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Abstract

The consequences of current conservation for vector meson models are examined.
As an example of this, the p-a mixing model for the isospin violation seen in the pion
electromagnetic form factor is studied in detail. Assuming current conservation, we predict
a strong momentum dependence for vector mixing. As this result also applies to photon-
vector meson mixing, in contradiction to traditional photon-hadron models, we describe
an equivalent model which includes a momentum dependent coupling of the photon to
vector mesons. To ensure that the information obtained previously from the pion form-
factor is consistent with conserved current picture, we redo the fit to data and find a

considerable model dependence to the quantities of interest that is not a consequence of
momentum dependence.
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Chapter 1

Introduction

Before proceeding with our discussion of p-a mixing, it will be helpful to introduce

the concept of Vector Meson Dominance (VMD), the model within which p-a.' mixing

is usually described. To motivate this, it is useful to provide the historical development

of the subject, which will then lead naturally into the consideration of. p-u mixing and

its theoretical description. Where possible, the connection between the original hadronic

models and our present understanding will be discussed.

The physics of hadrons was a topic of intense study long before the gauge field the-

ory Quantum Chromodynamics (QCD), now believed to describe it completely, was in-

vented [1]. Hadronic physics was described using a variety of models and incorporating

approximate symmetries. It is a testimony to the insight behind these models (and the

inherent difficulties in solving non-perturbative QCD) that they still play an important
role in our understanding.

One particularly important aspect of hadronic physics which concerns us here is the

interaction between the photon and hadronic matter [2]. This has to date been remarkably

well described using the vector meson dominance (VMD) model. This assumes that the

hadronic components of the vacuum polarisation of the photon consist exclusively of the
known vector mesons. This is certainly an approximation, but in the resonance region

around the vector meson masses, it appears to be a particularly good one. As vector
mesons are believed to be bound states of quark-antiquark pairs, it is tempting to try to
establish a connection between the old language of VMD and the Standard Model. In the
Standard Model, quarks, being charged, couple to the photon and so the strong sector
contribution to the photon propagator arises, in a manner analogous to the electron-
positron loops in QED, as shown in Fig. 1.1.

The diagram contains dressed quark propagators and the proper (i.e., one-particle
irreducible) photon-quark vertex (the shaded circles include one-particle-reducible parts,
while the empty circles are one-particle-irreducible [3]). This diagram contains a// strong

1



2 CHAPTER 1, INTRODUCTION

interaction contributions to the photon self-energy. In QED, because the fine structure
constant (a - 11137) is small, we can approximate the photon self-energy reasonably
well using bare propagators and vertices without worrying about higher-order dressing.
However, in QCD, the dressing of these quark prcrpaga[ors and the quark-photon proper
vertex cannot be so readily dismissed as being of higher order in a perturbative expan-
sion (although for the heavier quarks, higher order effects can be ignored as a conse-
quence of asymptotic freedo- [4]). Recent work [5], using numerical solutions to the
non-perturbative Dyson-Schwinger equations of QCD [3], has succeeded in producing a
spectrum of quark-antiquark bound states, but the mass distribution does not yet corre-
spond to the observed spectrum.

q

vv

Figure 1.1:

propagator

energy.

-q

One-particle-irreducible QCD contribution to the photon
This is the complete QCD contribution to the photon self-

1.1 Historical development of VMD
The seeds of VMD were sown by Nambu [6] in 1957 when he suggested that the charge

distribution of the proton and neutron, as determined by electron scattering [7], could be
accounted for by a heavy neutral vector meson contributing to the nucleon form factor.
This isospin-zero field is now called the u:.

The anomalous magnetic moment of the nucleon was believed to be dominated by a
two-pion state [8]. The pion form-factor, F*(q2), (to be discussed later in some detail) was
taken to be unity in these initial calculations 

-i.e., the pions were treatecl as point-like
objects' In 1959 Frazer and Fulco [9] attempted to show that the both the magnetic



1.1. HISTORICAL DEVELOPMENT OF VMD

explained by the inclusion of a strong pion-pion interaction. After an investigation of

analytic structure (following studies of the electromagnetic properties of the nucleon using

the dispersion relation method [S,10]), it was seen that the pion form-factor had to satisfy

F,(q'): 1+ { ¡ ¿,-!!t(ù-. (1.1)' T Jq*'n-' r(r - q2 - ie)'

and that to be consistent with data a suitable peak in the pion form-factor \ryas required.

They believed that this could result from a strong pion-pion interaction. The analytic

structure of the partial wave amplitude in the physical region could be approximated

as a pole of appropriate position and residue (a successful approximation in nucleon-

nucleon scattering). A" analysis determined that the residue should be positive, raising

the possibility of a resonance, which we now know as the po.

It was Sakurai who proposed a theory of the strong interaction mediated by vector

mesons [11] based on the non-Abelian field theory of Yang and Mills [12]. He was deeply

troubled by the problem of the masses of the mesons in such a theory, as they would

destroy the local (flavour) gauge invariance. He published his work with this matter

unresolved in the hope that it would stimulate fu¡ther interest in the field.

