreme alleles is least frequent.

'When an extreme example of neutral theory was considered, namely allelic frequencies

of { O.e, 0.05, 0.05, } then the variances always increased regardless of which allele was least

frequent, but the increase was steepest when the most frequent allele had a moderate effect

(figure 2-7).

The trends in variance for additive allelic effects and multþlicative locus effects were

similar ro those found for additive alleles and additive loci (figure 2-8). These trends agreed

with Mani's results.

Finally, when alleles exhibited dominance and loci had multiplicative effects, many

results were similar to those for dominant alleles with additive locus effects (frg.2-9).

However, when altelic frequencies were all equal, the variances increased after an initial dip,

with increasing heterozygosity. This was a direct contradiction of previous findings for equal

allelic frequencies.

An attempt was made to see whether similar patterns emerged when the number of

alleles was increased to four. When allelic frequencies were equal, allelic effects exhibited

dominance and locus effects were additive, the variances increased with increasing

heterozygosity. With these same effects, if one allele was much less frequent than the other

three, then the trend in variances depended on which allele was the rare one (figure 2- 10). If

one of the two middle alleles was rare, the variances tended to decrease and then increase, i.e.
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almost a quadratic trend, with increasing heterozygosity. On the other hand, if one of the

extreme alleles was the rare one, the variance increased with increasing heterozygosity.

Using a set of allelic frequencies similar to those used for the three allele case, namely

{ O.OS, 0.05, 0.6, 0.3 } , the trend in variance depended on the particular permutation of

frequencies. The variance decreased with increasing heterozygosity except when the two

middle alleles were the rare ones (figure 2-ll). The reasons would be similar to those

discussed for the three allele situation with frequencies { 0.2, 0.78, 0.02 } .

2.5 Conclusions

While Chakraborty and Ryman (1933) and Chakraborry (1987) believed that decreasing

phenotypic variability with increasing heterozygosity was caused by additivity of allelic effects

over all the loci controlling the polygenic trait, Mani (1983) pointed out that this argument did

not necessarily apply when there were more than two possible alleles at each locus. This

argument was that phenotypic variabiüty decreased or increased with increasing heterorygosity

depending on whether allelic frequencies were indications of neutral theory or selective theory.

I have shown that when there are only two possible alleles per locus, the interactions

berween loci may be multiplicative or additive and the interactions between alleles may be

additive, dominanlrecessive or additive with some heterosis. Whatever the

situation,phenotypic variability will decrease with increasing heterozygosity.

I have also shown using simulations that when there are more than two possible alleles

at each locus, one cannot resort solely to the neutral versus selection argument to explain

increasing and decreasing trends in phenotypic variability. Evidence of this is the fact that

different trend.s in variability can be obtained by permuting the alleles having the different

frequencies when alleles interact with dominance.

Thus Mani's conclusions will only apply if there is no dominance and Chakraborty and

Ryman's conclusions will only apply if there are no more than two alleles per locus. Perhaps

these restrictions are the reasons for some of the conflicting results indicated in Chapter 1.
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t'abte Z-t Mean and variance of genotypic value for a single locus with three alleles; the fi¡st of
*tiðtt ir recessive, whíe thé-other two are dominant to the first and overdominant

between themselves.

locus
genotypic value

allellc lrequencies
genotype 2,.02,.78) (.O2, 2,.78) (.2,.78,.O2 .78,.2,.O2)(. )(

a. heterozygotes

t2

t3

s

s

1

,

S

!
223

0.008

0.3r2

0.0312

0.008 o.312 o.3t2

0.0312 0.008 0.0312

0.312 0.0312 0.008

b. homozygotes

11 0

22 It2

33s

mean

variance

1.0330s

0.0268s2

0.04

0.0004

0.6084

I.4328s

0.0405s2

0.0004

0.04

0.6084

0.6002s

0.0845s2

0.04

0.6084

0.0004

0.5672s

0.0405s2

0.6084

0.04

0.0004

mean

variance

0.9377s

0.0580s2

0.9686s

0.0150s2

0.4695s

0.0145s2

0.0314s

0.0150s2
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Figure 2-1. Genotypic variance versus heterozygosity. Two alleles per locus with additive

allelic-e-ffects and additive locus effects. Allelic frequencies:

o 0.9,0.1 tr 0.5, 0.5 
^ 

0.3,0.7
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Figure Z-2. Geno.typic variance versus heterozygosity. Two Î]lgles per locus with atlele 2
ctommanr to allele 1 and additive locus effects. Allelic frèquencies:

o 0.9,0.1 tr 0.5, 0.5 
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Fiellle 2-3. Genotypic variance v€rsus heterozygosity' Tw^oal-leles per locus with additive
r ¡éqv - "' dËñ'.Íiä;;á muttipticati.,e loõu-s effêcts. Allelic frequencies:
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Figure 2-4. Genot¡ryic va¡iance versus heterozygosity. Two alieles per- 

dominant to allele 1 anc muþlicative locus effects. Allelic
locus with allele 2
frequencies:
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Figure 2-5. Genotypic variance versus heterozygosity.'Three allelesper locus with additive
allelic-effects and I tive locus effects. Allelic frequencies:
o 0.33,0.33,0.34 0 0.1,0.1,0.8 ^ 

0.8,0.1,0.1 0 0.05,0.05,0.9
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Figure 2-6. Genotypic va¡iance versus heterozy gosity.. Three,alleles. per
acting additively and both dominant to allele 1, with additive

locus, alleles 2and3
locus effects. Allelic

frequencies:

-.-t q.3-3_|9:33,0.34 O 0.2,0.02,0.78 o 0.02,0.2,0.78 
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Figure 2-7 . Genotypic va¡iance versus heterozygosity..Three.a,lleles.per locus, alleles 2 and3

acting additively and both dominant to allele 1, with additive locus effects. Allelic
frequencies:
o 0.05,0.05,0.9 0 0.05,0.9,0.05 0 0.9,0.05,0.05
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Figure 2-8. Genotypic va¡iance versus heterozygosity. Three {leles per locus with additive- allelic-effects and multiplicative locus effects. Allelic frequencies:
o 0.33,0.33,0.34 0 0.1,0.1,0.8 ^ 

0.02,0-2,0.78
0 0.05,0.05,0.9 + 0.05,0.6,0.35
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Figure 2-9. alleles 2 and3

locus effects.
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Figure 2-10. Genotypic variance versus heterozygosity. Four alleles per locus, alleles 2,3 and
4 acting additively and all dominant to allele 1, with additive locus effects. Allelic
frequencies:
o 0.32,0.32,0.32,0.M E 0.32,0.32,0.04,0.32

^ 
0.32,0.04,0.32,0.32 0 0.04,0.32,0 .32,O.32

t4

13

12

11

10

6
heterozygosily

o

I

7

6

2
5

3 4 5 7 I 9 10 11



Figure 2-11. Genotypic variance versus heterozygo_s¡ry. Tou{ 4t"1"-f perlocus, alleles 2,3 and- e- - 
+ actint'äaditively and all dominantiõa[eie 1, with addidve locus effects. Allelic
frequencies:
o 0.6,0.3,0.05,0.05 tr 0.05,0.6,0.3,0.05

^ 
0.3,0.05,0.05,0.6 0 0.05,0.05,0.6,0.3
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3. ANALYSES OF MOTHER-BABY DATA

3. I Descriptio4

One of the problems encountered when looking for evidence for homeostasis among

humans is to frnd suitable data. The data must consist of one or more quantitative traits, which

in some way reflect the fitness of the individual, together with genotypes for several loci. One

such set was provided by Professor L. Beckman. The data comprised measurements

made on4l4 mothers and their newborn infants, some of which have been published by

Beckman, Beclcnan and Magnusson (1971). The measurements used were nine quantitative

traits: acid phosphatase in mother's serum (ACFM), heat-stable and heat-sensitive alkaline

phosphatases in mother's serum (PLFM and LFM), acid and alkaline phosphatases in child's

serum (ACFB and BFB), birth weight (BW), placental weight (PW), baby's length (L) and

length of gestation (GL).

Genotypes had been ascertained for ABO blood groups and red cell acid phosphatase

for both mother and baby, and for placental alkaline phosphatase and mother's haptoglobin.

The three most common alleles for the red cell acid phosphatase locus ,vlz. ACP !, ACf Bt 
and.

ACP l and the three most common alleles for placental alkaline phosphatas e, v\2. PL s, PLf

and PL ' were all present in these data as were the two common haptoglobin alleles, Hp l and

Hp z. Thus analyses involving polymorphisms at these loci could be contemplated. It should

be noted that when arialyses by genotype were performed, some genotypes rwere omitted

because they were only represented by a very small number of individuals. These were

genotype CC for ACP 1, both mothers and infants, and genotype ii for the PL locus.

Mitton and Grant (1984) suggested a number of conditions which would favour a

positive relationship be¡ween an individual's fitness and heterozygosity. One was that a

character should be examined at a stage of the life cycle when any surplus energy would be

used in the expression of that cha¡acter. Length and weight at birth and placenta weight are

good examples of this property.

Another was that characters should not be physically consÍained in their development

and a third was that a range of environments should be considered. Obviously there are sonle
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constraints on a baby's size at birth, but they ffe not so rigid as to allow little variation.

Biochemical measurements will also be loosely constrained. Since the data were collected in a

large city hospital in Sweden, mothers would have come from a range of socioeconomic

backgrounds, but there would have been some degree of uniformity of environments.

Phenotypic stability among heterozygotes if it occurs could be atributed to partial

inbreeding (Lande and Schemske, 1985). Although the data were collected in a large city

hospital, significant effects could be the result of local inbreeding followed by local outbreeding

on account of increased poulation mobility.

Finally, Mitton and Grant (ibid) stated that characters with low canalization and small

coefficients of variation would be most likely to show the relationship between fitness and

heterozygosity. Since canalized characters are those whose development is normally unaffected

by environmental stresses and underlying genetic variability (Rieger, Michaelis and Green,

I976), characters to be studied should be affected by these factors.

Beckman, Beclanan and Magnusson (1971) discuss environmental and genetic factors

which influence the levels of alkaline phosphatases in matemal and cord sera, indicating that

these are not canalized cha¡acters.

IJhzzi and Terrenato (1987) present data which indicate that there was a reduction in

birth weight variance all over the world during the 1970's. They attribute this reduction to

modifications in environmental conditions. Although the data used in this chapter were

collected before this period, other data which Ulizzi et al. (ibid) present imply that the trend in

variance reduction had started well before this time. The coefficients of variation for birth

weight which they tabulate are reasonably low, between 0.17 and 0.20. Mayo (1983)

comments that human birth weight is influenced by maternal genotype, matemal age and parity.

So birttr weight appears to be moderately canalized, with a low coefficient of variation.

One can see that the quantitative naiß measured in this data set have several points to

reconìmend them for studying the question of heterozygote advantage.

Many researchers analyse heterozygosity data by adding up the number of loci for

which an individual is heterozygous and thus giving that individual a score for heterozygosity.

The classes generated by these scores a-re then used as the basis for the analysis. Smouse
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(1986) criticises this approach when developing his "adaptive distances" model. His model

shows that although individuals who a¡e heterozygous at all loci a¡e the fittest and those who

are homozygous at all loci a¡e the least fit, there is no strict order of fitness for intermediate

numbers of heterozygous loci.

If one regards the loci, for which genotypes have been ascertained, as representative of

the whole genome, then it may be reasonable to pool loci and obtain a heterozygosity score.

However, this is a hypothesis about which, as discussed in chapter 1, there is some contention,

It is also very unlikely that the very small sample of loci measured in this data set would be

representative of the whole genome (Chakraborty, 1981) and so for most of the analyses

genotypes have been kept separate. Where appropriate, heterozygosity scores have also been

used to see how they compare with results for separate loci.

3.2 Univariate Tests

Examination of the rank correlations in table 3-1 reveals strong associations among all

of the anthropometric measurements and also among several of the biochemical measurements,

but no associations between the two groups.

These associations indicate that in analyses of the data, the biochemical measurements

should be considered as a group as should the anthropometric measurements, rather than on an

individual va¡iable basis. However, initially, individual traits were considered in order to

obtain a 'feel' for the data. Tables 3-2,3-3,3-4 and 3-5 show the mean and variance for each

of the nine traits by genotype for the placental alkaline phosphatase, mother's haptoglobin,

mother's red cell acid phosphatase and baby's red cell acid phosphatase loci respectively.

While the number of individuals in each genotypic class is indicated, there were sometimes

missing values for some traits.

Bartlett's test for homogeneity of variance across genotypes was performed for each

trait in each polymorphism. All of the biochemical measurements except placental alkaline

phosphatase in mother's serum exhibit skewness and kurtosis and since Bartlett's test is not

robust under such conditions, Layard's test (1913) was also used, as implemented in

GENSTAT IV (1983). The result was that none of the differences among the variances for

each trait in any polymorphism was significant. Nor was there any tendency for heterozygotes
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at any of the loci to have lower variances than homozygotes for any of the traits. The

exceptions to this lack of trend were the traits, acid phosphatase in the child's serum and

alkaline phosphatase in the child's serum. Both exhibited variances lower among heterozygotes

than homozygotes, although not signifrcant, at the mother's haptoglobin locus. The former also

showed the postulated trend at the mother's red cell acid phosphatase locus, but this was not

signifrcant.

3.3 Muttivariate Tests and Discussion

A different picture emerges when groups of traits are analysed together. For instance,

the multiva¡iate coefficients of variation (van Valen, 197 4) tabulated at the bottom of each of

tables 3-2,3-3,3-4 and 3-5, show a tendency to be greater for homozygotes than for

heterozygotes at the mother's haptoglobin and mother's red cell acid phosphatase loci. If

separate multivariate coefficients of variation are calculated for the biochemical traits and for the

anthropometric traits it appears that the former group has a much gleater effect on the combined

coefficient than the latter. This is obviously due to scaling. For instance baby's length has

means of approximately 50 and va¡iances of approximately 5, i.e. tOTo of the mean, whereas

red cell acid phosphatase in the mother's serum has means of approximately 90 and variances

of approximately 1000, i.e. more than l lOOVo of the mean. There is still an obvious scaling

problem among the biochemical traits and so trends among BFB, LFM and PLFM are likely to

overshadow those among ACFB and ACFM.

The multivariate coefficient of variation for all traits, CV9, and the coeff,rcient for

biochemical traits only, CV5, exhibit lower values for heterozygotes than for homozygotes at

both the mother's red cell acid phosphatase locus and the mother's haptoglobin locus. The

coefficient for anthropometric traits only, CV4, also exhibits this trend at the mother's red cell

acid phosphatase locus.

