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v
ABSTRACT

This thesis is concerned primarily with the issue of heterozygote advantage. One of the
ways in which it is believed that heterozygote advantage manifests itself is by the reduced effect
that environmental changes have on heterozygous individuals, thus rendering their traits less
variable than those of homozygotes. In the analyses described in this thesis, no consistent
support for or refutation of this hypothesis has been obtained. The reasons for these
indeterminate findings are discussed in detail as each methodology is evaluated.

Three data sets have been analysed in this thesis. The first consisted of 414 mother-
newborn baby pairs for which nine quantitative traits and the genotypes of several polymorphic
loci were available. This set was used in chapter 3. The second consisted of 43 same-sex twin
pairs for which height, IQ and six genotypes had been ascertained. The third data set consisted
of 99 pairs of dizygous twins and the variable of interest was lung function. These two sets
were used in chapter 4.

The first data set was used to investigate more appropriate statistical methods for
analysing variances of several related traits. In particular, interest lay in finding statistical
methods which were more appropriate than those used in earlier work on this problem.
Methods such as multivariate parametric and nonparametric tests for equality of dispersion
matrices were found to be superior to multivariate coefficients of variation and principal
components analysis. The appropriateness of the data to the problem of examining
heterozygote advantage has also been discussed.

These data were also used to consider an adaptive distances model, an alternative
approach suggested in the literature. The problems of fitting this model in practice have been
discussed fully in chapter 3.

In the final part of chapter 3 a new way of estimating heritability using multivariate
analysis of variance (MANOVA) has been suggested. The third data set was also used to
estimate heritability by the MANOVA method but was less successful and these results appear

in the final part of chapter 4.



Most of chapter 4 is concerned with modifying a pedigree model to include components
of variance for heterozygotes and homozygotes. The pedigrees used were the twin pairs of the
second data set.

Previous research reported in the literature has found that if the alleles at a locus act
additively on a particular trait and if there are several such loci all acting additively then the
variance of the trait will decrease with increasing heterozygosity, even though there may be no
heterozygote advantage per se. Other research has shown that this effect depends on the relative
frequencies of different alleles, when there are more than two alleles at each locus. Inchapter 2
of this thesis, algebraic calculations and computer simulations have been used to show that

these effects change if the assumptions of additivity are relaxed.
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1. LITERATURE REVIEW

1.1 Introduction

In his book, Lerner (1954) developed a thesis to explain the processes underlying
genetic homeostasis to establish a connection between genetic and developmental homeostasis
and to suggest that the most likely mechanism for both types of homeostasis was the superiority
in fitness of the heterozygous over the homozygous genotypes.

Lerner defined homeostasis as the property of the organism to adjust itself to variable
conditions or, alternatively, as the self-regulatory mechanisms of the organism which permit it
to stabilize itself in fluctuating inner and outer environments. He stated that developmental
homeostasis, or ontogenetic self-regulation, was based on "the greater ability of the
heterozygote to stay within the norms of canalized development", while genetic homeostasis, or
self-regulation of populations, was based on "natural selection favouring intermediate rather
than extreme phenotypes".

Lerner suggested that an ideal test of whether heterozygotes were better canalized than
homozygotes would consist of examining the environmental variability in fitness of the two
types. Since useful fitness data were not usually available, individual phenotypic characters
would have to be used instead to investigate the buffering capacity of homozygotes and
heterozygotes. He discussed several different ways in which this buffering capacity could
express itself. First, under normal environmental conditions the variability of some traits
would be less among heterozygotes than among homozygotes. Second, when there has been a
change in the environment or a mutant has appeared, the extent of phenotypic difference from
the original form would be less for the heterozygotes than for the homozygotes. Third, the
variation in expression of bilateral or serially arranged characters would be less in heterozygotes
than in homozygotes. Finally, the amplitude of expression of repeatable reactions to some
stimulus would be less for heterozygotes than for homozygotes.

Experimental evidence obtained by Lerner related to marker genes which had major
morphological effects and which were therefore likely to influence fitness directly. Since that

time genes determining widespread biochemical polymorphisms have been discovered (Harris



1966, Lewontin and Hubby, 1966) and have been used extensively to test for heterozygote
advantage.

Mitton and Grant (1984) summarize a number of studies which looked at protein
heterozygosity and developmental stability - morphological variability in marine fish, sparrows
and monarch butterfly, fluctuating asymmetry in rainbow trout, the number of fin rays in the
guppy and the plaice and fluctuating asymmetry among populations of side-blotched lizards.
Then they turn their attention to protein heterozygosity and growth rate where studies have been
conducted on marine invertebrates, the tiger salamander, deer, pigs, sheep, quaking aspen,
conifers and humans. These studies have all been conducted within populations and in almost
all cases the more heterozygous individuals have exhibited some advantage in growth
characteristics.

However, there have been some problems associated with these studies, not the least of
which is statistical methodology. Mitton and Grant do not address this issue. Many
researchers collect several measurements of morphological characters or meristic traits for each
individual and wish to analyse them as a group. The search for methods of analysis has
sometimes resulted in the misuse of some statistical techniques and even in the spurious
invention of others. Suitable statistical methods will be discussed in Section 1.4 of this
chapter.

Once results have been obtained there may be some difficulty in interpreting them and
fitting them into the spectrum of other results. Studies conducted by other researchers will be
discussed and appraised in two sections - Section 1.2 consists of studies performed on various
organisms to give a general picture, while Section 1.3 consists only of studies performed on

humans.

1.2 Investigation of various organisms

As Zink,Smith and Patton (1985) point out, Lerner's hypothesized inverse relationship
between individual heterozygosity and variance (developmental homeostasis) does not
necessarily carry over to the same relationship between the population heterozygosity averaged

over all individuals and the variance among populations (genetic homeostasis). What is true on



an individual basis may not be true when comparing several populations because environmental
variance may be negligible or may change from one population to the next.

Zink et al. (ibid.) also summarize three assumptions which are not mutually exclusive
and which occur in the literature relating to investigations of homeostasis. They are:

@) the degree of heterozygosity of the loci examined reflects the heterozygosity of the
whole genome;

(ii) the loci examined are in linkage disequilibrium with the loci controlling the traits whose
variances are being measured;

(i) the loci examined are directly involved in the expression of the traits being measured.

They conclude that the first assumption is an unlikely one for positive results given the
small numbers of loci which are usually examined. Other researchers agree with this. For
instance, Mitton and Pierce (1980) and Chakraborty (1981) have shown that the correlation
between heterozygosity of a few observed loci and that of the whole genome is small. Smouse
(1986) argues that nothing can be gained from invoking sections of the genome which are
segregating independently of the loci under observation. His view is that loci closely linked to
the loci under observation may be responsible for the fitness-homozygosity relationships found
by several authors and so what are of interest are "observed segments of chromosome" rather
than "observed loci". Zink ef al. (ibid.) suggest that Lerner's hypothesis could be tested using
individual heterozygosity if either of the second two assumptions holds.

It is somewhat surprising that they then investigate the relationship between average
heterozygosity and morphometric variation across several populations of fox sparrows and
pocket gophers when they have already pointed out that it is impossible to predict what this
relationship should be.

Because of the uncertainty of the predictions under the hypothesis of genetic
homeostasis, it is worth looking at some of the studies of this hypothesis which have been
reported in the literature. Leary, Allendorf and Knudsen (1985a) bred 14 families from a single
population of rainbow trout which had been raised in isolation for several generations. The 14
families were raised in very similar environments in a hatchery. The experimental conditions

for this study do not tend to favour fluctuations in the environment which is nearly constant for



all of the 14 families. Leary, et al. (ibid.) measured eight meristic characters and point out that
much of the variation of these characters is controlled by additive genetic variation. They plot
mean family asymmetry for the meristic traits against mean family heterozygosity for 13
isozyme loci and find a significant negative relationship. However, with minimal
environmental fluctuations, it is a matter for speculation just what buffering effect
heterozygosity would need to afford. In fact Leary et al. (ibid.) continued their investigation of
these fish by examining individuals with extreme vertebral counts in more detail and found a
significantly higher average number of heterozygous loci among them than among those
individuals with normal counts. So perhaps these results demonstrate the problem of
examining individuals versus populations.

Soulé (1979) reports a significant negative correlation between fluctuating asymmetry of
four morphological characters and heterozygosity of 18 loci for 15 populations of side-blotched
lizards. He argues that this sort of relationship is hard to detect at an individual level because an
individual may have different directions of and degrees of asymmetry for different characters.
He also argues that the loci which control different traits within an individual may not be
equally heterozygous, but this does not preclude a difference in average level of asymmetry
among populations. Reference is made to a study by Soulé, Yang, Weiler and Gorman (1973)
in which they examined eight species of Auolis lizards and 13 populations of Uta lizards and
found a positive correlation between variance of morphological traits and mean percentage
heterozygosity for respectively 19 and 22 loci controlling enzymes and other proteins. They
state that the morphological data provide information on variation environmental heterogeneity
whereas the electrophoretic data provide information on a much smaller fraction of the genome
but their variation is almost exclusively genetic. They conclude that the positive correlation
supports the hypothesis that both types of data are estimating overall genetic variation and, in
consequence, that the sample of enzymes and structural proteins measured is representative of
all gene products. Thus they support the assumption that heterozygosity of the sample reflects
the heterozygosity of all loci.

Possible manifestations of homeostasis considered so far have been variance of

morphological traits and fluctuating asymmetry of bilateral characters. Another one examined



by Hawkins, Bayne and Day (1986) is growth rate. They found a positive correlation between
mean heterozygosity for five enzyme loci and shell length of mussels of similar age. However,
they also found the same relationship for one of the single loci which implies that this locus is
directly involved in the growth mechanism, i.e. the third assumption of Zink et al. applies
here.

Leary, Allendorf and Knudsen (1985b) compare a hatchery population of rainbow trout
with four wild populations for fluctuating asymmetry and find that the wild populations have
similar values of mean asymmetry per individual. However, the hatchery fish are significantly
more asymmetric than the wild population from the same stream. They conjecture that because
of their previous finding of a negative correlation between heterozygosity and asymmetry (see
later), the salmonids' asymmetry is very sensitive to inbreeding. Thus they conclude that the
loci measured reflect the heterozygosity of the whole genome, in accordance with assumption
(1) of Zink et al.

Danzmann, Ferguson, Allendorf and Knudsen (1986) have also studied the rainbow
trout. They find that developmental stability is associated with developmental rate, viz. fish
which develop faster have less time for accidents during critical periods of development and are
therefore more stable and so they use hatching time as a measure of developmental stability.
They use families of fish from the same population and bred in very similar environments to
find a negative correlation between average number of heterozygous loci and mean hatching
time. The mean hatching time for heterozygotes at both of two loci is significantly lower than
for homozygotes over all families. They conclude that similar research using other strains of
rainbow trout will reveal whether the enzyme products of a particular locus directly influence
the developmental rate or whether the locus marks a chromosome segment containing other loci
which control development rate. They further add that if heterozygotes are more buffered
against environmental insult then under some conditions, €.g. high temperatures, they may
develop more slowly.

Many researchers have tackled the issue of homeostasis on an individual level. A
significant relationship between heterozygosity and developmental stability seems more likely

when the organism under investigation is a poikilotherm rather than a homeotherm. For



instance, Handford (1980) found no difference in variation of 11 metrical characters between
heterozygotes and homozygotes at each of four enzyme loci for sparrows. He also found no
difference in variation across classes of individuals heterozygous for different numbers of loci.

Fleischer, Johnston and Klitz (1983) also examined sparrows; they measured 14
skeletal variables and two or four enzyme polymorphisms for different groups of birds. They
compared pooled variances of the skeletal variables for individuals with 0, 1 and 2 or more
heterozygous loci and obtained significant results for the three of the eight groups.

The problem with both of these papers on sparrows is that their results rely on the use
of a modification of Levene's test, which will be discussed later (see Section 1.4). Even if the
results of Fleischer, Johnston and Klitz (1983) were significant, the trend could be due to the
effect of pooling over loci as described by Chakraborty and Ryman (1983). (This will be
discussed in detail in Chapter 2.) They mistakenly discount this effect because rank orderings
of homozygote and heterozygote means for the individual loci do not show a predominance of
sandwiching of the heterozygote means. It will be shown in Chapter 2 that the rank ordering of
the means at a locus is irrelevant since, whether the alleles at a given locus act additively or with
dominance, the genotypic variance will decrease as heterozygosity increases if the loci
considered have some effect on the quantitative trait. If there is dominance the heterozygote
mean will theoretically equal one of the homozygote means. There will also be some
phenotypic variation and so, regardless of the theoretical order which the means should take, in
practice they may take any ordering.

The research which has been done on trout indicates that heterozygosity at several
different enzyme loci reflects that of the whole genome. The usual measures of developmental
stability are fluctuating asymmetry and growth rate.

Leary, Allendorf and Knudsen (1983) examined five bilateral meristic characters and the
genotypes of 40 loci in a sample from a population of rainbow trout; of the 40 loci only eight
had at least five heterozygotes in the sample. A significant negative correlation was found
between the proportion of heterozygous loci and the proportion of asymmetric characters and
there was also a significant negative correlation between the number of heterozygous loci and

the magnitude of the asymmetry. Heterozygotes at seven of the eight loci considered separately



had a smaller mean proportion of asymmetric traits, but these means were significant for only
two loci. Leary et al. (1983) suggest that there may be a significant mechanism for asymmetry
controlled by these two loci.

Danzmann et al. (1986) also find a mechanism controlled by a specific locus. A very
significant proportion of trout which hatch early are heterozygous (a/b) at the Pgm1-t locus,
late-hatchers being predominantly homozygotes (a/a). This implies that the presence of the b
gene speeds up the hatching time. Other findings by this group have been discussed earlier.

Leary et al. (1985a) in their study of rainbow trout, reported earlier, find that there is a
much stronger negative correlation between proportion of individuals asymmetric and the
heritability of bilateral characters than there is between the coefficient of variation (cv) and
heritability of meristic characters and this "suggests that asymmetry is the better estimator of the
amount of developmental noise and environmental variability affecting a trait." They make the
very important point that cv has an additive genetic component whereas fluctuating asymmetry
does not and so the latter may be a better measure of developmental stability.

Research on poikilothermic and a few homeothermic animals suggests that fluctuating
asymmetry and development time are better measures of environmental variability than the
variance of meristic characters. When considering artificially bred populations one may
reasonably assume that the degree of heterozygosity at some enzyme loci reflects that of the
whole genome but often one or two of the loci examined seem to be directly involved in the
expression of the trait and it may be coincidental that heterozygosity at such loci results in lower
variance or less asymmetry of the trait. Most studies of natural populations consider genetic

homeostasis and it is more difficult to draw conclusions.

1.3 Research relating to humans

Let us now turn to human populations to see what has been discovered. Some
researchers have deliberately set out to look for the presence or absence of developmental
homeostasis while others have commented on the effects of heterozygosity in passing. On the
whole, there is little evidence to support an inverse relationship between variance of a

quantitative trait and degree of heterozygosity.



Propping, Friedl, Huschka, Schlor, Reiner, Lee-Vaupel, Conzelmann and Sandhoff
(1986) find an association between reduced arylsulphatase A (ASA) activities and
neuropsychiatric disorders; the reduced ASA activity is indicative of a person being
heterozygous for an ASA deficiency allele. The deficiency allele is deleterious in the
homozygous state. Chronic disease states such as severe mental retardation and dementia do
not seem to be affected by these alleles. Heterozygotes would appear to be at a selective
disadvantage to the homozygotes for the normal allele. Thus we have a situation involving
enzyme loci which are directly involved in the expression of a trait but which exhibit the
opposite of developmental homeostasis.

In the same vein, Beckman, Beckman and Perris (1980) find a disproportionate number
of Gc 2-1 heterozygotes among a sample of schizophrenics. They conclude that there is no
evidence for an association between the Ge 2 allele and schizophrenia, as was previously
thought but that some particular type of the syndrome may be associated with Ge 2-1 group.
This is another example of heterozygote disadvantage.

In an effort to find a general relationship between heterozygosity and developmental
stability, several researchers have studied a variety of loci and a number of quantitative traits.
For instance, Chakraborty, Ferrell, Barton and Schull (1986) investigated the relationship
between several fertility parameters (number of pregnancies, number of live births, surviving
offspring at one year and surviving children at the time of the survey) and heterozygosity at 17
loci among the Aymara of Chile and Bolivia. The polymorphisms were pooled to give a single
value of heterozygosity for each individual (HET). Ethnicity and altitude significantly affect
some of the fertility parameters, but there are no significant effects for HET and no significant
correlations between HET and the fertility parameters. Eleven of the most polymorphic loci
were examined individually to see how much of the variance of each fertility parameter was
explained by heterozygosity at a given locus. No general pattern emerged but the Rh
polymorphisms have significant effects on a few variables. Chakraborty et al. suggested a
specific mechanism for these effects, but were unable to test it with their data.

Ward, Sarfarazi, Azini-Garakani and Beardmore (1985) consider the variances of

human birth weight for homozygotes and heterozygotes at each of five loci and find no



Fourth line from bottom, insert after “variance.”

Their conclusion implies that there is an inverse relationship between the size of the modal

class, as defined, and variance.



significant differences between the heterozygotes and homozygotes. They also find that the low
birth weight infants do not exhibit a higher degree of homozygosity than those of normal birth
weight. They conclude that, although it is subject to stabilizing selection (Ulizzi, Gravina and
Terrenato, 1981), human birth weight may not be a good trait to use in such investigations
because foetal genotype plays such a small part in its determination. Maternal genotype is a
more important contributor to human birth weight (Robson, 1955; Morton, 1955) and is, in
fact, used later in this thesis in a similar investigation. Maternal age and parity also strongly
affect birth weight (Millis and Seng, 1954).

Another study of newborns was conducted by Bottini, Gloria-Bottini, Lucarelli,
Polzonetti, Santoro and Varveri (1979) in which the genotypes for several loci (ABO, Rh(D),
PGM;, ACP;, ADA) in a group of light for dates (LFD) and preterm (PT) babies were
compared with the genotypes of the adult population. LFD babies showed a higher proportion
of homozygotes than the adult population at all loci; LFD babies also showed a higher
proportion of homozygotes than PT babies at all loci except ADA where both were high. Bottini

et al. conjecture that different homozygotes may show a diverse susceptibility towards growth

retardation. For instance, among LFD babies there is an excess of PGM 122 homozygotes and
also an excess of ACPIIB B homozygotes, but no excess of PGM;J or ACP}A o

Livshits and Kobyliansky (1984) purported to show an inverse relationship between
variance of morphological traits and degree of heterozygosity for seven loci. The latter was
determined by counting the number of loci for which an individual was heterozygous. They
divided the range of values of a morphological trait into three classes -

M = (X — .67s, X + .67s), B = (-00,X — .675) and T = (X +.67s, )
and then they ascertained what proportion of each heterozygosity class lay in the modal
category. When they found a relationship between degree of heterozygosity and size of modal
class M, they mistakenly attributed this to an inverse relationship between heterozygosity and
variance. A simple example will show that this is a non sequitur (see Table 1-1). Samples of
size 10 are drawn from a population of 100 (see Snedecor and Cochran, 1967, Table 3.2.1)
which can be divided into three classes as follows: B = (0,23), M = (23.3, 36.7), T = (37, 60)

with 25, 50 and 25 elements respectively. One can see from Table 1-1 that there is no direct
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relationship between size of modal class, M, and variance. For instance, there are no si gnificant
differences among the variances of samples 1, 2,4 and 5 which have modal class sizes of 1, 5
or 8. However, there is a significant difference between the variances of samples 3 and 6 and
also 5 and 6 even although these three samples all have modal classes of the same size.

So one cannot agree with Livshits and Kobyliansky (ibid ) that the relationship which
they found between degree of heterozygosity and modal class size implies an inverse
relationship between variance and degree of heterozygosity.

Ashton (1986) administered a battery of cognitive ability tests to a large number of
individuals from two different racial backgrounds and also ascertained phenotypes for eighteen
polymorphisms. He found that scores for verbal and spatial tests were higher with increasing
homozygosity, but that speed and memory tests were not affected by zygosity. His conclusion
was that there was a distinct advantage in being homozygous, but that this was offset by the
very small probability of being so. This must be tempered by the fact that he did not analyse
the variances of these test scores, but the means and so little can be said about the ability of the
homozygote to maintain superior test scores under environmental insult.

Several researchers have considered enzymatic acitivity associated with the common
phenotypes of electrophoretically determined genetic polymorphisms. Usually the common
phenotypes were due to codominant alleles at an autosomal Jocus and were examples of
isozyme loci being directly involved in the expression of a particular trait.

Scacchi, Corbo, Calzolari, Laconi, Palmarino and Lucarelli (1985) presented data
showing the glucose dehydrogenase (GDH) phenotypes of human placentae and the
corresponding GDH enzyme activities. A summary of their results is presented in table 1-2. It
can be seen that there is no trend in standard deviations or coefficients of variation across
phenotypes. Since raw data have not been presented it is not possible to pool phenotypes into
homozygotes and heterozygotes.

Golden and Sensabaugh (1986) have investigated the red cell acid phosphatase
polymorphism (ACP;) and the associated phenotypic expression of phosphotransferase activity
ratios. Their results together with coefficients of variation are shown in table 1-3. Since many
researchers pool all heterozygous genotypes and all homozygous genotypes, the mean standard
deviation and coefficient of variation were calculated for each of these two pooled classes.