Kroll, Lee and Zumino did pursue the idea of reproducing VMD from field theory [13].
Within the simplest VMD model the hadronic contribution to the polarisation of the

photon takes the form of a propagating vector meson (see Fig. 1.2). This is now a model

for the QCD contribution to the polarisation process depicted in Fig. 1.1 and arises

Figure 1.2: A, simple VMD-picture representation of the hadronic contri-
bution to the photon propagator. The heavier vector mesons are included
in generalised VMD models.

from the assumption that the hadronic electromagnetic (EM) current operator, lf;M, it
proportional to the field operators of the vector mesons (multiplied by their mass squared).
This is referred to as the the field-current identity (FCI). One can then incorporate this
idea into an effective Lagrangian, giving a precise formulation of VMD in terms of a local,
Lagrangian field theory. One starts with the FCI for the neutral p-meson

[:,"*(")]r=r:fo"-tù, (r.2)

3

v Tp



4 CHAPTER 1, INTRODUCTION

and then generalises [1a] to an isovector field, i@), of which pO(r) is the third component
[i.e', po(r) = p"(")].trq. (1.2) implies that the field p-(r) is divergenceless uncler the strong
interaction, which is just the usual Proca condition (this, however, need. not be true for
all effectivc Lagrangians)

ôri' :0, (1.3)

for a massive vector field coupling to a conserved current. The resulting Lagrangian for
the hadronic sector is the same as the (flavour) Yang-Mills Lagrangian [12], but also has a
mass term which destroys local gauge invariance. Although gauge invariance is necessary
for renormalisabilityl, Kroll et al. were unconcerned by this; stating that the non-zero
value for the mass made it possible to connect the field conservation equation, Eq. (1.3),
with the equation of motion of the field. The case of a global SU(2) massive vector field
(the p-field), interacting with a triplet pion field and coupled to a conserved current, is
treated in detail by Lurie [16].

t.2 Gauge invariance and VMD

Sakura,i's analysis of VMD [17] takes place in thc context of a local gauge theory. Al-
though a mass term in the Lagrangian breaks (flavour) gauge symmetry, Sakurai viewed
the generation of interactions by minimal substitution in the Lagrangian to be interest-
ing enough to ignore this problem. Lurie [16] has discussed the p, zr, Iy' system using
coupling to consetved currents which reproduces Sakurai's results. As it only assumes
that the Lagrangian is invariant under global SU(2), the appearance of mass terms causes
no difficulty. One can then examine how to include the photon in this system. Lurie,s
primary concern was to have the p couple to a conserved current, and he dicl this by
constructing a Lagrangian whose equation of motion had the Noether c'rrent associated
with the global SU(2) symmetry appearing on the right hand side. In doing this, he
arrived at the standard non-Abelian Lagrangian (given on p. 700 of Ref. [1g]), which is
where we begin our discussion.

We begin with the Lagrangian (while Sakurai and Lurie worked in a Euclidean metric,
we follow the conventions of Bjorken and Drell [19])

f,r¡t 1- r*rã...il+!rr: -4pu, ' p" + 2*3ir. / + iorr . Dt"i - f,*r-r .n, (1.4)

1

p.6
In general there are only two cases in which a massive vector field is renormalisable, see Ref. [1b],
1:

a) a gauge theory with mass generated by spontaneous symmetry breaking;
b) a theory with a massive vector boson coupled to a conserved current and without additional self-
interactions.



1.2. GAUGE INVARIANCE AND VMD

where

5

iu, : 0rí, - ð,i, - 9i, x i,,

(0, -;s¡,'f)t,
ôrî-gíxí.

(1.5)

and where2

Dri

This Lagrangian is symmetric under the transformation

ó-öIþxê, (1.8)

where ¿- ."p.".".rts the isovector fields of the p- and ñ. The generation of interactions

from minimai substitution is used by Sakurai and Lurie to motivate universality (i.e., the

coupling constant of the p introduced via the covariant derivative,, D, is the same for

all particles). However, as a slight violation to this rule is seen experimentall¡ we shall

distinguish between g and the constant g, appearing in Eq. (1.2), which Sakurai equates

in order to satisfy a constraint on the pion form-factor (to be discussed later).

From Eq. (t.7) it follows that

Tu,o.ô,i - si,.6 x opi) +rsrØ, x i)r. (1 .e)

After some algebra we obtain the equation of motion for the p field

ô,i"u * *rrir: gJ*o"*,""

where the Noether current is

TuaL+aLrño"th.' : - g@iiò x P" - ô@ri), "
giving

Jio"rr,". :iu" xí,*ix7pi+g(i, xi)xi. (1.12)

As the Noether current is necessarily conserved, Eq. (1.10) tells us that the field is diver-
genceless, as in Eq. (1.3), i.e., acting with ô, on each side of Eq. (1.10) and noting that
/u : -/" and, ô¡,Jîo"*,..:0 implies that ïrt :0. Transferring the non-Abelian part
of the field strength tensor (the cross product in Eq. (1.5)) to the RHS of Eq. (1.10) gives
üS,

a,(A,i, -ari\+n¿\ít":g(4"",r,.,* 0,(i" x îr)). (1.13)

2We use hermitian T's given by the algebra [T",To] = -içabc7c and normalised by 1¡(?."ò) : 6ot/2
Thus, in the adjoint representation, (?")ao = -ic"ob. For SU(2), cob" = (ijt,.

(1.6)

(1.7)

Io,r . Dþi :

(1.10)

(1. 1 1)
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Again using the fact that the p field is divergenceless, ,ú/e can rewrite the equation of
motion in the inverse propagator form

(o'+*})ir:eJþ,

where -r], is also a divergenceless current given by

iu : /Ro"rn". + a,(i, x ir)
/rto"rr,""li'xA,i,.