As a matter of interest, these multivariate coefficients of variation were compared with

the results obtained from Handford's extension to l-evene's test using all nine traits (see chapter

1 for a description of this test). This test was used on raw data and on log-transformed data;

the aim of the latter was to combat some of the scaling problems. The results are presented in

table 3-6.
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As for CV9, the mean values of the raw data were lower for heterozygotes than for

homozygotes at the mother's haptoglobin and the mother's red cell acid phosphatase loci,

although these means were not significantly different. When the data were log-transformed the

trend at the mother's haptoglobin locus was maintained and remained non-significant.

However, the means for the log-transformed data at the mother's red cell acid phosphatase

locus were very significantly different, which was due to a high value for genotype AA, while

all other genotypes had similar means. Thus removing some of the scaling effects also

removed some of the trend towards lower variances among heterozygotes. The raw data means

for the genotypes of placental alkaline phosphatase were significantly different mainly because

of the high value for genotypeff; allother genotypes had similar values. The trend was

maintained but the significance was lost when the data were transformed.

Some of the results for the modihed fÆvene's test were similar to the trends exhibited

by the multivariate coefhcients of variation, although the latter cannot be tested for signif,rcance.

It must be stressed ttrat the statistical properties of the modified l-evene's test ate unknown and

so not much weight should be attached to these results.

Now let us turn to a multivariate test which is scale-free,vlz. a multivariate non-

parametric test for differences in dispersion as described in chapter 1. This test was particularly

appropriate for the biochemical traits since they were not distributed normally. A MINITAB

progmm to implement this test was written (see Appendix B). Its validity was checked by hand

calculations at representative points throughout the program.

As was mentioned earlier, the patterns in the variances of the different traits for any set

of genotypic classes are usually similar to the patterns exhibited by the univariate coeff,rcients of

variation. The patterns do vary for placental alkaline phosphatase genotypes. Thus for the

other three loci, it is reasonable to assume that location vectors of the biochemical

measurements are equal across genotypic classes. Hence we can test the hypothesis, H(f;, or

Puri and Sen, referred to in section 1.4. This means that the dispersion matrices for the

different genotypic classes may be tested for equality assuming that the location vectors are
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equal. The results for the mother's haptoglobin, mother's red cell acid phosphatase and baby's

red cell acid phosphatase loci are presented in tables 3-8, 3-9 and 3-10 respectively.

J(u) = .,[E$-\) was used to form score matrices as in the example in chapter 1.

The assumption of equal location vectors is not so easily applied to the genotypic

classes of the placental alkaline phosphatase locus and so H[2) reterred to in section 1.4 has

been tested, i.e. the dispersion matrices were tested for equality without assuming that the

location parameters were equal. In this case J(u) = ê [O-l(u)] was used. The results are

presented in table 3-7.

The alternative hypotheses for all of these tests were that the dispersion matrices were

not equal and in fact the null hypothesis was defrnitively rejected for each locus. There are no

tests to determine which elements of the various dispersion matrices contribute significantly to

the overall result. However, attention should be given to the diagonal elements of each matrix

since these correspond to the dispersions of the traits either for a particular genotypic class or

for the whole data set.

In general, these results do not point to an inverse relationship between heterozygosity

and variance, although there a¡e a few exceptions. For instance, ACFM has higher dispersions

for the two homozygote classes of baby's red cell acid phosphatase than the three heterozygofe

classes, although it is hard to see what the causal relationship between this locus and this trait

would be. Other examples are the traits ACFB and BFB which have higher dispersion for the

homozygotes than the heterozygotes at the mother's haptoglobin locus. A similar trend can be

seen for PLFM at the placental alkaline phosphatase locus.

Most of the differences among dispersion matrices are not due to trends of this type, but

to differences of individual elements. For instance the co-dispersion of ACFM and LFM is

much higher for genotypeff at the placental alkaline phosphatase locus than for all other

genotypes at that locus.

So the conclusion is that, although this test indicates differences in dispersion among

genotypes at all loci, it does not lead us any further along the road to heterozygote advantage.



Tiku and Batalaishnan (1985) proposed a robust statistic, T!¡2, to test the equality of

covariance matrices from two populations. They compared Tp2 with L¡, the rank-order

statistic used here and found that TR2 was much more powerful than L¡ when comparing two

dispersion matrices. Their tests were conducted on equal sample sizes of 30 and they also

found that the 12 approximation to the null distribution of L¡¡ was inadequate for these sample

sizes. This point should not be of too much concern for the mother-baby data since most
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sample sizes are larger ttran 30 (sample sizes a¡e given in tables 3-2,3-3,3-4 md 3-5). Except

for normal distributions, LN was more robust than Hotelling's T2 ana î'i (see section 1.4) but

probably less powerful than the former.

If only two dispersion matrices were to be compared, Tp2 would be a superior statistic.

Thus if one felt confident that all heterozygotes were homogeneous and all homozygotes were

homogeneous, the d.ifferences in dispersion for the two could be compared using Tp2.

However, the test has not been extended to include several matrices and so L¡ is preferable in

this case and should be adequate in view of the large sample sizes.

Of the remaining traits, gestation length was negatively skewed (-1.765 with standard

enor O.123) and leptokurtic (9.55 with standa¡d error 0.25) and thus was clearly not normally

distributed. The other three traits were distributed normally and it was considered appropriate

to use a parameric test statistic, 1"1. Since the parametric test for equality of dispersion matrices

described in chapter 1 is sensitive to departures from normality, gestation length was

omitted from the subsequent analyses.

The genotypic covariance matrices and the pooled covariance matrix for each of

placental alkaline phosphatase, mother's haptoglobin, mother's red cell acid phosphatase and

baby's red cell acid phosphatase are shown in tables 3-1L,3-12,3-13 and 3-14 respectively.

The covariance matrices for placental alkaline phosphatase genotypes are significantly different.

Inspection reveals that all of the elements of matrices for the two homozygous genotypes,,fl

and ss, are greater than or equal to the corresponding elements of the matrices for the two

heterozygous genotypes,/s and si. The heterozygous genotype,/, does not fit this pattern.

However, this genotype only contains nine members and when the analysis was repeated,

omitting this genotype, the four remaining matrices were still very signihcantly different. Thus
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there is some indication that heterozygotes are less variable than homozygotes for these three

anthropometric traits.

The same cannot be said of the covariance matrices for mother's red cell acid

phosphatase. While the five covariance matrices are signifrcantly different, there is no

particular pattern of lower variances among the heterorygotes than the homozygotes. The

covariance matrices of anthropometric traits for the other two loci are not signif,rcantly different.

So we are led to conclude that the anthropometric traits are less variable among

heterozygotes than among homozygotes for the placental alkaline phosphatase locus. No such

trend can be observed at other loci or among the group of biochemical traits. The

inconclusiveness of these results is in agreement with other frndings on human populations and

could have several explanations in addition to those problems already discussed.

First, not all polymorphisms need be subject to natural selection. Fu¡thermore, even if

most pol¡rrnorphisms were at times subject to selection, this might not be the case in any given

population at any given time. Thus, most polymorphisms may be selectively neuffal most of

the time (Kimura, 1983).

Second, not all selection is centripetal, stabilizing or normalizing. Much selection is

directional, so that homozgotes are favoured, and a balance among opposing directional forces

will not necessarily favour heterozygotes. Further, consistent directional selection, such as has

been observed for human birth weight (Mayo, 1983) can overcome simultaneous stabilizing

selection (Mayo and Hancock, 1985).

Thfud, a small number of polymorphic electrophoretic loci is not an appropriate predictor

of genomic heterozygosity (Chalaaborty, 1987). Unless the postulated advantage of

heterozygotes is consistent over all loci, different samples of a few loci may be expected not to

produce concordant results. Smouse (1986) supports the view that heterozygote advantage is

not consistent over all loci. His adaptive distances model assumes interactions among loci and

that some homozygotes are more fit than others. The latter point certainly appears to be true for

these data. Smouse's model will be discussed in the next section.
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3.4 Adaptive Distances Model

Smouse (1936) ilgues that the loci which have actually been examined, or some others

closely linked to them, are responsible for the observed differences in fitness for different

numbers of heterozygous loci. To test this hypothesis he develops a multiplicative

overdominance model for unlinked loci. He assumes that each locus has only t'wo possible

alleles; if a locus has multiple alleles then these can be pooled to produce a pair of allelic

classes. He also assumes that if k loci are being used in the model, it must be possible to

determine relative fitnesses of all genotypes by reference to the optimal genotl1)e, the k-locus

heterozygote. The model employs a measure of adaptive distance benpeen any homozygote and

the optimal genotype; this measure is zero for a heterozygote and the inverse of the frequency

of the allele for a homozygote.

The model f,rtted is

log (W¡) =- crXA- ÊXs rX¡ç+e¡

where \ is the fltness of individual j;

- cr, Þ, ... K are the intensities of selection for the k loci;

X4 is a measure of adaptive distance for the A-locus genotypes;

XB, ... X6 are similar to X4 for the other loci;

e¡ is the error teÍn for individual j, incorporating differences at unmeasured loci,

environmental infl uences and measurement error.

This model was frtted to the mother-baby data. Smouse (ibid) recommends estimating the gene

frequencies from a set of data other than that being used to frt the model. Kfuk (1968) provides

the results of four Swedish studies of haptoglobin and two of these, from populations similar to

the mother-baby data set, provided estimates of the frequency of Hpl as 0.386 and Hp2 as

0.614.

Fitnesses of the haptoglobin genotypes (tIP) were estimated as follows:
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Høt HPn Høz

frequency f Pr" 2P¡çz P*

fitnesswl-s1l-t
f x w (1-s)Pr2 2l:lr¿z Q-t)P*

ç = (l-s)pp + 2ptp2 + (l-t)P22

At equilibrium wl : w2 = ú

wt = pl (1-s) + p2 (1) w2 = pl + p2 (1-t) (2)

substitute pr = 0.386 , p2 = 0.614 (Khk, 1968) into (1) and (2) and solve:

s = 1.59t

Thus if t =0.01, s =0.0159

The values for adaptive distances are calculated by:

For the mother's red cell acid phosphatase locus, (RCAP) there are three alleles, A,B and C.

Beckman (1972) presents red cell acid phosphatase gene frequencies for various populations

including the mother-baby data being used in this analysis. The first 26 entries in the table

relate to populations of European origin and these have been used to calculate the following

gene frequencies :

PA = 0.336 PB = 0.604 Pc = 0'060

Fitnesses of the red cell acid phosphatase genotypes were calculated as follows :

genotype

fitness, w

frequency, f

fxw

AA

1-s

,)

Pa

n2otr-o

BA

1

CB

1

CA

1

BB

1-t

2
Ps

CC

1-r

2peps 2PePc 2pspc
2

Pç

2peps 2PnPc p'r<r-O 2pspc n!Cr-.1

* = pro(r_s) + 2papB + Zpnpc * pfrcr-o + 2pspc * p!1t-.) is rhe average fitness
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and wA = pn (1-s) + PB + Pc

wB = pB (1-t) + pn + pC

wC = pC (1-r) + pR + pe

Atequilibrium wA = wB = wc =

Substituting pA = 0.336, pB = 0.604 and pc = 0.060 into (1), (2) and (3) we get

s = 1.798t

r = 10.067t

andsince 0(r,s,t<1
t < 0.0993

Problems of choosing values of t and thence of r and s will be discussed later in this section,

but possible values to try would be t = 0.01, s = 0.018, r = 0.101

or t = 0.001, s= 0.0018, r = 0.0101, corresponding to different intensities of selection.

Since there are three alleles at this locus, two must be pooled to form two allelic classes

altogether. Smouse (ibid) recommends pooling the rarer alleles to ensure nontrivial frequencies

for the calculations. Thus alleles A and C were pooled to give the following results :

senotype BB B(AC) (AC) (AC)

frequency, f 0.365 0.478 0.157

fitness, w 0.99 1 0.982 ift=0.01

firness, w 0.999 1 0.996 ift=0.001

2ps pn wAB + 2ps pC *sC
WB(AC)

(1)

(2)

(3)

zpB pA + zpB pc

0.604 x 0.336 x 1 + 0.604 x 0.060 x 1
= 1.0

0.604 x 0.336 + 0.604 x 0.060

2 w +2 w + 2w
(1-ps

0.113 x 0.982 + 2 x0.336 x 0.060 x 1 + 0.0036 x 0.899

0.982 if r=0.01

w

w(AcxAc)

0.157
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If t = 0.001

w(ACXAC)
0.113 x 0.9982 + 2 x0.336 + 0.060 x 1 + 0.0036 x 0.9899

0.I57

= 0.9959

For the adaptive distances when

llpB = 1.656

RCAP : then X*aOa :
Up (AC)

and p
SRCAP tncnp 0.0064 ifr=0.01

sRCAp + tRC¡.P

The third locus to be included in this analysis was mother's ABO blood group (ABO).

Beckman, Cedergren, Collinder and Rasmuson (1972) provide ABO blood group data from

norrhern Sweden for 60,000 individuals in 14 regions for the period 1871 to 1967. A marked

change in inbreeding occurred between 1940 and 1960 and so data collected during the last

seven years only of the study have been used to estimate gene frequencies as follows :

PA : 0.289, PB = 0.092, Pi = 0.619

Fitnesses were then calculated :

genotype il IAi F¡ þþ þP FF

frequency, f 0.383 0.358 0.114 0.084 0.053 0.008

fitness,wl-s11l-t11-r
f x w 0.383(1-s) 0.358 0.114 .084(1-Ð 0.053 .008(1-r)

w : p? (1-s) + Zpipt + 2pips +pA2 (1-Ð + 2pnps + ps2 11-r¡

wi = p¡ (1-s) + pA + pB (1)

wA = pA (1-t) + pi + pB Q)

wB = pe (1-r) + pi + pA (3)

At equilibrium wi - wA = wB = ú

Substituting values for p6, pg and p¡ into (1), (2) and (3)

gives: t = 2.I42s

0
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r -- 6.128 s

since: 0Sr,s,t,S1, s<0.1486

If s=0.001 thent=0.0021 and r=0.0067

Some alleles had to be pooled to obtain two allelic classes. If alleles IB and i were

pooled, the resulting allelic classes would be : [IA1A], {IAi, IAIB}, [ii, IBi,1B1B]. Since the

data did not distinguish between IAIA and IAi and since these two genotypes would be in

different allelic classes, 179 mothers with blood group A would have to be omitted from the

analysis. Alternatively alleles IA and IB could be pooled, obtaining classes {ü}, UAi, tBi} and

{IAIB, IAIA, IBIB }. The data did not distinguish between IBIB and IBi either and so 223

mothers would have to be omitted from the analysis. Consequently, the first scheme was

adopted.

genotype

frequency

tltness

þþ

0.084

1-t

¡A¡8, ¡A¡

0.411

1

¡B¡8, ¡B¡, ¡¡

0.50s

t0.008 (1-r) + 0.383(1-s) + 0.1141 / 0.50s

3.46

Ifs=0.001,t=.0021 andr=0.0067,thevaluesforthefitnessesareO.9979, 1and0.9981

respectively. The values for the adaptive distances are :

when ABO =

ff
t4 or IArB
I

0then XABO :

P,IBi or ií r.406

and v (0.0021 x 0.0019) / 0.0040 0.000998

Table 3-15 displays the genotypic classes for the three loci, the number of mothers in each

class, the log f,rtness, Y¡, for each class and the number of heterozygous loci for each class.