Here is a situation which at face value displays the reverse of developmental

homeostasis with heterozygotes more variable than homozygotes.
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Another study examining the specific effects of a polymorphic locus was conducted by
Daiger, Miller and Chakraborty (1984). They measured the concentration of human group
specific component (G¢) which is the plasma protein used to transport vitamin D. They also
determined electrophoretically the alleles at the Gc locus for pairs of monozygous twins,
dizygous twins and unrelated controls. Their findings were that environmental variance was
much higher among females than males and that there were significant differences in group
specific component concentration among the different genotypes at the Gc locus, with
concentration decreasing from Gl to G2 to Gc#2. Here is another situation in which a
specific locus affects a particular quantitative trait.

Szathmary (1987) extended these results to show that fasting insulin level, after
adjusting for body mass index, was significantly affected by Gc genotype, the mean insulin
level being lower among Gc!! individuals than among Gel2,

The metabolically active form of vitamin D is involved in the regulation of insulin level.
The serum group specific component (Gc) binds vitamin D, but the relationship between Gc
and vitamin D is not clear cut. Szathmary (ibid.) suggested that the mechanism controlling the
Gc polymorphism would best be examined by studying Gc concentration, vitamin D and
insulin.

Two papers examine the relationship between levels of op-antitrypsin (AAT), the major
serum protease inhibitor, and alleles of the protease inhibitor locus (Pi). Itis thought that
differences in levels of AAT affect its elastase inhibitory capacity (EIC) and elastase, in turn,
plays a role in tissue destruction in such conditions as emphysema and chronic obstructive lung
disease (Oakeshott, Muir, Clark, Martin, Wilson and Whitfield 1985). They point out that the
S and Z alleles of the Pi locus are associated with reduced levels of AAT and also with greater
susceptibility to respiratory conditions.

Beckman and Beckman (1980) tabulated means and standard deviations of AAT levels

for M1, My and M3 homozygotes and heterozygotes of the Pi locus. Applying Bartlett's test to
the variances revealed no significant difference among homozygotes (xg =1.69, P >.05), a

significant difference among heterozygotes (X% = 6.91, P<.05) and a significant difference
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among all Pi M subtypes (x§ = 37.05, P < .001). The shortcomings of Bartlett's test should

be noted (see Section 1.4) but it was not possible to perform a more robust test since the raw
data were not available.

Oakeshott et al. (1985) presented means and standard errors for AAT and EIC for the
same M subtypes of the Pi locus as above. They did not carry out any tests for homogeneity
of variances but claimed that M subtype homozygotes in their sample "show lower means and

higher variances for EIC, AAT... than the M subtype heterozygotes." However, Bartlett's test

revealed no difference among variances of EIC for any subtypes (xg‘ = 6.81, P > .05) and

differences among the AAT variances appeared to be due to one high homozygote variance

(x% = 19.93, P <.01). Once again, in the absence of the raw data, it is not possible to apply a

more suitable test for homogeneity of variance. Perhaps this is a case of different homozygotes
showing a diverse susceptibility to environmental insult as conjectured by Boltini ez al. It
seems that heterozygosity at the Pi locus does not offer any buffering effect through lower
variance of EIC nor through lower levels of EIC; the mean for heterozygotes is 15.68 and for
homozygotes, 15.75.

Boerwinkle, Chakraborty and Sing (1986) suggested that the best way to study the
genetics of a quantitative phenotype in humans was to use the "measured genotype" approach.
This involves ascertaining individuals' genotypes at loci which are known or hypothesized a
priori to be involved in the aetiology of the phenotype of interest and then relating variability at
these loci to variability in that phenotype. This method is becoming more accurate because of
increased understanding of the aetiology of quantitative phenotypes and better techniques for
ascertaining genotypes at relevant loci.

Boerwinkle et al. point out that loci with large effects on the individual do not contribute
greatly to population phenotypic variance because some genotypes are rare and that the
contribution of common alleles at marker loci is small because of miniscule effects on individual
differences. Thus they hypothesize that loci having alleles at polymorphic frequencies and

having moderate phenotypic effects contribute the majority of the genetic
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variance for many quantitative phenotypes. They predict that the unmeasured polygenic
random component will be reduced as more alleles are identified at more loci. Consequently,
fundamental questions about quantitative phenotypic variability will be addressed.

Their comments taken in conjunction with all of the above evidence seem to support the
idea that there is little point in examining several loci picked apparently at random to investigate
phenotypic variability. One should be considering those loci which are involved in the
aetiology of the trait in question. Chakraborty (1987) also supports this approach. It should be
noted that choice of loci is non-random in two separate ways: first, only those which can be
assayed are examined; secondly, only those shown to be polymorphic in a given sample can be
considered. Both of these factors are likely to cause bias, of unpredictable direction and
magnitude.

In summary, many studies have found no relationship between heterozygosity and
variance of quantitative traits. When such a relationship does exist, it can often be attributed to
a particular allele at some locus. The statistical methodology used is often inadequate for the

task.

1.4 Statistical techniques

Testing for differences in developmental homeostasis between homozygotes and
heterozygotes will often involve testing for difference among variances of quantitative traits of
genotypic classes of polymorphisms. Consequently, it is necessary to examine statistical
techniques for testing equality of variances for the.univariate and multivariate cases and also for
situations when the traits are distributed normally or have unknown distributions. Let us begin
with the univariate case.

A widely used test for determining whether variances from two or more samples are

equal is Levene's test (Levene, 1960). This test supposes that we have ¢ independent samples
with observations: Xkl’“" Xk“k k=1, ..c,
where the X, have an unknown distribution with mean p, and variance ci

The null hypothesis is Hy: G% =..= G%

and the alternative: le 02 # 0% for some s#t
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We form a new variable Zka= | Xka‘Xk.l a=1, .. n,, k=1, ..c

N-O 0, (Z, -Z )?
-c n -
1 k k. “..

Then W =
k-1 YT (Zy,-Z,)?
k a

C
where N=3%n,
k=1

and W is distributed as F with (c-1) and (N-c) degrees of freedom.

In other words, Levene's test involves performing a one-way analysis of variance of the
Z, , values. This test is robust for symmetric distributions with sample sizes of at least ten
(Kotz, Johnson and Read, 1983).

Two modifications have been suggested for Levene's test. Instead of W, W' is
obtained using sample medians instead of means. Conover, Johnson and Johnson (1981) have
recommended this modification since it is also robust for asymmetric distributions.
Alternatively W" may be obtained using 10% trimmed means in place of sample means. Both
of these modifications are robust when the distributions have very heavy tails (ibid.). On the
occasions when all three test statistics are robust (e.g. symmetric distributions with large
sample sizes) then W, calculated from the sample means, typically has greatest power.

Handford (1980) proposes a multivariate extension to Levene's test. This extension
involves lumping all of the traits together to form a single measurement for each individual.

Letx®, . x

: be the n observations from sample k

a1’

where ng)' = (X(k) .,X(:p)) a =1,..n

P —
Then form a new variable Y;k) = [Z (Xgi() -X (1;))2]%
=1 y
where iai() is the mean of trait i in sample k, and ng) is the single value for case a of sample k.

Since there were two samples, Handford performed a ¢ test on the ng) 's and Fleischer,

Johnston and Klitz (1983) also used this test.
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However, neither Handford (1980) nor Fleischer et al. (1983) examine the
distributional properties of the ng) 's. One obvious problem is that if some of the p traits have
heavy-tailed distributions then more weight will be given to them than to other traits. It might

p — p ~ s
have been preferable to use ng) = _21|X(£) _X®| o ng) =3 | Xgi()- X (1.1() | where X (li()
S 5 . .

N i=1

is the mean and X (li() is the median of trait i in sample k.

Handford proposes his test as an alternative to principal components. Other researchers
have reduced a large number of variables to one by using the first principal component. See,
for instance Fleischer et al. (1983), Zink et al. (1985). Handford's main objection is that there
is no objective method available for deciding how many of the principal components should be
used. Anderson (1984) gives three tests using characteristic roots which would be appropriate
for deciding which principal components to include. However, the underlying distribution of
the multivariate random variables must be multivariate normal to conduct these tests validly. In
the event that the underlying distribution precludes the use of these tests, Morrison (1967) gives
a formula for determining the maximum amount of variance explained by the first principal
component. However, this formula is imprecise when the covariance matrix has widely

differing diagonal elements. The sample estimate of the proportion of the variance accounted

for in the first principal component is given by /,/tr(S) where S is the sample covariance matrix,
I, is the first characteristic root of S and tr(S), the trace of S, is the sum of the diagonal
elements of S. If this proportion is large enough, say at least 70%, then there seems little point
in resorting to the abovementioned tests if all that we want is some overall measure of variance.
Problems arise when the p traits are measured on widely differing scales. Linear
compounds of the original quantities have little meaning and so an alternative is to use
standardised measurements. Now the ith principal component explains the largest portion of
the variance not already explained by the previous (i—1) principal components and maximizing
the variance of standardised measurements has an artificial quality. Furthermore the sampling
theory of principal components obtained from a correlation matrix is much more complex than
that obtained using a covariance matrix (Morrison, 1967). Gower (1987) recommends taking

logarithms of uncentred data since normalisers are much influenced by sampling vagaries.
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Either method diminishes the role of outliers. Sometimes taking logarithms gives more

meaning to the first principal component, €.g. if it were
Y =a;log X, +a,log X, + a5 log X,
where X1 is length, X2 is breadth and X3 is depth, then Y represents some measure of volume,

i.e. log [leil Xzz X?) but such an interpretation is not always possible.

If the sample variance-covariance matrix is S, then IS|, the determinant of S, is called
the generalized sample variance and this is another way of assigning a single numerical value to

the variation expressed by S (Johnson and Wichern, 1982).

Sll $12 «... Slp
S12 $292 «.v0 .

S = L . ‘ . J
Sip - Spp

where p is the number of variables, n is the number of observations and

1 n J— e

Sij = 0T zl(Xia—Xi) XjaXj)

a=

If X (pxn) is the matrix of observations, then we can form the matrix of deviation

vectors

l'el—‘ Xll_fl X12—X1 Xln_X

L;p_' Xp1-Xp Xpo-Xp oo Xpn—Xp
and ISl = (n—1)P (volume)?

where volume is the volume generated in n space by the p deviation vectors ey,....ep. Clearly
n —
the lengthof &; = 3 Xiz—Xp> = \ (@—1)s;;.
a=1

Thus IS! or volume increases as the length of any e;, i.e. /sjj, increases and also as

vectors of the same length are moved until they are at right angles to one another. ISI will be

small if only one of the s;; is small and/or if one of the deviation vectors lies nearly in the
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hyperplane formed by the others. In fact the generalized variance is zero if and only if at least
one deviation vector lies in the hyperplane formed by a linear combination of all the others.

To overcome the problem caused by an unduly large or small s;;, the sample correlation
matrix, R, may be used to calculate the generalized sample variance of the standardized
variables, IRI. The standardized deviation vectors will all have the same length and so the

generalized sample variance of the standardized variables will be large when the deviation

vectors are nearly perpendicular. If ¥;is the angle between — \/__ ——¢; and — \/_ —¢;j, then

cos(9;;) =ry;, the sample correlation coefficient. Thus IRl is large when all the r;; are near zero
and small when one or more of the r;; is near +1 or-1.
In summary, a very small generalized sample variance will occur if one of the p

variables has a comparatively small variance or if two of the variables are highly correlated.

Van Valen (1974) introduces a multivariate coefficient of variation CVp = %

where s> = 511 +8pp + . +5pp = tr(S)

and X1 = [2X?

This has the advantage of alllowing very different organisms to be compared but does
not address the problem of differing scales for the p variates. He indicates that Reyment (1960)
proposed an analogous statistic using ISl instead of s. A combined coefficient of variation
using IS| will have the same shortcomings as the generalized inverse itself.

Rather than reduce the variance-covariance matrix to a single numerical value, it is
possible to test for equality of dispersion matrices. Anderson (1984) discusses criteria for
testing equality of covariance matrices from several populations which are normally distributed.
The test statistic is a multivariate extension of Bartlett's test for the univariate case (Bartlett,
1937). An exact distribution for the test statistic can be derived when there are only two
bivariate populations. But for other cases an asymptotic expansion must be used to find

probabilities.
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Suppose there are ¢ p-variate populations. Let ng), a=1,.,n, k=1..,c bean

observation from the kth population N(ufk), 23). The hypothesis to be tested is

H0121=22 =...=Zc=2
C
Let >n =N
k=1
%y O 7N (x ©_ 7 ®©Y
and Ak=a§1(xa X ) (x P-X®) k=1..c
and A = YA

My 1Ay £
| A,‘i(N—c)

Then the test statisticis V| =

The asymptotic distribution obtained for

v o € N-c\Ep(m—1)
A'1 - Vl kl;[l(nk—l)

is Pr (~2plog A SZ) = Pr {x} <Z) +032[Pr (12, <2) - Pr{x2< Z}:|+O(n_3)

where p= 1 Y 6(p+1)(c—1) s

¢ 1 1 \2p? + 3p-1
k=1 Ilk—l - N—c

®, depends on p, ¢, 0y, N, p and is often very small in practice, and

f =% (c-1)pp+1).

For some values of ny, ¢ and p, -2 log 7[; has been tabulated, but otherwise x% should be used

as the limiting distribution.
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Unfortunately, the populations from which the samples are drawn are often not
normally distributed. Transformations may help but it is probably more satisfactory to consider
a non parametric test.

Puri and Sen (1971) discuss rank tests for homogeneity of dispersion matrices.
They consider three hypotheses. Under H(lg the dispersion matrices are tested for equality,
with the assumption that the location vectors for the different populations are equal. The
alternative hypothesis is that not all dispersion matrices are equal. Under Hg) the dispersion
matrices are once again tested for equality but without assuming that the location
vectors are equal. The alternative hypothesis is as before. Under Hg’) the equality of

dispersion matrices and the equality of location vectors are tested simultancously against the
alternative that not all of the dispersion matrices are equal or that not all of the location vectors
are equal or both.

The particular dispersion matrices used in these tests are invariant under certain
transformations of the variables and not very sensitive to outlying observations.

It may be enlightening to consider a simple example to illustrate the formulation of
the dispersion matrices and the test statistic for Hg)l) . The data in this example are a subset of

data from an example given by Morrison (1978), page 167.
Two populations have been sampled, four observations from the first and six from the

second. Three variates have been measured for each observation. The data are as follows:

Sample 1 Sample 2
variate 1 1.21 092 0.80 0.85 1.40 1.17 123 1.19 138 1.17
variate 2 0.61 0.43 0.35 0.48 0.50 0.39 0.44 037 042 045
variate 3 0.74 0.71 0.75 0.68 0.73 0.69 0.70 0.72 0.71 0.70

Son; =4, np =6, N=10and X(il;) is observation a of variate i from population k. The

observations for each variate are then ranked across samples to form a rank matrix.
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7 3 1 2 : 10 45 8 6 9 45
Ry = [ o 5 1 8 =: 9 3 6 2 4 7 ]
9 55 1 1 : & 2 35 1 55 35

If F?i()) (x) is the marginal cumulative distribution function (c.d.f.) for variate i in

(&
population k, i = 1,...,p, k=1,...c, then H(i)(x) =1 ?»g) F((li()) (x) is the combined
k=1

population c.d.f. for variate i, where k(lll() = m/N. (Zng = N as before). If the elements of Ry

are divided by (N+1), the values in a row represent observations from Hj(x); we can call
them Hyyp)(%) since they are functions of sample size.
The next step is to find a function J such that Jeiy(), i=1,..,p, is an absolutely

continuous function of u defined on (0,1). Jg (u) is normalized as follows
! 12 :
IJ(i)(u)du =0 [ J(i) (wdu=1; i=1,.,p. (1.1)
0 0

Grade functionals are formed by taking J functions of H functions of the original
observations, i.e. J 0 [H(i) (X(ilz))]. These grade functionals are then used to construct the

o
dispersion matrices. Jis initially defined at the points® N+1 ), o, = 1,...,N and held

o o+1 . : . .
constant for g7 < U <3 T Thus in practice there is a sequence of functions Jng) (u) which

converges to Jj) (u) as N—eo forall0<u<1andi=1,..,p.

The purpose of the J function is to transform the matrix of ranks, R, so that the new
matrix has rows with zero means and approximately unit variances.This new matrix is a score 1
matrix, E. Puri and Sen (1971) give several examples of J functions to suit different purposes. -
If J is monotone then the resultant dispersion matrix will be invariant under monotone

1
transformations of the coordinate variables. For our example, let us use J (i)(u) =412 (u-3),

which satisfies the conditions in (1.1). The score matrix is formed by dividing each element of _ 31

Ry by N+1 and substituting this value for u in J(j)(w). -46732
- {
472 -787 -1417 -1.102 : 1417 =315 787 157 1102 -315 ’
Then E10 =| 1417 -157 -1417 .787 - 1,102 -787 .157 -1.102 -471 472
1.102 O 1417 -1417 : 787 -1.102 -630 .472 0 -630

The test is based on some functions obtainable from the score matrix, Ey. In practice

the simplest functions to use are:



e (i) (i) ng (i) e ()
L e _ L K E (k)
Nij = Nk 1{ aél F N’Rgl() . N’RJ%() k [ az'l F N'Rga)} l: az=:1 N.Rja

Insert after the expressions and before the numerical example:

S g( )ij represents the corrected sum of products of the scores for the variables i and j for one

*
sample k while SN ij is the corrected sum of products of the scores for variables i and j over all

samples. These values can be arranged in matrix form. Our interest is in whether there are

(k)

differences among the matrices (SN ij) k=1,..c. If there are no differences, these matrices will

*
all be similar to the pooled matrix, (s N ij}
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n .
—) _ _1_ c S ()
where E ' = 17 k§1 2z EN,R(i];)

Using the numerical example,

W 686 .793 .285 ® 545 278 .352 . 904 .3(3)3 .(1);2] i-(l)grf
) = - )= 692 .140 d(S ..)= 909 . .08
(510.11 [ e 579] (SlOJJ 530 PEC104] 898 .89

One can consider the N! equally likely permutations of the columns of Ry and obtain

an exact test for H(lg However, the expressions involved are complicated and so, if N is not
small, it is more convenient to use an asymptotic permutation test. To show how this is done,
the relevant statistic will be calculated for the example even though N is small.

In order to decide whether there are differences among these dispersion matrices, the

variance matrix for the dispersions must be calculated as follows
c Mk @) ) k & K % %

for all i,i'j,j' = 1,....p
The notation is a result of the fact that one element of a dispersion matrix is formed from variables i
and j while another element is formed from variables i' and ', not necessarily all distinct. Thus the
covariance of two such elements is formed from variables 1,j,i and j'.

The dispersion matrices may be expressed as vectors by setting

r=[(i-1)(2p-1)/2] +j fori<j=1,..,p.
and rewriting

{S(lll(),ij’ i<j= 1,...,p}

k k
as S(N) = {SI\EJ)’ r = 1,...,p(p+1)/2}, k=1,.,.c
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%

and Sy pi<i=le.p} 8 Sys= {Skpr =112}

Thus  VNRN) = ((Ves RN )rs=1,....p(p+1)/2
where s is defined as for r, substituting i' for i and j' for j.

Then the test statistic is
Ly = élN S% - S 3] Vi (®) [s(ll;)_s;] |
and Hgl) is rejected if Ly > Ly e
Puri and Sen (ibid) show that for large samples Ly ¢ — xz (- D)p+1)2"

In the example SIO = (904 .336 .146 .909 —-.083 .898)and

.696 —-.381 .348 -.004 .131

369 275 —.135 -.012 —-.027 .029
.819 —-.165 —.444 —.056—‘

Vio Ryp) = 362 .005 .143
952 —.232
.370

Once this matrix has been inverted, it is easy to obtain the test statistic L1q.

Since we are primarily concerned with the changes in variances of quantitative traits
among genotypes and since there is no good reason to assume that the location vectors for

different genotypes will be identical, our main interest is in the second hypothesis.
Under HE)Z) the basic permutation argument is no longer tenable and so Puri and Sen

(ibid) derive a rank order test by centring the observations at the respective estimates of location

parameters and working with the centred observations. The assumption that the test based on
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the centred observations is asymptotically equivalent to the test based on the observations
centred at the true locations means more stringent conditions must be applied to the cumulative
distribution functions and their asssociated density functions and also the grade functionals.
This means that J() (u) = 8[(13_1 (u)] is a more suitable function, where & is the expected
value operator.

The only assumption regarding the estimates of the location parameters is that they must

be consistent and so the mean or the median of each variate in each population will suffice.

1.5 Conclusions
There are several directions one could take to further examine the issue of
heterozygosity affording some selective advantage in humans.

First, it may be useful to consider theoretical arguments and this will be done in chapter

More data can be analysed to increase the pool of loci and quantitative traits which have
been examined. More appropriate statistical techniques may be used in order to obtain as much
information as possible from the data. These two approaches will be adopted simultaneously in

chapter 3 and 4.