(1.14)

ThaL Jp is also conserved can be seen by taking the divergence of Eq. (1.15); the RHS
vanishes due to the Proca condition, trq. (1.3). and the fact that 0rí" x 0,i, :0 from
symmetry under þ <-+ u. As Lurie notes, the presence of the p field itself in J*o.*,..
prevents us from writing the interaction part of the Lagrangian in the simple í, . J',
fashion (which is possible for the fermion-vector interaction). A similar situation for
scalar electrodynamics is discussed by Itzykson and Zttber [t8] (p. 31-33).

Our task now is to include electromagnetism in this model, and to do this we shall allow
Eq. (t.2) to guide us. Using the FCI, trq. (1.2), we replace the electromagnetic current
by the p meson term. Wc thcn invert Eq. (t.1a) to replace the p by Lhe had,ronic current,
using õ, - iqp lo obtain a corresponding matrix element relation for the electromagnetic
interaction3

@lej't"M lA) : "@l#o",lo¡
: "#,u,ffi,ot (1 16)

/ -iem2,\ f^-l^) @lsrilA). (1.12): 
\-;)\n,-*;,

Thus the photon appears to couple to the hadronic field via a p meson, to which it couples
with strength ern2rls". (This model is illustrated in Fig.4.2b, below.)

Before proceeding, we shall makc, as Sakurai does, the simplilying assumption that
one can neglect the p self-interaction (from now on we shall refer only to the po = p").
As the p0 decays almost entirely via the two-pion channel, this is a physically reasonable
approximation. Therefore we ignore the parts of the current given by Eq. (1.15) involving
p terms, and concern ourselves only with the piece of the current that looks like

(1.15)

0Pi)oX'|f

3W" trk" e to be positive, e: lel

r# ( 1.18)



1.3. THE ELECTROMAGNETIC FORM-FACTOR OF THE PION

to which, for notational brevity, we shall refer from now on simply as JP. Changing from

a Cartesian to a charge basis, we can re-write Eq. (1.18) as

J," : i(tr- ïrtr+ - r+ 0¡r-)

I

(1.1e)

We can then write the simple linear coupling term in the Lagrangian, and from now on

we shall write g as ! prr

Lon : -9pnnP¡"JP. (1.20)

1.3 The electromagnetic form-factor of the pion

One problem in which VMD found particular success was the description of the elec-

tromagnetic iorm-factor of the pion [20]. As this has played such a crucial role in our
understanding of p - ø mixing it is useful to outline what is means by it and how the
theoretical predictions are compared with experimental data.

We are concerned with the s-channel process depicted in Fig. 1.3, in which an electron-

positron pair annihilate, forming a photon which then decays to two pions. We define

n*e

v

ù
TC

Figure 1.3: Electron-positron pair annihilating to form a photon which
then decays to a pion pair.

the form-factor, ,Fì'(s), by Eq. (a.aa). The form-factor represents all possible strong
interactions occurring within the circle in Fig. 1.3, which we model using VMD.

In the time-like region, F"(q') is measured experimentally in the reaction er e- --
7r*r-, which, to lowest order in e2, is given by the process shown in Fig. 1.3. The
momenta of the electron and positron are p1 and p2 respectively, and p3 and pa are the
momenta of the zr* and zr-. The diferential cross-section is given by [21]

pí I Eo"6lM ¡;12
do

da lpllþ3 +pÐ-pïpz (ptt + ir) 64o, (pr pr)' - m!
(1.21)
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where p is the unit vector in the direction of pÌ. We are thus interested in calculating the
Feynman amplitude, M¡;, for this process. The lepton and photon parts of the diagram
are completely standard. The interesting part of the diagram concerns the coupling of
the photon to the pion pair represented by Fig. 1.3. The form of this part of the diagram,
M-,-n+,-, shall be discussed in detail later (see Eq. (a.  )). In full, the amplitudeis

M¡t:ú(2)ie1pu(I)iDr"(q)eF"(q')(pn - pr)', (I.22)

with the photon propagator being given by

f _i) I It Ç,1iD,,(q):Vlt,,+({-l),, l. (1.23)

Particular choices of ( correspond to particular covariant gauge choices. The second term
in Eq. (1.23) vanishes because the photon couples to conserved currents and so the result
is gauge invariant as expected.

In the centre of mass frame (in which we shall define lil = ù we have E, - p, : m?,
E' - p'' : *'n, and p''i' : - pp'cosg. using yß : 2E rhe differential cross-section
becomes

dó e4

dn s2

s - 4m2*

s2 - 4smf,

(En - E2m| - (En - E2(m2, + m ) + mlm\¡ cos2 d))lr"(")1,t
e

Ji 6+trz

(1.24)
Since m2" << ml and we are considering the energy region fl ) mr> we can simplify the
above formula to

do _ .n (" - 4ml)llz 1

d,e 
: AÉ#@^ - E'-?)(1 - cos2 o)lF*(s)1'z

From this we obtain the total cross-section

a2r
3

s -  mz¡slz

ss /z lF"(")l', (1.25)

where a: e2l4tr - 7f I37.
While VMD is a successful low energy model for the photon h¿r,dron interaction, certain

elements of it seem somewhat naive. For instance, no attention is paid to the momen-
tum dependence of the real part of the mass, but (as the propagator must be real below
threshold, when the particle cannot decay) momentum dependence must be present and
can be introduced for the width. One simple possibility for the momentum dependent
width being mrlr0(q2 - a*'"). The neglect of momentum dependence is especially rele-
vant for the use of vector mesons as mediators of the //1/ interaction. This application
traditionally uses simple perturbative propagators (with no width) in the spacelike q2



1.4. SUMMARY

region. The fact that the vector resonance contribution is suppressed away from the mass

pole, allowing one to use simple Breit-Wigner propagators very effectively, means we have

little experimental information about the momentum dependence of these contributions.

