THE BIOLOGY AND ECOLOGY OF
CALIFORNIA RED SCALE, *Aonidiella aurantii* (Mask.)
(Hemiptera:Diaspididae), AND ITS NATURAL ENEMY,
Aphytis melinus DeBach (Hymenoptera:Aphelinidae).

by
Zhao Jing-wei
B. Ag. Sc. (Entomology),
M. Ag. Sc. (Fujian Agricultural College, China)

A thesis submitted for the degree of Doctor of Philosophy
in the Faculty of Agricultural Science to the
University of Adelaide.

Department of Entomology,
Waite Agricultural Research Institute,
The University of Adelaide.

August, 1987
TABLE OF CONTENTS

SUMMARY I
DECLARATION III
ACKNOWLEDGEMENTS IV

CHAPTER 1. INTRODUCTION AND OBJECTIVES 1

1.1. Aonidiella aurantii (Mask.) 1
1.2. Aphytis melinus DeBach 2
1.3. Studies of Red Scale and its Aphytis Parasites 2
1.4. Studies on Red Scale and its Parasites in Australia 4

CHAPTER 2. RECORDING EXTREMES OF TEMPERATURES IN THE ORCHARD 10

2.1. In Winter 11
2.1.1. Method 11
2.1.2. Results 11
2.2. In Summer and Autumn 13
2.3. Discussion 15

CHAPTER 3. CULTURE OF EXPERIMENTAL INSECTS AND SPECIAL EQUIPMENT 19

3.1. California Red Scale 19
3.1.1. Culture of red scale 19
3.1.2. Mortality of red scale due to the method of transferring 22
3.1.2.1. Introduction 22
3.1.2.2. Experiment 1 22
3.1.2.3. Experiment 2 28
3.2. Mass Culture of A. melinus 28
3.2.1. Collection of one-day-old Aphytis wasps 32
3.3. Special Equipment 33
3.3.1. Collection tube for wasps of A. melinus 33
3.3.2. Constant humidity cage 33
3.3.3. Citrus fruit cage 33
3.3.4. Head lens 33
3.3.5. Microscope 37
3.3.6. Photographic equipment 40

CHAPTER 4. INFLUENCE OF TEMPERATURE ON THE BIOLOGY OF CALIFORNIA RED SCALE 44

4.1. Introduction 44
4.2. Mortality of Red Scale Cohorts on Trees 44
4.2.1. Introduction 44
4.2.1.1. Methods and materials 45
4.2.1.2. Starting experimental cohorts of red scales 45
4.2.1.3. Use of a photographic method to observe the survival and growth of red scale 47
4.2.1.3. Ambient temperature during the year 47
4.2.2 Results
4.2.2.1 The survival-rate of adult scales
4.2.2.2 The relationship between HD > 10°C and survival of adult red scales
4.2.2.3 The relationship between H.D. > 40°C and the survival of 1st instar scales
4.2.2.4 The drop-off rate of dead 1st instar scales
 (i) Introduction
 (ii) Methods
 (iii) Results
 (iv) Discussion
4.2.2.5 The drop-off rate of dead scales of other stages.
4.2.3 General discussion

4.3. Mortality of Red Scale and the Durations of Temperatures

4.3.1. Mortality of red scale
4.3.1.1. Methods and materials
4.3.1.2. Results
4.3.2. Reproduction of treated adult female scales
4.3.2.1. Methods
4.3.2.2. Results

4.4. Mortality of Red Scale in the Sun

4.4.1. Experiment 1: Measurement of mortality on the tree
4.4.1.1. Methods and Materials
4.4.1.2. Results and discussion
4.4.2. Experiment 2: Mortality on lemons in the sun but off the tree
4.4.2.1. Methods and materials
4.4.2.2. Results and discussion

4.5. Mortality of Cohorts of Red Scale Responding to Low Temperature

4.5.1. Introduction
4.5.2. Methods and materials
4.5.3. Results and discussion

CHAPTER 5. BIOLOGY AND ECOLOGY OF Aphytis melinus DeBach

5.1. Host-Feeding of Female Adult of A. melinus
5.1.1. Experiments and results
5.1.2. Discussion

5.2. Longevity of Female Adults of A. melinus
5.2.1. Part 1: Laboratory experiments: Longevity of A. melinus wasps on different foods at constant temperatures
5.2.2. Part 2: Field experiments: Test of longevity of female adults of A. melinus on orange on the tree

5.3. Influence of Duration of High Temperature on Mortality of A. melinus Pupa
5.3.1. Methods and materials
5.3.2. Results and discussion