Table 1-1. Six samples of size 10 with associated variances and numbers in three classes

- B,M,T (see text).
Item Sample number
Number 1 2 3 4 5 6
1 33 32 39 17 11 21
2 53 31 34 22 24 34
3 34 11 33 20 26 33
4 29 30 33 19 28 33
5 39 19 33 3 30 33
6 57 24 39 21 31 39
7 12 53 36 3 33 36
8 24 44 32 25 34 32
9 39 19 32 40 36 32
10 36 30 30 21 45 30
s2 169.8 151.6 9.0 112.3 78.0 21.8
B,M, T 1,5, 4 3,5,2 0, 8,2 8, 1,1 1, 8,1 1,8,1
Table 1-2  Glucose dehydrogenase activity in six common phenotypes (Lmol of
NADH/min/g wet weight) (Scacchi er al. (1985)).
Phenotype N Glucose dehydrogenase activity
mean s.d C.V.
1-1 249 26.77 12.78 0.477
2-2 26 24.73 12.34 0.499
3-3 9 20.44 10.14 0.496
2-1 182 23.97 12.68 0.529
3-1 103 25.46 12.69 0.498
3-2 34 24.62 11.66 0.474
Table 1-3  Phenotype variation in phosphotransferase activity ratios. (Golden and
Sensabaugh (1986)
Genotype N Phosphotransferase activity ratio
mean s.d C.V.
B 23 3.74 0.25 0.067
BA 22 3.49 0.46 0.132
A 25 3.38 0.22 0.065
CB 8 2.94 0.33 0.112
CA 10 2.74 0.34 0.124
C 1 2.43
homozygotes 49 3.53 0.36 0.102
heterozygotes 40 3.19 0.52 0.163

24
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2. PHENOTYPIC VARIABILITY OF POLYGENIC TRAITS
2.1 Introduction

This chapter is concerned with the phenotypic variability of quantitative traits which are
controlled by many loci. However, the problems of the origin of variation (e.g. Frankham
1980) and its possible maintenance by stabilizing selection acting directly on the phenotype for
the trait of interest (e.g. Turelli 1984) are peripheral to the relationship between heterozygosity
and variability, and will not be considered. In what follows, it will be assumed that the loci
which are examined are directly involved in the expression of those traits being measured.

Chakraborty and Ryman (1983) have shown that the fact that, "within a population, the
least phenotypic variation exists among the most heterozygous individuals can be explained by
simple additivity of genic effects that control the quantitative character in question"”. In order to
show this they make a number of assumptions: allelic effects are additive and the same for each
locus, gene frequencies are the same at each locus, independent segregation at all loci and they
confine their discussion to just two segregating alleles. They alse discuss what happens when
the gene frequencies at each locus vary and when phenotypic variance includes an
environmental component.

Mani (1988) extends their argument by increasing the number of segregating alleles at
each locus. His evidence is presented as the results of simulations. He makes the same
assumptions as Chakraborty and Ryman. So it is not surprising to find that the results of his
simulations for the two-allele case confirm the results which Chakraborty and Ryman found by
mathematical methods, i.e. the mean converges to a fixed point and the genotypic variance
decreases linearly to zero with increasing heterozygosity.

When the model is extended to three or more alleles, the mean does not converge to a
fixed point any more and the variance decreases with increasing heterozygosity only if the
alleles are present at similar frequencies to one another. Such a situation occurs in a selective
model. If one allele is present at much higher frequencies than other alleles, as in a neutral

model, the variance increases with increasing heterozygosity.
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Mani (ibid) concludes that increasing or decreasing variance with increasing
heterozygosity could be used to determine whether selection was at work. However, his model
assumes additivity and small environmental effects.

The rest of this chapter deals with models which I have developed by extending those of
Chakraborty and Ryman, and Mani.

2.2 Extending the two-allele model

It is possible to relax some of Chakraborty's and Ryman's assumptions and still obtain

the same effect for 2 alleles. I will use their notation (i.e. two segregating alleles A; & B; with

gene frequencies p and q at each of n loci).
Suppose first that the allelic effects are not additive. For instance let the genotypes,

A;A; and A; B;, both take the value 1 and B; B; have the genotypic value 0 (i.e. complete
dominance); a homozygous individual can be A; A; or B; B; at each locus, i=1,...n. Suppose

an individual is homozygous for the A allele at m loci and for the B allele at n-m loci. So if the

locus effects are additive the genotypic value for the individual is m and

3w (5) 6" (@

Ho = (p2 +q2)n
_ _hp?
(p2+q2)
n 2 \2 ;
mzzo(m - —Lp§+q2) (%) ()™ ()™
% = (p2+q2)"

.
(p2+q2)?

An individual heterozygous at k loci, with genotypic value k, will be homozygous at

n-k loci. Suppose m of these are A; 4;, with genotypic value m, and n-k-m are B; B; with

genotypic value 0.
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n-k t
S (m+k) grarmemyr (P @ ()™

m=0
(%) @po* (p2+q2)™*

(np2+kq2)
(p2+q2)

and this equals n when k =n.

L S () (B st

(%) @pa (p2+q2)™*

(n-k) p%g?
(p2+9?)°

and this equals O when k=n.

np?q? (n-kp2q?
(p2+q2)?  (p2+q2)?

heterozygous loci, k, increases from 0 to n.

to 0 as the number of

Thus the variance decreases from

2 2
pg-quZ 0 ngi: zg to n as k increases from 0 to

The genotypic mean increases from

n, regardless of whether p > q or not.

A second way of relaxing the assumption of additivity is to introduce Ppartial dominance.
Suppose that the allelic effects of A and B are essentially additive but With partial dominance, so

that for locus i the genic effect ofAl- Ai is 2, Ai Bi is 1+s and Bi Bi is0,s > 0.

This 1s heterosis if s>1.

Then the mean and variance for completely homozygous individuals are
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2np2 an 4np2q2
(p2+q2) (p2+q2)2

respectively. Suppose an individual is heterozygous at k loci with

genic value k (1+s) and homozygous for A at m of the remaining (n-k) loci with genic value

2m.

-k
T emkeks) (1) (BX) ()™ @pg (@)

m=0
() @pk (p2eq2)™k

n-k
= k+k 2 n-k 2\m ¢ _2\n-k-m
+ks+ mzzom(m)(p) (a2)

5 fomek(ies)-k(+9 2592 (1) (1) @Amepat@m

02 _ =0
‘ (}) @pa)* (p2eg2)™k

3 e (2 (O (@

( p2+ qz)n—k

_ 4k p2q?
(p2+q2)?

Thus as k, the number of heterozygous loci, increases the genotypic variance decreases

from 4np2q2/(p2+q2)2 to 4(n-k)p2q2/(p?+q2)? to zero while the mean changes linearly from
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2np2/(p2+q?) to k(1+s) + 2(n-k)p2/(p2+q2) to n(1+s) and this has a negative slope if p>(1+€)q
where £>0 depends on s. It should be noted that the change in genotypic variance is
independent of s, the size of the selection coefficient.

I have shown that, if there are only two possible alleles at each locus, genotypic
variance among individuals in a population decreases with increasing heterozygosity. This is
true whether the allelic effects exhibit complete dominance, partial dominance, heterosis or ibit
additivity, provided that the loci have a direct effect on the trait under
investigation.

2.3 Developing a more complex model

A locus effect is defined to be the net effect of the alleles at a particular locus whether
they be acting additively, with dominance or with some heterosis. In all of the preceding work
of this chapter, it has been assumed that the locus effects were additive. Mayo (1980)
discusses the doubtful validity of this assumption and illustrates his discussion with examples
of additive, multiplicative and asymptotic locus effects. He also points out that if appropriate
data were examined the last would be readily detectable but it would be hard to distinguish
between multiplicative and additive locus effects.

One extension that I will make to the original model of section 2.2 will be the inclusion
of multiplicative locus effects.

If more than two alleles are segregating at each locus, the property of additive allelic
effects is easily dealt with. However, if the alleles are not additive how do the different alleles
interact?

A classic example is the ABO blood group locus. Alleles JA and IB are codominant 1o
each other (i.e. both are expressed in an IAIB genotype) and dominant to allele i. Similarly
Santachiara-Benerecetti (1970), when investigating the Babinga pygmies, found a three-allele
polymorphism at the peptidase C locus. Two alleles PEPC! and PEPC2 were codominant to each

other while the third, PEPCO, was recessive.

The galactose 1-phosphate uridyltransferase locus (GALT) has three main alleles,
GALTA, GALTG and GALTD (Tedesco, 1972). If the homozygote for GALTA has an enzyme

activity of 1.0, then the activities for the possible genotypes are as follows :
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AA AD DD AG GG
1.0 075 0.5 05 0
The G allele is deleterious in that homozygous individuals exhibit galactosaemia. So this is an
example of three alleles all acting additively.
These are just three examples to indicate what feasible assumptions I have made when
constructing the model. When more than two alleles are present in the model, additive allelic

effects will mean that all alleles act additively as at the GALT locus. Dominant allelic effects,

will mean that the first allele is recessive and each of the others exhibits dominance to the first but
these others show overdominance among themselves.

To determine actual values to be used in the model, adult female height was taken as an
example of a quantitative trait. Using the twin data described in chapter 4 of this thesis the
estimates of mean and standard deviation for female height were X = 163.3 and s = 7.32.
Assuming that height is distributed normally with a range | + 30, the range of female heights
estimated from this sample would be (141, 185). These values were used as the extremes
when determining values for allelic effects.

If allelic effects and locus effects are both additive the method for determining the
phenotypic value of an individual in the absence of environmental effects will now be
described.

Suppose there are n loci and k possible alleles for each locus. Suppose that each locus is
homozygous for the allele which has the smallest effect on the quantitative trait. Then an
individual with such a genotype will have the lower extreme value for that trait. By the same
token, an individual who is homozygous at each locus for the allele having the largest effect will

have the upper extreme value for the trait. Let us extend the model of Mani for k alleles by

assuming that the effect of allele j is 'El— s, so that the allele with least effect is allele 1,

contributing zero, and allele k will have the greatest effect, contributing s, where s is a scale
parameter. If locus effects and allelic effects are both additive then the genotypic value will be
x+ 3 X L s,
loci alleles k=1
where x is some base value.

Using the example of height with 10 loci and the range of heights given above we get
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x = 141
x + 10(2s) = 185
ie. s=(185-141)/20
If there were three alleles per locus then a woman who was homozygous for allele 2 at each

locus would have a genotypic value for height of
x + 1025 s

10. (185-141)

= 141 + o)

163.

For additive allelic and locus effects, s = (Ly L) / 2n, x = L, and the genotypic value is

0 _1 .
X+s Y Y J——, where L. and Ly are the lower and upper extremes of the trait
loci alleles -

velv. .
respectively as previously defined,

If locus effects are still additive but alleles exhibit dominancc,/\individuals at the lower
extreme will again be homozygous for the allele with smallest effect. However individuals at

the upper extreme will be heterozygous for the two dominant alleles with the biggest effects

since these are additive. If the effect of allele j is kLl_ s then the genotypic value for an

individual at the upper extreme 1s

k_
X + 1+ ——]|s
loci ( '1]
2k-3
X +n S
k-1

Againx = Ly, and so s = (LU_ LL) ko1
n 2k-3

Individuals who are heterozygous at all loci for one of the dominant alleles and the recessive

1l

allele will have a genotypic value of x + 3, (Jk%ll-) s, 1<j <k while individuals homozygous

loci

for the same dominant allele will have the same genotypic value. Thus if there are three alleles,
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a locus effect can have the values {0, -12-s, S, 3—5} whereas if there are only two alleles, the

locus effect can have values O or s only.
Now suppose that locus effects are multiplicative. Then if alleles are additive, the

smallest genotypic value is x? while the largest is(x+2s). Sox=ML, x+2s= nLy and

s=5(WLy - "IL).

For the height example, with 10 loci and 3 alleles, say,

x = 10141 = 1.64 s=L(10y185 - 10yT41) = 3(1.685- 1.64) = 0.0225

and an individual who is heterozygous at all loci for alleles 2 and 3 has a genotypic value of
(x +35)10 =1.6737510 = 1725

Finally, suppose that locus effects are multiplicative and alleles exhibit dominance.

- n
Then an individual at the upper extreme has genotypic value [x + (M :l while an
individual at the lower extreme has genotypic value x.
Thus, x = hyL[ , X + (Qi(_f)s = n\)LU
and s= (WLg - WIp) (==L
2k-3

Using the height example, with 10 loci and 3 alleles, an individual homozygous for the

recessive allele (number 1) at all loci has genotypic value 141, one heterozygous at all loci for

alleles 1 and 2 has value (x + -1-2-5)10 = (1.655)10 = 154.3 as does an individual

homozygous at all loci for allele 2 and one heterozygous at all loci for alleles 2 and 3 has the
value 185. It should be noted that an individual will not usually have the same combination of
alleles at each locus; these have been used for illustrative purposes only.
2.4 Simulations and Results

A FORTRAN 77 program was written to run on a VAX 11/780 computer. All aspects
of the program were verified by printing out intermediate results and performing hand
calculations for small examples. This program implemented the model described in section 2.3

by simulating genotypes for 5000 individuals, each with 10 loci controlling a quantitative trait.
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Upper and lower extremes of female height, as previously described, were used to delineate the
trait. No environmental variance was included and so genotypic and phenotypic values for an
individual were equal.

Allelic frequencies were chosen for several reasons. Equal frequencies of all alleles
represented a selective model, while one allele having a much higher frequency than other
alleles represented a neutral model. These frequencies were used by Mani (1988). The set of

frequencies {0.78, 0.2, 0.02} was used extensively in the 3-allele model since these values

were calculated by Santachiara-Benerecetti (1970) for the Babinga pygmies. The set
{0.60, 0.35,0.05 }represented a less extreme version of the above frequencies.

Each simulation was repeated 50 times and the heterozygosity class means were
averaged over the 50 runs, while the heterozygosity class variances were pooled. These pooled
variances were plotted against heterozygosity score. The plots for two allele models are shown
in figure 2-1, 2-2, 2-3 and 2-4. As was predicted by Chakraborty and Ryman (1983), the
variances for additive allelic effects and additive locus effects, showed a steady decrease with
increasing heterozygosity. The same was also true when allelic effects exhibited dominance;
this was predicted by my calculations in section 2.2 Two further models with multiplicative
loci, one with dominant alleles and the other with additive alleles, both showed decreasing
variances with increasing heterozygosity. When the frequencies of the two alleles were very
different, the decrease in the variances was very shallow.

For three alleles, when all effects were additive, the results were similar to those
obtained by Mani (1988) (see figure 2-5), i.e. there was an upward trend in variance when one
allele was much more frequent than the other two. This trend became steeper as the two rare
alleles became less frequent. There was a downward trend in variance when all alleles had
similar frequencies.

However, this pattern was not maintained when allelic and locus effects were not both
additive. For instance, figure 2-6 shows that if alleles exhibited dominance, while locus effects
remained additive, allele frequencies representing selective models, i.e. all equal, caused the
variance to remain stationary with increasing heterozygosity. On the other hand, if the allele

frequencies were very different {0.2,0.02,0.78 }, the variance decreased or increased
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depending on whether the least frequent allele had one of the extreme effects or a moderate
effect. Although the means have not been plotted, they increased with increasing
heterozygosity for all of these frequency combinations.

The reasons for this pattern can be illustrated by considering one locus only. If allele
one is recessive with effect 0 and alleles two and three are codominant with effects %s and s
respectively, then the mean and variance for the locus effect for heterozygotes are given in table
2-1a. The mean and variance for the locus effect for homozygotes are given in table 2-1b. The
variance of the genotype values for an individual locus is highest among the homozygotes when
allele two has the lowest frequency and at the same time is lowest among the heterozygotes. So
one can see that each additional heterozygous locus would decrease the variance. The converse
is true when one of the extreme alleles is least frequent.

When an extreme example of neutral theory was considered, namely allelic frequencies
of {0.9, 0.05, 0.05,} then the variances always increased regardless of which allele was least
frequent, but the increase was steepest when the most frequent allele had a moderate effect
(figure 2-7).

The trends in variance for additive allelic effects and multiplicative locus effects were
similar to those found for additive alleles and additive loci (figure 2-8). These trends agreed
with Mani's results.

Finally, when alleles exhibited dominance and loci had multiplicative effects, many
results were similar to those for dominant alleles with additive locus effects (fig. 2-9).
However, when allelic frequencies were all equal, the variances increased after an initial dip,
with increasing heterozygosity. This was a direct contradiction of previous findings for equal
allelic frequencies.

An attempt was made to see whether similar patterns emerged when the number of
alleles was increased to four. When allelic frequencies were equal, allelic effects exhibited
dominance and locus effects were additive, the variances increased with increasing
heterozygosity. With these same effects, if one allele was much less frequent than the other
three, then the trend in variances depended on which allele was the rare one (figure 2-10). If

one of the two middle alleles was rare, the variances tended to decrease and then increase, i.e.
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almost a quadratic trend, with increasing heterozygosity. On the other hand, if one of the
extreme alleles was the rare one, the variance increased with increasing heterozygosity.

Using a set of allelic frequencies similar to those used for the three allele case, namely
{0.05, 0.05,0.6,0.3 } , the trend in variance depended on the particular permutation of
frequencies. The variance decreased with increasing heterozygosity except when the two
middle alleles were the rare ones (figure 2-11). The reasons would be similar to those
discussed for the three allele situation with frequencies {0.2, 0.78, 0.02 }

2.5 Conclusions

While Chakraborty and Rymian (1983) and Chakraborty (1987) believed that decreasing
phenotypic variability with increasing heterozygosity was caused by additivity of allelic effects
over all the loci controlling the polygenic trait, Mani (1988) pointed out that this argument did
not necessarily apply when there were more than two possible alleles at each locus. This
argument was that phenotypic variability decreased or increased with increasing heterozygosity
depending on whether allelic frequencies were indications of neutral theory or selective theory.

I have shown that when there are only two possible alleles per locus, the interactions
between loci may be multiplicative or additive and the interactions between alleles may be
additive, dominant/recessive or additive with some heterosis. Whatever the
situation,phenotypic variability will decrease with increasing heterozygosity.

I have also shown using simulations that when there are more than two possible alleles
at each locus, one cannot resort solely to the neutral versus selection argument to explain
increasing and decreasing trends in phenotypic variability. Evidence of this is the fact that
different trends in variability can be obtained by permuting the alleles having the different
frequencies when alleles interact with dominance.

Thus Mani's conclusions will only apply if there is no dominance and Chakraborty and
Ryman's conclusions will only apply if there are no more than two alleles per locus. Perhaps

these restrictions are the reasons for some of the conflicting results indicated in Chapter 1.
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Table 2-1 Mean and variance of genotypic value for a single locus with three alleles; the first of
which is recessive, while the other two are dominant to the first and overdominant
between themselves.

locus allelic frequencies
genotype  genotypic value (.2,.02,.78) (.02,.2,.78)  (.2,.78,.02) (.78,.2,.02)

a. heterozygotes

12 2s 0.008 0.008 0.312 0.312

13 s 0.312 0.0312 0.008 0.0312

23 %s 0.0312 0.312 0.0312 0.008
mean 1.0330s 1.4328s 0.6002s 0.5672s
variance 0.0268s2 0.0405s2 0.0845s2 0.0405s%

b. homozygotes

11 0 0.04 0.0004 0.04 0.6084

22 %s 0.0004 0.04 0.6084 0.04

33 s 0.6084 0.6084 0.0004 0.0004
mean 0.9377s 0.9686s 0.4695s 0.0314s

variance 0.0580s2 0.0150s2 0.0145s2 0.0150s%
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Figure 2-6. Genotypic variance versus heterozygosity. Three alleles per locus, alleles 2 and 3
acting additively and both dominant to allele 1, with additive locus effects. Allelic
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3. ANALYSES OF MOTHER-BABY DATA
3.1 Description

One of the problems encountered when looking for evidence for homeostasis among
humans is to find suitable data. The data must consist of one or more quantitative traits, which
in some way reflect the fitness of the individual, together with genotypes for several loci. One
such set was provided by Professor L. Beckman. The data comprised measurements
made on 414 mothers and their newborn infants, some of which have been published by
Beckman, Beckman and Magnusson (1971). The measurements used were nine quantitative
traits: acid phosphatase in mother's serum (ACFM), heat-stable and heat-sensitive alkaline
phosphatases in mother's serum (PLFM and LFM), acid and alkaline phosphatases in child's
serum (ACFB and BFB), birth weight (BW), placental weight (PW), baby's length (L) and
length of gestation (GL).

Genotypes had been ascertained for ABO blood groups and red cell acid phosphatase

for both mother and baby, and for placental alkaline phosphatase and mother's haptoglobin.
The three most common alleles for the red cell acid phosphatase locus, viz. ACP ‘1‘ ,ACP Bl and

ACP C{ and the three most common alleles for placental alkaline phosphatase, viz. PL %, pLf

and PL * were all present in these data as were the two common haptoglobin alleles, Hp ;| and
Hp ,. Thus analyses involving polymorphisms at these loci could be contemplated. It should
be noted that when analyses by genotype were performed, some genotypes were omitted
because they were only represented by a very small number of individuals. These were
genotype CC for ACP 1, both mothers and infants, and genotype ii for the PL locus.

Mitton and Grant (1984) suggested a number of conditions which would favour a
positive relationship between an individual's fitness and heterozygosity. One was that a
character should be examined at a stage of the life cycle when any surplus energy would be
used in the expression of that character. Length and weight at birth and placenta weight are
good examples of this property.