Spearman's rank correlation coefhcients between log fitness and each of the nine quantitative

traits were found. These values are tabulated in table 3-16. There rwas a significant positive
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correlation between mother's serum acid phosphatase and log fitness; all other correlations were

not significant.

There are at least three possible causes for this lack of correlation. Y¡ is a measure of

the fitness of each genotype but the quantitative traits themselves may not reflect the fitness of

an individual and so they will be uncorrelated with Yi. Alternatively, the quantitative traits may

reflect fltness but not in a linear manner. For instance, a trait may have an optimum value for

survival which is somewhere in the middle of the range of possible values for that trait. Since a

correlation coefficient is a measure of linear association, it would not detect such a situation.

Finally, the parameters used to calculate the Y¡ values may not have been well estimated.

This problem and others will be discussed later in this section.

Fitnesses for genotypes at three loci of the babies were then considered. The ABO

locus and the red cell acid phosphatase locus (PL) were treated similarly to the mothers. The

third locus for the babies was placental alkaline phosphatase. Beckman (1972) gives two sets

of data from Sweden relating to this locus and the resulting gene frequencies are:

pr = 0.255, pi = 0.087 and p, = O.646 while the gene frequency of other rare

alleles is 0.012. These ra¡e alleles were ignored in the following analysis and so the frequency

values of the common alleles were increased to 0.258, 0.088 and 0.654 so that they would sum

to 1.0.

genotype ff fs fi ss si ii

fitness,w I-2 1 1 l-t 1 1-r

frequency, f 0.0666 0.3375 O.O454 0.4277 0.1151 0.0077

\, = 0.0666 (1-s) + 0.498 + O.4277 (1-Ð + 0.0077 (1-r)

= 1 - 0.0666s - 0.4277t- 0.0077r.

wf = 0.258 (1-s) + 0.654 + 0.088 = 1-0.258s (1)

ws : 0.654 (1-t) + 0.258 + 0.088 = 1-0.654t (2)

wi : 0.088 (1-r) + 0.258 + 0.654 : 1-0.088r (3)

Atequilibriumwf - ws : wi = ü andso s = 2.5435t, f = 7.432t

Suppose t: 0.001, then s = 0.0025 and r : 0.0074-



62

The alleles f and i, being less frequent, were combined to give the following genotypic

classes:

genoqæe ss s(fl (flffi)

frequency, f 0.4277 0.4526 O.IL97

fitness,w 0.999 1 0.998

The adaptive distances were calculated as follows :

when PL =

(1.529

lo
lr.*no

Xpr

and cr = spt- ÞL / (spl + tpl) = 0.001 x 0.002 / 0.003

= 0.00067

Yj = log (w:) = -0.00067 Xpl - 0.000804 Xncnp - 0.000998 X.qso

are tabulated for each genotypic class, together with class frequency and heterozygosity score in

table 3-!7 . Correlations between log fitness and each of the nine quantitative traits are shown in

table 3-18. None of these correlations was signihcant.

In summary, the adaptive distance model is limited in its ability to explain any of the

variation in the quantitative variables in the mother-baby data set, with the exception of mother's

serum acid phosphatase activity. The model, in the form in which it has needed to be used

here, has several shortcomings; better data would overcome some of these.

First, it is assumed that measures of fitness for each genotype a¡e available. These can

be estimated if one assumes that the population is at equilibrium. However, the estimates

obtained are only relative, e.g. s = 2.535t and r = 7 .432t with the value of t being open to

guesswork. The intensities of selection are used to weight the loci and the guessed value of t is

crucial to this weighting.

For instance, suppose for the PL locus, t is set to 0.01 i.e. increased tenfold, then s and

r will also be increased tenfold and this results in a tenfold increase in cr, the selection intensity.

The log fitness for the genotype B(CA), ss and (lBi), say, would change from - 0.0024218 to

-0.01149, which is substantial.
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Second, the lumping together of genotypes in the three-allele case means that

information about heterozygosity is lost. For instance, at the PL locus, when alleles f and i

were combined, genotype fr was then regarded as a homozygote.

Thfud, since the actual genotypes of ABO btood groups A and B were not available

much information was lost.

Fourth, in addition to the f,ust and second problems already discussed, the PL locus

posed an additional problem in that several ra¡e alleles had to be ignored. Thus selection

coefhcients were probably poorly estimated-

Finally, the fact ttrat ttre loci measured for mothers and babies were not the same made

any direct comparison of the two difficult. One could make comparisons based on the two loci

common to both mothers and babies, but since the ABO locus has suffered such a loss of

information, it would be little better than a direct comparison of the red cell acid phosphatase

locus.

3.5 Heritability Estimates

This section does not relate directly to the question of heterozygote advantage but while

that question was being studied with reference to the mother-baby data, some other interesting

points emerged.

Spencer, Hopkinson and Harris (1964) demonstrated that serum acid phosphatase

activity differs among the genotypes, detected by electrophoresis, of the ACPI locus. To

determine the effect of genes, other than the major gene in question, on the activity of the

enzyme,one usually carries out analyses within genotypic gloups and then pools the results

across these gtoups. Such a procedure assumes that there is no interaction between the major

gene and any other genes which may have an effect. Therefore pooling may not always be

statistically valid.

It is not always necessary to pool. For instance, Nance and Grove (1972), when

estimating the heritability of percentage sickle-cell haemoglobin, used only heterozygotes for

HbS in their analysis. However, that is a clear-cut situation since the sickle-cell gene is

deleterious in the homozygous state. The case of serum acid phosphatase activity, and also
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other enzymes, is not so clear-cut. Accordingly, there is a need for a simple method of

estimation of genetic parameters which allows for differences between genotypic classes.

Multiva¡iate analysis of variance (MANOVA) provides such a method-

MANOVA (Anderson, 1984) partitions the matrix of sums of squares and cross products

for a set of traits into va¡ious meaningful components. In the present context these components

would be ACPI genotypes for mothers and babies, while the set of traits would be mother's

and baby's serum acid phosphatase activity. So the data have the following form:

genotype palr

mother-baby pair
1

2

1

(AA,BA)

Ytrt Ytut

Yt*2 Ytuz

2
(BA,AA)

Yz,nt Yz¡t

Yz^z Yzaz

Ykm 1 Yr¡r

k

lmnl lbn1 Y2^n2 Yzar, 
"*no 

YtunoY Y

where Yinj is the value of the trait för the jth mother in genotypic group i;

Yi¡j is the value of the trait for the jth baby in genotypic group i.

The number of mother-baby pairs in each genotypic combination va¡ies; hence nt, n2 ...nk.

The covariance matrix for (Yi¡¡;, YiU¡)'is partitioned by MANOVA into a component

attributable to differences among the genotypic groups and a residual component. This second

component is of the 
"t- (]Ï :î:)where 

o¡n¡¡¡ Írnd obb are the variances of serum acid

phosphatase for mothers and babies respectively and omb = o6¡¡ is the covariance between

mothers and babies, after adjusting for differences between genotypic groups. omb estimates

å to while o¡¡1¡¡¡ ând obb are two separate estimates of Vp, the total phenotypic variance in the

trait (Falconer, L982). Heritability can be estimated by VeA/p i.e. hz = 2 omb / omm and its

variance is estimated by 4(omm o66 - ofl6) / df(o'..¡ o]rn,.

It should be noted that other pairs of relatives could be used in this type of analysis. In

chapter 4 the results of a similar analysis using dizygous twin pairs will be discussed.

The mothers and babies were divided into genotypic classes according to the ACPI

locus. Some genotype combinations were poorly represented in the data and so only those
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combinations wirh at least 19 observations were used in the analyses which follow. The

numbers in the genotypic combinations are displayed in table 3-19. For some genotypes,

serum acid phosphatase exhibited skewness and kurtosis. Box-Cox power transformations

(1964) were examined using a macro of GENSTAT IV. As a result it was decided to use the

logarithmic transformation of both mother's and baby's serum acid phosphatase.

MANOVA was performed using the seven genotypic combinations as seven levels of a

factor. GENSTAT IV was used for the analysis. 'Wilks'Â indicated that there was no

signifrcant difference among the genotypic combinations. Nor were the two estimates of Vp

signifrcantly different from one another. The covariance matrix and estimate of heritability are

shown in table 3-20a.

Since the more usual method of estimating heritability is to use the simple linear

regressions of offspring on parent within genotypic classes, this technique was used as a

comparison with the MANOVA results.

Simple linear regression of the log of baby's serum acid phosphatase versus the log of

mother's serum acid phosphatase was performed for each of the seven genotype combinations

with at least 19 observations as indicated in table 3-19. One can see from table 3-21 that one

group (CB,CB) had a negative regression coefficient, although this was not significantly

different from zero. The pooled regression coefficient was 0.422.

The 19 (CB,CB) pairs were omitted and the MANOVA was repeated. The revised

estimates are shown in table 3-20b. Thus the estimate of h2 =0912 can be compared with the

estimates from the regressions, ranging from 0.4122 to 1.268 with a pooled value of

approximately 0.9.

Thus there is good ag¡eement between the traditional way of estimating heritability and

this new method. The advantage of the new method is that we can feel confident that pooling

over genotypic classes is valid since differences among them have already been allowed for.

Many statistical packages have MANOVA and so it is straighforward to use.

There are two interesting results from these calculations. First, the heritability of serunr

acid phosphatase activity is high even after allowing for the effects of the ACPI locus. Since

this locus, as well as ACP2 and ACP3, controls red cell acid phosphatase activity it is not
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surprising that it has little effect on serum acid phosphatase activity. The regulation of the latter

is uncertain.

Second, the two estimates of phenotypic variance, Omm =34.948 and O66 =26.94 arc

signifrcantly different at the 57olevel. This is an indication of the low environmental effect on

newborn serum acidphosphatase and apossible cause of high heritability.
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Tabte 3-1 Rank conelations among the nine
*A correlation, rs, is significant at

quantitative traits.
the 57o level if lr.l 2 0.1.

PLFM

LFM
ACFB

BFB

BW
PW

GL
L

ACFM

0.210*

0.231*

0.438*

0.I22*

-o.015
0.030

--0.019

0.009

0.048

0.o92

0.040

0.076

0.085

o.079

0.030

0.028

0.187*

0.009

0.071

0.013

0.059

0.223*

0.o32

-0.030
0.075

o.o24

-o.038
-{.010
4.032

0.015

0.619*

o.452*

o.775*

0.200*

0.439* 0.430*

PLFM LFM ACFB BFB BV/ PV/ GL

ACFM = acid phosphatase in mother's serum; PLFM = placental alkaline phosphatase in
mother's serum; LFM = heat-sensitive alkaline phosphatase in mother's serum; ACFB = acid
phosphatase in child's serum; BFB = alkaline phosphatase in child's serum; B'W = birth
weight; PW = placenta weight; GL = length of gestation; L = baby's length.



Table 3-2.

Trait

ACFB

ACFM

BFB

LFM

PLFM

Birth Weight (kg)

PlacentaWeight (kg)

Baby's Length (cm)

Gestation Duration

CVq (aU 9 traits)

CV5 (first 5 traits)

CVa (ast 4

tr Qe)
Mean Variance

t& 8900

1.02 1150

527 25600

398 704W

557 439W

3.52 0.293

0.580 .0118

50.8 4.72

279 133

40.8

42.8

4.20

fs Qaa)
Mean Variance

157 2770

93.3 1060

470 29500

280 23000

535 43800

3.47 0.234

0.548 .0104

50.6 4.14

280 201

GENOTYPE
ss (177)

Mean Variance

r49 1760

89.2 753

481 24000

3r4 26700

503 40400

3.52 0.253

0.547 .0130

50.8 5.57

280 142

si (48)
Mean Variance

t63 3290

102.8 2060

474 22600

340 37700

430 38100

3.s3 0.20s

0.545 0.49

5r.1 4.78

282 125

40.6

43.4

3.93

fr (r3)
Mean Va¡iance

155 535

88.2 856

482 88900

369 72700

346 6140

3.36 0.311

0.555 .0117

49.8 5.06

280 127

40.5

44.6

3.18

Means, va¡iances and coefficients of variation of quantitative traits for different genotypes of placental akaline phosphatase (all
given to 3 significant figures). Numbers in brackets are the numbers of mothers with those genotypes.

37.4

39.7

s.06

36.6

38.9

4.32

ĉo

The ii genotype has been omitted since it only contained 3 observations.
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Table 3-3 Means, variances and multivariate coeff,tcients of variation of quantitative traits
for different genotypes of mother's haptoglobin (all given to 3 significant
figures). Numbers in ( ) are the numbers of mothers with those genotypes.

Trait

ACFB

ACFM

BFB

LFM

PLFM

Birth V/eight (kg)

Placenta Weight (kg)

Baby's Length (cm)

Gestation Duration

GENOTYPE

Hp¡(46) Hpp(2o0)
Mean Variance Mean Variance

156 2420 150 1850

85.9 901 94.7 1100

502 32700 459 22700

311 26000 309 27300

459 46100 511 43100

3.55 0.197 3.47 0.236

0.567 0.0178 0.546 0.0114

50.8 3.94 50.6 4.9s

278 74.2 280 2r3

Hpy2$58)
Mean Variance

157 2820

93.8 1180

490 28600

3r4 36700

511 42700

3.50 0.258

0.547 0.0101

50.9 5.r4

28r 118

CVq (a119 traits)

CV5 (frrst 5 raits)

CV¿ (last 4 traits)

39.9

42.4

3.15

37.6

40.0

5.21

39.0

4t.4

3.86



Table 3-4. Variances, means and multivariate coefficients of variation of quantitative traits for different genotypes of mother's red cell acid

phosphatase (3 significant figures). Numbers in ( ) are the numbers of mothers with these genotypes.

Trait

ACFB

ACFM

BFB

LFM

PLFM

BirthWeight (kg)

PlacentaWeight (kg)

Baby's længth (cm)

Gestation Duration

CVe (a119 traits)

CV5 (first 5 traits)

CVa (last 4 taits)

AA(3s)
Mean Variance

r52 r2l0

81.3 774

474 37500

235 23300

572 92000

3.49 0.196

0.s08 0.009

50.6 3.01

282 t73

45.9

48.7

4.66

AB (t44)
Mean Variance

154 2280

93.7 890

475 25400

311 31800

504 33500

3.52 0.175

0.554 0.010

50.7 4.29

28r 162

35.3

37.5

4.55

GENOTYPE
BB (lss)

Mean Variance

162 4290

96.6 1400

49s 32400

320 31900

508 42100

3.45 0.294

0.552 0.012

50.7 5.40

279 r73

39.2

4t.5

4.74

cB (43)
Mean Variance

r40 926

95.1 7r7

448 15400

332 29400

47r 43800

3.61 0.272

0.564 0.0ls

51.4 5.30

28r 84.0

31.5

40.1

3.18

cA (26)
Mean Variance

r49 1650

87.6 2050

463 26000

3r2 30000

44t 30700

3.s8 0.273

0.555 0.006

50.5 5.6

277 r37

38.0

40.7

4.34

._l
O

The genotype for this locus was not obtained for 7 mothers and the CC genotype has been omitted since it only contained 4 observations.