As we are using vector mesons in an approximation to non-perturbatiue QCD these issues

deserve much deeper study.

As p-u mixing is based upon VMD, these underlying factors will be germane to this

study and one must keep this in mind.

L.4 Summary

We have seen how a p- n Lagrangian, with a global isospin symmetry, in which the p

couples to a conserved current and satisfies the Proca condition, can be constructed. This

required the use of minimal substitution to create a covariant derivative which introduces

universality (g : gppp: gonn), extending this system to other hadrons, such as nucleons,

will similarly give gpNN : g. Electromagnetism was then included through the use of the

field current identity for on-shell matrix elements, leading to the vector meson dominance

model.

9
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Chapter 2

Standard treatment of p-ø mixittg

To make sense of the present work and the purpose behind it, it is necessary to have an

understanding of the treatment of p-cu mixing through the previous twenty years. This

chapter begins by providing a very brief description of the first theoretical prediction of

p-ar mixing in the early sixties. We then move forward ten years to what we shall refer

to as the "standard Picture" (SP) of p-cu mixing which was essentiaily unquestioned

from the mid-seventies to the end of the eighties. My own work (covered in Chapters 4,

5 and 6) has largeiy been a careful re-examination and refinement of this SP. I briefly

discuss the earlier work done in p-u mixing, in the period from the mid-sixties to the

mid seventies in Appendix C, where we will see some intersting parallels with my own

research.

2.L The theoretical beginning of p-u rnixing

We have seen in the previous chapter that the pion EM form-factor could be modelled

using vector meson dominance (VMD), in which the photon couples to a p meson which

then decays to the two pion final state, enhancing the interaction in the p resonance
r1-l

region, ete- -, rtr- . A similar model can be used for e*e- -- r*ror- . The vector

meson we associate with this process is the isospin zero e meson, which has a similar

mass to the p, but a much smaller width. The strong interaction was believed to preserve

G parity and hence would not allow the ø (1 : 0) to decay to a pion pair (1 : 1). Thus

one should only see the p resonance in the pion form-factor. In 1961, though, Glashow

suggested 122)that EM effects could mix the two states of pure isospin, py and tr¡, on the
grounds that they were very close in mass and differed only by isospin (a quantum number
broken by electromagnetism). This would result in the mass (or "physical")eigenstates, p

and c.r, being superpositions of the two initial fields. The most obvious possibility for the

11



I2 CHAPTER 2. STANDARD TREATME¡\TT OF p-Q MIXING

mixing, although it is only a very small effect, would be via the process shown in Fig. 2.i.
Glashow commented that other EM mixing processes such as pr + ^l * ro , ar would
also be possible. At the time, however, there was no experimental evidence to support
the mixilg of the [wo isospin states.

+
e n*

n

(ù

I
"l

p

e

Pigure 2.1: Electromagnetic contribution to the ûr-resonance or e*e- -+
!

1T' 7T

Symmetry breaking, though, was then a new and active field of research. In 1g64
Coleman and Glashow [23] produced a model for the breaking of unitary symmetry (the
symmetry scheme of Gell-Mann and Ne'eman based on SU(3) for the hadronic octet [24]).
They postulated the existence of a unitary octet of scalar mesons, composed of an isotopic
singlet (7'), triplet (zr'') and two doublets (1{', 1('). This octet would allow the possibility
of scalar tadpoles, a class of diagrams that vanish for all other (non-scalar) particles. These
tadpoles would vanish in the limit of exact unitary symmetry. The diagrams can be broken
into two parts connected only by a scalar meson line - the tadpole part and the SU(B)
invariant part. Coleman and Glashow assumed that symmetry violating processes are
dominated by these tadpoles, but claimed that their explanation for. symmetry breaking
did not necessarily depend on the existence of the scalar octet. As a concluding remark
they described a calculation of p -a, mixing assuming tadpole dominance. The vector
mesons are assumed to comprise a unitary singlet and octet which mix. The p0 is then
connected to both the unitary singlei and unitary octet part of the physic al u via ro,
tadpole diagrams. This allows one to express the mixing amplitude in terms of vector
meson multiplet mass differences, an idea pursued recently [25].

2.2 The experirnental discovery of p-û, mixing

As more data was collected (for the reaction e* e- --+ r* r- and other related reactions
such as r+ I P -- T*r- + A++) and the resolution of the resonance curve improved, it
became clear that there was a kink around the mass of the cr-meson in the otherwise
smooth curve observed [26]. As an illustration, Fig.2.2 shows a graph of the modern
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somewhat sparser, the theoretical techniques for modelling it are essentially the same

850
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Figure 2.2: The cross-section for the reaction e*e- -- r*T- from the
data of Ref. [27] in the p-@ resonance region.