Another was that characters should not be physically constrained in their development

and a third was that a range of environments should be considered. Obviously there are some
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constraints on a baby's size at birth, but they are not so rigid as to allow little variation.
Biochemical measurements will also be loosely constrained. Since the data were collected in a
Jarge city hospital in Sweden, mothers would have come from a range of socioeconomic
backgrounds, but there would have been some degree of uniformity of environments.

Phenotypic stability among heterozygotes if it occurs could be attributed to partial
inbreeding (Lande and Schemske, 1985). Although the data were collected in a large city
hospital, significant effects could be the result of local inbreeding followed by local outbreeding
on account of increased poulation mobility.

Finally, Mitton and Grant (ibid) stated that characters with low canalization and small
coefficients of variation would be most likely to show the relationship between fitness and
heterozygosity. Since canalized characters are those whose development is normally unaffected
by environmental stresses and underlying genetic variability (Rieger, Michaelis and Green,
1976), characters to be studied should be affected by these factors.

Beckman, Beckman and Magnusson (1971) discuss environmental and genetic factors
which influence the lévels of alkaline phosphatases in maternal and cord sera, indicating that
these are not canalized characters.

Ulizzi and Terrenato (1987) present data which indicate that there was a reduction in
birth weight variance all over the world during the 1970's. They attribute this reduction to
modifications in environmental conditions. Although the data used in this chapter were
collected before this period, other data which Ulizzi et al. (ibid) present imply that the trend in
variance reduction had started well before this time. The coefficients of variation for birth
weight which they tabulate are reasonably low, between 0.17 and 0.20. Mayo (1983)
comments that human birth weight is influenced by maternal genotype, maternal age and parity.
So birth weight appears to be moderately canalized, with a low coefficient of variation.

One can see that the quantitative traits measured in this data set have several points to
recommend them for studying the question of heterozygote advantage.

Many researchers analyse heterozygosity data by adding up the number of loct for
which an individual is heterozygous and thus giving that individual a score for heterozygosity.

The classes generated by these scores are then used as the basis for the analysis. Smouse



(1986) criticises this approach when developing his "adaptive distances" model. His model
shows that although individuals who are heterozygous at all loci are the fittest and those who
are homozygous at all loci are the least fit, there is no strict order of fitness for intermediate
numbers of heterozygous loci.

If one regards the loci, for which genotypes have been ascertained, as representative of
the whole genome, then it may be reasonable to pool loci and obtain a heterozygosity score.
However, this is a hypothesis about which, as discussed in chapter 1, there is some contention.
It is also very unlikely that the very small sample of loci measured in this data set would be
representative of the whole genome (Chakraborty, 1981) and so for most of the analyses
genotypes have been kept separate. Where appropriate, heterozygosity scores have also been
used to see how they compare with results for separate loci.

3.2 Univariate Tests

Examination of the rank correlations in table 3-1 reveals strong associations among all
of the anthropometric measurements and also among several of the biochemical measurements,
but no associations between the two groups.

These associations indicate that in analyses of the data, the biochemical measurements
should be considered as a group as should the anthropometric measurements, rather than on an
individual variable basis. However, initially, individual traits were considered in order to
obtain a 'feel' for the data. Tables 3-2, 3-3, 3-4 and 3-5 show the mean and variance for each
of the nine traits by genotype for the placental alkaline phosphatase, mother's haptoglobin,
mother's red cell acid phosphatase and baby's red cell acid phosphatase loci respectively.
While the number of individuals in each genotypic class is indicated, there were sometimes
missing values for some traits.

Bartlett's test for homogeneity of variance across genotypes was performed for each
trait in each polymorphism. All of the biochemical measurements except placental alkaline
phosphatase in mother's serum exhibit skewness and kurtosis and since Bartlett's test is not
robust under such conditions, Layard's test (1973) was also used, as implemented in
GENSTAT IV (1983). The result was that none of the differences among the variances for

each trait in any polymorphism was significant. Nor was there any tendency for heterozygotes
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at any of the loci to have lower variances than homozygotes for any of the traits. The
exceptions to this lack of trend were the traits, acid phosphatase in the child's serum and
alkaline phosphatase in the child's serum. Both exhibited variances lower among heterozygotes
than homozygotes, although not significant, at the mother's haptoglobin locus. The former also
showed the postulated trend at the mother's red cell acid phosphatase locus, but this was not
significant.

3.3 Multivariate Tests and Discussion

A different picture emerges when groups of traits are analysed together. For instance,
the multivariate coefficients of variation (van Valen, 1974) tabulated at the bottom of each of
tables 3-2, 3-3, 3-4 and 3-5, show a tendency to be greater for homozygotes than for
heterozygotes at the mother's haptoglobin and mother's red cell acid phosphatase loci. If
separate multivariate coefficients of variation are calculated for the biochemical traits and for the
anthropometric traits it appears that the former group has a much greater effect on the combined
coefficient than the latter. This is obviously due to scaling. For instance baby's length has
means of approximately 50 and variances of approximately 5, i.e. 10% of the mean, whereas
red cell acid phosphatase in the mother's serum has means of approximately 90 and variances
of approximately 1000, i.e. more than 1100% of the mean. There is still an obvious scaling
problem among the biochemical traits and so trends among BFB, LFM and PLFM are likely to
overshadow those among ACFB and ACFM.

The multivariate coefficient of variation for all traits, CVg, and the coefficient for
biochemical traits only, CVs, exhibit lower values for heterozygotes than for homozygotes at
both the mother's red cell acid phosphatase locus and the mother's haptoglobin locus. The
coefficient for anthropometric traits only, CVy, also exhibits this trend at the mother's red cell
acid phosphatase locus.

As a matter of interest, these multivariate coefficients of variation were compared with
the results obtained from Handford's extension to Levene's test using all nine traits (see chapter
1 for a description of this test). This test was used on raw data and on log-transformed data;
the aim of the latter was to combat some of the scaling problems. The results are presented in

table 3-6.
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As for CVyg, the mean values of the raw data were lower for heterozygotes than for
homozygotes at the mother's haptoglobin and the mother's red cell acid phosphatase loci,
although these means were not significantly different. When the data were log-transformed the
trend at the mother's haptoglobin locus was maintained and remained non-significant.
However, the means for the log-transformed data at the mother's red cell acid phosphatase
locus were very significantly different, which was due to a high value for genotype AA, while
all other genotypes had similar means. Thus removing some of the scaling effects also
removed some of the trend towards lower variances among heterozygotes. The raw data means
for the genotypes of placental alkaline phosphatase were significantly different mainly because
of the high value for genotype ff; all other genotypes had similar values. The trend was
maintained but the significance was lost when the data were transformed.

Some of the results for the modified Levene's test were similar to the trends exhibited
by the multivariate coefficients of variation, although the latter cannot be tested for significance.
It must be stressed that the statistical properties of the modified Levene's test are unknown and
so not much weight should be attached to these results.

Now let us turn to a multivariate test which is scale-free, viz. a multivariate non-
parametric test for differences in dispersion as described in chapter 1. This test was particularly
appropriate for the biochemical traits since they were not distributed normally. A MINITAB
program to implement this test was written (see Appendix B). Its validity was checked by hand
calculations at representative points throughout the program.

As was mentioned earlier, the patterns in the variances of the different traits for any set
of genotypic classes are usually similar to the patterns exhibited by the univariate coefficients of
variation. The patterns do vary for placental alkaline phosphatase genotypes. Thus for the

other three loci, it is reasonable to assume that location vectors of the biochemical
measurements are equal across genotypic classes. Hence we can test the hypothesis, H(l), of

Puri and Sen, referred to in section 1.4. This means that the dispersion matrices for the

different genotypic classes may be tested for equality assuming that the location vectors are



equal. The results for the mother's haptoglobin, mother's red cell acid phosphatase and baby's
red cell acid phosphatase loci are presented in tables 3-8, 3-9 and 3-10 respectively.
J(u) = V12 (u—*%) was used to form score matrices as in the example in chapter 1.

The assumption of equal location vectors is not so easily applied to the genotypic
classes of the placental alkaline phosphatase locus and so HE)Z) referred to in section 1.4 has

been tested, i.e. the dispersion matrices were tested for equality without assuming that the
location parameters were equal. In this case J(u) = & [CD_l(u)] was used. The results are
presented in table 3-7.

The alternative hypotheses for all of these tests were that the dispersion matrices were
not equal and in fact the null hypothesis was definitively rejected for each locus. There are no
tests to determine which elements of the various dispersion matrices contribute significantly to
the overall result. However, attention should be given to the diagonal elements of each matrix
since these correspond to the dispersions of the traits either for a particular genotypic class or
for the whole data set.

In general, these results do not point to an inverse relationship between heterozygosity
and variance, although there are a few exceptions. For instance, ACFM has higher dispersions
for the two homozygote classes of baby's red cell acid phosphatase than the three heterozygote
classes, although it is hard to see what the causal relationship between this locus and this trait
would be. Other examples are the traits ACFB and BFB which have higher dispersion for the
homozygotes than the heterozygotes at the mother's haptoglobin locus. A similar trend can be
seen for PLFM at the placental alkaline phosphatase locus.

Most of the differences among dispersion matrices are not due to trends of this type, but
to differences of individual elements. For instance the co-dispersion of ACFM and LFM is
much higher for genotype ff at the placental alkaline phosphatase locus than for all other
genotypes at that locus.

So the conclusion is that, although this test indicates differences in dispersion among

genotypes at all loci, it does not lead us any further along the road to heterozygote advantage.
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Tiku and Balakrishnan (1985) proposed a robust statistic, TRZ, to test the equality of

covariance matrices from two populations. They compared TR2 with LN, the rank-order
statistic used here and found that TR2 was much more powerful than LN when comparing two
dispersion matrices. Their tests were conducted on equal sample sizes of 30 and they also
found that the x2 approximation to the null distribution of Ly was inadequate for these sample
sizes. This point should not be of too much concern for the mother-baby data since most

sample sizes are larger than 30 (sample sizes are given in tables 3-2, 3-3, 3-4 and 3-5). Except

%
for normal distributions, LN was more robust than Hotelling's T2 and 7‘1 (see section 1.4) but

probably less powerful than the former.

If only two dispersion matrices were to be compared, Tr? wouid be a superior statistic.
Thus if one felt confident that all heterozygotes were homogeneous and all homozygotes were
homogeneous, the differences in dispersion for the two could be compared using TRr2.
However, the test has not been extended to include several matrices and so Ly is preferable in
this case and should be adequate in view of the laige sample sizes.

Of the remaining traits, gestation length was negatively skewed (-1.765 with standard
error 0.123) and leptokurtic (9.55 with standard error 0.25) and thus was clearly not normally

distributed. The other three traits were distributed normally and it was considered appropriate

. * . - - . . .
to use a parametric test statistic, 7‘1' Since the parametric test for equality of dispersion matrices

described in chapter 1 is sensitive to departures from normality, gestation length was
omitted from the subsequent analyses.

The genotypic covariance matrices and the pooled covariance matrix for each of
placental alkaline phosphatase, mother's haptoglobin, mother's red cell acid phosphatase and
baby's red cell acid phosphatase are shown in tables 3-11, 3-12, 3-13 and 3-14 respectively.
The covariance matrices for placental alkaline phosphatase genotypes are significantly different.
Inspection reveals that all of the elements of matrices for the two homozygous genotypes, ff
and ss, are greater than or equal to the corresponding elements of the matrices for the two
heterozygous genotypes, fs and si. The heterozygous genotype, fi, does not fit this pattern.
However, this genotype only contains nine members and when the analysis was repeated,

omitting this genotype, the four remaining matrices were still very significantly different. Thus
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there is some indication that heterozygotes are less variable than homozygotes for these three
anthropometric traits.

The same cannot be said of the covariance matrices for mother's red cell acid
phosphatase. While the five covariance matrices are significantly different, there is no
particular pattern of lower variances among the heterozygotes than the homozygotes. The
covariance matrices of anthropometric traits for the other two loci are not significantly different.

So we are led to conclude that the anthropometric traits are less variable among
heterozygotes than among homozygotes for the placental alkaline phosphatase locus. No such
trend can be observed at other loci or among the group of biochemical traits. The
inconclusiveness of these results is in agreement with other findings on human populations and
could have several explanations in addition to those problems already discussed.

First, not all polymorphisms need be subject to natural selection. Furthermore, even if
most polymorphisms were at times subject to selection, this might not be the case in any given
population at any given time. Thus, most polymorphisms may be selectively neutral most of
the ime (Kimura, 1983).

Second, not all selection is centripetal, stabilizing or normalizing. Much selection is
directional, so that homozgotes are favoured, and a balance among opposing directional forces
will not necessarily favour heterozygotes. Further, consistent directional selection, such as has
been observed for human birth weight (Mayo, 1983) can overcome simultaneous stabilizing
selection (Mayo and Hancock, 1985).

Third, a small number of polymorphic electrophoretic loci is not an appropriate predictor
of genomic heterozygosity (Chakraborty, 1987). Unless the postulated advantage of
heterozygotes is consistent over all loci, different samples of a few loci may be expected not to
produce concordant results. Smouse (1986) supports the view that heterozygote advantage is
not consistent over all loci. His adaptive distances model assumes interactions among loci and
that some homozygotes are more fit than others. The latter point certainly appears to be true for

these data. Smouse's model will be discussed in the next section.
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3.4 Adaptive Distances Model
Smouse (1986) argues that the loci which have actually been examined, or some others
closely linked to them, are responsible for the observed differences in fitness for different
numbers of heterozygous loci. To test this hypothesis he develops a multiplicative
overdominance model for unlinked loci. He assumes that each locus has only two possible
alleles; if a locus has multiple alleles then these can be pooled to produce a pair of allelic
classes. He also assumes that if k loci are being used in the model, it must be possible to
determine relative fitnesses of all genotypes by reference to the optimal genotype, the k-locus
heterozygote. The model employs a measure of adaptive distance between any homozygote and
the optimal genotype; this measure is zero for a heterozygote and the inverse of the frequency
of the allele for a homozygote.
The model fitted is
log (Wj) =- oXA - BXB - ... - kXK +§j
where Wj is the fitness of individual j;
o, B, ... K are the intensities of selection for the k loci;
XA is a measure of adaptive distance for the A-locus genotypes;
XBg, ... Xk are similar to XA for the other loci;
g; is the error term for individual j, incorporating differences at unmeasured loci,
environmental influences and measurement erTor.
This model was fitted to the mother-baby data. Smouse (ibid) recommends estimating the gene
frequencies from a set of data other than that being used to fit the model. Kirk (1968) provides
the results of four Swedish studies of haptoglobin and two of these, from populations similar to
the mother-baby data set, provided estimates of the frequency of Hpj as 0.386 and Hp; as
0.614.

Fitnesses of the haptoglobin genotypes (HP) were estimated as follows:



Hpjj Hpy2 Hpz,
frequency f p12 2p1p2 p2?
fitness w 1-s 1 1-t
fxw (1-s)p12 2p1p2 (1-)p2?

W = (1-s)p1? + 2p1p2 + (1-)p2?
At equilibrium wj = wp =W
w1 =p1 (1-8) +p2 ) w2 =p1+p2(1-) ()
substitute p1 = 0.386, p2 =0.614 (Kirk, 1968) into (1) and (2) and solve:
s = 1.59t
Thus if t=0.01, s=0.0159

The values for adaptive distances are calculated by:

Hpy; 1/p; = 2.591
when HP = 4 Hp;, then Xyp = 10
Hpyy 1/py = 1.629

For the mother's red cell acid phosphatase locus, (RCAP) there are three alleles, A,B and C.
Beckman (1972) presents red cell acid phosphatase gene frequencies for various populations
including the mother-baby data being used in this analysis. The first 26 entries in the table
relate to populations of European origin and these have been used to calculate the following
gene frequencies :

pa = 0.336 ps = 0.604 pe = 0.060

Fitnesses of the red cell acid phosphatase genotypes were calculated as follows :

genotype AA BA CA BB CB cc
fitness, w 1-s 1 1 1-t 1 1

2 2 2
frequency, f Py 2pApB 2papC Py 2pepC PC

2 2 2
fxw ps(1-s) 2pApB 2pApPC pp1-)  2pBPC pe(1-1)

w = pi(l—s) + 2pAPB + 2pApcC + p123(1—t) + 2pBpC + pg(l-r) is the average fitness
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and wa = pa(l-s) + pB + PC (D
wp = pB (I-t) + pA + PC )
wc = pc (1) + pA + PB 3)
Atequilibium  wp = wp = wg = W
Substituting
s = 1.798t
r = 10.067t

and since 0 <r,s,t<1

t <0.0993

pa = 0.336, pp = 0.604 and pc = 0.060 into (1), (2) and (3) we get
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Problems of choosing values of t and thence of r and s will be discussed later in this section,

but possible values to try would be t = 0.01, s =0.018, r = 0.101

or t = 0.001, s= 0.0018, r = 0.0101, corresponding to different intensities of selection.

Since there are three alleles at this locus, two must be pooled to form two allelic classes

altogether. Smouse (ibid) recommends pooling the rarer alleles to ensure nontrivial frequencies

for the calculations. Thus alleles A and C were pooled to give the following resulits :

genotype
frequency, f
fitness, w

fitness, w

1l

WB(AC)

W(ACKAC)

BB B(AC) (AC) (AC)
0.365 0.478 0.157
0.99 1 0.982
0.999 1 0.996

2PB PA WAB + 2PB PC WBC

ZPB PA *+ 2PB PC

0.604 x 0.336 x 1 + 0.604 x 0.060 x 1

0.604 x 0.336 + 0.604 x 0.060

P2A WAA + 2PA PB WAC + Pc2 wec

(1-pp)?

if t=0.01
if t = 0.001

=10

0.113 x 0.982 + 2 x 0.336 x 0.060 x 1 + 0.0036 x 0.899

0.157

0982 if t=0.01
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Ift = 0.001

0.113 x 0.9982 + 2 x 0.336 + 0.060 x 1 + 0.0036 x 0.9899
W(AC)(AC) 0.157

= 09959

For the adaptive distances when

BB l/pB = 1.656
RCAP = < B(AC) then XRCAP =<0
_ SRCAP tRCAP ~0.01x0.018 _ g
andf = R CIETIRCAE ™ 001 +0018 = 0.0064 ift=0.01

The third locus to be included in this analysis was mother's ABO blood group (ABO).
Beckman, Cedergren, Collinder and Rasmuson (1972) provide ABO blood group data from
northern Sweden for 60,000 individuals in 14 regions for the period 1871 to 1967. A marked
change in inbreeding occurred between 1940 and 1960 and so data collected during the last
seven years only of the study have been used to estimate gene frequencies as follows :

pa = 0.289, pg = 0.092, p;j = 0.619

Fitnesses were then calculated :

genotype i i Bi TAJA IAIB IBIB

frequency, f 0.383 0.358 0.114 0.084 0.053 0.008

fitness, w 1-s 1 1 1-t 1 1-r

fxw 0.383(1-s)  0.358 0.114 .084(1-1) 0.053 .008(1-1)
# = pi2 (1-s) + 2pipa + 2pipB +pa2 (1-t) + 2papp + ps2 (1-1)

wi = pi(l-s)+pa+ps (1)

wa = pa(1-) +pi+pB (2)

wp = pB (I-) +pi+pa (3)
At equilibrium wj = wp = WB = W
Substituting values for pa, p and pj into (1), (2) and (3)

gives : t = 21425



r = 6.728 s

since: 0<rst, <1, s<0.1486

If s = 0.001 thent=0.0021 and r =0.0067

Some alleles had to be pooled to obtain two allelic classes. If alleles IB and i were
pooled, the resulting allelic classes would be : (IAIA}, {IA{, JAIB}, ({ii, IBi,IBIB}. Since the
data did not distinguish between TAIA and IAi and since these two genotypes would be in
different allelic classes, 179 mothers with blood group A would have to be omitted from the
analysis. Alternatively alleles IA and IB could be pooled, obtaining classes {ii}, {TAf, IBi} and
{IAIB., JATA, IBIB}. The data did not distinguish between IBIB and IBi either and so 223

mothers would have to be omitted from the analysis. Consequently, the first scheme was

adopted.
genotype JA[A IAIB, JA] IBIB Bj ii
frequency 0.084 0.411 0.505
fitness 1-t 1 [0.008 (1-r) + 0.383(1-s) + 0.114] / 0.505

If s = 0.001, t = .0021 and r = 0.0067, the values for the fitnesses are 0.9979, 1 and 0.9981

respectively. The values for the adaptive distances are :

A 3.46

when ABO = I? or 1P then y SEAE 0
BB 1Bi orii 1.406
and ¥ = (0.0021 x 0.0019) /0.0040 = 0.000998

Table 3-15 displays the genotypic classes for the three loci, the number of mothers in each
class, the log fitness, Yj, for each class and the number of heterozygous loci for each class.
Spearman's rank correlation coefficients between log fitness and each of the nine quantitative

traits were found. These values are tabulated in table 3-16. There was a significant positive
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correlation between mother's serum acid phosphatase and log fitness; all other correlations were
not significant.

There are at least three possible causes for this lack of correlation. Yj is a measure of
the fitness of each genotype but the quantitative traits themselves may not reflect the fitness of
an individual and so they will be uncorrelated with Y;. Alternatively, the quantitative traits may
reflect fitness but not in a linear manner. For instance, a trait may have an optimum value for
survival which is somewhere in the middle of the range of possible values for that trait. Since a
correlation coefficient is a measure of linear association, it would not detect such a situation.