5.4. Searching Efficiency of Female Wasps of A. melinus in Cages at 25°C and 60% R.H.
5.4.1. Review and design of the present experiment
5.4.1.1. Introduction
5.4.1.2. What is "searching efficiency"?
5.4.1.3. Design of the present experiment
5.4.2. Methods and materials
5.4.2.1. Treatments
5.4.2.2. Materials
5.4.3. Experiments
5.4.4. Results and discussion
5.4.4.1. General results
5.4.4.2. One female wasp
5.4.4.3. Interaction among parasites
5.4.4.4. Variation among densities of host scales and replications in each experiment

5.5. Development of A. melinus at Constant Temperature of 25°C and Constant 75% R.H.
5.5.1. Methods and materials
5.5.2. Results and discussion

CHAPTER 6. GROWTH OF Phacelia sp. AND ITS INFLUENCE ON Aphytis melinus DeBach
6.2. Influence of Nectar on Female Wasps of A. melinus
6.2.1. On longevity
6.2.2. On searching efficiency of wasps

CHAPTER 7. SEASONAL ABUNDANCE OF CALIFORNIA RED SCALE
7.1. Introduction
7.2. Study Orchard and Sampling Method
7.2.1. Study orchard
7.2.2. Sampling method
7.2.2.1. Distribution of red scale on lemon trees
7.2.2.2. Subsampling method
7.2.2.3. Results of the sampling experiment
7.3. Field Sample of Red Scale
7.3.1. Sampling techniques
7.3.2. Results and discussion
7.3.2.1. Establishment of annual generations of red scale
7.3.2.2. The seasonal fluctuation of numbers of red scale
7.3.2.3. Growth of the population of red scale
7.3.2.3.1. In relation to parasitoid, A. melinus
7.3.2.3.2. In relation to daily mean ambient temperature

CHAPTER 8. GENERAL DISCUSSION
8.1. On the Population Regulation of Red Scale
8.2. On the Estimation of the Influence of Aphytis on the Natural Control of Red Scale
8.3. Control Strategies of Aphytis on Red Scale

APPENDIXES
SUMMARY

Studies of biology of California red scale, *Aonidiella aurantii* (Mask.), and its natural enemy, *Aphytis melinus* DeBach, were conducted at the Waite Agricultural Research Institute (W.A.R.I.), South Australia.

Field and laboratory experiments showed that survival and reproductive ability of female wasps of *A. melinus* are functions of a carbohydrate source, i.e., honey or flower-nectar. By contrast, host-feeding of female wasps has little effect on survival time and reproductive ability. The host-feeding can cause only little mortality of red scale of growing stages if the wasps have no access to a carbohydrate source.

A patchy population of red scale was constructed to test the searching efficiency of one-day-old female wasps of *A. melinus*. This population comprised several densities of red scale; different numbers of host citrus fruits were used to maintain the same total number of red scale in each of the densities. Results showed that wasps gave a "frequency response" instead of the classical Holling's functional response: the mortality of red scale was not aggregated in high densities of host scales. The wasps' searching efficiency varied greatly with the availability of carbohydrate.

Field and laboratory experiments tested the influence of extreme temperature on the mortality of red scale. Mortality was influenced not only by the values of the extremes but also by their durations. Similar results were obtained for pupae of *A. melinus* at 45°C.

Orchard experiments were conducted to measure the temperature 1 mm. above and 5 mm. under the skin of lemons in the sunlight. In summer, scales in the sunlight on lemons could experience a temperature 15°C higher than ambient (in a Stevenson Screen). Also in the orchard, cohorts of red scales were exposed to the sun in summer to measure the effect of extreme temperatures in the sunlight on mortality. The drop-off rate of a cohort in relation to extreme temperatures was also measured. The drop-off rate was not a function of extreme temperatures but a function of the duration after the cohort had been started.
From May 1984 to March 1986, the population dynamics of red scales on lemons were studied in the W.A.R.I. orchard. Samples were taken with an interval of about 95 day-degrees, greater than 12°C. After overwintering, the population of red scale started to grow in early November (mid spring) and stopped in late March (late summer) of the following year. A mathematical analysis indicated a threshold growth of the red scale population occurred at the mean of about 18.5°C for an observation period with 95 day-degrees greater than 12°C. The positive trend of the growth of the population during this period was not reversed by the extremely high temperatures in summer. The daily minima below 8.5°C could cause a significant mortality of red scale (young stages). The parasitoid, A. melinus, showed a poor ability to regulate the population of red scale.

Also detected or measured were (1) the influence of methods of transferring crawlers on the mortality of red scale, (2) the identification of stages of the development of A. melinus at 25°C and 75% R.H., and (3) the growth of Phacelia sp. at constant temperatures.

For field experiments, a special microscope system was constructed.