2.3 p-u mixing and P"(q')

The standard way to include p-c,.: mixing in the VMD description of F"(q2) is by using

a matrix propagator for the vector meson. From this we obtain the parametrisation for

isospin breaking discussed in Ref. [28]. Using a matrix notation, the Feynman amplitude
for the process 'l ---+ TT, proceeding via vgctor mesons, can be written in the form

iM\-*^ : ( iM;,-** iM1,*nn ) oo,,
iM.,t*pr
iM1-.,

The propagator matrix for the isospin pure p/ and ar¡ (which will become mixed to form
the physical states, which are not eignestates of isospin) is D,, and is discussed in detail
in the section surrounding Eq. (4.22). The other Feynman amplitudes are derived from
either the VMD1 or VMD2 Lagrangian (Eqs. (a.31) and (4.32)). Since we will here

always couple the vector mesons to conserved cu¡rents, the terms proportional to qrq, in
the propagator (Eq. (4.22)) can be neglected. It should be carefully noted that models
which do not have coupling to conserved currents will need to explicitly retain these terms.
If we assume that the pure isospin state c..r¡ does not couple to two pions (ML,-nn :0,

1
T

I
I

I
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k-'*iL
I

I
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this point is addressed below in Sec.2.4) then to lowest order in the mixing, trq. (2.1) is
just

Mr-nn : ( M7,-** r ) ( n,'j¡'",,", 
n,i,,i:"' 

) (f^:-:,,), e.2)

where sv: Q2 -mzy andm2y (for I/ : p,u) are the complexpole locations with real part
ñ,1¡ and imaginary part -rîzyfy. Expanding this just gives

^/ 
t M^,,^.+Mp 1 I''T-nn: Ml,-nn-M.r-r, + Mt"p,-nnlno-J-M.r-., (2.3)

which we recognise as the sum of the two diagrams shown in Fig. 2.8.
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where, to lowest order in the mixing,
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p(t)

TE

Figure 2.3: The contribution of p-u mixing to the pion form-factor.

The couplings that enter this expression, through Ml,-nn, Mr-r, and. M1--,, always
involve the unphysical pure isospin states py and ø¡. However, we can re-express Eq. (2.3)
in terms of the physical states by first diagonalising the vector meson propagator. To do
this we introduce an orthogonal diagonalising matrix

"l

e

1
(2.4)

c- (2.5)
sP - s'

We now insert identities into Eq. (2.2) and obtain

( )
II*f s,s.

7l ".

M..,-0,
Mr-rt

M!,-nn A4 11

P I +'r11 0 CC_l CC-l
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(2 6)

(2.7)

(2.8)

(2.e)

(2.10)

(2.11)

( M5-*, Mr.-,^ )

Mf,-nn

M'.-nn

M1_p

M1-'

,i.) (i^:-:)rlto
0

where we have identified the physical amplitudes as (to first order in isospin violation)

: M'.r-nn I eMfr*nn'
: M1-p, - €M1--r,
: M1-r¡ ! eM'r-or'

Expanding Eq. (2.6), we find

M!,-nn ' M' -nn!'/'4''--M'o-^* 
"oM'r'o 

l ' .. su

Mr-**! M.,-o * Mf,-nn -rr!y-- 
I M1-.' sp sp-s.su

At first glance there might appear to be a slight discrepancy between Eqs. (2.3) and (2.11).

The source of this is the definition used for the coupling of the vector meson to the photon.

The first, Eq. (2.3), uses couplings to pure isospin states, the second, Eq. (2.11) uses

"physical" couplings (i.e., couplings to the mass eigenstates) which introduce a leptonic

contribution to the Orsay phase [26] between the c¿ contribution and the p contribution.

We assume M.r-p, - 3M1-,¡, which is exact in the limit of exact SU(6) spin-flavour

symmetry, and define the leptonic phase 0 by

(2.r2)

then, to order e,

"io

I:-
3

Ml--
M1-p

tand': -#!# (2.13)
Smol o

This gives 0 :5.7o for flp, : -4520, as obtained by Coon et al.128). This small so-called

"leptonic" contribution to the Orsay phase is the principal manifestation of diagonalising
the p-u-t propagator.

2.4 Intrinsic cr.r7 decay in e+ e- ---+ rrr-

We present here the argument introduced by Gourdin, Stodolsky and Renard [29] that
the isospin violation of the intrinsic decay ur -+ 2zr, though of the same order in isospin
violation as that due to p-ar mixing, gives no contribution to the pion form-factor. The
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original suggestion was rather terse, but it was elaborated on later by Renard [30] and we
thus refer to it here as the "Renard argument".

The coupling of the physical c¿ to the two pion state can be expressed as (from
trq. (2.tt))

gurn : !.ynn * €9ptnn, (2.14)

where e is given by trq. (2.5). Neglecting the small mass difference of the two mesons and
the decay width of the ø allows us to approximate e, given in Eq. (2.b), by

c: -i(R" 
nr. +jl- nr.'1 . (2.1b)

\ -rf, )

We shall return in Chapter 6 to re-examine the implications of the approximations leading
to Eq. (2.15). If M-ffn f 0, then we would have a contribution to p-c*., mixing shown
in Fig. 2.4. We can determine the contribution to IIp. from p --+ inr --+ u). To do this,

(ù ',+ p

TE_

(r)
n*

T_

p

TE

Figure 2'4: Physical intermediate states contributing to p-r^., mixing.

however, it is first useful to consider the analogous case for the simpler pzr system. The
self energy of the P, nop, has a contribution from a virtual pion loop as in Fig. 2.b.
Because Lhe p decays predominantly (the quoted branching ratio is - I00Vo [Sl]) to the

I

\,
,IE

Figure 2.5: Contribution of a pion loop to lhe p self_energy

7E+

p p

two pion state it is assumed that this loop will dominate the dressing of the propagator.
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1

q, - ^7 * imor o, Q'1'7)

where rne is the bare mass, mrlhe renormalised mass and fo the width of the p-meson.