Finally, the parameters used to calculate the Y; values may not have been well estimated.
This problem and others will be discussed later in this section.

Fitnesses for genotypes at three loci of the babies were then considered. The ABO
locus and the red cell acid phosphatase locus (PL) were treated similarly to the mothers. The
third locus for the babies was placental alkaline phosphatase. Beckman (1972) gives two sets
of data from Sweden relating to this locus and the resulting gene frequencies are:

pr = 0.255, p; = 0.087 and ps = 0.646 while the gene frequency of other rare
alleles is 0.012. These rare alleles were ignored in the following analysis and so the frequency

values of the common alleles were increased to 0.258, 0.088 and 0.654 so that they would sum

to 1.0.
genotype il fs fi Ss si ii
fitness, w 1-2 1 1 1-t 1 1-r

frequency, f 0.0666 0.3375 0.0454 0.4277 0.1151  0.0077

w = 0.0666 (1-s) + 0.498 + 0.4277 (1-t) + 0.0077 (1-r)

= 1-0.0666s - 0.4277t - 0.0077r.
wg = 0.258 (1-s) + 0.654 + 0.088 = 1-0.258s (1)
wg = 0.654 (1-t) + 0.258 + 0.088 = 1-0.654t 2)
w; = 0.088 (1-r) + 0.258 + 0.654 = 1-0.088r 3)

Atequilibrium wg = wg = wj = w andso s = 2.5435t, r = 7.432t

Suppose t= 0.001, then s = 0.0025 and r = 0.0074.
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The alleles f and i, being less frequent, were combined to give the following genotypic

classes:

genotype 5§ s(fi) ()
frequency, f 0.4277 0.4526 0.1197
fitness, w 0.999 1 0.998

The adaptive distances were calculated as follows :

§§ 1.529
‘when PL. = fs or si Xp = {0
ff, ii or fi 2.890
and o = spL tpr. / (SpPL + tpL) = 0.001 x 0.002 /0.003
& 0.00067

Yj = log (Wj) = -0.00067 XpL - 0.000804 Xrcap - 0.000998 XaBo
are tabulated for each genotypic class, together with class frequency and heterozygosity score in
table 3-17. Correlations between log fitness and each of the nine quantitative traits are shown in
table 3-18. None of these correlations was significant.

In summary, the adaptive distance model is limited in its ability to explain any of the
variation in the quantitative variables in the mother-baby data set, with the exception of mother's
serum acid phosphatase activity. The model, in the form in which it has needed to be used
here, has several shortcomings; better data would overcome some of these.

First, it is assumed that measures of fitness for each genotype are available. These can
be estimated if one assumes that the population is at equilibrium. However, the estimates
obtained are only relative, e.g. s = 2.535t and r = 7.432t with the value of t being open to
guesswork. The intensities of selection are used to weight the loci and the guessed value of t 1s
crucial to this weighting.

For instance, suppose for the PL locus, t is set to 0.01 i.e. increased tenfold, then s and
r will also be increased tenfold and this results in a tenfold increase in o, the selection intensity.
The log fitness for the genotype B(CA), ss and (IBi), say, would change from - 0.0024218 to
-0.01149, which is substantial.
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Second, the lumping together of genotypes in the three-allele case means that
information about heterozygosity is lost. For instance, at the PL locus, when alleles f and 1
were combined, genotype fi was then regarded as a homozygote.

Third, since the actual genotypes of ABO blood groups A and B were not available
much information was lost.

Fourth, in addition to the first and second problems already discussed, the PL locus
posed an additional problem in that several rare alleles had to be ignored. Thus selection
coefficients were probably poorly estimated.

Finally, the fact that the loci measured for mothers and babies were not the same made
any direct comparison of the two difficult. One could make comparisons based on the two loci
common to both mothers and babies, but since the ABO locus has suffered such a loss of
information, it would be little better than a direct comparison of the red cell acid phosphatase

locus.

3.5 Heritability Estimates

This section does not relate directly to the question of heterozygote advantage but while
that question was being studied with reference to the mother-baby data, some other interesting
points emerged.

Spencer, Hopkinson and Harris (1964) demonstrated that serum acid phosphatase
activity differs among the genotypes, detected by electrophoresis, of the ACP; locus. To
determine the effect of geneé, other than the major gene in question, on the activity of the
enzyme, one usually carries out analyses within genotypic groups and then pools the results
across these groups. Such a procedure assumes that there is no interaction between the major
gene and any other genes which may have an effect. Therefore pooling may not always be
statistically valid.

It is not always necessary to pool. For instance, Nance and Grove (1972), when
estimating the heritability of percentage sickle-cell haemoglobin, used only heterozygotes for
HbS in their analysis. However, that is a clear-cut situation since the sickle-cell gene is

deleterious in the homozygous state. The case of serum acid phosphatase activity, and also
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other enzymes, is not so clear-cut. Accordingly, there is a need for a simple method of
estimation of genetic parameters which allows for differences between genotypic classes.
Multivariate analysis of variance (MANOVA) provides such a method.

MANOVA (Anderson, 1984) partitions the matrix of sums of squares and cross products
for a set of traits into various meaningful components. In the present context these components
would be ACP; genotypes for mothers and babies, while the set of traits would be mother's

and baby's serum acid phosphatase activity. So the data have the following form:

genotype pair 1 2 e k
(AA,BA) (BA,AA)
mother-baby pair
Yim1 Yibl Yom1  Yobl Yimi Ykbi
2 Yim2 Yib2 Yom2z Yon2 ' ;
Y lmnl Y lbnl Y2mn2 Y2bn2 Ykmnk kank

where Yimj is the value of the trait for the jth mother in genotypic group i;
Yibj is the value of the trait for the jth baby in genotypic group i.
The number of mother-baby pairs in each genotypic combination varies; hence ng, n2 ...nk.
The covariance matrix for (Yimj, Yibj)' is partitioned by MANOVA into a component
attributable to differences among the genotypic groups and a residual component. This second

; (6} o
component is of the form ( mm Smb

)where Omm and Op}p are the variances of serum acid
Obm Obb

phosphatase for mothers and babies respectively and Gmp = Obm is the covariance between
mothers and babies, after adjusting for differences between genotypic groups. Omp estimates
-;- V A while 6;mm and opp, are two separate estimates of Vp, the total phenotypic variance in the

trait (Falconer, 1982). Heritability can be estimated by VA/Vp i.e. h2=2 Oy / Omm and its

3 . ) 2 2
variance is estimated by 4(Gmm Obb - cmb) / df(Gimm) Cm:

It should be noted that other pairs of relatives could be used in this type of analysis. In
chapter 4 the results of a similar analysis using dizygous twin pairs will be discussed.
The mothers and babies were divided into genotypic classes according to the ACP)

locus. Some genotype combinations were poorly represented in the data and so only those
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combinations with at least 19 observations were used in the analyses which follow. The
numbers in the genotypic combinations are displayed in table 3-19. For some genotypes,
serum acid phosphatase exhibited skewness and kurtosis. Box-Cox power transformations
(1964) were examined using a macro of GENSTAT IV. As a result it was decided to use the
logarithmic transformation of both mother's and baby's serum acid phosphatase.

MANOVA was performed using the seven genotypic combinations as seven levels of a
factor. GENSTAT IV was used for the analysis. Wilks' A indicated that there was no
significant difference among the genotypic combinations. Nor were the two estimates of Vp
significantly different from one another. The covariance matrix and estimate of heritability are
shown in table 3-20a.

Since the more usual method of estimating heritability is to use the simple linear
regressions of offspring on parent within genotypic classes, this technique was used as a
comparison with the MANOVA results.

Simple linear regression of the log of baby's serum acid phosphatase versus the log of
mother's serum acid phosphatase was performed for each of the seven genotype combinations
with at least 19 observations as indicated in table 3-19. One can see from table 3-21 that one
group (CB,CB) had a negative regression coefficient, although this was not significantly
different from zero. The pooled regression coefficient was 0.422.

The 19 (CB,CB) pairs were omitted and the MANOVA was repeated. The revised
estimates are shown in table 3-20b. Thus the estimate of h2 = 0.912 can be compared with the
estimates from the regressions, ranging from 0.4122 to 1.268 with a pooled value of
approximately 0.9.

Thus there is good agreement between the traditional way of estimating heritability and
this new method. The advantage of the new method is that we can feel confident that pooling
over genotypic classes is valid since differences among them have already been allowed for.
Many statistical packages have MANOVA and so it is straightforward to use.

There are two interesting results from these calculations. First, the heritability of serum
acid phosphatase activity is high even after allowing for the effects of the ACPj locus. Since

this locus, as well as ACP; and ACP3, controls red cell acid phosphatase activity it 1s not
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surprising that it has little effect on serum acid phosphatase activity. The regulation of the latter

is uncertain.

Second, the two estimates of phenotypic variance, Omm = 34.948 and Gpp =26.90 are
significantly different at the 5% level. This is an indication of the low environmental effect on

newborn serum acid phosphatase and a possible cause of high heritability.



Table 3-1 Rank correlations among the nine quantitative traits.

*A correlation, 1, is significant at the 5% level if Irgl 2 0.1.
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ACFM
PLFM  0.210%
LFM 0.231*
ACFB  0.438%*
BFB 0.122*
BW -0.015
PW 0.030
GL -0.019
L 0.009

PLFM LFM  ACFB BEFB BW

0.048
0.092
0.040
0.076
0.085
0.079
0.030

0.028

0.187* 0.223*

0.009 0.032 -0.038

0.071 -0.030 -0.010 0.619*
0.013 0.075 -0.032  0.452*
0.059  0.024 0.015  0.775*

PW GL

0.200*
0.439%  0.430*

ACFM = acid phosphatase in mother's serum; PLFM = placental alkaline phosphatase in
mother's serum; LFM = heat-sensitive alkaline phosphatase in mother's serum; ACFB = acid
phosphatase in child's serum; BFB = alkaline phosphatase in child's serum; BW = birth
weight; PW = placenta weight; GL =length of gestation; L = baby's length.



Table 3-2. Means, variances and coefficients of variation of quantitative traits for different genotypes of placental akaline phosphatase (all
given to 3 significant figures). Numbers in brackets are the numbers of mothers with those genotypes.

GENOTYPE

Trait 729 15(144) ss (177) si (48) fi(13)
Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance
ACFB 164 8900 157 2770 149 1760 163 3290 155 535
ACFM 102 1150 93.3 1060 89.2 753 102.8 2060 882 856
BFB 527 25600 470 29500 481 24000 474 22600 482 88900
LFM 398 70400 280 23000 314 26700 340 37700 369 72700
PLFM 557 43900 535 43800 503 40400 430 38100 346 6140
Birth Weight (kg) 3.52  0.293 347 0.234 352 0.253 3.53  0.205 336 0.311
Placenta Weight (kg) 0.580 .0118 0.548 .0104 0.547 .0130 0.545 0.49 0.555 .0117
Baby's Length (cm) 50.8 4.72 50.6 4.14 50.8 5.57 51.1 478 498 5.06
Gestation Duration 279 133 280 201 280 142 282 125 280 127
CVy (all 9 traits) 40.8 37.4 36.6 40.6 40.5
CVs5 (first 5 traits) 42.8 39.7 38.9 43.4 44.6
CV4 (last 4 traits) 4.20 5.06 4.32 3.93 3.18

The ii genotype has been omitted since it only contained 3 observations.
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Table 3-3 Means, variances and multivariate coefficients of variation of quantitative traits

for different genotypes of mother's haptoglobin (all given to 3 significant
figures). Numbers in () are the numbers of mothers with those genotypes.

Trait

ACFB

ACFM

BFB

LFM

PLFM

Birth Weight (kg)
Placenta Weight (kg)
Baby's Length (cm)

Gestation Duration

CVog (all 9 traits)
CV5 (first 5 traits)

CV4 (last 4 traits)

GENOTYPE

MCIZII: : 1\(}4a?1')ance Mea}r{p I\Z’gl‘g)a(il)cc
156 2420 150 1850
859 901 94.7 1100
502 32700 459 22700
311 26000 309 27300
459 46100 511 43100
3.55 0.197 3.47 0.236
0.567 0.0178  0.546 0.0114
50.8 3.94 50.6 4.95
278 742 280 213

399 37.6

42.4 40.0

3.15 5.21

Mealrfpz\zf(alr’ija?ce
157 2820
93.8 1180
490 28600
314 36700
511 42100
3.50 0.258
0.547 0.0101
509 5.14
281 118
39.0
41.4
3.86

69



Table 3-4. Variances, means and multivariate coefficients of variation of quantitative traits for different genotypes of mother's red cell acid
phosphatase (3 significant figures). Numbers in () are the numbers of mothers with these genotypes.

Trait

ACFB

ACFM

BFB

LFM

PLFM

Birth Weight (kg)
Placenta Weight (kg)
Baby's Length (cm)

Gestation Duration

CVy (all 9 traits)
CVj5 (first 5 traits)
CV4 (last 4 traits)

Mean

152

AA(35)
Variance

1210

813 774

474
235
572

3.49
0.508
50.6

282

37500
23300
92000
0.196
0.009
3.01
173

45.9
48.7
4.66

AB (144)
Mean Variance
154 2280
93.7 890
475 25400
311 31800
504 33500
3.52  0.175
0.554 0.010
50.7 429
281 162

35.3
37.5
4.55

GENOTYPE
BB (155)

Mean Variance
162 4290
96.6 1400
495 32400
320 31900
508 42100
3.45 0.294
0.552 0.012
50.7 5.40
279 173

39.2

41.5

4.74

CB (43)
Mean Variance
140 926
95.1 717
448 15400
332 29400
471 43800
3.61 0.272
0.564 0.015
514 530
281 84.0

37.5
40.1
3.18

CA (26)
Mean Variance
149 1650
87.6 2050
463 26000
312 30000
441 30700
3.58 0.273
0.555 0.006
505 5.6
277 137

38.0

40.7

4.34

The genotype for this locus was not obtained for 7 mothers and the CC genotype has been omitted since it only contained 4 observations.
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Table 3-5 Means variances, and multivariate coefficients of variation of quantitative traits for different genotypes of baby's red cell acid
phosphatase (3 significant figures). The numbers in ( ) are the numbers of babies with these genotypes.

ACFB

ACFM

BFB

LFM

PLFM

Birth Weight (kg)
Placenta Weight (kg)
Baby's Length (cm)

Gestation Duration

CVo (all 9 traits)

CVs (first 5 traits)
CV4 (last 4 traits)

AA (43)
Mean Variance
153 1020
94.8 1240
495 24300
290 39800
506 26600
351 0.104
0.545 0.007
50.6 2.15
280  85.3

36.5
38.8
3.32

BA (136)
Mean Variance
157 3490
96.7 1430
491 40800
308 29500
501 53000
3.47 0.262
0.546 0.010
50.5 5.31
279 171

41.4

43.9

4.75

GENOTYPE

BB (144)
Mean Variance

161 3530
92.6 1140
485 21600
323 31000
513 37600
3.48 0.267
0.545 0.014
50.8 5.10
281 199
36.4
38.6
4.99

Mean
140
91.0
485
334
488
3.56
0.581
51.2
281

CB (44)
Variance

835
631
18100
34900
66500
0.298
0.012
5.73
97.0

41.1

43.6
3.57

CA (37)
Mean Variance
140 1310
86.7 519
405 19200
276 21400
489 24300
3.54 0.190
0.539 0.010
509 3.87
279 129

33.8
36.3
4.07

The genotype for this locus was not obtained for 6 babies and the CC genotype has been omitted since it only contained 4 observations.
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Table 3-6  Extensions to Levene's test using Y(:) = [2 (X(g)—Xfli())?‘:llﬁ where Xg) is the
1

value of case a of trait i of genotype class k.

Where indicated, X5 has been log-transformed.
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Means of genotypic classes

Variance Degrees of

ratio freedom
Placental alkaline phosphatase
Genotype: bid 5 S§ S fi
Raw data 358.6 272.2 272.5 249.2 236.4 2.503* 4,373
Log data 0.922 0.917 0.875 0.813 0.865 0.54 4,368
Baby's red cell acid phosphatase
Genotype: AA BA BB CB CA
Raw data 273.8 294.5 277.1 289.6 230.0 1.42 4,370
Log data 0.922 0.917 0.875 0.813 0.865 0.54 4,368
Mother's haptoglobin
Genotype:  Hpyy Hpyy Hpyp
Raw data 289.4 270.6 288.3 0.699 2,376
Logdata = 00911 0.866 0.908 0.43 2,374
Mother's red cell acid phosphatase
Genotype: AA BA BB CB CA
Raw data 318.1 265.0 294.2 258.8 241.5 1.913 4,370
Log data 1.18 0.863 0.863 0.792 0.887 4. 86** 4,368

Values tabulated are means, Y(k), of genotypic classes and the variance ratios from one-way

analysis of variance. * indicates significance at 5% level, ** significance at 1% level.
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Table 3-7 Non-parametric dispersion matrices of biochemical measurements for placental
alkaline phosphatase types, using the normal scores function for J.

ACFM PLFM LFM ACFB BFB ACFM PLFM LFM ACFB BFB
Genotype ff Genotype fs
ACFM 0.79 0.14 074 034 -0.04 098 0.13 0.18 0.57 0.12
PLFM 091 0.39 0.02 -0.03 0.88 -0.03 0.15 -0.03
LFM 2.10 0.04 0.18 0.83 -0.01 0.18
ACFB 0.95 -0.10 1.10 0.30
BFB 0.85 1.07
Genotype ss Genotype si
ACFM 0.89 0.27 021 035 0.09 1.52 026 030 0.60 0.15
PLFM 1.05 0.04 007 0.14 0.87 -0.04 0.24 0.10
LFM 091 0.04 0.09 0.88 0.18 0.22
ACFB 095 0.18 0.97 0.22
BFB 0.94 0.72
Genotype fi Pooled matrix
ACFM 085 0.24 0.03 -0.08 0.22 099 021 025 044 0.11
PLFM 0.28 0.03 -0.13 0.01 099 0.02 0.10 0.06
LFM 146 032 1.05 0.99 0.04 0.00
ACFB 0.37 0.65 0.99 0.21
BFB 2.05 0.99

2
X60 = 1159 P <0.001

Table 3-8 Non-parametric dispersion matrices of biochemical measurements for mother's
haptoglobin types, using J(u) = V12 u-'%)

ACFM PLFM LFM ACFB BFB ACFM PLFM LFM ACFB BFB
Genotype Hp1 Genotype Hpyo
ACFM 1.08 038 040 051 0.10 1.00 021 024 044 022
PLFM 093 0.18 0.16 0.28 1.06 0.05 0.12 0.08
LFM 091 0.08 0.16 098 0.07 0.17
ACFB 1.02 -0.03 0.95 0.20
BFB 0.99 0.97
Genotype Hpyy Pooled matrix
ACFM 096 0.15 0.17 043 0.03 1.00 021 023 044 0.12
PLFM 093 0.00 0.03 -0.07 1.00 0.04 0.09 0.04
LFM 1.06 -0.05 0.21 1.00 0.02 0.00
ACFB 1.05 0.30 1.00 0.22
BFB 1.01 1.00

X%o = 59.9 P <0.001
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Table 3-9 Non-parametric dispersion matrices of biochemical measurements for mother's red
cell acid phosphatase types, using J(u) = V12 (u%).

ACFM PLFM LFM

Genotype AA
ACFM 091 0.04 0.27
PLFM 1.06 -0.24
LFM 1.08
ACFB
BFB

Genotype BB
ACFM 1.02 021 0.22
PLFM 0.93 0.05
LFM 1.02
ACFB
BFB

Genotype CA
ACFM 0.86 0.01 -0.04
PLFM 1.09 0.41
LFM 1.07
ACFB
BFB

ACFB BFB
0.43 -0.07
0.06 -0.106
0.09 0.09
0.90 -0.04

1.32

0.55 024
0.08 0.03
0.02 0.23
1.12  0.33
1.00

036 0.07
-0.25 -0.05
-0.44 -0.19
.11 0.29
1.09

ACFM PLFM LFM ACFB BFB

Genotype BA
099 0.27
0.98
Genotype CB
097 0.32
1.16
Pooled matrix
1.00 0.21
1.00

0.44
0.15
0.05

-0.05

0.06
0.76

0.04
0.00
0.22
1.00

2
Xgog = 1059 P < 0.001

Table 3-10 Non-parametric dispersion matrices of biochemical measurements for baby's red
cell acid phosphatase types, using J(u) = V12 (u-%).