Table 3-5 Means variances, and multivariate coefficients of variation of quantitative traits for different genotypes of baby's red cell acid
phosphatase (3 signifrcant figures). The numbers in ( ) are the numbers of babies with these genotypes.

ACFB

ACFM

BFB

LFM

PLFM

Birth Weight (kg)

PlacentaWeight (kg)

Baby's længth (cm)

Gestation Duration

CVs (all 9 traits)

CVs (frst 5 traits)

CV¿ (last 4 traits)

AA (43)
Mean Variance

153 1020

94.8 t240

495 24300

290 39800

s06 26600

3.51 0.104

0.545 0.007

50.6 2.15

280 85.3

36.5

38.8

3.32

BA (136)
Mean Variance

157 3490

96.7 1430

49r 40800

308 29500

501 53000

3.47 0.262

0.546 0.010

s0.5 5.31

219 r7l

41.4

43.9

4.75

GENOTYPE
BB (t44)

Mean Variance

161 3s30

92.6 ll40

485 21600

323 31000

513 37600

3.48 0.267

0.545 0.014

s0.8 5.10

28t 199

36.4

38.6

4.99

cB (44)
Mean Variance

140 835

91.0 631

485 18100

334 34900

488 66s00

3.56 0.298

0.581 0.012

5t.2 5.73

28t 97.0

41.t

43.6

3.57

cA (37)
Mean Variance

140 1310

86.7 5t9

405 19200

276 21400

489 24300

3.54 0.190

0.539 0.010

s0.9 3.87

279 129

33.8

36.3

4.07

The genotype for this locus was not obtained for 6 babies and the CC genotype has been omined since it only contained 4 observations.

-_l
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Table 3-6 Extensions ro r.evene's tesr using Yl) = 
[> 

fx$)-x$'r']O where x$) is ttre

value of case a of trait i of genotype class k.

Where indicated, X$) nas been log-transformed.

Means of genotypic classes Variance
ratio

Degrees of
freedom

Placental alkaline phosPhatase

Genotype: tr fs
Raw data 358.6 272.2

Log data 0.922 0.917

SJ

272.5

0.875

.9

249.2

0.813

rt
236.4

0.865

2.503*

0.54

4,373

4,368

Baby's red cell acid phosPhatase

Genotype: AA BA

Raw data 273.8 294.5

Log data 0322 O.9L7

BB

277.1

0.875

CB

289.6

0.813

CA

230.O

0.865

r.42

0.54

4,370

4,368

Mother's haptoglobin

Genotype: HPn

Raw data 289.4

Log data 0.911

Hpn

270.6

0.866

Hpzz

288.3

0.908

0.699

o.43

2,316

2,374

Mother's red cell acid phosphatase

Genotype: AA BA

Raw data 318.1 265.0

I-og data 1.18 0.863

BB

294.2

0.863

CB

258.8

o.792

CA

24t.5

0.887

1.913

4.86**

4,370

4,368

Values tabulated are means, Y@, of genotypic classes ând the variance ratios from one-way

analysis ofvariance. * indicates significanceat5To level, ** significanceatl7olevel.
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Table 3-7 Non-parametric dispersion matrices of biochemical measurements for placental
alkaline phosphatase types, using the normal scores function for J.

ACFM PLFM LFM ACFB BFB ACFM PLFM
Genotype/s
0.98 0.13

0.88

LFM ACFB BFB

ACFM
PLFM
LFM
ACFB
BFB

ACFM
PLFM
LFM
ACFB
BFB

ACFM
PLFM
LFM
ACFB
BFB

Genotype
o.79

tr
0.14 0.34

0.02
0.04
0.95

0.35
0.07
0.04
0.95

-o.08
-{.13

0.32
o.37

-{.04
-o.03

0.18
-o.10

0.85

0.09
0.14
0.09
0.18
0.94

o.22
0.01
1.05
0.65
2.O5

o.74
0.39
2.r0

o.2l
0.04
0.91

0.03
0.03
r.46

0.91

Genotype ss
0.89 0.27

1.0s

Genotypey'
0.85 0.24

o.28

0.18
-0.03

0.83

0.57 0.12
0.15 -0.03

-0.01 0.18
1.10 0.30

r.o7

Genotype si
r.52 0.26

0.87
0.30

-0.04
0.88

0.60
0.24
0.18
0.97

0.15
0.10
0.22
0.22
0.72

Pooled matrix
0.99 0.2r

0.99
o.25
o.02
0.99

0.44
0.10
0.04
0.99

0.11
0.06
0.00
0.21
0.99

*s) = 115.9 P<0.001

Table 3-8 Non-parametric dispersion matrices of biochemical measurements for mother's

haptoglobin t)¡pes, using J(u) =./17(u-b)

ACFM PLFM
Genotype ÉIp11

1.08 0.38
0.93

LFM ACFB BFB LFM ACFB BFB

ACFM
PLFM
LFM
ACFB
BFB

ACFM
PLFM
LFM
ACFB
BFB

Genotype Hp22
0.96 0.15

0.93

0.40
0.18
0.91

o.L7
0.00
1.06

0.51
0.16
0.08
t.02

o.43
0.03

-o.05
1.05

0.10
0.28
0.16

-o.03
0.99

0.03
-o.07

0.2r
0.30
1.01

0.44
0.r2
0.07
0.95

0.22

ACFM PLFM
Genotype Hpn
1.00 0.2t

1.06

Pooled matrix
1.00 0.21

1.00

0.08
24
05
98

0
0
0 0.r1

0.20
0.97

0.r2
0.04
0.00
0.22
1.00

44
09
02
00

23
04
00

0
0
1

0
0
0
1

x
30

: 59.9 P<0.0012
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Table 3-9 Non-parametric dispersion matrices of biochemical measurements for mother's red

cell acid phosphatase using J(u) ^lE(u-h).

ACFM PLFM

Genotype AA
0.91 0.04

1.06

LFM ACFB BFB ACFM PLFM LFM ACFB BFB

GenotypeBA
0.99 0.27

0.98
ACFM
PLFM
LFM
ACFB
BFB

ACFM
PLFM
LFM
ACFB
BFB

ACFM
PLFM
LFM
ACFB
BFB

o.27
-o.24

1.08

0.43
0.06
0.09
0.90

0.5s
0.08
0.02
t.I2

0.36
4.25
4.44

1.1 1

-o.07
-o.106

0.09
-o.04

r.32

o.2l
0.03
0.95

o.29
o.20
0.85

o.23
0.04
1.00

0.44
0.15
0.05
0.94

0.44
0.08
0.03
1.00

0.07
0.10
0.16
0.19
0.98

0.12
0.04
0.00
0.22
1.00

Genotype BB
r.02 0.2r

0.93
0.22
0.05
r.02

-0.04
0.41
r.0l

0.24
0.03
o.23
0.33
1.00

0.07
-0.05
-o.19

0.29
1.09

CB
o.32
1.16

Genotype
0.97 0.09 -0.05

0.04 -0.02
0.24
0.76

0.35
0.06
0.76

Genotype
0.86

CA
0.01
1.09

Pooled matrix
1.00 0.21

1.00

4o = 105.9 P<0.001

Table 3-10 Non-parametric
cell acid phosph

dispersion matrices of
atase types, using J(u)

biochemical measurements for baby's red
: ./ tz (u-b).

ACFM PLFM LFM ACFB BFB ACFM PLFM LFM ACFB BFB

ACFM
PLFM
LFM
ACFB
BFB

ACFM
PLFM
LFM
ACFB
BFB

ACFM
PLFM
LFM
ACFB
BFB

GenotypeAA
t.t4 0.17

0.91
0.35

-0.01
1.08

0.30
0.13

4.2r
0.74

-{.07
0.05

-o.01
0.25
1.06

0.18
4.O2

0.2t
0.26
0.84

-{.01
0.07

4.O2
0.15
0.98

0.20
-0.o2

1.01

0.56
0.09
0.22
0.96

0.45
0.10
0.03
1.00

0.16
0.08
0.23
0.28
1.18

0.12
0.03
0.00
0.23
1.00

Genotype BA
0.98 0.18

1.05

Genotype
1.06 0.28

0.07
1.01

0.10
0.14
0.99

0.54
0.10
0.04
t.2l

0.15
o.29

-o.36
0.85

BB
0.26
0.96

Genotype CB
0.91 0.26

1.09

Pooled matrix
1.00 0.20

1.00

0.22 0.03

-0.14 0.17
-0.04 0.r7
0.73 -0.01

0.8s

0.17
0.17
0.86

Genotype CA
0.81 0.09

0.98
o.23
0.04
1.00

üo :103.2 P<.001
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Tabte 3-11 Covariance matrices of anthropometric measurements for placental alkaline
phosphatase types.

BW PW L PW L

Genotypef
0.290
0.044
0.114

Genotype ss
o.261
0.033
0.087

Genotypel
0.400
0.068
0.120

BV/

Genotype/s
0.233
0.031
0.079

Genotype si
0.183
o.o27
0.076

Pooled matrix
o.247
0.033
0.085

BW
PW
L

BV/
PV/
L

BW
PV/
L

0.012
0.016

0.012
0.010

0.014
0.o22

0.050

0.057

0.049

0.011
0.009

0.010
0.012

0.011
0.010

0.040

0.050

0.049

P=0.9456 f=24
-2progÀi = ¿q.oO (P < 0.01)

If genotypel is omined from the analysis, f = 18 and

-2Progli = ¿+.Os (P < 0.001)

p,f and î"1* are defrned in section 1.4.

Tab[e 3-12 Covariance matrices of anthropometric measurements for mother's haptoglobin

BV/
PW
L

BV/
Genotype.Flpll

0.205
0.041
0.075

PW

0.015
0.013

0.010
0.0r2

L

0.040

0.050

PV/

0.012
0.009

L

0.050

BV/
Genotype Hpn

0.239
0.031
0.081

Genotype Hpzz
BW 0.264
PW 0.032
L o.o92

Pooled matrix
0.245
0.033
0.085

0.011
0.010

-2p logL*t = 17 .72 (P > 0.10)

0.049

P:0.9814 f:12.
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Table 3-13 Covariance matrices of anthropometric measurements for mother's red cell acid
phosphatase types.

PV/ LPV/

BW
PVT
L

BV/

Genotype AA
o.204
0.o32
0.060

GenotypeBB
o.294
0.039
0.106

Genotype CA
o.273
0.012
0.120

BV/

GenotypeBA
0.182
0.025
0.058

Genotype CB
0.250
0.044
0.087

Pooled matrix
o.241
0.032
0.084

009
008

0
0

0.012
0.013

0.005
0.004

L

0.030

0.053

0.062

0.010
0.007

0.015
0.015

0.011
0.010

0.044

0.054

0.049

BW
PW
L

BW
PW
L

P = 0.9680 f =24

-2prosli = +S.tS (P < 0.01)

Table 3-14 Covariance matrices of anthropometric measurements for baby's red cell acid
phosphatase types

PV/

BV/
PW
L

BW

GenotypeAA
0.109
0.010
0.028

GenotypeBB
o.257
0.040
0.096

Genotype CA
0.202
0.030
0.070

BW

GenotypeBA
o.266
0.031
0.087

Genotype CB
0.30s
0.036
0.104

Pooled matrix
0.246
0.033
0.085

PW L

o.022

0.052

0.040

0.007
0.002

0.014
0.013

0.010
0.010

0.010
0.010

0.012
0.011

0.011
0.010

L

0.054

0.058

BW
PW
L

BW
PW
L

-2plogÀr = 34.60 (P > 0.05)

0.049

P : O.9743 1=24
*
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Table 3-15 Values for Y¡ = - 0.000615 Xtl' - 0.000804
fitnesses for riothers, for each genotypic class-
the number of heterozygous loci are also shown.

XnCnp - 0.000998 X¡ss, log
The frequency of each class and

genotype Y¡ frequency no. heterozyous loci

}{pl.z
Hpzz
H.pl.z
ffpl¿
IIPn
Ilpzz
Ifqzz
IlPn
Hptt
Hptt
}{pzz
Hprz
Hpzz
HPtt
Ijpzz
Hptt

B(AC)
B(AC)
BB
B(AC)
(AC)
BB
B(AC)
BB
BB
B(AC)
(AC)
(AC)
BB
BB
(AC)
(AC)

Pgn¡
IAIB
IAIB
GBÐ
IAIB
IAIB

GBÐ

GBÐ
IAIB
(IBÐ
IAIB
GBÐ

GBÐ

GBÐ
GBÐ

GBÐ

0.0
- 0.0010025
- 0.0013313
- 0.0014025
- 0.0020299
- 0.0023338
- 0.0024049
- 0.0027338
- 0.002925r
- 0.0029963
- 0.0030324
- o.oo34324
- 0.0037362
- 0.0043276
- 0.0044348
- 0.0050262

5
2
5

44
1

3

39
34

2
8

1

16

29
10

l4
3

3
2
2
2
2
1

1

1

1

1

1

1

0
0
0
0

Table 3-16 Spearman's rank correlation coefficients between mother's log fitness, Y¡, and

eãch of nine quantitative traits.

trait fs trait fs

ACFM
PLFM
LFM
ACFB
BFB

0.0205
-0.0759

1

.0697
1

.o4

50
0
0

{r4

T7

birth weight
placenø weight
gestation length
baby's length

0.0078
0.0932

- 0.0694
- 0.0038

* signif,rcant at the 57o level
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Table 3-17 Values for Y¡ = - 0.000667 Xp¡ - 0.000804 Xncnp - 0.000998 XABo,
log fitnesses'for babies, for each genotypic class. Class frequencies and
heierozygosity scores are also shown.

genotype Y¡ frequency heterozyosity

s(f,ù
SS

s(fi)
s(ft)
(fi)
SS

SS

s(fi)
SS

(fi)
s(ft)
(fÐ
SS

SS

(fi)
(fi)

B(CA)
B(CA)
BB
B(CA)
B(CA)
BB
B(cA)
BB
(CA)
B(CA)
(CA)
(CA)
BB
(CA)
BB
(CA)

lAgni)
1n1rri)
lngei)
(IBÐ
1n(tni)
1A(tni)
(IBÐ
(IBÐ
lagri)
GBÐ

GBÐ
1n(rai)
(IBÐ
(IBÐ
(IBÐ

GBÐ

0.0
- 0.0010193
- 0.0013313
- 0.0014025
- 0.0019267
- 0.0023506
- 0.00242t8
- 0.0027338
- 0.0030492
- 0.0033292
- 0.0034324
- 0.0039566
- 0.0037531
- 0.0044517
- 0.0046604
- 0.0053591

J
2
2
2
2

1

1

1

1

1

1

1

0
0
0
0

4
5

4
35

3

1

34
37

2
9

11

1

2l
22

6

J

Table 3-18 Spearman's rank correlation coefhcients
each of nine quantitative traits.

between baby's log fitness, Y¡, and

trait fs tralt

ACFM
PLFM
LFM
ACFB
BFB

- 0.0120
- 0.0190
- 0.0539

0.0087
0.1134

Birth weight
Placenta weight
gestation length
baby's length

- 0.0695
- 0.0291
- 0.0442
- 0.0764
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Table 3-19 Frequencies of mother-baby pairs determined by genotype at the ACP, locus for
mothers and babies.

smother' AA BA
tsaby's genotype.
BB CB æ total

35

r44

155

43

26

4

407

CA

1

0

9

9

9

6

1

*. 1

9

28

0

0

5

0

*
AA

BA

BB

CB

CA

CC

*20
*53
*51

7

5

0

0
*43
*95

6

0

0

6

1

0

9

8

3

0

0

0

2

2

0

4total 42 136 144 44 37

* classes used in the analyses.