The width of the p,lp, is defined by the imaginary part of the polarisation function,

llor(q'), at the p mass point, q2 : rn'.,

knflro(m2o) : -*[ r. (2.18)

Similarly we can determine the imaginary part of the one-loop diagram shown in Fig. 2.4,

which contributes to Im IIr.. One now assumes that the contribution to p-c,.r mixing

from a pion loop and the p polarisation are related by (comparing Figs. 2.4 and 2.5)

fIT,i: Wilor. (2.19)
' I ptrr

Due to the strength of the p --+ TT decay, the pion ioop contribution can also be assumed

to dominate the imaginary part of the total p-tr mixing, and we then have

Im flp, : Ç-ztllrrnÍoo
I ptr¡

9.rnn: _+TTLpL p

9ptrr

Substituting Eq. (2.20) into Eq. (2.15) and then substituting the result into Eq. (2.14) we

have

(2.20)

(2.21)

Srvrng us

. Re flp. Im flr.
Çurr : Çrtnn - z 

*, 
So¡rr I *ff,90t"",

. Re IIp.
Çurr : lJ.¡nn -, mrf, Çptrr - !-¡nn. (2.22)

As can be seen the contributions from the isospin violating gu¡rr cotrpling cancel each

other.

So, in summary: We allowed G-parity violation through ur --+ zrzr (in the same form as

pr + zrn), which contributed to the mixing parameter, e , through the process depicted in
Fig- 2.4. We then found that the imaginary part of the single pion loop actually cancelled

the decay of the ø¡ in the process e --+ itnt. Hence the decay of the the ø¡ can be ignored.

We shall critically re-examine this argument in Chapter 6.

2.5 The use of p-ø mixing in nuclear physics

Isospin violation in nuclear interactions has certain obvious contributions arising from
the unequal masses and charges of the proton and neutron. We can make allowances for
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2.5 The use of p-ø mixing in nuclear physics

Isospin violation in nuclear interactions has certain obvious contributions arising from
the unequal masses and cha,rges of the proton and neutron. We can make allowances for
these. Howevet, on top of these there remains, at the I% level, an isospin violation from
the strong interaction itself. The reader might notice the similarity of this situation to the
previous statement that trM effects alone cannot account for the p-c,,, mixing seen in the
pion form-factor. Following Henley and Miller [32] it is usual to consider the indiviclual
classes of this isospin violation.

Class Contribution Name

I 1 and içt¡ .iqz¡ charge-independent

II t,G)t.(2) - 4r) (zi charge dependent

III t"(1) + t"(2) CSV

IV [(r) ' i(z)]" CSV

Table 2.1: The classification schemeof Henley and Miller [32] for isospin
dependent forces in nuclear interaction. Class III and IV forces violate
charge symmetry.

It is the Class III 1'orce that is of interest to us here. Charge symmetry is the rotation
of hadrons in isospin space by r radians about the 12 axis. Thus, for the nucleons this
corresponds to the transformation

-p.

Experimental results suggest a strong interaction contribution to Charge Symmetry Vi-
olation (CSV). The two most commonly quoted examples of this are the nn, (Coulomb
corrected) pp and np scattering lengths [33] and the mass difference of mirror nuclei, the
Okamoto Nolen Schiffer (ONS) anomaly [34]. Making the EM and n - p mass difference
allowances one finds a remaining - 70 keV 3He-3H binding energy difference which is
compatible with the -1.5 fm difference between the scattering lengths ann and. o,rr.

The standard expìanation for this small strong interaction CSV has relied on p -
ø mixing. One of the more modern expressions of this is that due to Coon and Barrett [35],
which provides fresh experimental input to the earlier analysis [28]. I shall now provide an
outline of the standard use of p-a.' mixing in nuclear physics (we shall call this standard
use) p-td CSV)' This leads naturally into a discussion of work questioning the valiclity of

--+

--+

p

n

n
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ú)

N] N2
Figure 2.6: p-a mixing contribution to the CSV NN interaction.

CSV amplitude [35] (where q, is the momentum four vector of the exchanged meson)

qapu Hr(uN1N1)HP(pN2ffr)trr,T'i¡,r: + (1 *+ 2). (2'23)

The meson-nucleon vertices are given by

0
p

H,(pN N)

Hr(aN N)

I:
2

1:
2

grÑrs('l, + *rlffi)N
g.ñ(t, + *s;ffi)x (2.24)

the factor of I12 being a result of using the vector meson universality couplings go and g.
(see the section surrounding Eq. (4.60)). From this one can construct a CSV contribution
to a potential for use in nuclear models. It is easily seen that trq. (2.2a) on the whole uses

the well-known quantities of the more familiar charge symmetry conserving (CSC) ¡/¡i
interaction. However, there is one quantity lacking in the CSC interaction, the mixing
amplitude IIr.. This is obtained from the pion form-factor data, and typically takes a

value of - -4000 MeV2 (e.g., Ref. [35] quotes an extracted value of.IIp,: -4520 +600
MeV2). Using this in Eq. (2.23) produces a substantial fraction of the CSV observed

in the nucleon scattering length and the mirror nuclei binding energies (at least for the
lightest nuclei).

In 1991 Goldman, Henderson and Thomas (GHT) [36] raised an interesting point in
connection with p - ø CSV. The value for flp. obtained from the pion form-factor is

extracted for timelike q2 in the vector meson resonance region, while the four-momentum
of the vector mesons exchanged between on-shell nucleons is necessarily spacelike. Thus
il fIpu. were to have any momentum dependence it could significantly affect the nuclear
potential described above. A quark loop modellor p-u mixing performed by GHT (to
be described in greater detail later) gave a strongly momentum-dependent mixing, which
would drastically alter the potential, and ruin the fit to data.
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of the vector mesons exchanged between on-shell nucleons is necessarily spacelike. Thus
iÏ fIp. were to have any momentum dependence it could significantly affect the nuclear
potential described above. A quark loop model for p-t; mixing performed by GHT (to
be described in greater detail later) gave a strongly momeltum-dependerrl rnixing, which
would drastically alter the potential, and ruin the fit to data.