ACFM PLFM LEM

Genotype AA
ACFM 1.14 0.17 0.35
PLFM 091 -0.01
LFM 1.08
ACFB
BFB

Genotype BB
ACFM 1.06 0.26 0.28
PLFM 096 0.07
LFM 1.01
ACFB
BFB

Genotype CA
ACFM 0.81 0.09 0.10
PLFM 098 0.14
LFM 0.99
ACFB
BFB

ACFB BFB
0.30 -0.07
0.13  0.05
-0.21 -0.01
0.74 025
1.06

0.54 0.18
0.10 -0.02
0.04 0.21
121  0.26
0.84

0.15 -0.01
0.29 0.07
-0.36 -0.02
0.85 0.15
0.98

ACFM PLFM LFM ACFB BFB

Genotype BA
098 0.18
1.05
Genotype CB
091 0.26
1.09
Pooled matrix
1.00 0.20
1.00

0.20

-0.02

1.01

0.56
0.09
0.22
0.96

0.22
-0.14
-0.04

0.73

0.03

0.12
0.03
0.00
0.23
1.00

2
XGO = 1032 P <.001
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Table 3-11 Covariance matrices of anthropometric measurements for placental alkaline

phosphatase types.
BW PW L BW PW L
Genotype ff Genotype fs
BW 0.290 0.233
PW 0.044 0.012 0.031 0.011
L 0.114 0.016 0.050 0.079 0.009 0.040
Genotype ss Genotype si
BW 0.261 0.183
PW 0.033 0.012 0.027 0.010
L 0.087 0.010 0.057 0.076 0.012 0.050
Genotype fi Pooled matrix
BW 0.400 0.247
PW 0.068 0.014 0.033 0.011
L 0.120 0.022 0.049 0.085 0.010 0.049
p=0.9456 =24
~2p log A, = 49.06 (P < 0.01)

If genotype fi is omitted from the analysis, f= 18 and
—2p log A] = 44.05 (P < 0.001)

p.f and Aq* are defined in section 1.4.

Table 3-12 Covariance matrices of anthropometric measurements for mother's haptoglobin

types.
BW PW L BW PW L
Genotype Hpyy Genotype Hp1p
BW 0.205 0.239
PW 0.041 0.015 0.031 0.012
L 0.075 0.013 0.040 0.081 0.009 0.050
Genotype Hpyy Pooled matrix
BW 0.264 0.245
PW 0.032 0.010 0.033 0.011
L 0.092 0.012 0.050 0.085 0.010 0.049
p=09814 f=12
2plogh; =17.72 (P> 0.10)



Table 3-13 Covariance matrices of anthropometric measurements for mother's red cell acid

phosphatase types.
BW PW L BW PW L
Genotype AA Genotype BA
BW 0.204 0.182
PW 0.032 0.009 0.025 0.010
L 0.060 0.008 0.030 0.058 0.007 0.044
Genotype BB Genotype CB
BW 0.294 0.250
PW 0.039 0.012 0.044 0.015
L 0.106 0.013 0.053 0.087 0.015 0.054
Genotype CA Pooled matrix
BW 0.273 0.241
PW 0.012 0.005 0.032 0.011
L 0.120 0.004 0.062 0.084 0.010 0.049

p=09680  f=24
2plogh;=4515 (P <0.01)

Table 3-14 Covariance matrices of anthropometric measurements for baby's red cell acid

phosphatase types.
BW PW L BW PW L
Genotype AA Genotype BA
BW 0.109 0.266
PW 0.010 0.007 0.031 0.010
L 0.028 0.002 0.022 0.087 0.010 0.054
Genotype BB Genotype CB
BW 0.257 0.305
PW 0.040 0.014 0.036 0.012
L 0.096 0.013 0.052 0.104 0.011 0.058
Genotype CA Pooled matrix
BW 0.202 0.246
PW 0.030 0.010 0.033 0.011
L 0.070 0.010 0.040 0.085 0.010 0.049

p=09743  f=24

2plogh; =34.60  (P>0.5)
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Table 3-15  Values for Yj= - 0.000615 Xpp - 0.000804 Xrcap - - 0.000998 XARO; log
fitnesses for mothers for each genotypic class. The frequency of each class and
the number of heterozygous loci are also shown.

genotype Yi frequency no. heterozyous loci
Hpi2 B(AC) IA(IBi) 0.0 5 3
Hpz2 B(AC) ITAIB - 0.0010025 2 2
Hpi2 BB IAIB - 0.0013313 5 2
Hpj2 B(AC) (IBi) - 0.0014025 44 2
Hpiz (AC) JAIB - 0.0020299 1 2
Hpy2 BB JAIB - 0.0023338 3 1
Hpy B(AC) (IBi) - 0.0024049 39 1
Hp12 BB (I1Bi) - 0.0027338 34 1
Hpi; BB IAIB - 0.0029251 2 1
Hpi11 B(AC) (IBi) - 0.0029963 8 1
Hpy (AC) TAIB - 0.0030324 1 1
Hpip (AC) (IBi) - 0.0034324 16 1
Hp22 BB (IBi) - 0.0037362 29 0
Hpin BB (IBi) - 0.0043276 10 0
Hpyy (AC) (IBi) - 0.0044348 14 0
Hpi1 (AC) (IBi) - 0.0050262 3 0

Table 3-16 Spearman s rank correlation coefficients between mother's log fitness, Yj, and
each of nine quantitative traits.

tl'alt Ig tralt Ig
ACFM 0.1514 * birth weight 0.0078
PLFM - 0.0697 placenta weight 0.0932
LFM - 0.0417 gestation length - 0.0694
ACFB 0.0205 baby's length - 0.0038
BFB -0.0759

* significant at the 5% level.
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Table 3-17  Values for Y; =  -0.000667 Xpr, - 0.000804 Xrcap - 0.000998 XaBo,
log fitnesses for babies, for each genotypic class. Class frequencies and
heterozygosity scores are also shown.

genotype Y frequency heterozyosity
s(fi) B(CA) IA(IBj) 0.0 4 3
ss  B(CA) IA(IBi) - 0.0010193 5 2
s(fi) BB IA(IB1) - 0.0013313 4 2
s(fi) B(CA) (IBi) - 0.0014025 35 2
(fi) B(CA) IA(IBi) - 0.0019267 3 2
ss BB TA(IBI) - 0.0023506 1 |
ss  B(CA) (IBi) - 0.0024218 34 1
s(fi) BB (IBi) - 0.0027338 37 1
o] (CA) TA(IB) - 0.0030492 2 1
(fi) B(CA) (IBi) - 0.0033292 9 1
s(fi) (CA) (IBi) - 0.0034324 11 1
(fi) (CA) IA(Bi) - 0.0039566 1 1
ss BB (IBi) - 0.0037531 21 0
ss (CA) (1B - 0.0044517 22 0
(fiy BB (1Bi) - 0.0046604 6 0
(fi) (CA) (IBi) - 0.0053591 3 0
Table 3-18 Spearman's rank correlation coefficients between baby's log fitness, Yj, and

each of nine quantitative traits.

trait Ig trait

ACFM - 0.0120 Birth weight - 0.0695
PLFM - 0.0190 Placenta weight - 0.0291
LFM - 0.0539 gestation length - 0.0442
ACFB 0.0087 baby's length - 0.0764
BFB 0.1134
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Table 3-19  Frequencies of mother-baby pairs determined by genotype at the ACP, locus for
mothers and babies.
Baby's genotype.

mother's genotype AA BA BB CB CA cC total
AA 9 *20 0 0 6 0 35
BA * 28 * 53 * 43 9 11 0 144
BB 0 * 51 * 95 9 0 0 155
CB 0 7 6 *19 9 2 43
CA 5 5 0 6 8 2 26
cC 0 0 0 1 3 0 4
total 42 136 144 44 37 4 407

* classes used in the analyses.

Table 3-20  Error covariance matrix of serum acid phosphatase (log transformed).
a. b.
mother baby mother baby
mother 36.213 15.739 34.948 15.932
baby 15.739 27.629 15.932 26.900

b = 15.739/36.213 = 0.435
h2=0.87 se (h2) =0.087

b = 15.932/34.948 = 0.456
h2 =091

se (h2) =0.089

a = 309 pairs including (CB,CB);

Table 3-21

b = 290 pairs excluding (CB,CB)

Regression of acid phosphatase in baby's serum on acid phosphatase in
mother's serum (log tranformed).

mother's red cell acid

phosphatase genotype AA BA
baby's red cell acid
phosphatase genotype BA AA

regression coefficient 0.363 0.206
standard error 0.119 0.110

p.

<0.01 >0.05

BA

BA
0.53
0.136

<0.001

BA

BB
0.395
0.118

<0.01

BB BB CB

BA BB CB
0.634 0.484 -0.153
0.098 0.083 0.18

<0.001 <0.001 >0.05
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4. ANALYSES OF TWIN DATA

4.1 Description

Dr. N.G. Martin provided two sets of twin data for which various quantitative traits and
the genotypes for several loci had been measured.

The first set has been described by Martin (1975a, 1975b) and Martin and Martin
(1975). The subset used in this study comprised 45 same-sex twin pairs, of which 16 pairs
were monozygous females, 10 were monozygous males, 12 were dizygous females and 7 were
dizygous males. These were the twin pairs for which genotypes at six polymorphic loci were
available as well as height and IQ measurements. The six loci were MN, Ss, haptoglobin, the
C and E loci of the Rhesus system and Jk.

The necessary conditions suggested by Mitton and Grant (1984) for a successful study
of heterozygote advantage were outlined in chapter 3. Do the variables measured in this data set
meet these conditions?

The twins studied were all adolescents and so surplus energy would certainly have been
used in the expression of both height and IQ for this age group. Constraints on these two traits
would be minimal.

Smith (1975) states that the mean IQ of a population is arbitrarily set to 100 while the
standard deviation is usually about 15 and so the coefficient of variation is reasonably low at
0.15. He also says that there are excesses of individuals in both tails of the IQ distribution and
presents data on IQ measurements for various family groupings indicating the presence of
genetic, environmental and genotype by environment interaction components in the variance of
IQ. Thus IQ does not appear to be canalized.

Kark, Friedlander and Stein (1986) tabulated heights of 17-year-old boys in Jerusalem.
Their data were divided into eight ethnic groups which had very low coefficients of variation of
approximately 0.04. Smith (1975) gives a figure for the heritability of adult height as 0.85
indicating that this trait varies with genotype. Itis well known that nutrition, an environmental
factor, affects height. Thus, height is not canalized, either.

For non-human species, one would expect to find that traits with high heritabilities such

as morphological characters would have low coefficients of variation. The reverse would be
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true for life history characters and physiological and behavioural characters would fall
somewhere between these (Mousseau and Roff, 1987). They conclude from their review that
fitness components generally possess lower heritabilities than traits unconnected to fitness.
However, it is often difficult to unravel the connection that a particular character has with
fitness. For instance, in ectotherms fecundity and development time are highly correlated with
body size, a morphological character. If such a character followed the usual pattern, it would
have high heritability, low coefficient of variation and be a good indicator of fitness. However,
this does not appear to be true of most characters with high heritability and low coefficient of
variation. Perhaps Mitton's and Grant's (1984) condition of low coefficient of variation for
investigating the relationship between fitness and heterozygosity is not appropriate.

The twin data were collected in Adelaide, South Australia, and all the participants had
sat for a particular public examination in one of two years. Thus itis unlikely that a large range
of environmental stresses was at work. However, the probability of any phenotypic stability
among heterozygotes being attributable to local inbreeding followed by local outbreeding, as
was thought possible for the mother-baby data, is small, since the Australian population has
experienced considerable population mobility since 1788.

The objective was to see whether the variance of height or IQ was lower among
heterozygotes than among homozygotes. Clearly, the data could not be treated as 90 individual
sets of observations for several reasons. Monozygous twins shared all genes which might have
influenced height and IQ. They had also shared common environments since they had been
reared together and the effect of common environments was confounded with the effect of
shared genotypes. Dizygous twins shared, on average, half their genes and they had also
shared common environments.

A suitable way of analysing these data was to treat every twin pair as a pedigree of size
2 and perform a pedigree analysis. A method of calculating variance components by the
scoring method in a pedigree analysis was described by Lange, Westlake and Spence (1976).
Hopper and Mathews (1982) extended this method to include, as a component of variance, the
additive effect of a marker locus.

4.2 Basic Model



82

In this section the basic model of Lange et al. (1976) will be outlined using pedigrees of
size 2 consisting of either monozygous or dizygous twin pairs.

Suppose that some quantitative trait has been measured for each individual of the
pedigree and suppose also that the mean of this trait may differ between males and females. It

is assumed that the trait follows a multivariate normal distribution with separate male and female

means, Wy and P respectively, and with a covariance structure:

2 2
Q = 2oa<1>+ch+o§I

where @ is a kinship matrix;

A is a matrix of Jacquard's condensed coefficient of identity, A7 (Jacquard, 1974);
I is the identity matrix;

2 e
O'al

s additive genetic variance;
2. . . .
oy is dominance genetic variance;

and GZ is environmental variance peculiar to an individual.

To understand coefficients of kinship and identity, consider two individuals of known
relationship, A and B, each with two genes at a given locus. The two individuals each receive
one gene from their respective mothers and one from their respective fathers. A, is the
probability that one gene of A is identical by descent to one gene of B and that the other gene of
A is identical by descent to the other gene of B. On the other hand, the coefficient of kinship,
O pisthe probability that a gene taken at random from A is identical with a gene at the same

locus taken at random from B (Jacquard, ibid).

Some examples will make these concepts clearer. For instance ¢, , = % and ¢, =0 if

i
A and B are unrelated. If A and B are siblings, ¢, = % and if A is the mother of B, ¢ s = Al;
If A and B are siblings,

A,pg = prob (A and B have same gene from mother) x prob (A and B have same gene from

father)

A



—— e s s = ==

Apa = prob (A has the same genes as itself) = 1

If A is the mother of B, and B's father is unrelated to A, then

&3

A,p = p(Bhasone of her mother's genes) x p (B's father's gene is same as A's father'sgene)

=10=0

(5] Ll T Lo
L] Lol

For monozygous twins ® = (

]andA=Gi)
-

LetX = (XI,XZ)' be a random variable of the quantitative trait for twin 1 and twin 2. Then

2
cov (X;X,) = 201505 + A1a0y

Alv—l Pk
— -
N—

Rl ol e
= &=

while for dizygous twins @ = (

0'2a + o‘%i for monozygous twins

%02 + 1203 for dizygous twins

Hopper and Mathews (1982) extended this model by adding a term to the covariance structure,

g 2
viz. o \Pa

1 wheni =j
1 when i and j share both haplotypes

h ., . )
WRETE Yajj fwhen i and j share one haplotype
0 when i and j share no haplotype
orzn o isthe additive genetic effect of a polymorphic marker locus.

11
Thus for monozygous twins, ¥, = (1 | )

hile for di ins ¥ b L3 e .
while for dizygous twins ¥, may be L1 or (1 1)or (01)
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4.3 Extended model.

However, neither the basic model nor the marker locus extension can answer the
question of whether heterozygotes at some locus are less variable than homozygotes at that
locus. Thus a different extension to the basic model will now be proposed.

Suppose the locus in question has two alleles ¥ and y. Then if homeostasis is
operating, the environmental variance peculiar to an individual will be influenced by whether or

not the individual is homozygous or heterozygous at the locus. Thus environmental variance

cannot be estimated by a single parameter, 0%, for all individuals but instead will have to be

broken into three parts, oiy, G%y and o‘iy. These represent the environmental variances for

individuals with genotypes YY, Yy and yy respectively.

So the covariance structure now becomes:

Q = 262D+ 0% A+ Cyy Q+ 0%

2
R+o
Yy yys

1 if twin i has genotype YY

h ..o= .
where qy; {0 if twin i has some other genotype

qij = 0.

The elements of R and S are defined similarly, substituting Yy and yy for YY respectively.

- R and S be 10 00 10 00
us Q, R and S can (Ol)or (Oo)or (Oo)or (01).

_ 2 2 2 2 2\
A vector of seven parameters U = Ky Mg O O Oyys ch, ny must be

estimated for this model. This is done by maximizing the log likelihood, which is given by:

k k . |
logL = % YloglQ1-% ¥ (X1) Q (X4, - constant
i=1 i=1

where [, 1s (uM, ”M) or (”F’ ”F) depending on the sex of twin pair i;
€2, is covariance matrix for twin pair i

and k is the total number of twin pairs.

4.4 Fitting the extended model



Initially, the basic model was fitted to the heights of the 45 twin pairs by minimizing

minus the log likelihood using a quasi-Newton minimization routine, ZXMIN, from the IMSL

library (1984). The vector of parameters to be estimated was O = (W, Hp, 023, 0?1, 626)

Since all the variance parameters had to be non-negative, a modified vector of unconstrained
parameters, Uy, = (uM,uF,O'a,(S % ) was used when fitting the model. The unconstrained

estimates were squared to give non-negative variance estimates which were used in calculating

Q and the information matrix. The FORTRAN 77 program which I wrote to perform this
model fitting is listed in Appendix C. The program was tested by performing hand calculations

for a simple example at all stages of the program except the minimization routine itself.

-2
The information matrix was calculated from the formula, G[aﬁ 5 ]{;:6 where & is
i9Yj

the expectation operator, 1 is the loglikelihood and ¥ is the vector of estimates. The covariance
matrix of the esimates was found by inverting the information matrix.

As can be seen in table 4-1, the fitted value for dominance variance was very close to

zero. This was not surprising given the small sample size. Martin, Eaves, Kearsey and Davies
(1978) showed that for the extreme case of 90% heritability, complete dominance and no
differences among family environments, 3330 twin pairs would be required to distinguish
between the model with dominance variance and the model without in 95% of cases. This
number increased tenfold when dominance was intermediate. Martin et al. (ibid) discussed
other methods for determining dominance variance using smaller numbers of twins, but they

were not appropriate to the model used here.

A reduced model was then fitted omitting the term cg A from the variance structure.

As anticipated this made no difference to the other estimates, nor to the value of the log
likelihood, but due to the very large negative covariance of 0% and cﬁ there was a very slight

shift in the estimate of c:. The estimated variance of o7 1s of course very much improved.

The extended model was then fitted, omitting the dominance variance, for each locus in
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2 2 2

turn. The parameter vector was then ﬁE = (”M’ Hg, O Oyys ch,

2 L
c where, for
YY)

. 2 2 2 2 .
instance, ()'%{Y, Cyy and 0')2,), correspond to 67;, O, and G,, for the haptoglobin locus and to

Gﬁm, G%JN and GI%IN for the MN locus. The results are presented in table 4-2. Minus twice the

difference between the log likelihood for any particular extended model and the reduced

model of table 4-1 represents the improvement of the extended model over the reduced model.
Since there are two more parameters in the extended model, this quantity will be asymptotically
distributed as chi-square with two degrees of freedom. A significant departure (p < 0.05) from
this distribution would indicate that the three genotypic variances are not all equal. There was
no significant departure for the first four loci of table 4-2. The genotypes of the Jk locus were
not measured for two twin pairs and so the results for this locus are not directly comparable
with the reduced model of table 4-1. The reduced model was fitted to the data, omitting these
two twin pairs and a value of 169.9 was obtained for -1, thus giving 1.2 in the final column of
table 4-2.

From these results we can say that the variance of height is not smaller among
heterozygotes than among homozygotes for any of these loci. In fact, only the MN locus
shows even a trend in this direction.

The analysis was repeated for IQ measurements, but this time a further reduction was
afforded by pooling means for males and females. The results of fitting the basic model and
two reduced models are shown in table 4-3. It can be seen that use of the pooled mean makes
very little difference to the log likelihood. As before, the problems of small sample size
surfaced, since IQ is believed to have a reasonable degree of dominance (Eaves, 1973, 1975).

Once again the reduced model, this time with pooled means, was extended to include
parameters for each genotype of a major locus. The results for the six loci are presented in table
4-4. As before, the extended model did not offer any significant improvement over the reduced
model. This time the variance of the heterozygotes was lower than both the variances for
homozygotes at the MN and the haptoglobin loci, but not significantly so. Other loci showed
contradictory trends. Note that minus the log likelihood for the reduced model, using the 43

twin pairs who had been typed at the Jk locus, was 238.3 and this value was used for
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calculating minus twice the difference in log likelihood for the improvements afforded by the Jk
locus model.

One school of thought suggests that instead of considering heterozygosity at individual
loci, all measured loci should be pooled to give a total heterozygosity score (for discussion, see
section 3.1). Since six loci had been typed, possible scores for heterozygosity ranged from 0

to 6. A possible model would be
Q= 26§®+63Q+6%R+G%S+()'§T+(SZ’U+0‘§V+O‘§'W

where 012 represents the environmental variance for individuals with heterozygosity score i.

Such a model would mean that eight variance parameters would have to be estimated; this is
too many given that the data set is not large. Instead, the data were grouped into three

heterozygosity classes, L = {0,1}, M = (2,3}, H={4,5,6}, and so the model became:

Q= 263@+0%Q+0§4R+0%{S

where L indicates low heterozygosity, M is medium and H is high.

Only 43 twin pairs were used for this model since the Jk genotypes had not been
ascertained for two twin pairs. Thus the value for minus the log likelihood should be compared
with 169.92 for height and 238.3 for IQ. Results are presented in table 4-5. These
components did not contribute significantly to the overall variance. Itis interesting to note that
the variance for the highly heterozygous individuals was relatively high for height and relatively
low for IQ.

Hopper and Matthews (1982) suggested testing the adequacy of the fit of the model by
examining the quantities

Fi= Xi- ) Q! (Xi- [
for all twin pairsi =1, .... k.
F; should be distributed as 2 with two degrees of freedom when the pedigrees consist of twin

pairs. These Fj can be further transformed to
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F;() =+2F; - V3 which has a standard normal distribution.
The F;(1) can be plotted against normal scores. Any outliers from a straight line through the
origin would indicate a discordant twin pair. Plots for the Ss locus model are shown in
fig. 4-1. The fit is very good for the height data but less so for the IQ data, because the bottom
left values deviate from the straight line. Twin pair 25 appears to be discordant for IQ and
possibly twin pair 21 is discordant for height.

