Metachromatic Leukodystrophy: the Role of Non-Pathogenic Sequence Variants in the Causation of Disease

by

John Steven Harvey, B.Sc.(Hons)

A thesis submitted for the degree of
Doctor of Philosophy
in
The University of Adelaide
Department of Paediatrics
(Faculty of Medicine)

October, 1996

This thesis is printed on archival paper
TABLE OF CONTENTS

ABSTRACT
DECLARATION
ACKNOWLEDGMENTS
LIST OF FIGURES
LIST OF TABLES
LIST OF ABBREVIATIONS

CHAPTER 1: Introduction

1.1 **The Lysosomal Storage Disorders**
1.2 **Synthesis and Targeting of the Lysosomal Hydrolases**
1.2.1 Synthesis and Post-Translational Modification
1.2.2 Subcellular Transport
1.3 **Metachromatic Leukodystrophy**
1.3.1 Introduction
1.3.2 An Historic Overview
1.3.3 MLD Without ASA Deficiency
1.3.4 The Biochemical Diagnosis of MLD
1.3.5 The Clinical Diagnosis of MLD
1.3.5.a Late-infantile MLD
1.3.5.b Juvenile MLD
1.3.5.c Adult MLD
1.3.6 The Molecular Genetics of MLD
1.3.7 ASA Pseudodeficiency
1.3.7.a Biochemical analysis of ASA pseudodeficiency
1.3.7.b Molecular analysis of the ASA pseudodeficiency allele
1.3.7.c Neurodegeneration and ASA pseudodeficiency
1.3.7.d ASA pseudodeficiency and other demyelinating disorders

xii
 xv
 xvi
 xviii
 xix
 xx

2
3
3
4
6
6
8
9
11
12
12
13
13
14
15
17
19
20
24
24
1.4 Genotype to Phenotype Correlations

1.5 The Treatment of Lysosomal Storage Disorders

1.6 Aims of the Project

CHAPTER 2: Materials and Methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Materials</td>
<td></td>
</tr>
<tr>
<td>2.1.1</td>
<td>Clinical Presentation of MLD Patients</td>
<td>36</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Electrophoresis</td>
<td>36</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Enzymes</td>
<td>37</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Radiochemicals</td>
<td>37</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Antibiotics</td>
<td>38</td>
</tr>
<tr>
<td>2.1.6</td>
<td>Bacterial Strains</td>
<td>38</td>
</tr>
<tr>
<td>2.1.7</td>
<td>Vectors</td>
<td></td>
</tr>
<tr>
<td>2.1.7.a</td>
<td>Plasmid vectors</td>
<td>38</td>
</tr>
<tr>
<td>2.1.7.b</td>
<td>Phagemid vectors</td>
<td>38</td>
</tr>
<tr>
<td>2.1.7.c</td>
<td>Filamentous phage</td>
<td>38</td>
</tr>
<tr>
<td>2.1.8</td>
<td>Tissue Culture</td>
<td>39</td>
</tr>
<tr>
<td>2.1.9</td>
<td>Enzymatic Substrates</td>
<td>39</td>
</tr>
<tr>
<td>2.1.10</td>
<td>Kits and Miscellaneous Materials</td>
<td>39</td>
</tr>
<tr>
<td>2.1.11</td>
<td>Miscellaneous Fine Chemicals</td>
<td>40</td>
</tr>
<tr>
<td>2.2</td>
<td>Solutions, Buffers and Media</td>
<td>42</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Preparation of Glassware and Solutions</td>
<td>42</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Liquid Bacterial Media</td>
<td>43</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Solid Bacterial Media</td>
<td>43</td>
</tr>
<tr>
<td>2.3</td>
<td>General Methods</td>
<td>44</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Preparation of Genomic DNA</td>
<td>44</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Ethanol Precipitation of DNA</td>
<td>44</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Restriction Endonuclease Digestion of DNA</td>
<td>44</td>
</tr>
</tbody>
</table>
2.3.4 Electrophoresis 45
 2.3.4.a Agarose gel electrophoresis 45
 2.3.4.b Polyacrylamide gel electrophoresis 45

2.3.5 Synthesis of DNA Oligonucleotides 46

2.3.6 Purification of Oligonucleotides 46
 2.3.6.a Method 1: n-butanol extraction 46
 2.3.6.b Method 2: OPC purification 46