Table 3-20 Eror covariance matrix of serum acid phosphatase (log transformed).

mother babv mother baby

mother
baby

36.213 15.739
15.739 27.629

b : 15.7 39/36.2L3 = 0.435
h2:0.87 se (h2) = 0.087

34.948 15.932
15.932 26.900

b = 15.932/34.948 = 0.456
h2:0.91 se @2) = 0.089

Table3-2I

a = 309 pairs including (CB,CB); b =290 pairs excludrng (CB,CB)

Regression of acid phosphatase in baby's serum on acid phosphatase in
moiher's serum (log tranfi ).

mother's red cell acid

phosphatase genotype

baby's red cell acid

phosphatase genotype

regression coefficient

standard error

p.

AA BA BA BA BB BB CB

BA

0.363

0.119

<0.01

AA

o.206

0.1 10

>0.05

BA

0.53

0.1 36

<0.001

BB

0.395

0.1 18

<0.01

BA

0.634

0.098

<0.001

BB

o.484

0.083

<0.001

CB

-0.153

0.18

>0.05
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4. ANALYSES OF TWIN DATA

4.1 Description

Dr. N.G. Martin provided two sets of twin data for which various quantitative traits and

the genotypes for several loci had been measured.

The first ser has been described by Martin (1975a,1975b) and Martin and Martin

(1975). The subset used in this study comprised 45 same-sex twin pairs, of which 16 pairs

were rnonozygous females, 10 were monozygous males, 12 were dizygous females and 7 were

dizygous males. These were the twin pairs for which genotypes at six polymorphic loci were

available as well as height and IQ measurements. The six loci were MN, Ss, haptoglobin, the

C and E loci of the Rhesus system and Jk.

The necessary conditions suggested by Mitton and Grant (1984) for a successful study

of heterozygote advantage were outlined in chapter 3. Do the variables measured in this data set

meet these conditions?

The twins studied were all adolescents and so surplus energy would certainly have been

used in rhe expression of both height and IQ for this age group. Constraints on these two traits

would be minimal.

Smith (I975) stares that the mean IQ of a population is a¡bitrarily set to 100 while the

standa¡d deviation is usually about 15 and so the coefficient of variation is reasonably low at

0.15. He also says that there are excesses of individuals in both tails of the IQ distribution and

presents data on IQ measurements for various family groupings indicating the presence of

genetic, environmental and genotype by environment interaction components in the variance of

IQ. Thus IQ does not appeil to be canalized.

Kark, Friedlander and Stein (1986) tabulated heights of l7-year-old boys in Jerusalem.

Their data were divided into eight ethnic groups which had very low coefficients of variation of

approximately 0.04. Smith (1975) gives a figure for the heritability of adult height as 0.85

indicating that ttris trait varies with genotype. It is well known that nutrition, an envitonmental

factor, affects height. Thus, height is not canalized, either.

For non-human species, one would expect to find that traits with high heritabilities such

as morphological characters would have low coefficients of variation. The reverse would be
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true for life history characters and physiological and behavioural characters would fall

somewhere between these (Mousseau and Roff, 1937). They conclude from their review that

fitness components generally possess lower heritabilities than traits unconnected to fitness.

However, it is often difficult to umavel the connection that a particular character has with

fitness. For instance, in ectotherms fecundity and development time are highly correlated with

body size, a morphological character. If such a character followed the usual pattem, it would

have high heritability, low coefficient of variation and be a good indicator of fitness. However,

this does not appear to be true of most cha¡acters with high heritability and low coefficient of

variation. Perhaps Mitton's and Grant's (1984) condition of low coefficient of va¡iation for

investigating the relationship between fitness and heterozygosity is not appropriate.

The twin data were collected in Adelaide, South Australia, and all the participants had

sat for a particular public examination in one of two years. Thus it is unlikely that a large range

of environmental stresses was at work. However, the probability of any phenotypic stability

among heterozygotes being attributable to local inbreeding followed by local outbreeding, as

was thought possible for the mother-baby data, is small, since the Australian population has

experienced considerable population mobility since 17 88.

The objective was to see whether the variance of height or IQ was lower among

heterozygotes than among homozygotes. Clearly, the data could not be treated as 90 individual

sets of observations for several reasons. Monozygous twins shared all genes which might have

influenced height and IQ. They had also shared coûtmon environments since they had been

reared together and the effect of common environments was confounded with the effect of

shared genotypes. Dizygous twins shared, on average, half their genes and they had also

shared cornmon environments.

A suitable way of analysing these data was to treat every twin pair as a pedigree of size

2 andperform a pedigree analysis. A method of calculating variance components by the

scoring method in a pedigree analysis was described by Lange, Westlake and Spence (1976).

Hopper and Mathews (1982) extended this method to include, as a component of variance, the

additive effect of a marker locus.

4.2 Basic Model
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In this secrion the basic model of Lange et al. (1976) will be outlined using pedigrees of

size 2 consisting of either monozygous or dizygous twin pairs.

Suppose that some quantitative trait has been measured for each individual of the

pedigree and suppose also that the mean of this trait may differ between males and females. It

is assumed ttrat the trait follows a multivariate normal distribution with separate male and female

means, p¡4 and [.tp respectively, and with a covariance structure:

o = z4o+oll+{r

where (Þ is a kinshiP matrix;

Aisamatrixof Jacquard'scondensedcoeff,rcientof identity,LT (Jacquard, I974);

I is the identity matrix;

o] i. uAaiti.r" genetic variance;

2.
of, is domtnance geneuc vanance;

.2and o! is environmental variance peculiar to an individual.

To understand coefficients of kinship and identity, consider two individuals of known

relationship, A and B, each with two genes at a given locus. The two individuals each receive

one gene from their respective mothers and one from their respective fathers. Â, is the

probability that one gene of A is identical by descent to one gene of B and that the other gene of

A is identical by descent to ttre other gene of B. On the other hand, the coeff,rcient of kinship,

Qa" is the probability that a gene taken at random from A is identical with a gene at the same

locus taken at random from B (Jacquatd, ibid).

Some examples will make these concepts clearer. For instanc" Qnn =f,and 0¡.s :
A and B are unrelated. If A and B are siblings, 0AB = å *¿ if A is the mother of B, QO, =

If A and B are siblings,

AAB : prob (A and B have same gene from mother) x prob (A and B have same gene from

0if
1

î.

father)
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11
24

1

2

Âtu{ = prob (A has the same genes as itseþ = |

If A is the mother of B, and B's fathe¡ is unrelated to A, then

ÂAB = p (B has one of her mother's genes) x p (B's father's gene is same as A's father'sgene)

=1.0=0

For monozygous twins Õ = andÂ =

while for dizygous twins (Þ =

LetX = (Xr,Xz)' be a random variable of the quantitative trait for twin L and ¡win 2. Then

cov (X'X 2) = 2 Qrr{* \r4

(i) 1

( 1 t)

tii) andÂ = (l i;

2 * o2ufor monozygous twinso a

#^ * 'pfr ror dizygous twins

Hopper and Mathews (1982) extended this model by adding a term to the covariance stntcture,

vir. &^uY 
u

1 when i = j
1 when i and j share both haplotypes

f when i and j share one haplotyPe

0 when i and j share no haplotype

o2-^ ir the additive genetic effect of a polymorphic marker locus.
ma

11

where \ru,

Thus for monozygous twins, Yu = 11( )

(ii)(;
1

1

,10..
[o 'J

while for dizygous twins Yu may be or or
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4.3 Extended model.

However, neither the basic model nor the marker locus extension can answer the

question of whether heterozygotes at some locus are less variable than homozygotes at that

locus. Thus a different extension to the basic model will now be proposed.

Suppose the locus in question has two alleles Y andy. Then if homeostasis is

operating, the environmental variance peculiar to an individual will be influenced by whether or

not the individual is homozygous or heterozygous at the locus. Thus environmental variance

cannor be estimated by a single parameter, Q, rc, all individuals but instead will have to be

broken into three parts, oTr, &", and &rr. These represent the environmental variances for

individuals with genotypes I'f, Yy and)y respectively.

So the covariance structure now becomes:

a = z&uo * 4Â * d"" e * 4v n + of, s

where qtt
1 if twin i has genotyPe YY

0 if twin i has some other genotype

o.. = 0.
^lJ

The elements of R and S are defined similarly, substitutingYy and ¡y fot YY respectively.

rhusQ,Randscan*(å ?)- (3 :)- (å 3).' (: ?)

A vector of seven parameters r) =(Lr¡a ,llp, Ç2u, o'u, ot"t,o?r, o'--l must be

\ 
a'-o' Yr' ry' tt)

estimated for this model. This is done by maximizing the log likelihood, which is given by:

kk'-r
logI- = -U>loglC2, l-b >(xr-Fi) O -(xil'l¡)-constant

i=-1 - r i=l

where r, is (l* pr) o. (u* r¡) a"p"nding on the sex of twin pair i;

O, is covariance matrix for twin pair i
I

and k is the total number of twin pairs.

4.4 Fitting the extended model
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Initially, the basic model was fitted to the heights of the 45 twin pairs by minimizing

minus the log likelihood using a quasi-Newton minimization routine, Z)ilVfIN, from the IMSL

library (1984). The vector of parameters to be estimated was t) = (tr't, ILp,62u,"?, "?l\)
Since all the variance parameters had to be non-negative, a modifred vector of unconstrained

païameters, tM = (U*U.ou,od,oe 'was used when frtting the model. The unconstrained

estimates were squared to give non-negative variance estimates which were used in calculating

Q and the information matrix. The FORTRAN 77 program which I wrote to perform this

model frtting is listed in Appendix C. The program was tested by performing hand calculations

for a simple example at all stages of the program except the minimization routine itself.

)

The information matrix was calculated from the formula,

the expectation operator, I is the loglikelihood and rí is the vector of estimates. The covariance

matrix of the estimates was found by inverting the information matrix.

As can be seen in table 4-1, the fitted value for dominance variance was very close to

zero. This was not surprising given the small sample size. Martin, Eaves, Kearsey and Davies

(1978) showed that for the extreme case of 90Vo heritability, complete dominance and no

differences among family environments, 3330 twin pairs would be required to distinguish

between the model with dominance variance and the model without in957o of cases. This

number increased tenfold when dominance was intermediate. Martin et al. (íbid) discussed

other methods for determining dominance variance using smaller numbers of twins, but they

were not appropriate to the model used here.

A reduced model was then fitted omitting the,tt- o3 Â from the variance structure.

As anticipated this made no difference to the other estimates, nor to the value of the log

likelihood, but due to the very large negative covariance of {ana o2U there was a very slight

shift in the estimat e of Q. The estimated varianc e of Qis of course very much improved.

t[t*,r-J-=u where o is

The extended model was then fitted, omitting the dominance variance, for each locus tn
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turn. The patameter vector was then ùE = (U*, llp, 62u, o?", o'"r, o'rr)where, for

instance, &rr, &"rand /r, correspond ,o o|, {z^d ênrcrthe haptoglobin locus and. to

ol*, o2*o anA ofu fo. the MN locus. The resuls are presented in table 4-2. Minus twice the

difference between the log likelihood for any particular extended model and the reduced

model of table 4-1 represents the improvement of the extended model over the reduced model.

Since there a¡e two more par¿ìmeters in the extended model, this quantity will be as¡'rnptotically

disrributed as chi-square with two degrees of freedom. A significant departure (p < 0.05) from

this distribution would indicate that the three genotypic variances are not all equal. There was

no significant departure for the fust four loci of table 4-2. The genotypes of the Jk locus were

not measured for two twin pairs and so the results for this locus are not dfuectly comparable

with the reduced model of table 4-1. The reduced model was frtted to the data, omitting these

two twin pairs and a value of 169.9 was obtained for -1, thus giving 1.2 n the final column of

table 4-2.

From these results we can say that the variance of height is not smaller among

heterozygotes than among homozygotes for any of these loci. In fact, only the MN locus

shows even a trend in this direction.

The analysis was repeated for IQ measurements, but this time a further reduction was

afforded by pooling means for males and females. The results of fitting the basic model and

two reduced models are shown in table 4-3. It can be seen that use of the pooled mean makes

very little difference to the log likelihood. As before, the problems of small sample size

surfaced, since IQ is believed to have a reasonable degree of dominance (Eaves, 1.973, I975).

Once again the reduced model, this time with pooled means, was extended to include

parameters for each genotype of a major locus. The results for the six loci ¿ìre presented in table

4-4. As before, the extended model did not offer any significant improvement over the reduced

model. This time the variance of the heterozygotes was lower than both the variances for

homozygotes at the MN and the haptoglobin loci, but not significantly so. Other loci showed

contradictory Eends. Note that minus the log likelihood for the reduced model, using the 43

twin pairs who had been typed at the Jk locus, was 238.3 and this value was used for
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calculating minus rwice the difference in log likelihood for the improvements afforded by the Jk

locus model.

One school of thought suggests that instead of considering heterozygosity at individual

loci, all measured loci should be pooled to give a total heterozygosity score (for discussion, see

section 3.1). Since six loci had been typed, possible scores for heterozygosity ranged from 0

to 6. A possible model would be

o = zfla* 4a * "þ * 4s * 4r * "þ* olv *.þ

where { r"pr"r"nts the environmental variance for individuals with heterozygosity score i.

Such a model would mean that eight variance parameters would have to be estimated; this is

too many given that the data set is not large. Instead, the data were grouped into three

heterozygosity classes, ¡ = {0,1}, M = í2,31, t{ = {4,5,6}, and so the model became:

a = 240*Jro*d*n*/"s

where L indicates low heterozygosity, M is medium and H is high.