To examine the adequacy of fit for individuals, Hopper and Mathews (ibid) suggest
calculating residuals, rj = Xj = Hi where X; is either height or IQ for the ith individual and L is

the appropriate mean. Then for a pair of twins, (r1, r2) is the vector of residuals and if
Q* =Qq1 - Q5 / Qpand Br2 = 1/,
then Q) = () - B1272)2/ Q¥ has a y, distribution.
Q; for twin 2 in any given pair is calculated similarly and also follows a le distribution but the
two distributions are dependent.
Raw data values, standardized residuals and Q: values for discordant twins of a pair are

shown in table 4-6. Twin pair 36 illustrates the effect of a discordant twin most clearly. Twin
number 1 of this pair is at the lower extreme of the range of IQ values while twin number 2 is
close to the average.

On the whole, the models seem to fit reasonably well, with few discordant values. The

main problem in fitting the pedigree model is the small sample size. For instance, in the

reduced model for height, the estimate of cﬁ is 41.1 with a standard deviation of 7.6 and the

estimate of 0’2 is 1.70 with a standard deviation of 0.47. Hopper and Mathews (ibid) fit their

model to 80 families consisting of a total of 617 individuals, a much larger sample. There will

be further discussion of sample size with respect to heritability estimates in the next section.
The lack of relationship between variance of the two quantitative traits considered and

heterozygosity might have been due to the small sample size, but there could have been other

factors. Of the six loci considered, two pairs were closely linked (MNSs and the two Rhesus
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loci) and such a small number would probably not reflect the heterozygosity of the whole
genome (Chakraborty, 1987). The loci occurred on chromosomes 1, 2 4 and 16 (Shows,
McAlpine and Miller, 1984) and so provided some opportunity for linkage disequilibrium with
loci controlling height and IQ, but not enought since we do not know where the loci controlling
height and 1Q are situated. Similar arguments to those used in chapter 3 would also apply here.
4.5 Estimates of genetical parameters

The use of multivariate analysis of variance (MANOVA) to remove major effects and
thus allow heritability to be estimated from the residual covariance matrix was discussed in
section 3.4. In that section the method was used to make calculations of heritability from
mother-baby pairs. In this section the same method will be used to estimate heritability from
full sib pairs, in fact dizygous twin pairs.

The second data set, provided by Dr. N.G. Martin and described by Gibson, Martin,
Oakeshott, Rowell and Clark (1983) where they report the results of a study of lung function in
a sample of twins from Sydney, was used in this analysis.

The Pi genotype had been established for 36 pairs of dizygous females, 30 pairs of
dizygous males and 33 pairs of opposite sex twins. Monozygous twins were not used in this
analysis because the heritability estimate is formulated differently for them. The variable of
interest was lung function, FEC, which was calculated from forced expiratory volume, FEV,
corrected for age and height according to the formula described by Gibson et al. (ibid).

In order to perform a MANOVA, there must be more than one observation (twin pair) in
any given class. Thus a number of twin pairs had to be omitted since they were the only ones
of their particular genotypic combination. Frequencies for genotypic classes are shown in table
4-7. The error covariance matrices resulting from MANOV A for each set are shown in table 4-
8. In each matrix, 017 and o7 were both estimates of Vp, the phenotypic variance. These
two were used in the denominator to calculate the sib-sib correlation, t, where 2t is an upper
limit for the heritability (Falconer, 1982).

Several worrying features emerge from these data. First, 611 and 022 are significantly

different for the dizygous males; 0.9505/0.39 =2.44 (F13,18 = 2.22 at 5% level). Itis



90

difficult to see why the variance of lung function would be different for two groups of male
twins if the twins had been allocated randomly to position 1 or 2.

Second, the estimated upper limit to heritability for females is less than half the estimated
limit for opposite sex pairs. Third, these values are substantially less than the estimates for
heritability calculated by Gibson et al (ibid) and the standard errors are much greater. They
give values of 0.56 + 0.10 in males and 0.84 + 0.04 in females, using a model which fits
individual environmental variance for male and female and additive genetic variance for each
sex. Admittedly, their results are based on the whole data set consisting of 203 twin pairs and
so are likely to be more accurate.

The MANOV A method which worked so well for the mother-baby data, has failed here.
There are several possible reasons for its failure. As can be seen from table 4-7, one genotypic
class dominates all others in each set of twin pairs. Correlation coefficients were calculated for
the largest class only and the values obtained were 0.484 for female pairs, 0.505 for male pairs
and 0.582 for opposite pairs. Comparison of these values with those of table 4-7 reveals that
male pairs were the only ones that were close. Thus the results cannot be explained so simply.

Lush (1949) defined heritability as the proportion of total phenotypic variance due to
genetic causes. In the narrow sense this means additive genetic variation only, while in the
broad sense it includes all genetic variation. However, it does assume that there is no genotype
by environment interaction. Bishop, Mayo and Beckman (1987) comment on the low
environmental effect on newborn serum acid phosphatase as a possible cause of high
heritability. It also means that there was little room for genotype by environment interaction in
the mother-baby data. One can see that there is much room for genotype by environment
interaction when twins have reached adulthood.

Eaves (1982) discussed some of the difficulties of detecting genotype by environment
interaction in twin studies. If monozygous and dizygous twin data were available for two
different environments, within pair variance and phenotypic correlation would follow certain
patterns in the presence of interaction. In an experiment it would be possible to allocate twin
pairs to particular environments but when studying life data, not only can this not be done but

there is also the possibility that genes and environments are not independent. Hewitt (1987)
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discusses examples of this with particular reference to intelligence, but a parallel argument could
be developed for lung function.

Another shortcoming of the data set is its small size. Elston and Bonney (1984)
discussed the sample sizes required to estimate a heritability of 0.2 with a standard error of 0.1
and concluded that 390 sib pairs (or dizygous twin pairs) would be required. If the standard
error were to be halved the sample size would have to be increased fourfold. On the other hand
if the value of the heritability were larger, the required sample size for sib pairs would not
decrease. Thus a sample size as small as 20 twin pairs is clearly inadequate.

Thus it is reasonable to assume that the causes of failure of the MANOVA method for
the twin data set were small sample size and the presence of genotype by environment

interaction.
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Table 4-1 Maximum likelihood estimates and covariance matrices of parameters of the basic
and reduced pedigree models for height data.

HE o 0% o> -1

UM a e
Basic 175.5 163.4 41.2 0.0 1.70 178.4
Reduced 175.5 163.4 41.1 - 1.70 178.4

Covariance matrix of basic model

KM 2.17

Mg 0.0 1.31

oi 0.0 0.0 1025

cs 0.0 0.0  -891 821

o2 0.0 0.0 0.33 ~0.50 0.22
Covariance matrix of reduced model.

Hyg 2.17

. 0.0 1.31

oﬁ 0.0 0.0 57.3

o’ 0.0 0.0 —0.21 0.22

Table 42  Maximum likelihood estimates of parameters of the extended pedigree model for
height data and six polymorphic loci. The final column represents the
improvement of each extended model over the reduced model of table 3-11.

2 2 2 2

Locus Genotypes Ky HE o, Oyy Oyy Oy -1 —2A1
haptoglobin 11 12 22 1755 163.4 41.6 2.18 2.07 0.52 176.4 4.0
MN MM MN NN 1755 1634 410 188 151 178 1783 0.2

RhesusC CC G « 175.5 163.4 412 219 253 093 1769 3.0
Rhesus E e E EE 1755 1634 414 203 078 0.18 1773 2.2
Jk a & b 175.5 163.1 422 1.76 222 1.06 169.3* 1.2
Ss SS Ss s 175.5 163.4 413 3.01 1.18 149 1776 1.6

* Only 43 twin pairs were measured at this locus. See text for explanation.
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Table 4-3 Maximum likelihood estimates of parameters of the basic and two reduced
pedigree models for IQ data.
2 2
v Hp S 04 O, -1
Basic 111.7 109.0 97.4 0.0 27.0 248.1
Single mean 110.0 98.8 0.0 26.9 248.5
Reduced 110.0 99.0 - 27.0 248.5
Estimated Covariance Matrices
Basic model
Hag 5.84
M 0.0 3.53
o 0.0 00  95%
c; 00 00 -8850 8600
o2 0.0 0.0 79.9 122 56.0
Single mean model Reduced single mean model.
0 2.23 7} 2.23
o 0.0 9840 o> 00 5080
o’ 0.0 -9060 8800 oz 00 -450 540
o2 0.0 790  -121 55.0
Table 4-4 Maximum likelihood estimates of parameters of the extended pedigree model for
IQ data and six polymorphic loci. The final column represents the improvement of
each extended model over the reduced model of table 3-13.
2 2
Locus Genotypes 18 c, G%Y G%y Oy -1 —2A1
Haptoglobin 11 12 22 1100 957 258 18.8 448 2475 2.0
MN MM MN NN 110.0 1094 239 164 354 248.0 1.0
Rhesus C cC C « 1100 843 725 41.1 16.0 246.6 3.8
Rhesus E ee Fe FE 110.0 992 26.1 29.6 0.02 248.3 0.4
Jk aw & b 1100 1007 56.4 203 154 2363* 4.0
Ss SS Ss ss 110.1 857 19.5 603 21.0 247.0 3.0

* only 43 twin pairs were measured at this locus.
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Table 4-5 Maximum likelihood estimates of parameters of the pedigree model extended to
include heterozygosity scores.
IQ
R A L Y
109.9 112.0 22.7 34.4 6.45 236.9 2.8
Height
2 2 2
KM HE o, ci oM oy -1 —2Al
175.5 163.1 42.1 1.66 1.56 2.30 169.8 0.24
Table 4-6 Observed values, standardized residuals and approximate x% variables for three
different twin pairs.
twin pair twin height i/ G Q:
10 1 150.3 -1.89 5.95
2 154.8 -1.19 3.71
twin pair twin 1Q /6 Q
32 1 130 1.85 4.6
2 99 -0.97 3.05
36 1 80 -2.81 6.26
2 106 -0.36 0.17
X2 e = 3.84

1,0.05



Table 4-7

Frequencies of twin pairs in genotypic classes for the Pi locus.

a. Dizygous females
twin 1 genotype

Diz mal
twin 1 genotype

twin 2 MiM; MMy M;S twin 2 MiM; Mi1M»
MM 16 MiM; 13 3
MiM» 2 MMz 3 3
M;S 4
M>S 2
28 22
i X pair
female genotype
male MiM; MMz
MiIM1 11 3
MIM2 3 3
20
Table 4-8 Error covariance matrices of FEC after allowing for genotypic effects of the Pi

locus.

a. Dizygous females

sister 1

sister 1 0.6713
sister 2 0.0803

t = 0.0803 / +/(0.6713)(0.5895) = 0.128
255 se (h2) = 0.410

h2 <0.

sister 2

0.0803
0.5895

c._Opposite sex pairs

sister
brother

t = 0.1849 /\(0.699)(0.5744) = 0.292

h2 <0.

sister
0.6990
0.1849

brother
0.1849
0.5744

584 se (h2) = 0.472

b. Dizygous males
brother 1  brother 2

brother 1  0.39 0.2937
brother 2 0.2937 0.9505
t =0.2937 / V(0.39)(0.9505) = 0.482
h2 <0.964 se (h?) = 0.362

N.B. 6::‘1 2 is calculated from the formula 4(1+t)2(1-t)2/d.f.




Figure 4-1 Plots of Fi(l) against normal scores for the Ss locus.
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5. CONCLUSIONS

The question of heterozygote advantage in humans has been tackled in this thesis by
considering a number of biochemical polymorphisms, a variety of quantitative traits, several
statistical mehods for analysing data and some mathematical models to describe the
phenomenon. Several interesting results have emerged to shed some light on the conflicting

results previously reported in the literature.

Prior to the research done for this thesis, there was theoretical reasoning to support the view
that if a number of loci were having a direct effect on a quantitative trait, then adding their
effects together would result in a decreasing variance with increasing heterozygosity, without
there being any heterozygote advantage per se (Chakraborty and Ryman, 1983). Further
theoretical reasoning stated that the trend in variance would depend on the frequencies of alleles
at each locus (Mani, 1988). Both of these results depended on assumptions of additivity of

allelic effects and also of locus effects.

It has been shown in this thesis that, when there are only two possible alleles per locus, it is
irrelevant whether the interactions between loci are multiplicative or additive or whether the
interactions between alleles are additive or dominant/recessive. It ﬁas also been shown that it
does not matter what the allelic frequencies are. Whatever the situation, the phenotypic variance
of a quantitative trait which is directly affected by the loci will decrease with increasing

heterozygosity.

It has also been shown using simulations that when there are more than two alleles at each
locus, the trends in phenotypic variance cannot be neatly categorised according as allelic
frequencies are all reasonably similar or one is much smaller then the others. In fact, different
trends in variance may be obtained by allowing the least frequent allele to be recessive,

dominant with a small effect or dominant with a large effect.

If we choose, for investigation, loci which are known to have an effect on the quantitative trait,
then, if they are two-allele loci, we will get decreasing variance with increasing heterozygosity,

regardless of whether the heterozygotes afford any advantage. On the other hand, if each locus



has more than two alleles, decreasing variance with increasing heterozygosity is more likely to
indicate heterozygote advantage. However, we cannot expect heterozygosity at each locus to
have the same effect on the variance and so we can expect fluctuations in this downward trend.

Environmental variance will also cause fluctuations.

One way of dealing with the different locus contributions to variance is to use the adaptive
distances model (Smouse, 1986). In its current state this model has the shortcoming of being
able to deal with only two alleles per locus. However, an extended model is being developed
(Smouse, personal communication). The adaptive distances model's other major shortcoming is
that it requires measures of fitness for each genotype. More accurate estimation of fitness than
has been used in this thesis may be possible by extending the analyses of Hed (1986).
However, the fitness for the different genotypes of a locus will always be relative and cause
some problems in the use of this model. Qne possible way to minimise the problem is to obtain

estimates from a different data set to the one being used to fit the model.

The pedigree model is a very powerful tool for fitting variance components but unfortunately no
results of any consequence were obtained using this model because of the small numbers of
twin pairs available for analysis.The number of mother-baby pairs was large but these data did
not lend themselves to a pedigree model. Since only a small number of loci were available for
the latter set, the data were analysed by considering each locus individually and grouping the
quantitative traits into anthropometric and biochemical. Dispersion matrices for the different

genotypes were compared but the results were inconclusive.

Taken as a whole, the results seem to indicate that the degree of heterozygote advantage differs
among loci. In particular, there does seem to be some effect of heterozygosity at the placental
alkaline phosphatase locus on the variance of newborns' anthropometric traits. The more loci
we examine for a wide variety of quantitative traits the more we are likely to see trends

emerging.
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IF(R.LT.CRIT(1)) THEN
ILOC(L,J)=1
GO TO 30

ENDIF

DO 35 K=2,NAL
IF(R.GE.CRIT(K-1).AND.R.LT.CRIT(K)) THEN

ILOC(L,J)=K
GO TO 30
ENDIF
35 CONTINUE
30 CONTINUE
C***** If the two allelesat the locus are different, increment heterozygosity
IF(ILOC (L,1).NE.ILOC (L2)IHET()=IHET(I)+1
25 CONTINUE
Cxik¥*  Inyoke appropriate model depending on whether allelic effects(ALEF)
C are additive or dominant and whether locus effects(GEF) are additive or
C  multiplicative.
IF(ALEF.EQ.'a.AND.GEF.EQ.'m)THEN
CALL ADDMUL(LEFE(I))
ELSE IF(ALEF.EQ.'a . AND.GEF.EQ."a")THEN
CALL ADDADD(EF(I))
ELSE IF(GEF.EQ.'m")THEN
CALL DOMMUL(,EF(I))
ELSE
) CALL DOMADD(,EF(I))
ENDIF
20 CONTINUE
C**%%* (alculate numbers in each heterozygosity class.Keep counts in NHET.

DO 44 J=1,NJ
NHET(J)=0
XMJ)=0
SS()=0

44 CONTINUE

DO 45 I=1,INDIV
J=IHET()+1
NHET(J)=NHET(J)+1
XMD)=XMI)+EE{)

SS@)=SS)+EF(I)**2

45 CONTINUE

CddkCalculate mean and variance of each heterozygosity class
DO 50 J=1,NJ

C***** First increment grand mean classes

XBAR()=XBARJ)+XM(J)
NHT(J)=NHTJ)+NHET(J)

RN=REAL(NHET())
IF(RN.GT.0)DF(J)=DF(J)+RN-1.0
IF(RN.LE.1.0)THEN

VAR@J)=0
GO TO 50

ENDIF

XMDH=XM(J)/RN
VAR®)=(SSJ)-RN*XM(J)**2)/(RN-1.0)

C#**x% Increment grand variance classes

VBAR(J)=VBAR(J))+(RN-1.0)*VAR(J)

50 CONTINUE
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19 CONTINUE
C**xkk Calculate pooled variance and grand mean for each class.
DO 60 J=1,NJ
RNJ=REAL(NHT(QJ))
IF(DF(J).LE.0.0)THEN
VBARJ)=0
XBAR(J)=XBAR(J)
ELSE
XBARJ)=XBAR(J)/RNJ
VBARJ)=VBAR(J)/DF(QJ)
ENDIF
60 CONTINUE
WRITE(2,65)
WRITE(2,55)(XBAR(J),VBAR(J),DF(J),NHT(J),J=1,NJ)
5  FORMAT(4110,2A1/2F10.0,15/(8F10.0))
6 FORMAT(5X ,'allelic effects ',Al,' genotypic effects ',Al/
+5X,'allelic freqs',10F6.3)
16 FORMAT(8E10.3)
21 FORMAT(SX, RUN',I5)
31 FORMAT(E12.4,215)
40 FORMAT(5(I5,E12.5))
55 FORMAT(5X,3E12.5,110)
65 FORMAT(5X, Averages over all runs’)
END

- "SUBROUTINE ADDMUL(],F)
COMMON ILOC (10,2),RLL,RUL,NAL,NLOCILCRIT(10)
C**xikx Calculate the genotypic effect for individual i when allelic effects are
C  additive and locus effects are multiplicative
F=1.0
C*#xix [Jse the range of possible values of the trait to determine base value(X)
C and increment(S) for each gene.
ZNL=1.0/REAL(NLOCI)
X=RLL**ZNL
Y=RUL**ZNL
$=0.5*(Y-X)
C#**** For individual,l, calculate the genotypic effect.
AL=REAL(NAL)
DO 10 L=1,NLOCI
GEN=S*(ILOC(L,1)+ILOC(L,2)-2.0)/(AL-1.0)+X
F=F*GEN
10 CONTINUE
1 FORMAT(EI12.5)
RETURN
END

SUBROUTINE DOMMUL(LF)

COMMON ILOC (10,2),RLL,RUL,NAL,NLOCILCRIT(10)
C****x Alleles exhibit dominance and locus effects are multiplicative.
C If there are more than two alleles, the first one is recessive and
C the others are codominant and additive.

F=1.0

ZNL=1.0/REAL(NLOCI)

X=RLL**ZNL

Y=RUL**ZNL



AL=REAL(NAL)
S=(Y-X)*(AL-1.0)/(2.0*AL-3.0)

C**+i* For individual I, calculate the genotypic effect.
DO 10 L=1,NLOCI
C=(ILOC(L,1)+ILOC(L,2)-2.0)/(AL-1.0)
IF(ILOC(L,1).EQ.ILOC(L,2))C=0.5*C
GEN=C*S+X
F=F*GEN

10 CONTINUE

1 FORMAT(E12.5)

RETURN
END

SUBROUTINE ADDADD(],F)
COMMON ILOC (10,2),RLL,RUL,NAL,NLOCLCRIT(10)

C***%* This subroutine calculates the genotypic effect if the alleles are

C additive and the locus effects are also additive.
S=(RUL-RLL)/(2.0*REAL(NLOCI))
X=RLL
F=X
AL=REAL(NAL)
DO 10 L=1,NLOCI
F=F+S*(ILOC(L,1)+ILOC(L,2)-2.0)/(AL-1.0)
10 CONTINUE
1 FORMAT(E12.5)
RETURN
END

SUBROUTINE DOMADD(,F)

COMMON ILOC (10,2),RLL,RUL,NAL,NLOCI,CRIT(10)
C¥kx%  Alleles exhibit dominance and locus effects are additive
C If there are more than two alleles the first is recessive and
C the others are codominant and additive.