2.3.7 The Polymerase Chain Reaction (PCR) 47

2.3.8 5'-End Labelling of Oligonucleotides 47

2.3.9 Transfer of DNA onto Nylon Membranes 47
 2.3.9.a Southern blotting 47
 2.3.9.d Plaque lifting 48

2.3.10 Prehybridisation, Hybridisation and Washing of Filters 48

2.3.11 Dideoxy Sequencing 49

2.3.12 Preparation of Plasmid DNA 49
 2.3.12.a Small-scale plasmid preparation 49
 2.3.12.b Midi-scale plasmid preparation 50

2.3.13 Cloning into Plasmid Vectors 50
 2.3.13.a Preparation of plasmid vectors 50
 2.3.13.b Preparation of PCR-generated inserts 50
 2.3.13.c Ligation reactions 50
 2.3.13.d Preparation and transformation of E. coli 51

2.3.14 Enzymatic Assays 52
 2.3.14.a Assay of arylsulphatase A activity 52
 2.3.14.b The assay of lysosomal fractions 52

2.3.15 Tissue Culture 52
CHAPTER 3: Genotype/Phenotype Correlation in Metachromatic Leukodystrophy

3.1 INTRODUCTION
 3.1.1 Opening Remarks 56
 3.1.2 Specific Aim 56

3.2 SPECIFIC MATERIALS AND METHODS 57
 3.2.1 Specific Materials 57
 3.2.1.a Enzymes 57
 3.2.1.b Radiochemicals 57
 3.2.1.c Solutions and buffers 57
 3.2.2 Specific Methods 57
 3.2.2.a Isolation of RNA 57
 3.2.2.b cDNA synthesis 58
 3.2.2.c SSCP analysis of genomic and cDNA copies of ASA 58

3.3 RESULTS AND DISCUSSION 59
 3.3.1 Screening for Previously Identified MLD Alleles 59
 3.3.2 The Identification of Novel ASA Sequence Variants 65
 3.3.2.a MLD in the Australian Lebanese community 68
 3.3.2.b MLD and the ASA pseudodeficiency allele 76
 3.3.2.c Further novel ASA alleles 88

3.4 CONCLUSIONS 97
 3.4.1 Concluding Remarks 97
 3.4.2 Mutation, Polymorphism or Sequence Variant? 100
CHAPTER 4: Redefining the Arylsulphatase A Pseudodeficiency Allele

4.1 INTRODUCTION
4.1.1 Opening Remarks
4.1.2 Specific Aim

4.2 SPECIFIC MATERIALS AND METHODS
4.2.1 Specific Materials
4.2.1.a Enzymes
4.2.1.b Radiochemicals
4.2.1.c Kits and miscellaneous materials
4.2.1.d Solutions and buffers
4.2.1.e Plasmid vectors
4.2.2 Specific Methods
4.2.2.a Cloning of the ASA protection assay probe sequence
4.2.2.b Probe production and purification
4.2.2.c Ribonuclease protection analysis
4.2.2.d Analysis of RBNP results

4.3 RESULTS AND DISCUSSION
4.3.1 The Effect of the N350S Sequence Variant on the in vivo Expression of ASA
4.3.2 ASA mRNA Levels and the ASA Pseudodeficiency Polyadenylylation Defect
4.3.2.a Use of the ASA polyadenylylation sites in normal controls and ASA pseudodeficiency homozygotes
4.3.2.b Relative use of the 3.7 + 4.8 kb polyadenylylation signals
4.3.3 The Regulation of Steady State ASA mRNA Levels

4.4 CONCLUSIONS
CHAPTER 5: Complex ASA Alleles and the Causation of MLD

5.1 INTRODUCTION

5.1.1 The ASA Activity Threshold 134

5.1.2 Biochemical Phenotype and Clinical Presentation 134

5.1.2.a Tissue culturing factors 135

5.1.2.b ASA activity and the severity of MLD 135

5.1.3 Specific Aim 136

5.2 SPECIFIC MATERIALS AND METHODS 138

5.2.1 Specific Materials 138

5.2.1.a Enzymes 138

5.2.1. b Antibiotics 138

5.2.1.c Miscellaneous fine chemicals 138

5.2.1.d Buffers and solutions 138

5.2.2 Specific Methods 138

5.2.2.a Construction of the ASA expression clone 138

5.2.2.b Transfection of Chinese hamster ovary cells 139

5.2.2.c Cloning of the ASA cDNA into M13mp19 139

5.2.2.d Preparation of single stranded M13 DNA 139

5.2.2.e Oligonucleotide-mediated mutagenesis 140

5.2.2.f Generation of mutant ASA expression constructs 140

5.2.2.g Expression of mutant ASA constructs 141

5.2.2.h Percoll® fractionation of cellular organelles 141

5.3 RESULTS AND DISCUSSION 143

5.3.1 The in vitro Expression of ASA 143

5.3.1.a Establishing an in vitro ASA assay system 143

5.3.1.b Mutagenesis of the normal expression construct 146

5.3.1.c Variability in the in vitro expression of ASA 149
5.3.2 The ASA Activity Threshold 158
5.3.3 Analysis of MLD Patient Genotypes 161
 5.3.3.a Pseudodeficiency alleles and the presentation of MLD 161
 5.3.3.b Genetic background and the presentation of MLD 167
 5.3.3.c Non-pathogenic sequence variants and the presentation of disease 178