Only 43 trwin pairs were used for this model since the Jk genotypes had not ben

ascertained for two twin pairs. Thus the value for minus the log likelihood should be compared

with 169.92 for height and 238.3 for IQ. Results are presented in table 4-5. These

components did not contribute significantly to the overall variance. It is interesting to note that

the variance for the highly heterozygous individuals was relatively high for height and relatively

low for IQ.

Hopper and Matthews (1982) suggested testing the adequacy of the fit of the model by

examining the quantities

F¡ = (X¡ - ûÐ' C¿r-l (Xi - lr)

for all twin Pairs i = 1', .... k.

F¡ should be distribut ed as y2 with two degrees of freedom when the pedigrees consist of twin

pairs. These F¡ can be further transformed to
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Flr) =./ZF-i - {3 which has a standard normal distribution.

The Fg) can 59 plotted against normal scores. Any outliers from a straight line through the

origin would indicate a discordant twin pair. Plots for the Ss locus model are shown in

fig.4-1. The fit is very good for the height data but less so for the IQ data, because the bottom

left values deviate from the straighr line. Twin pa¡rr25 appears to be discordant for IQ and

possibly twin pair 21 is discordant for height'

To examine rhe adequacy of fit for individuats, Hopper and Mathews (ibíd) suggest

calculating residuals, ri = Xi - p¡ where X¡ is either height or IQ for the ith individual and p1 is

the appropriate mean. Then for a pair of twins, (r1, r2)' is the vector of residuals and if

O* = Orr - úrl Çtzzand 81.2 - Ç2zt lÇtzz,

then Qi : (ir - ßt.zîz)z/ C¿* has u 1', ai'oiuution'

el ø, ¡*in 2 in any given pair is calculated similarly and also follows u 1t1 aitoiUution but the

two distributions are dePendent.

Raw data values, standardized residuals and Qi values for discordant twins of a pair are

shown in table 4-6. Twin pair 36 illustrates the effect of a discordant twin most clearly. Twin

number 1 of this pair is at the lower extreme of the range of IQ values while twin number 2 is

close to the average.

On the whole, the models seem to fit reasonably well, with few discordant values. The

main problem in fitting the pedigree model is the small sample size. For instance, in the

reduced model for height, the estimat e of Qis 41 . 1 with a standard deviation of 7 .6 and the

estimate or d is 1.70 with a standard deviation or 0.47. Hopper and Mathews (ibid) fit their

model to 80 families consisting of a total of 617 individuals, a much larger sample. There will

be further discussion of sample size with respect to heritability estimates in the next section.

The lack of relationship between variance of the two quantitative traits considered and

heterozygosity might have been due to the small sample size, but there could have been other

factors. Of the six loci considered, two pairs were closely linked (MNSs and the two Rhesus
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loci) and such a small number would probably not reflect the heterozygosity of the whole

genome (Chakraborty, 1987). The loci occurred on chromosomes L,2 4 and 16 (Shows,

McAlpine and Miller, 1934) and so provided some opportunity for linkage disequilibrium with

loci controlling height and IQ, but not enought since we do not know where the loci controlling

height and Ie are situated. Similar arguments to those used in chapter 3 would also apply here.

4.5 Estimates of genetical parameters

The use of multiva¡iate analysis of variance (MANOVA) to remove major effects and

thus allow heritability to be estimated from the residual covariance matrix was discussed in

section 3.4. In that section the method was used to make calculations of heritability from

morher-baby pairs. In this section the same method will be used to estimate heritability fi'om

futl sib pairs, in fact dizygous twin pairs.

The second data set, provided by Dr. N.G. Martin and described by Gibson, Martin,

Oakeshott, Rowell and Clark (1933) where they report the results of a study of lung function in

a sample of twins from Sydney, was used in this anaþsis'

The pi genotype had been established for 36 pairs of dizygous females, 30 pairs of

dizygous males and 33 pairs of opposite sex twins. Monozygous twins \vere not used in this

analysis because the heritability estimate is formulated differently for them. The variable of

interest was lung function, FEC, which was calculated from forced expiratory volume, FEV,

conected for age and height according to the formula described by Gibson et al. (tbld).

In order to perform a MANOVA, there must be more than one observation (twin pair) in

any given class. Thus a number of twin pairs had to be omitted since they were the only ones

of their particular genotypic combination. Frequencies for genotypic classes are shown in table

4-7. T\eerror covariance matrices resulting from MANOVA for each set ate shown in table 4-

8. In each matrix, o11 and a2zwere both estimates of Vp, the phenotypic variance. These

two were used in the denominator to calculate the sibsib correlation, t, \ilhere 2t is an upper

limit for the heritability (Falconer, 1982).

Several worrying featu¡es emerge from these data. First, 011 and a22are significantly

different for the dizygous males; 0.9505 / 0.39 = 2.44 (FtS,tS = 2.22 at 57o level). It is
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diffrcult to see why the variance of lung function would be different for two gloups of male

twins if the twins had been allocated randomly to position I or 2'

Second, the estimated upper limit to heritability for females is less than half the estimated

limit for opposite sex pairs. Third, these values a¡e substantially less than the estimates for

heritability calculated by Gibson et at (tbid) and the standard elrors are much greater' They

give values of 0.56 + 0.10 in males and 0.84 t 0.04 in females, using a model which fits

individual environmental variance for male and female and additive genetic variance for each

sex. Admittedly, their results are based on the whole data set consisting of 203 twin pairs and

so are likely to be more accurate'

The MANoVA method which worked so well for the mother-baby data, has failed here'

There are several possible reasons for its failure. As can be seen from table 4-'l ' one genotypic

class dominates all others in each set of twin pairs. correlation coefhcients were calculated for

the largest class only and the values obtained were 0.484 for female pairs, 0'505 for male pairs

and 0.582 for opposite pairs. comparison of these values with those of table 4-7 reveals that

mare pairs were the onry ones that were crose. Thus the results cannot be explained so simply.

Lush(1949)definedheritabilityastheproportionoftotalphenotypicvariancedueto

genetic causes. In the nanow sense this means additive genetic variation only, while in the

broad sense it includes all genetic variation. However, it does assume that there is no genotype

by environment interaction. Bishop, Mayo and Beckman (1987) comment on the low

environmental effect on newborn serum acid phosphatase as a possible cause of high

heritability. It also means that there was little room for genotype by environment interaction in

the mother-baby data. One can see that there is much room for genotype by environment

interaction when twins have reached adulthood'

Eaves (19S2) discussed some of the difhculties of detecting genotype by environment

interaction in twin studies. If monozygous and dizygous twin data were available for two

different environments, within pair variance and phenotypic correlaúon would follow certain

patterns in the presence of interaction. In an experiment it would be possible to allocate twin

pairs to particular environments but when studying life data, not only can this not be done but

there is also the possibility that genes and environments are not independent. Hewitt (1987)
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discusses examples of this with particurar reference to inte[igence' but a parallel argument could

be develoPed for lung function'

Anothershortcomingofthedatasetisitssmallsize.ElstonandBonney(1984)

discussed the sampre sizes required to estimate a heritab'ity of 0.2 with a standard error of 0.1

andconcludedttrat3g0sibpairs(ordizygoustwinpairs)wouldberequired.Ifthestandard

error were to be halved the sample size would have to be increased fourfold' on the other hand

if the value of the heritability were larger, the required sample size for sib pairs would not

decrease. Thus a sample size as small as 20 twin pairs is clearly inadequate'

ThusitisreasonabletoassumethatthecausesoffailureoftheMANOVAmethodfor

the twin data set were small sample size and the presence of genotype by environment

interactlon.
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Table 4-1 Maximum likelihood estimates and covariance matrices of parameters of the basic

and reduced pedigree models for height data.

It¡a

175.5

t75.5

Irn

t63.4

163.4

4t.2
4t.l

0.0 1.70

1.70

-l

178.4

178.4

"!e,2o"

Basic

Reduced

I't¡4

l"rp

o!

2
od

o2
e

F¡a

trp

"!

"!

Covariance matrix of basic model

2.t7

0.0 1.31

0.0 0.0 1025

0.0 0.0 -891

0.0 0.0

Covariance matrix of reduced model.

2.t7

0.0 1.31

0.0 0.0 57.3

0.0 0.0 -o.21 0.22

82r

0.33 -0.s0 0.22

Tabte4-2 Maximum likelihood estimates of parameters of the extended pedigree model for
height data and six polymorph-ic loci. The final colum¡ Igpresents the

impîovement of each efte ded model over the reduced model of table 3-11.

Locus

haptoglobin

MN
Rhesus C

Rhesus E

JK

Ss

Genotypes

11 12 22

MM MN NN

4 "?"

CCCc æ

æEqEE
(nùlþ
SS Ss ss

tr¡a

17 5.5

175.5

175.5

175.5

tt 5.5

t7 5.5

trp

t63.4

163.4

163.4

t63.4

T63.7

t63.4

"?,
2.07

1.51

2.53

0.78

2.22

1.18

2o
vv -l -2Ll

4.0

0.2

3.0

2.2

t.2
1.6

41.6

41.0

41.2

41.4

42.2

4r.3

2.t8
1.88

2.t9
2.O3

r.76

3.01

0.52

1.78

0.93

0.18

1.06

t.49

t76.4

t78.3

176.9

177.3

169.3*

t]7.6

* Only 43 twin pairs were measured at this locus. See text for explanation.



93

Estimated Covariance Matrices

Table 4-3 Maximum likelihood estimates of parameters of the basic and two reduced
pedigree models for IQ data.

tr¡a

ttI.7
Irp

109.0

4 ú
0.0

0.0

4 -l
248.1

248.5

248.5

Basic

Single mean

Reduced

110.0

110.0

97.4

98.8

99.0

27.0

26.9

27.O

Basic model

5.84

0.0 3.s3

0.0 0.0 9s90

0.0 0.0 -8850 8600

0.0 0.0 79.9 -122 s6.0

Reduced single mean model.

tr¡a

Pp
2

ou

2
od

"!

tr

o!

"?
2o"

Single mean model

2.23

0.0 9840

0.0 -9060 8800

0.0 79.O -lzL 55.0

2.23

0.0 508.0

0.0 -45.0 54.0

p
2

ou

2o
e

'lable 4-4 Maximum liketihood estimates of parameters of the extended pedigfee model f'or

IQ daø and six polymorphic loci. îhe frnal column presents the improvement of
eaih extended mo¿êt ovèr the reduced model of table 3-13.

Locus tl

110.0

t 10.0

110.0

110.0

110.0

110.1

26w
44.8

35.4

16.0

0.02

15.4

2r.o

-2Lr

2.0

1.0

3.8

0.4

4.0

3.0

Genotypes

11 L2 22

MM MN NN

4 dtt &", -1

Haptoglobin

MN
Rhesus C

Rhesus E

JK

Ss

CC& æ

ækEE
mùLb
SS Ss ss

95.7

ro9.4

84.3

99.2

100.7

85.7

25.8

23.9

72.5

26.1

56.4

19.5

18.8

16.4

4t.l
29.6

20.3

60.3

247.5

248.0

246.6

248.3

236.3*

247.0

* only 43 twin pairs were measured at this locus.
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Table 4-5 Maximum likelihood estimates of parameters of the pedigree model extended to
include heterozygosity scores.

IQ

tl

109.9

Height

Ftvt

175.5

Itr

163.1 42.1

&,

2.30

-2t
0.24

4&L "ir &H 1

236.9

-2At

2.8

I
169.8

trz.o 22.7 34.4 6.45

2oM2o" &L

1.66 1.56

Table 4-6 Observed values, standardized residuals and approximate frvuiables for three

different twin pairs.
*

twin pair

10

twin pair

32

twrn

twin

height

150.3

154.8

IQ

130

99

80

106

rilo
- 1.89

-1.19

1.85

-0.97

-2.81

-0.36

q
5.95

3.71

1

2

oIri q
4.6

3.0s

6.26

o.r7

1

2

1

2

36

x?,,0.0, : 3'84
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Tab\e 4-7 Frequencies of twin pairs in genotypic classes for the Pi locus.

a. Dizygous females

twin 1 genotype

MtMt MtMz MtS

c. Opposite sex pairs

female genotype

MtMt MtMz

twin 2

b. Dizygous males

twin 1 genotype

MrMr MtMz

MrMt
MrMz
MrS

MzS

twin 2

male

MrMt
MrMz

28 22

MlM1
M1M2

20

Table 4-8 Error covariance matrices of FEC after allowing for genotypic effects of the Pi

locus.

t3

3

3

)

J

J

11
a
J

a. Diz)¡gous females

sister 1 sister 2

sister I 0.6713 0.0803

sister 2 0.0803 0.5895

t = 0.0803 /./@37ßX05895I= 0.128

h2 <0.255 se (h2) = 0.410

c. Opposite sex Pairs

sister brother

sister 0.6990 0.1849

brother 0.1849 0.5744

t : 0.184e / ^t@@Ð@.:¡4ry = o.292

h2 < 0.584 se (h2) = 0.412

b. Dizvsous males

brother 1 brother 2

brother 1 0.39 0.2931

brother 2 0.2937 0.9505

t=o.2937/./(0-5x0-350-5L=0.482
t? <o.ge+ se (h2) = 0.362

N.B otn, ircalculated from the formula 4(l+ùz1-t)z I ¿.t.
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Figure 4-1 Plots of Fi(1) against normal scores for the Ss locus-
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has more than n¡¡o alleles, decreasing va¡iance with increasing heterozygosity is more likely to

indicate heterozygote advantage. However, \rye cannot expect heterozygosity at each locus to

have the same effect on the variance and so we can expect fluctuations in this downward trend.

Environmental variance will also cause fluctuations.

One way of dealing with the different locus contributions to variance is to use the adaptive

distances model (Smouse, 1986). In its current state this model has the shortcoming of being

able to deal with only two alleles per locus. However, an extended model is being developed

(Smouse, personal communication). The adaptive distances model's other major shortcoming is

that it requires measures of frtness for each genotype. More accurate estimation of fitness than

has been used in this thesis may be possible by extending the analyses of Hed (1986).

However, the fitness for the different genotypes of a locus will always be relative and cause

some problems in the use of this model. One possible way to minimise the problem is to obtain

estimates from a different data set to the one being used to frt the model.

The pedigree model is a very powerful tool for fining variance components but unfortunately no

results of any consequence were obtained using this model because of the small numbers of

twin pairs available for analysis.The number of mother-baby pairs was large but these data did

not lend themselves to a pedigree model. Since only a small number of loci were available for

the latter set, the data were analysed by considering each locus individually and grouping the

quantitative traits into anthropometric and biochemical. Dispersion matrices for the different

genotypes were compared but the results were inconclusive.