The GHT paper initiated a great deal of work in the study both of isospin violation
and meson mixing, which had largely accepted the standard p-ut CSV approach up until
then. The finding of significant momentum-dependence in most models lor p-u mixing
has stimulated investigations into other possible mechanisms for CSV [37-40].



Chapter 3

Behaviour of p-a mixing

The GHT paper [36] proposed a simple quark model to generate p-ø mixing in
order to investigate the momentum dependence of such a process. Since then, other

authors have conducted further studies using various approaches to examine momentum

dependence. Unfortunately, it is very difficult to make model-independent statements

about such a process. This is not helped by the freedom associated with the vector

mesons themselves, which one can take as being convenient parametrisations of medium-
energy strong processes. In principle, one is always allowed to make a field redefinition,

which if done appropriately, will not change the overall calculation of a given physical

process, but can lead to an altered form of the interaction.

Experimentally, one sees these vector mesons as resonances in strong interaction
processes whose complex ^9-matrix poles can be usefully represented by Breit-Wigner
propagators for the vector particle. For the case of e*e- -- r1¡r- which is relevant

to p-c.r mixing, we have the pion form-factor with the dominant p pole, P^ and the

suppressed u pole, P-,

Fn x. Po + Ae;ó P. f background, (3.1)

where

Pv: 

-^ 

1
- 

q2 - ñT + irhvlv
and rî'ty,lv, A and / are real. The complex prefactor Ae;Ó is, like the pole positions,
a purely experimental quantity. Any acceptable model, therefore, must reproduce the
experimentally extracted values of A and {. The matrix formalism, discussed in Chapter
2, allows for a surprisingly good prediction for the Orsay phase, /, from the "extracted"
(its meaning is dependent on the use of the mixed matrix propagator analysis) parameter
no-. The assumptions inherent in this meson-mixing model are critically examined in
Chapter 6. \Mhat is presently lacking is a detailed prediction for Aeió from some higher
principle such as a suitably detailed effective hadronic model. This would, naturally, be

27
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of considerable interest

3.1 Models for p-a mixing
The GHT model attempted to bring together quark and meson degrees of freedom [36].

Let us briefly review this model. Essentially, the isospin violating mixing between the p
and c.., mesons takes place via a quark loop and arises from the CSV mass difference
between the up and down quarks. In this calculation the quarks were taken to couple to
the vector mesons in the same way as nucleons (see Eq. (2.2+)), through isospin matrices.
The quark propagator in the u- d sector with four-momentum pu) can then be written
as a 2 x 2 isospin matrix with the rows and columns labelled by u or d. We may then
introduce the mass difference via

S(P):----f-: 
l-þn+6^rù' (3'2)

where m: (mu*m¿)lZ and 6m: (m¿-*,).The reader will notice that the use of
these free Dirac propagators for the quarks will produce an unphysical quark-production
threshold in the quark loop. This is a shortcoming of such a simple treatment. While
GHT considered this to be an unsatisfactory feature, it was still sufficient for an initial
investigation. One can argue that a judicious choice of quark masses can simulate the
physical production thresholds (in this instance the two pion threshold). This reasoning
was used to justify Dirac propagators in a calculation of the pion self-energy from a
quark loop, which, handled carefully, could reproduce a physical cut beginning aT, q2 :
(*r* m")2 l+tl. We shall see shortly how the matter of production thresholds from loop
diagrams was handled by subsequent authors. The propagator in trq. (3.2) was expanded
to first order in the small parameter, árn. This introduces a factor of 13 to the numerator
which, together with the 13 at the p-q-q vertexyields a non-vanishing trace over quark
flavours (when 6mis zero, isospin is conserved and, hence, there isno p-amixing).

The other feature of the calculation is the use of a form-factor at the quark-meson
vertex. Their particular choice was dependent only on the loop momentum, k,

M2
M2 - k2'

where M "describes the vector meson (quark) structure" and was given a value of about
1500 MeV which minimises its direct effect. The independence of the form-factor on the
meson four-momentum (qr) was chosen purely for simplicity. This is justified by saying
that since one wishes to investigate the q2 dependence of the mixing it is better to avoid
any ad-hoc introduction of q2 dependence into the vertex.



3.1. MODELS FOR p-u MIXING 23

The result of this calculatìon was to show that flo. is strongly momentum dependent

in this model. In addition, this brings into question the CSV potential generated by

the Standard Picture diagram given in Fig. 2.6. This was a radical departure from the

standard thinking. GHT suggest two things following this. Firstly, further investigation

of the momentum-dependenceof p--<'s mixing should be done and, secondly, some inclusion

of the quark structure of the nucleons might be warranted (as this model has examined

the quark structure of the mesons). With respect to this second point a contemporary

paper is mentioned [a2] which examined nuclear CSV through QCD-induced cor¡ections

to QED processes (such as one photon exchange and one photon loop graphs). The point

of GHT was that while it was a simple and somewhat flawed calculation it did highlight

the importance of examining the question of the momentum dependence of. p-u mixing.