5.4 CONCLUSIONS 186

CHAPTER 6: Concluding Discussion

6.1 OPENING REMARKS 192
 6.1.1 Modifying Sequence Variants 192
 6.1.2 Modifying Genes 196
6.2 PSEUDODEFICIENCY ALLELES AND DISEASE 197
6.3 DEFINING NORMAL ENZYMATIC VARIATION 201
6.4 CLOSING REMARKS 202
6.4 FUTURE WORK 204

APPENDICES
 Appendix 1. ASOs used to identify previously characterised ASA mutations 207
 Appendix 2. Oligonucleotides used to amplify the genomic copy of the ASA gene 209
 Appendix 3. Amplification of the ASA cDNA 210
 Appendix 4. ASOs used to detect novel ASA sequence variants 211
 Appendix 5 Phosphor-imaging quantification of protected products on RBNP gels 213
 Appendix 6 ASA activity in exponentially growing CHO cells containing the normal and P155R expression constructs 214
 Appendix 7 Normal and P155R assays using the natural ASA substrate 215
 Appendix 8 ASA assay of confluent, quiescent CHO cells 216

PUBLICATIONS AND AWARDS 218
REFERENCES 220
ABSTRACT

Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder caused by a deficiency of the enzyme arylsulphatase A (ASA). ASA is responsible for the degradation of cerebroside sulphate, a sphingolipid found as a major component of myelin. A deficiency of ASA leads to the accumulation and lysosomal storage of cerebroside sulphate within nerve cells, causing progressive demyelination of the central and peripheral nervous system.

MLD is diagnosed biochemically by the measurement of residual ASA activity in cultured skin fibroblasts or blood leukocytes. Diagnosis is, however, complicated by the presence of individuals in the normal population with ASA activities in the range of MLD patients. This non-pathogenic deficiency of ASA has been termed ‘ASA pseudodeficiency’ (ASA-PD) and is commonly caused by a 90% reduction in ASA mRNA levels and hence ASA protein, leaving pseudodeficient individuals with only 10% of normal ASA activity. Approximately 1% of the normal population are homozygous for the ASA-PD allele. The existence of clinically normal individuals with only 10% of normal ASA activity suggests that most ASA enzyme that is produced is far in excess of that required for the normal hydrolysis of cerebroside sulphate. The threshold level of ASA activity which separates normal development from the development of MLD has been estimated in this thesis to be between 3% and 4% of normal.

Eight ASA mutations had been identified prior to the commencement of this project. Our MLD patient population (N=29) was screened for the presence of each of these alleles to identify a subset of 13 patients in which no known pathogenic mutations were identified. Single strand conformation polymorphism and sequence analysis identified a further nine novel putative MLD mutations within this group.
In some cases there was a clear correlation between genotype and clinical presentation, for example, a single mutation, T274M, was found to account for the presentation of six MLD patients of Lebanese descent. However, numerous patients were found to have complex ASA alleles containing multiple sequence variants. The role that these multiple alterations played in the development of MLD was unclear, particularly in view of the fact that when a number of these sequence variants were expressed in vitro, they were found to reduce ASA activity without causing MLD.

The individual expression of each ASA sequence variant and the expression of complex patient alleles has lead to a greater understanding of the role that non-pathogenic changes within the ASA gene can play in the development of MLD. Specifically this work has demonstrated that;

1) Individually non-pathogenic sequence variants in the ASA gene can cause MLD in the absence of recognised MLD mutations when they are combined on a single allele.

2) When non-pathogenic sequence variants are found in combination with mutations causing mild MLD, they can act to modify the expression of disease causing mutations and increase disease severity.

3) Non-pathogenic sequence variants can have different effects on phenotype depending on the background level of ASA activity on which they are expressed.

The definition of a role for non-pathogenic sequence variants in the causation of MLD has significant consequence for the development and presentation of other lysosomal and non-lysosomal disorders.