Taken as a whole, the results seem to indicate that the degree of heterozygote advantage differs

among loci. In particular, there does seem to be some effect of heterozygosity at the placental

alkaline phosphatase locus on the variance of newborns' anthropometric traits. The more loci

we examine for a wide variety of quantitative traits the more we are likely to see trends

emerging.
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rF(R.Lr.cRIr(1)) THEN
LOC(L'J):1
GO TO 30

ENDIF
DO 35 K=2,NAL
IF(R.GE.CRIT(K- 1 ).AND.R.LT. CRIT(K))THEN

ILOC(LJ)=K
GO TO 30

ENDIF
35 CONTINUE
30 CONTINUE
C{<*{<ì!* If the two allelesat the locus are different, increment heterozygosity

IF(ILOC (L, 1 ).NE.tr,OC (L'2))IHET(I)=IHET(I)+ 1

25 CONTINUE
ç***xi Invoke appropriate model dependilg on whethe_r allelic effects(AlEF)
C are additive õi ¿ol-ina.tt and whèther locus effecs(GEF) are additive or

C
'a'.AND.GEF.EQ.'m )THEN

ELSE IF(ALEF.EQ.'a' EQ.'a')TIIEN
CALL ADDADD(I,EF(I))

ELSE IF(GEF.EQ.'m')THEN
CALL DOMMUL(I,EF(I))

ELSE
, CALL DOMADD(I,EF([))
ENDIF

20 CONTINUE
C:*{.*.*t( Calculate numbers in each heterozygosity class.Keep counts in NHET.

DO 44 J=l,NJ
NI{ET(J):0
xM(J)=0
SS(¡=g

44 CONTINUE
DO 45 I=1,INDfV
J=IÉIET(I)+1
NHET(J)=NHET(J)+1
XM(I¡=¡¡4(J)+EF(I)
ss(J)=ss(I)+EF(I)**2

45 CONTINUE
C*<:t*{<*'Calculate mean and variance of each heterozygosity class

DO 50 J=1,NJ
C*{<x:kt< First increment grand mean classes

XBAR(J)=XBAR(J)+XM(J)
NHT (J) =NHT(I¡ +NFIET(J)
RN=REAL(NHET(J))
IF(RN.GT.0)DF(J)=DF(J)+RN- 1 .0
IF(RN.LE.1.O)TITEN

vAR(J)=0
GO TO 50

ENDIF
xM(J)=XM(DßN
VAR(J)=(S S (J)-RN*XM(J)* *2)/(RN- 1.0)

C**{<{<* Increment grand variance classes
VB AR(J):VB AR(J)+(RN- 1.0)*VAR(J)

50 CONTINUE
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19 CONTINUE
C*"*¡l"l'¡* Calculate pooled variance and grand mean for each class.

DO 60 J=I,NJ
RNJ=REAL(NHT(J))
rF(DF(J).LE.0.0)THEN

vBAR(J):0
xBAR(Ð=XBAR(J)

ELSE
XBAR(J)=XBAR(J)/RNJ
vBAR(J)=VBAR(J)IDF(J)

ENDIF
60 CONTINUE

wRrTE(2,65)
TWRITE(2,5 SXXBAR(J),VB AR(J),DF(Ð,NHT(J),J= 1,NJ)

5 FORMAT(4I10,241l2F10.0,I5l(8F10.0))
6 FORMAT(5X,'allelic effects',41,' genotypic effects',41/

+SX,'allelic freqs', 1 0F6.3)
16 FORMAT(8E10.3)
21 FORMAT(5X,'RUN"I5)
3t FORMAT(812.4,215)
40 FORMAT(s(I5,E12.5))
55 FORMAT(sX,3E12.5,I10)
65 FORMAT(5X,'Averages over all runs')

END

' suBRourINE ADDMUL(I,F)
coMMoN ILOC ( I 0,2),RLL,RUL,NAL,NLOCI,CRTT( 1 0)

C*<,kt({r* Calculate the genotypic effect for individual i when allelic effects are

C additive and locus effects are multiplicative
F=l.0

C*(**(r({r Use the range of possible values of the trait to determine base value(X)
C and incremen(S) for each gene.

ZNI-=I.0/REAL(NLOCI)
x=RT.L**ZNL
Y=ft!¡'t*2¡¡¡
5_n.5*(y_X)

C*{<:k{<* For individual,I, calculate the genotypic effect.
AL=REAL(NAL)
DO 10 L=I,NLOCI
GEN=S*(ILOC(L,1)+ILOC(L,2)-2.O)/(AL-I.0)+X
F=F*GEN

10 CONTINUE
1 FORMAT(3812.5)

RETURN
END

SUBROUTINE DOMMUL(I,F)
coMMoN ILOC (10,2),RLL,RUL,NAL,NLOCI,CRIT(10)

C¡r*:*{"ft Alleles exhibit dominance and locus effects are multiplicative.
C If there are more than two alleles, the first one is recessive and
C the others are codominant and additive.

F:1.0
ZNL=I.0/REAL(NLOCI)
X=B[,¡xx7¡J¡
Y=ft9¡r'*7¡¡¡
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AI:REAL(NAL)
s =(Y-X) * ( AL- r.O)l (2.0* AL-3.0)

C* ¡l' * :k'*' f or índividual,I, calculate the genotypic effect.
DO 10 L=I,NLOCI
C= (ILOC(L, 1 )+ILOC (L,2) -2.O) I(AL- 1:0)
IF(ILOC(L, 1 ).EQ.ILOC(L,2))C=0. 5 * C
GEN=C*S+X
F=F*GEN

10 CONTINUE
1 FORMAT(4E|2.5)

RETURN
END

SUBROUTINE ADDADD(I,Ð
òovn¡oN ILoc (10,2),RLL,RUL,NAL,NLOCI,CRnq0)

C{<**t,ß* This subroutine'calculates the genotypic effect if the alleles are

C additive and the locus effects are also additive.
s = (RUL-RLL)/(2.0 * REAL(NLOCI) )
X=RLL
F=X
AI:¡¡PA¡(NAL)
DO 10 L=I,NLOCI
F=F+S *(ILOC(L, 1 )+ILOC(L,2)-2.0)/(AL- 1.0)

10 CONTINUE
1 FORMAT(3E12.5)

RETURN
END

L,NLOCI,CRIT(10)
C** effects are additive
C stis recessive and

C the others are codominant and additive.
X=RLL
AT -REAL(NAL)
s =(RUL-RLLyREAL(NLOCI) * (AL- 1 .0)/(2.0*AL-3.0)
F=X
DO 10 L:1,NLOCI
C=(ILOC (L, 1 )+ILO C(L,2)-2.Oy(AL- 1:0)
IF(ILOC(L, 1 ).EQ.ILOC(L,2))C:0.5 *C
F=F+C*S

10 CONTINUE
1 FORMAT(3E12.5)

RETURN
END
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APPENDIX B - MINITAB Program

NOECHO
NOTE *** Puri and Sen's test for equality of dispersion matrices.
NOTE **'* Variables ACFM PLFM LFM ACFB BFB
NOTE lr** J=sqrt(12)*(u-0.5) transforms ranks to scores,E.
NOTE *'*'*' pon,l1"6.ons - mothet's haptoglobin types (3 populations)
READ 'HAPT.DAT' C2 C3 C4 C5 C6 Cl
NOTE **'.*< C1 specifres the population for each set of va¡iables
NOTE {<**' Kl is number of observations
NOTE *** Kl is numberof variables
COUNT C1 Kl
LET K2=5
NOTE *'k* FoIm ranks for each variable
RANK C2 CL2
RANK C3 C13
RANK C4 CI4
RANK C5 C15
RANK C6 C16
NAME C12='R1', C13='R2',C14='R3',C15='R4',C16='R5'
NOTE **{< Raw data not required again. Erase and reuse C2-C6.
ERASE C2-C6
NOTE *':*¡þ Form E values by transforming ranks
LET K3=SQRT(12)
LET C2=K3*('R1'/(K1 +1 )-0.5)
LET C3=K3*('R2'/(K1 +1 )_0.5)
LET C4=K3 *,('R3'/(K1 + 1 )_0.5)
LET C5=K3'r, 1'R4'/(K1 +1 )-0.5)
LET C6=K3'r.('R5'/(K1 + 1 )_0.5)
NAME C2=' El',C3 =' E2',C4=' E 3', C5 =' E4', C 6 =' E5'
MEAN 'E1' Kll
MEAN'82'KTz
MEAN'E3'K13
MEAN'8.4'KT4
MEAN'85'K15
NOTE *'*¡r' Find sums of squares of E vectors
ssQ'E1' K16
ssQ'E2' K17
ssQ'E3' Kl8
ssQ'E4' K19
ssQ'85', K20
NOTE *** Find products of E vectors
LET C2l--'81'*',E2'
LET C22='E1'*'E3'
LET C23='E1.'*'E4'
LET C24='E1'*'E5'
LET C26='E,2'*'83'
LET C27='E'2'*'F.4'
LET C28='E2'*'E5'
LET C30='E3'*'E4'
LET C31='E3'*'E5'
LET C33='E4'*'85'
NOTE :l"k*' Find sums of products of E vectors
SUM CzI KzI
SUM C22K22
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SUM C23K23
SUM C24K24
SUM C26K25
SUM C27 K26
SUM C28K27
SUM C3O K28
SUM C3IK29
SUM C33 K3O
NOTE *** Calculate values for pooled S vector, S*.
LET K3=K1-1
LET Kl 6=(K1 6-K1 *K1 1 *Kl DlfZ
LET K 1 7 =(K 1 7-K 1 *K l2*KI2) /K3
LET Kl 8=(K1 8-K1 *Kl 3*K1 3)Æ(3
LET K 1 9 =(K 1 9-K 1 *K l4*KI4) lK3
LET K20=(K20-K1 *K1 5 *Kl 5)Æ(3
LET K21 =(K2 1-Kl tKl 1 *Kl2)Æ(3
LFT K22=(K22-K 1 *K 1 1 *K 1 3)/K3
LF.T K23=(K23-K 1 *K 1 1 *K 

1 4)Æß
LET K24=(K24-K1 *Kl 1 *Kl 5)lK3
LET K25 =(K25 -K 1 *K l2*KI3) /K3
LF.T Í(26=(K26-K 1 *K lz*Kl 4) /K3
LET K27 =(K27 -K 1 * K l2*Kl 5) /K3
LET K28 =(K28-K1 *K1 3 *Kl4)Æ(3
LET K29 =(K 1 9-K 1 *K 1 3 *K 1 5)Æß
LET K30=(K30-K1 *K 14*K15)Æß
STACK Kî6 K21-K24KI7 K25-K27 K18 K28 K29 Klg K30 K20 C17

NAME C17='S*'
NOTE {'¡l'{r K values and rank vectors not required again so erase.

ERASE Kl1-K3O CL2-CI6
NOTE *!**r Calculate squates of E vectors
LET C20='El'**2
LET C25=',82'**2

LE'[ C32='p,4'**2
LET C34='E5'**2
LET K6=20 #no. of column of first E**2 product
LET K5=1 # index for column K4
LET K3=20 # no. of column of second E*xz product
LET K4=35 # no. of first column where E**4 products are stored
EXECUTE 'OUTER' 15 # execute p(p+t)12 times - p is no. variates
LET C35:C35/KL
LET C36=C36/K\

LET C38=C38Æ(1
LET C39=C39{KI
LET C4O=C4O|KI
LET C4l=C4LlKl

LET C43:C43{KI

LET C45=C45lKl

LÆ-| C4t=C41lKI
LET C48=C48Æ(1
LET C49:C49/K|
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NOTE *{'* Il'oducts of E vectors no longer required; so erase.

ERASE C2O-C34
NOTE **r* C35-C49 now contain the sums of products
NOTE:F** Iìtt into matrix 1 and then erase.

COPY C35-C49 Ml
ERASE C35-C49
NOTE
NOTE *,*,*! Using the E values corTesponding to each population in
NOTE tum construct an S vector for each.
NOTE Store S vectors in C7-C9
NOTE
coPY 'EL' ',82' ',83' ',84' 'E5' C12-C16;
USE C1=0.
LET K4=1 #K4 is number of first population
LET K5=7 # K5 is column for fust S vector
EXECUTE 'SVECTOR'
coPY 'El''F;2"E3' 'E4' 'E5' C12-C16;
USE C1=1.
EXECUTE 'SVECTOR'
coPY'EL"E2"E3' 'E4' 'E5' C12-C16;
USE C1=2.
EXECUTE 'SVECTOR'
ERASE K5 K4
NAME C7='S0',C8='S1',C9='S2' #S vector for each population
PRINT 'SO' 'S1I IS2I IS{<I

NOTE
NOTE *:t* Complete calculations for variance matrix and store in M4
NOTE
TRANSPOSE'S*'M2
MULTIPLY'S*' M2 M3
SUBTRACT M3 Ml M4
I}IVERT M4 M5
PRINT M4 M5
LET K3=0
LET K5=7 # column no. for S vector of first population
LET K4=1
NOTE 'l':*'k Calculate chi-square in K3
EXECUTE'PURILN' 3 #èxecute once for each population
PRINT K3
END

macro OUTER

macro MULT

EXECUTE 'MULT' L5 # execute p(p+1)2 times: p is number variates
LET K4=K4+1 #column no. for storing sums of products
LET K3=K3+1 #column for second E vector
LET K5=1 #reset pointer to position 1 of column K4
LET K6=20 # column for first E product
END

LET Cl8=CK6*CK3
SUM C18 K7
LET CK4(K5):1ç7

#multiply E vectors

#store sum of products at position K5 of col K4



104

LET K6=K6+1
LET K5=K5+1
END

rnacro SVECIOR

NOTE **¡ft Find sums and sums of squares of E values for a particular sample

SUM C12 Kl1
SUM CI3KI2
SUM C14 K13
ssQ c12 K16
ssQ c13 K17
ssQ c14 Kl8
NOTE *"1'¡l' Findproducts of E values
LW C2t=Cl2*CL3
LET C22=Cl2*Cl4
LET C23=C12*C15
LYT C24=Cl2*Cl6
LET C25=C13*C14
LEI C26=C13*C15
LET C27=C13*C16
LET C28=C14*C15
LET C29=C14*C16
LET C30=C15*Cl6
NOTE 4r'k:t Find sums of products of E values
SUM CZIK2I
SUM C22K22
SUM C23K23
SUM C24Í(24
SUM C25K25
SUM C26K26
SUM C27 K27
SUM C28 K28
SUM C29K29
SUM C3O K3O
COUNT C13 KlO
LET C19(K4)=K10
NOTE {c** Calculate elements of S vector
LET K16=(K16-K1 1 *Kl 1/I(10)/(K10- 1)
LET K 17=(K17-K12*Kl2lKI0)/(K10- 1 )
LET K1 8=(K1 8-K1 3*K1 3/K10)/(K10- 1)
LET K 1 9=(K19-K1 4*KL4{KLO)/(K10- 1)
LET K20=(K20-K15*K1 5/K10)/(K10- 1 )
LET K2 1 =(K2 1-K1 1 *Kl 2Æ(10)/(K10- I )
LET K22=(K22-KL 1 *K 1 3Æ( 1 0)/(K 1 0- 1 )
LET K23=(K23-rt t *Kt4lKr0)l(K10- 1)
LET K24=(K24-K 1 1 *Kl 5/I( 1 0)/(K 1 0- 1 )
LET K25 = (Í(25 -IúttZ*K 1 3Æ( 1 0)/(K 1 0- 1 )
LET K26= (K26-t<tZ*Kl4lKl0)l(K 10- 1 )
LET K27 =(I<27 -KI2*K 1 5/K 1 0)/(K 1 0- I )
LET K28=(K28-K 1 3*KI4lKr0)l(K10- 1 )
LET K29 =(K29-r r 3 *K 1 5/I( 1 0)/(K 1 0- I )
LET K30=(K30-K14*K15Æ(10)/(K10- 1 )
NOTE *x* $¡¿çlç elements into column K5
S TACK K 1 6, K2 1 -K 24,KI7,K25 -K27,KI 8,K28,K29,K 1 9, K3 O, K2O CK5
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LET K5=K5+1
LET K4=K4+1
ERASE Ct2-Cr6 K10-K30 c21-c30
END

#erase to make room for next vector

macro PURILN

SUBTRACT'S*' CK5 M6
TRANSPOSE CK5 M7
SUBTRACT M2 FROMMT M8
MULTIPLY M8 M5 M9
MULTIPLY M9 M6 K6
LET K7=C19(K4)
LET K3=K3+K6*K7 #K3 contains test statistic
LET K5=K5+1
LET K4=K4+1
ERASE MGM9 K6
END
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C SEX
C ZYG
CtIT
çGE
CX( * {< rl.¡F trl.,t¡* ¡**

APPENDIX C - Pedigree analysis program

PROGRAM ATS
C****{< This program performs a pedigree analysis for twin data. The
C variance matrix includes components for additive variance and
C dominance variance. The error variance is divided into 3 components,
C depending on an individual's genotypg qt 1maj91focus.
c:{.,*!r{<d. 