X=RLL

AL=REAL(NAL)

S=(RUL-RLL)/REAL(NLOCI)*(AL-1.0)/(2.0*AL—3.0)

F=X

DO 10 L=1,NLOCI

C=(ILOC (L,1)+ILOC(L,2)-2.0)/(AL-1.0)

IFILOC(L,1).EQ.ILOC(L,2))C=0.5*C

F=F+C*§

10 CONTINUE

1 FORMAT(E12.5)
RETURN
END

100
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APPENDIX B - MINITAB program

NOECHO

NOTE *** Puri and Sen's test for equality of dispersion matrices.
NOTE *** Variables ACFM PLFM LFM ACFB BFB
NOTE *** J=sqrt(12)*(u-0.5) transforms ranks to scores,E.
NOTE *** Populations - mother's haptoglobin types (3 populations)
READ 'HAPT.DAT' C2 C3 C4 C5 C6 C1

NOTE *** C1 specifies the population for each set of variables
NOTE *** K1 is number of observations

NOTE *** K2 is number of variables

COUNT C1K1

LET K2=5

NOTE *** Form ranks for each variable

RANK C2 C12

RANK C3 C13

RANK C4 C14

RANK C5 C15

RANK C6 C16

NAME C12='R1', C13='R2',C14="R3',C15="R4',C16='RY'
NOTE *** Raw data not required again. Erase and reuse C2-C6.
ERASE C2-C6

NOTE *** Form E values by transforming ranks

LET K3=SQRT(12)

LET C2=K3*(R1'/(K1+1)-0.5)

LET C3=K3*(R2'/(K1+1)-0.5)

LET C4=K3*(R3'/(K1+1)-0.5)

LET C5=K3*('R4'/(K1+1)-0.5)

LET C6=K3*('R5'/(K1+1)-0.5)

NAME C2='El',C3='E2',C4="E3',C5="E4',C6='E5'
MEAN 'El' K11

MEAN 'E2' K12

MEAN 'E3' K13

MEAN 'E4' K14

MEAN 'E5' K15

NOTE *** Find sums of squares of E vectors

SSQ 'El' K16

SSQ 'E2' K17

SSQ 'E3' K18

SSQ 'E4' K19

SSQ 'ES' K20

NOTE *** Find products of E vectors

LET C21="E1'*'E2'

LET C22="E1'*'E3'

LET C23='E1'*'E4'

LET C24="E1'*'ES'

LET C26="E2'*'E3'

LET C27="E2'*'E4’

LET C28="E2'*'E5’

LET C30="E3'*'E4’

LET C31="E3'*'ES'

LET C33="E4'*'ES'

NOTE *** Find sums of products of E vectors

SUM C21 K21

SUM C22 K22



SUM (C23 K23

SUM C24 K24

SUM C26 K25

SUM C27 K26

SUM C28 K27

SUM C30 K28

SUM C31 K29

SUM C33 K30

NOTE *** Calculate values for pooled S vector, S*.
LET K3=K1-1

LET K16=(K16-K1*K11*K11)/K3

LET K17=(K17-K1*K12*K12)/K3

LET K18=(K18-K1*K13*K13)/K3

LET K19=(K19-K1*K14*K14)/K3

LET K20=(K20-K1*K15*K15)/K3

LET K21=(K21-K1*¥K11*K12)/K3

LET K22=(K22-K1*¥K11*K13)/K3

LET K23=(K23-K1*K11*K14)/K3

LET K24=(K24-K1*K11*K15)/K3

LET K25=(K25-K1*K12*K13)/K3

LET K26=(K26-K1*¥K12*K14)/K3

LET K27=(K27-K1*¥K12*K15)/K3

LET K28=(K28-K1*K13*K14)/K3

LET K29=(K19-K1*K13*K15)/K3

LET K30=(K30-K1*K14*K15)/K3

STACK K16 K21-K24 K17 K25-K27 K18 K28 K29 K19 K30 K20 C17
NAME C17='S*

NOTE *** K values and rank vectors not required again so erase.
ERASE K11-K30 C12-C16

NOTE *** Calculate squares of E vectors

LET C20="E1'**2

LET C25="E2'**2

LET C29="E3'**2

LET C32="E4'**2

LET C34='E5'**2

LET K6=20 #no. of column of first E**2 product
LET K5=1 # index for column K4

LET K3=20 # no. of column of second E**2 product
LET K4=35 # no. of first column where E**4 products are stored
EXECUTE 'OUTER' 15 # execute p(p+1)/2 times - p is no. variates
LET C35=C35/K1

LET C36=C36/K1

LET C37=C37/K1

LET C38=C38/K1

LET C39=C39/K1

LET C40=C40/K1

LET C41=C41/K1

LET C42=C42/K1

LET C43=C43/K1

LET C44=C44/K1

LET C45=C45/K1

LET C46=C46/K1

LET C47=C47/K1

LET C48=C48/K1

LET C49=C49/K1

102
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NOTE *** Products of E vectors no longer required; so erase.
ERASE C20-C34

NOTE *** C35-C49 now contain the sums of products
NOTE *** Put into matrix 1 and then erase.

COPY C35-C49 M1

ERASE C35-C49

NOTE

NOTE *** Using the E values corresponding to each population in
NOTE turn construct an S vector for each.

NOTE Store S vectors in C7-C9

NOTE

COPY 'El' 'E2' 'E3' 'E4' 'E5' C12-C16;

USE C1=0.

LET K4=1 #K4 is number of first population

LET K5=7 # K5 is column for first S vector

EXECUTE 'SVECTOR'

COPY 'El' 'E2' 'E3' 'E4' 'E5' C12-C16;

USE Cl1=1.

EXECUTE 'SVECTOR'

COPY 'El' 'E2' 'E3' 'E4' 'E5' C12-C16;

USE C1=2.

EXECUTE 'SVECTOR'

ERASE K5 K4

NAME C7='S0',C8='S1',C9='S2' #S vector for each population
PRINT 'SO' 'S1' 'S2' 'S*

NOTE

NOTE *** Complete calculations for variance matrix and store in M4
NOTE

TRANSPOSE 'S*' M2

MULTIPLY 'S*' M2 M3

SUBTRACT M3 M1 M4

INVERT M4 M5

PRINT M4 M5

LET K3=0

LET K5=7 # column no. for S vector of first population
LET K4=1

NOTE *** Calculate chi-square in K3

EXECUTE 'PURILN' 3 # execute once for each population

PRINT K3
END
macro OUTER
EXECUTE 'MULT' 15 # execute p(p+1)/2 times: p is number variates
LET K4=K4+1 #column no. for storing sums of products
LET K3=K3+1 #column for second E vector
LET K5=1 #reset pointer to position 1 of column K4
LET K6=20 # column for first E product
END
macro MULT
LET C18=CK6*CK3 #multiply E vectors
SUM C18 K7

LET CK4(K5)=K7 #store sum of products at position K5 of col K4
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LET K6=K6+1
LET K5=K5+1
END

macro SVECTOR

NOTE *** Find sums and sums of squares of E values for a particular sample
SUM C12K11

SUM C13 K12

SUM C14 K13

SSQ C12 K16

SSQ C13 K17

SSQ C14 K18

NOTE *** Find products of E values
LET C21=C12*C13

LET C22=C12*C14

LET C23=C12*C15

LET C24=C12*C16

LET C25=C13*C14

LET C26=C13*C15

LET C27=C13*C16

LET C28=C14*C15

LET C29=C14*C16

LET C30=C15*C16

NOTE *** Find sums of products of E values
SUM C21 K21

SUM C22 K22

SUM C23 K23

SUM C24 K24

SUM C25 K25

SUM C26 K26

SUM C27 K27

SUM C28 K28

SUM C29 K29

SUM C30K30

COUNT C13 K10

LET C19(K4)=K10

NOTE *#** Calculate elements of S vector
LET K16=(K16-K11*¥K11/K10)/(K10-1)
LET K17=(K17-K12*K12/K10)/(K10-1)
LET K18=(K18-K13*K13/K10)/(K10-1)
LET K19=(K19-K14*K14/K10)/(K10-1)
LET K20=(K20-K15*K15/K10)/(K10-1)
LET K21=(K21-K11*K12/K10)/(K10-1)
LET K22=(K22-K11*K13/K10)/(K10-1)
LET K23=(K23-K11*K14/K10)/(K10-1)
LET K24=(K24-K11*K15/K10)/(K10-1)
LET K25=(K25-K12*K13/K10)/(K10-1)
LET K26=(K26-K12*%K14/K10)/(K10-1)
LET K27=(K27-K12*K15/K10)/(K10-1)
LET K28=(K28-K13*K14/K10)/(K10-1)
LET K29=(K29-K13*K15/K10)/(K10-1)
LET K30=(K30-K14*K15/K10)/(K10-1)
NOTE *** Stack elements into column K5
STACK K16,K21-K24,K17,K25-K27,K18,K28,K29,K19,K30,K20 CK5
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LET K5=K5+1

LET K4=K4+1

ERASE C12-C16 K10-K30 C21-C30 #erase to make room for next vector
END

macro PURILN

SUBTRACT 'S* CK5 M6
TRANSPOSE CKS5 M7
SUBTRACT M2 FROM M7 M8
MULTIPLY M8 M5 M9
MULTIPLY M9 M6 K6

LET K7=C19(K4)

LET K3=K3+K6*K7 #K3 contains test statistic
LET K5=K5+1

LET K4=K4+1

ERASE M6-M9 K6

END
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APPENDIX C - Pedigree analysis program

PROGRAM ATS
C#**** This program performs a pedigree analysis for twin data. The
C  variance matrix includes components for additive variance and
C dominance variance. The error variance is divided into 3 components,

C  depending on an individual's genotype at a major locus.
C***** Input Variablcs ske sk she o ok ok o 3 ok sl ke ok ok sk sk e sk 3k sk ok ok 2k ok 3k ok o ok ok s ke she 3 e ke sk ke sk ke she e e e e sk ofe sk ke kel

C FY family number

C SEX sex of twins(all twins are same sex)

CcC ZYG twins are MZ or DZ

C HT height for each twin

C GE genotype at major locus for each twin
C***********************************************************************

COMMON PHI(45,3),DEL(45,3),Q(45,3),R(45,3),5(45,3),HT(45,2),SEX(
+45),NF,HMF,HMM,X2(7),0MI(45,3),SSP(45),U(45,2),0M(45,3)
DIMENSION FY(45),ZYG(45),GE(45,2),X(7),G(7),W(21),H(28),01(3)
DIMENSION P1(3),Q1(3),R1(3),S1(3),FNI(21),FI(21),WK(40),COV(21)
DIMENSION OP(2,2),0Q(2,2),0R(2,2),05(2,2),QS(45),RES(45,2)
DIMENSION OMS(2),B(2),QA(45,2)
EXTERNAL FUNCT
OPEN(UNIT=1,FILE="MATS.DAT',STATUS='OLD")
NF=45
C**** NF is number of families
READ(1,10)(FY(I),SEX(@),ZYG(I),(HT(,J),GE(LJ),J=1,2),I=1,NF)
HMF=0
HMM=0
NFS=0
NMS=0
NCC=0
NCL=0
NLL=0
DO 15 I=1,NF
C#**+*k Find cumulative sum of heights for each sex; also number of each sex.
IF(SEX(I).EQ.0)THEN
HMF=HMF+HT(I,1)+HT(,2)
NFS=NFS+2
ELSE
HMM=HMM+HT(,1)+HT(I,2)
NMS=NMS+2
ENDIF
C**%k*x PHI DEL,Q,R and S are symmetric 2*2 matrices containing kinship
C  coefficients, coeffs of identity and indicators of genotype for a
C  major locus.
PHI(I,1)=0.5
PHI(1,3)=0.5
DEL(,1)=1.0
DEL(1,3)=1.0
Q(1,2)=0
R(1,2)=0
S1,2)=0
C***+** Define first element of Q,R,S according to twin 1's genotype.
IF(GE(,1).EQ.'11)THEN
QI 1)=1.0
R(I,1)=0
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S{d,1)=0
NCC=NCC+1
ELSE IF(GE(I 1).EQ.'12)THEN

NCL=NCL+1
ELSE
Q(,1)=0
R(,1)=0
SI,D=1.0
NLL=NLL+1
ENDIF
CH**** If twins are MZ third element =first element for Q,R,S since
C  genotypes are the same.
IF(ZYG().EQ.1)THEN
PHI(1,2)=0.5
DEL(,2)=1.0
Q(,3)=Q(,1)
R(1,3)=R(L1)
S(1,3)=S(,1)
ENDIF
C***** If twins are dizygous, second twin's genotype may be different.
IF(ZYG().EQ.2)THEN
PHI(I,2)=0.25
DEL(,2)=0.25
IF(GE(L,2).EQ."11)THEN
Q(,3)=1.0
R(,3)=0
S(1,3)=0
ELSE IF(GE(1,2).EQ.'12")THEN

S(I 3)=1.0
ENDIF
ENDIF
15 CONTINUE
C#**** NCC,NCL,NLL are numbers of first twins with each of the three
C  genotypes.
WRITE(2,53)NCC,NCL,NLL
C**** MF and HMM are means for females and males respectively.
HMF=HMF/NFS
HMM=HMM/NMS
MAXFN=500
I0OPT=2
NSIG=2
N=6
C**#** ]nitial estimates of parameters
X(1)=HMM
X(2)=HMF
X(3)=6.0
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X@#)=1.5
X(5)=1.5
X(6)=0.8
Cx##%k* Call the IMSL subroutine for minimizing a function.
CALL ZXMIN(FUNCT,N,NSIG,MAXFN,IOPT,X,H,G,F,W,IER)
WRITE(2,30)(X(K),K=1,N)
WRITE(2,30)(X2(K),K=3,N)
WRITE(2,31)(G(K),K=1,N)
WRITE(2,32) F
WRITE(2,33)IER
WRITE(2,34)(W(K),K=1,3)
CALL MATPR(H,N)
C*#*%** Qbtain covariance matrix by inverting information matrix calculated
C  at the maximum likelihood estimates.
CALL FUNCT(N,X,F)
NN=N*(N+1)/2
DO 49 J=1,NN
FI(J)=0
49 CONTINUE
C**¥** Calculate symmetric information matrix for each family
DO 50 I=1,NF
IF(SEX(I).EQ.0) THEN
FNI(3)=0OMI(I,1)+OMI(,2)*2+0MI(],3)
FNI(1)=0
ELSE
FNI(3)=0
FNI(1)=0OMI(I,1)+2*OMI(1,2)+OMI(,3)
ENDIF
C***x* T this data set sexes are always the same
FNI(2)=0
C***%* Expected 2nd derivative between mean and variance terms is always 0.
FNI(4)=0
FNI(5)=0
FNI(7)=0
FNI(8)=0
FNI(11)=0
FNI(12)=0
FNI(16)=0
FNI(17)=0
C#x¥xx Convert OMIPHI,Q,R,S to 1-dimensional arrays for use in MULT
DO 51J=1,3
01(J)=OMI(1,J)
P1()=PHI(L,J)
Q1()=Q(1,J)
R1(H=RA,J)
S1(NH=S,J)
51 CONTINUE
Cx¥** Calculate 2nd derivatives between variance terms
CALL MULT(O1,P1,0P)
DO 58 K=1,2
DO 58 J=1,2
OP(K,))=2*OP(K,J)
58 CONTINUE
FNI(6)=0.5*(OP(1,1)**2+2*0OP(1,2)*OP(2,1)+OP(2,2)**2)
CALL MULT(01,Q1,0Q)
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FNI(10)=0.5%(0Q(1,1)**2+2*0Q(1,2)*0Q(2,1)+0Q(2,2)**2)
CALL MULT(O1,R1,0R)
FNI(15)=0.5*(OR(1,1)**2+2*0OR(1,2)*OR(2,1)+OR(2,2)**2)
CALL MULT (01,51,0S)
FNI(21)=0.5%(0S(1,1)**2+2*0S(1,2)*0S(2,1)+0S(2,2)**2)
FNI(9)=0.5*(0Q(1,1)*OP(1,1)+0Q(1,2)*0P(2,1)+0Q(2,1)*OP(1,2)
1 +0Q(2,2)*0P(2,2))
FNI(13)=0.5%(OR(1,1)*OP(1,1)+0OR(1,2)*OP(2,1)+OR(2,1)*OP(1,2)
1 +OR(2,2)*0P(2,2))
FNI(18)=0.5*(0S(1,1)*OP(1,1)+0S(1,2)*OP(2,1)+0S(2,1)*OP(1,2)
1 +0OS(2,2)*0P(2,2))
FNI(14)=0.5*%(0Q(1,1)*OR(1,1)+0Q(1,2)*OR(2,1)+0Q(2,1)*OR(1,2)
1 +0Q(2,2)*0R(2,2))
FNI(19)=0.5%(0Q(1,1)*0S(1,1)+0Q(1,2)*0S(2,1)+0Q(2,1)*0S8(1,2)
1 +0Q(2,2)*0S8(2,2))
FNI(20)=0.5*(OR(1,1)*OS(1,1)+OR(1,2)*OS(2,1)+OR(2,1)*OS(1,2)
1 +OR(2,2)*0S(2,2))
C*%%* Print information matrix for each family
CALL MATPR(FNIN)
Cdedk - Add up information matrices for all families
DO 50 J=1,NN
FI(H)=FIJ)+FNI(J)
50 CONTINUE
WRITE(2,52)
CALL MATPR(FIN)
C*#*#%% Invert information matrix to obtain covariance matrix
CALL LINV2P(FI,N,COV,IDGT,D1,D2,WK,IER)
WRITE(2,54)
CALL MATPR(COV,N)
C**d¥%k Calculate Q statistics for goodness of fit tests.
SUMQ=0
SQ3=SQRT(3.0)
DO 60 I=1,NF
RES{,1)=HT(,1)-U(,1)
RES(1,2)=HT(1,2)-U(L,2)
QS(I)=SQRT(2*SSP(I))-SQ3
SUMQ=SUMQ+SSP()
OMS(1)=0M(1,1)-OM(],2)**2/0OM(1,3)
B(1)=0M(1,2)/OM(],3)
QA(L,1)=(RES(L,1)-B(1)*RES(1,2))**2/OMS(1)
OMS(2)=0M(1,3)-OM(1,2)**2/OM(1,1)
B(2)=0M(L,2)/OM(],1)
QA(I,2)=(RES(1,2)-B(2)*RES(,1))**2/OMS(2)
60 CONTINUE
WRITE(2,62)(QS(I),I=1,NF)
WRITE(2,35)SUMQ
WRITE(3,63)(RES(1,1),RES(1,2),QA(1,1),QA(1,2),I=1,NF)
10 FORMAT(F3.0,2X,2F2.0,4X,F6.1,1X,A2/13X,F6.1,1X,A2)
30 FORMAT(5X, Parameter Estimates'/5X,6E12.5)
31 FORMAT(5X,'Gradient Estimates’/5X,6E12.5)
32 FORMAT(5X,-log likelihood'/5X,E12.5)
33  FORMAT(5X,'IER",110)
34 FORMAT(5X,'WORK SPACE'/5X,3E12.5)
35 FORMAT(5X,6E12.5)
37 FORMAT(5X, VARY PARAMETER',13/5X,10F8.2)
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52 FORMAT(5X, Information matrix')
54 FORMAT(5X, Covariance matrix')
53 FORMAT(3I10)
62 FORMAT(5X,'Q STATISTICS'/(5X,6E12.5))
63 FORMAT(4F8.2)
END

SUBROUTINE FUNCT(N,X,F)
COMMON PHI(45,3),DEL(45,3),Q(45,3),R(45,3),5(45,3),HT(45,2),SEX(
+45),NF,HMF,HMM,X2(7),0MI(45,3),SSP(45),U(45,2),0M(45,3)
DIMENSION X(7),G(7),XX(3),ZZ(2,2)
C#**¥ikk Thig subroutine calculates -log likelihood in F and also the
C derivative wrt each parameter of this function.
F=0
CH*¥x% X(]) estimates male mean, X(2) female mean.
DO 10 I=1,NF
IF(SEX(I).EQ.0)THEN
UL 1)=X(2)
U(1,2)=X(2)
ELSE
U, 1)=X(1)
U(1,2)=X(1)
ENDIF
C#**¥%* Varjiance estimates must be gt 0; so square the estimates.
X2(3)=X(3)**2.
X2(4)=X(4)**2,
X2(5)=X(5)**2.
X2(6)=X(6)**2.
C***%* QM is the variance matrix, omega
DO 15J=1,3
OM(L,))=2.0*X2(3)*PHI(I,1)+X2(4)*Q(LI+X2(5)*R(I,N+X2(6)*
+S(LJ)
15 CONTINUE
C***+** Calculate the inverse of omega: put it in OMI
DOM=0M(],1)*OM(,3)-OM(1,2)**2.0
OMI(1,1)=0OM(1,3)/DOM
OMI(1,3)=0M(1,1)/DOM
OMI(L,2)=-OM(I,2)/DOM
H1=HT{,1)-U(,1)
H2=HT(,2)-U(,2)
SSP(I)=H1*#¥2.0*OMI(I,1)+H2**2.0*OMI(I,3)+2*H1*H2*OMI(,2)
C¥*x¥* Calculate function value
F=F+(LOG(DOM)+SSP(I))/2.0
10 CONTINUE
22 FORMAT(5X,6E12.5)
50 RETURN
END

SUBROUTINE MULT(A,B,C)
DIMENSION A(3),B(3),C(2,2)

C**k* Multiply two symmetric 2x2 matrices stored as a vector.
C(1,D=A(1)*B(1)+A(2)*B(2)
C(1,2)=A(1)*B(2)+A(2)*B(3)
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C(2,1)=A)*B(1)+A(3)*B(2)

C(2,2)=A(2)*B(2)+A(3)*B(3)
10 FORMAT(5X,6E12.5)

RETURN

END

SUBROUTINE MATPR(Y,N)
DIMENSION Y (30)

C#*%¥* Print a matrix,Y, which has been stored in symmetric storage mode.
KI=1
DO 40 K=1,N
KE=KI+K-1
WRITE(2,35)(Y(L),L=KLKE)
KI=KE+1

40 CONTINUE

35 FORMAT(5X,6E12.5)
RETURN
END
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