-Input 
variablgs ,l.,l.d.rkd.rt,l.d.d.rtrtrkd.d.t d.¡l.r*,F¡k¡l.crrkrt,*rl.*¡k{.rkrkd.¡1.à1.¡l.rF:*,1.:}d<*.d<r<rkrk*{<d<d<

C FY family number
sex of twins(all twins are same sex)
twins are lvlZorDZ

height for each.twin
genotype at major locus for each twin

*X**rt rl.r¡.*f.*tk¡l.rF{rrkt*¡Frk:*¡1.¡1.*¡ü¡l.r*rl.:*{.¡1.:*¡1.{.{.*:lrt<*tl.rk*r(drrkt d<t*{<:tt*rt**{<*f<*,Ft<*{<

DTMENSION OMS (2),8 (2),QA(45,
EXTERNAL zuNCT
OPEN(UNIT= l,FILE='MATS.DAT',STATUS =' OLD')

NF=45
C'k*{r{< NF is number of families

READ( 1, 10XFY(I),SEX(I),ZYG(I),(HT(I,J),GE(I,J),J=1,2),I=1,NF)
HMF=0
HMM=0
NFS:0
NMS<)
NCC=0
NCL=0
NLL:0
DO 15I=I,NF

C*'k{<{<{< Find cumulative sum of heights for each sex; also number of each sex.
rF(SEX(I).EQ.0)rHEN

HMF=HMF+HT(I, 1 )+F{T(I,2)
NFS=NFS+2

ELSE
HMM=HMM+ÉIT(I, I )+HT(I,2)
NMS=NMS+2

ENDIF
C{<**'** PHI,DEL,Q,R and S are symmetlc2*2 matrices containing kinship
C coefficients, coeffs of identity and indicators of genotype for a

C major locus.
PHI(I,1)=0.5
PHI(I,3)=0.5
DEL(I'1)=1.0
DEL(I,3)=1.0
QG'2)=0
R(I,2)=0
S(I,2¡=g

C{<:*{<{'{< Define first element of Q,R,S according to twin 1's genotype.
IF(GE(I, 1).EQ.' I 1')THEN
Q(I,t¡=1'6
R(I,1)=0
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s(r,1){
NCC=NCC+1

ELSE IF(GE(I, l).EQ.' 1 2')TTIEN
QG'1)=0
R(I,1)=1.0
S

N
1)=0

1

ELSE
Q(I,1)=o
R(I,1)=0
S(I'1)=1'9
NLL=NLL+1

ENDIF
C*x<**t' If twins arelvlZ third element =first element for Q,R,S since

C genotypes are the same.
rF(zYGG).EQ.1)THEN

PHI(I,2)=0.5
DEL(I,2)=1.0
Q(I,3)=Q(I,1)
R(I,3)=R(I'1)
s(I,3):S(I'1)

ENDIF
C{<:ß,l.{.r( If twins are dizygous, second twin's genotype may be different.

rF(zYGG).EQ.2)rHEN

DEL(I
IF(GE(I,2).EQ.' 1 1')TITEN
Q(I'3)=1'9
R(I,3)=0
s(I,3)=0

ELSE IF(GE(I,2).EQ.' 1 2' )THEN
Q(I'3)=0
R(I,3)=1.0
s(I,3)<)

ELSE
Q(I'3)=0
R(I,3¡=g
s(I,3)=1'0

ENDIF
ENDIF

15 CONTINUE
c*{<{.:*,1. NCC,NCL,NLL are numbers of first twins with each of the three
C genotypes.

WRITE(2,53)NCC,NCL,NLL
C**,r.,r.* H\rIF andHMM are means for females and males respectively.

HMF=HMFÆ.TFS
HMM=HMÌvV|{MS
MÆKFN=500
IOPT=2
NSIG=2
N=6

C¡t,<,'{<t< Initial estimates of parameters
X(1):g¡4¡4
X(2)=¡¡¡4P
X(3)=6.6

25
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X(4)=1.5
X(5)=1.5
X(6)=0.8

C***'rc* Call the IMSL subroutine for minimizing
CALL ZXMIN(FUNCT,N,NSIG,MAXFN

WRITE(2, 30XX(K),K= 1,N)

a function.
,IOPT,X,H,G,F,'W,IER)

V/RITE(2,31 ,K=1,N)
WRITE(2,32) F
WRITE(2,33)IER
WRITE(2,34XW(K),K= 1, 3)
CALL MATPR(H,Ì.Ð

C*{<*** Obtain covariance matrix by inverting information matrix calculated
C at the maximum likelihood estimates.

CALL zuNCT(N,X,F)
NN=N*(N+I)IZ
DO 49 J=I,NN
FI(J)=0

49 CONTINUE
C*'*¡r'¡ftx< Calculate symmetric information matrix for each family

DO 50I=l.,NF
rF(SEX(I).EQ.0) TI{EN

FNI(3)=OMI(I, 1 )+OMI(I,2) * 2+OMI(I'3)
FNI(1)=0

ELSE
FNI(3)=0
FNI( 1 )=OMI(I, 1 )+2*OMI(I,2)+OMI(I,3)

ENDIF
C:t¡l"l'{<'l' In this data set sexes are always the same

FNI(2)=0
C¡l.'t*!,k'lr Expected 2nd derivative between mean and va¡iance tetms is always 0.

FNI(4)=0
FNI(5)=0
FNI(7)=0
FNI(8)=0
FNr(l1){
FNr(12){
FNI(16)=0
FNI(17)=0

C{<*c'l"*'l' Convert OMI,PHI,Q,R,S to l-dimensional arays for use in MULT
DO 51 J=1,3
O1(J)=Q¡41ç¡'¡
P1(|=P¡¡11¡'¡¡
Q1(J)=Q(I,J)
R1(I¡=pg,¡¡
S1([=511'¡¡

51 CONTINUE
C'*'*** Calculate 2nd derivatives benveen variance tenns

CALL MULT(OI,Pl,OP)
DO 58 K=1,2
DO 58 I=1,2
OP(K,J)=2*OP(KJ)

58 CONTINUE
FNI (6) :0. 5 * (OP( 1, 1 ) 

* x 2+2* OP (1,2)* OP (2,1) + OP (2,2)* * 2)
CALL MULT(OI,Ql,OQ)
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FNI( 10)=0.5*(OQ( 1, 1 )**2+2*OQ( 1,2)*OQ(2, 1 )+OQ(2,2)* *2)

CALL MULT(OI,Rl,OR)
FNI(15)=0.5*(OR(1, 1)*:r'2+2*OR(1,2)*OR(2, 1)+OR(2'2)**2)
CALL MULT (OI,S1,OS)
FNI(2 1 )=O.5*(OS ( 1, 1)* *2+2*OS( 

1,2)*OS_(?, l-)+OS-(!,2)* 
*2)- 

-FNI(9)=0.5*(OQ(1,1)*OP( 1, 1)+OQ(1,2)*OP(2, 1)+OQ(2'1)*OP(1'2)
1 +OQ(2,2)*OP(2,2))

rm(i¡l=o.5*(oR(l,1 )*oP(1,1 )+oR( 1,2)*oP(2, 1)+oR(2, 1)*oP( 1,2)

1 +OR(2,2)*OP(2,2)
FNI( Ì 8)=0.5*(OS ( 1, 1 )*OP( 1, 1 )+OS (1,2)*OP(2, 1)+OS (2, 1 )*OP( 1,2)

1 +OS(2,2)*OP(2,2))
FNI( î4){.5*(OQ( 1, I )*OR( 1, 1 )+OQ(1,2)*OR(2, 1)+OQ(2, 1 )*OR( 1'2)

| +OQ(2,2)*OR(2,2))
r¡ü(ìg)=0.5*(oQ(1, 1)*OS(1, 1)+OQ( 1,2)*OS(2,1)+OQ(2, 1)*OS ( 1'2)

1 +OQ(2,2)*OS(2,2)
FM(20)=0.5*(OR(1,1)*OS(1,1)+OR(1,2)*OS(2,1)+OR(2, 1)*OS(1,2)

1 +OR(2,2)*OS(2,2))
C***** Print information matrix foreach family

CALL MATPR(FM,|Ð
C:t*({r:r'x' Add up information matrices for all families

DO 50 J=I,NN
FI(I¡=p11¡¡+FNI(J)

50 CONTINUE
WRITE(2,52)
CALL MATPR(FI,ìÐ

C,k{.x{c{É Invert information matrix to obtain covariance matrix
CALL LINV2P(FI,N,COV,IDGT,D 1,D2,V/K,IER)
wRITE(2,54)
CALL MATPR(COV,I9

C*d<*({<" Calculate Q statistics for goodness of fit tests.
sUMQ=O
SQ3=SQRT(3.0)
DO 60I=I,NF
RES(I, 1)=FIT(I, 1)-U(I' 1)
RES (I,2)=HT(I'2)-U(I'2)
QS(!=5qP1(2* S SP(I))-SQ3
SUMQ=SUMQ+SSPG)
OMS ( 1 )=OM(I, I )-OM (I,2)* * 2 I OM(I'3)
B ( 1 )=Q¡41I'2)/OM(I,3)
QA(I, 1 )=(RES (I, 1 )-B ( 1 ) 

*RES (I,2))* *2/OMS ( 1 )
OMS (2)=OM(I,3) -OM (1,2)* *21 OM(I' 1 )
B (2)=Q¡a1I'2)/OM(I' 1 )
QA(I,2)=(RES (I,2)-B(2)*RES(I, 1))**2/OMS (2)

60 CONTINUE
wRrrE(2,62XQS 1,NF)

10
30
3l
32

34
35
37

)

33

12.s)
2.5)

FORMAT(5X,'WORK S PACE' / 5X'38I2.5)
FORMAT(5X,6812.5)
FORMAT(5X,'VARY PARAMETER"I3I5X, 1 0F8. 2)
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52 FORMAT(5X,'Informationmatrix')
54 FORMAT(5X,'Covariance matrix')
53 FORMAT(3IIO)
62 FORMAT(sX,'QSTATISTICST(5X,6E12.5))
63 FORMAT(4F8.2)

END

SUBROUTINE FUNCT(N,X,F)
coMMoN PHI(45,3),DEL(45,3),Q(45,3),R(45,3),S(45,3),HT(45,2),SEX(

+45),NF,HMF,HMM,X2(7),OMI(45,3),S SP(45),U(45,2),OM(45,3)
DIMENS ION X(7 ),G (7 ),XX(3), 72(2,2)

C**'**** This subroutine calculates -1og likelihood in F and also the
C derivative w¡t each parameter of this function.

F{
Ct('F**:l' X(1) estimates male mean, X(2) female mean.

DO 10I=I,NF
rF(sEX(I).EQ.O)rIIEN

U(I'1)=¡12¡
U(I,2)=Yç2¡

ELSE
u(I'1)=X(1)
u(I'2)=X(1)

ENDIF
C{<{<:ß'lr* Variance estimates must be gt 0; so square the estimates.

x2(3)=X(3)**2.
X2(4)=Xç4¡**2.
x2(5)=X(5)**2.
x2(6)=X(6)*'*2.

C:k'k'l':*'l' OM is the variance matrix, omega
DO 15 J=1,3
OM(I,J)=2.0*X2(3) *PHI(I,I)+X2(4) *Q(I,J)+X2(5)*R(I,Ð+X2(6) *

+S(I,J)
15 CONTINUE
C**:&** Calculate the inverse of omega: put it in OMI

DOM=OM(I, 1) *OM(I,3)-OM(I'2) * *2.0
OMI(I,1)=OM(I,3)/DOM

=OM(I,I)/DOM
oMI(I,2
Hl=HT(I,1)-U(I,
I12=I{l(I,2)-U(I,2)
S SP(t¡=¡11 *r'k2.0¡ßOMI(I, 1 )+H2*x2.0*OMI(I,3)+2*IjI*H2*OMI(I,2)

C*{<*{.* Calculate function value
F=F+(LOG(DOM)+S SP(I))/2.0

10 CONTINUE
22 FORMA',T(5X,6812.5)
50 RETURN

END

suB RourINE MULT(A,B,C)
DIMENSION A(3),8 (3),C(2,2)

C*:kx** Multiply two symmeric 2x2 matrices stored as a vector.
C( 1, 1 )=A( 1 )*B ( 1 )+A (2)*B (2)
C( 1,2)=61 1)*B (2)+A(2)*B (3)
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1)=A(2)*B(1)+ A(3)'rB(2)
A(3)*B(3)

10
RETURN
END

SUBROUTINE MATPRCY,IÙ
DTMENSTON Y(30)

C***** Print a matrix,Y, which has been stored in symmetric storage mode.
KI=1
DO 40 K=l,N
KE=KI+K-1
TWRITE(2,3 5 XY(L)'IFKI'KE)
K[=KE+1

40 CONTINI.JE
35 FORMA'T(5X,6812.5)

RETURN
END
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