In time both suggestions were taken up by other authors. The first of the subsequent

calculations to examine the momentum dependence o1 p-ø mixing was carried out by

Piekarewicz and Williams (PW) [43]. It was an adaptation of the GHT model, in which

the isospin violating mixing is generated not by quark loops, but by nucleon loops. Thìs

has the advantage of only requiring parameters that are relatively well known, such as

nucleon masses and meson-nucleon couplings.

Technically, the PW approach was simpler than the GHT calculation which had in-

cluded the effect of isospin violation by writing the quark masses as md# : m L 6m, and

then expanding in the isospin violating árn. They find the total amplitude is the difference

between a proton loop and a neutron loop. The nucleon mass difference plays the same

role as the u - d mass difference. The divergences of the individual graphs (treated using

dimensional regularisation) cancel allowing PW to use pointlike meson-nucleon vertices,

as opposed to the form-factors of the quark-meson vertices used by GHT. This avoided

introducing violations of current conservation, which we will see later is an important
consideration. The GHT node is not at q2 - 0. This calculation, with virtually no free
parameters, yields a prediction for flp. in the resonance region of roughly the same sign

and magnitude as that obtained by Coon and Barrett [35] from the pion form factor
data [27]. Whether this fortuitous agreement has any deep origins is as yet unclear. Like
GHT, PW find significant momentum dependence, but with a node exactly at q2 : 0,

i.e., flr-(0) : 0.

The quark loop calculation of Krein, Thomas and Williams (KTW) [44] sought to
address the problem of quark confinement. Following studies of non-perturbative QCD
[45], KTW use propagators with no poles on the complex plane (entire functions), and as

such, the quarks are never on mass-shell (real or complex). This is one means to implement
confinement. Like GHT they assume that the quark-meson vertex is independent of the
meson four momentum squared. For an assumed quark mass difference of 4 MeV the
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calculation was able to fit the lone data point reasonably well, though this fit turns out
to be sensitive to the mass difference. Once again a large momentum dependence with a

node near Q2 : 0 is seen.

More complicated still is the calculalion oI Milchell, Tandy, Roberts and Cahill (MTRC)

[a6]. This uses a QCD based model in which the vector mesons appear as composite Qq

bound states. The propagator for the quarks is obtained from a model Dyson-Schwinger

equation, and like the KTW model, is confining. The p - ø mixing once again takes
place through a quark loop. The paper largely involves itself with a detailed technical
description of the model and its use in the isospin breaking calculation. They conclude
that the quark loop mechanism, by itself, generates an insufficient CSV potential for the
1/lú system and suggest an additional pion loop contribution could be examined. This
could easily be accommodated into the model.

Friedrich and Reinhardt [47] utilise the bosonised Nambu-Jona-Lasinio (NJL) model
in their study of p a mixing. They reproduce a strong momentum dependence, with a

node in the mixing at q2 - 0. Gao, Shakin and Sun (SGS) [48] examine p-ur mixing
using an extension to the NJL model that includes quark confinement (which is not an
issue for the bosonised NJL model). SGS make use of the current correlator (see below)
in their work.

In summary, all models predicted a strong momentum dependence in IIp, with a node
near or al q2 : g.

3.2 QCD Sum Rules

QCD is not yet understood well enough to directly assist us in studying p-u mixing
because of its non-perturbative nature in the medium energy world. However, its non-
Abelian structure means that the coupling constant, gs, decreases with rising q2 until
perturbative calculations can be done - this property is known as asymptotic freedom [4].
How might we obtain some insight into p-ø mixing from this perturbative region? A
technique, QCD Sum Rules (SR), has been developed that utilises what is known from
high energy calculations and combines this with hadron phenomenology in an attempt to
describe low energy physics. We shall now discuss the use of this technique in p--<¿ mixing.
Unfortunately, as we shall see, it is not a simple matter [49]. We therefore do not give
a detailed exposition of this technique, or its use, but will instead concentrate on the
conclusions that have been drawn from it for p-u mixing.

What one seeks to do with the SR is to start at the short distance physics, where
quark-gluon interactions can be treated reliably and to extrapolate to larger distances
such that the non-perturbative effects appear as corrections (though there is currently
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some discussion as to how reliable perturbative QCD is, even at high energies [50]).

Consider a two point correlation function of various currents' Jfr and fi.,

cï"!,(q') : i I dn* 
"io'" 

(0lr7l,@)Jb,(0))10)" (3.3)

This can be expressed by general dispersion relations in terms of observable cross-sections.

Alternatively this correlator is given at large, spacelike q' (i.".,Iarge Q2, where Q' = -q')
by a Wilson operator expansion in terms of vacuum to vacuum matrix elements. Equating

these two expressions for the correlator (one in terms of dispersion relations and the other

involving a Wilson expansion) gives the sum rule. As Q' - oo the only non-vanishing

operator is the identity, (as QCD is non-interacting due to asymptotic freedom). However,

as Q2 drops, we probe larger and larger distances. The fundamental assumption of the

SR technique is that terms of the form (1/Ç2)" with increasing integer n come into play

as we go to lower Q2.

Interestingly, the original papers on SR by Shifman, Vainshtein and Zakharov (SVZ)

[49] used p-ø mixing as an example. The correlator (see Eq. (3.3)) of the electromagnetic

isospin zero and isospin one currents (which they identified as Ji and Jj respectively)

was considered. This was rewritten as

Cíî(q,) (-s,, +T)c*(q') (3"4)

where

Jí
1_
,@1," - h"d)

Ji : tu{r"r,u*d,1,d)

(3.5)

(3.6)

Note that in the limit of exact isospin symmetry in which u and d are equal, this correlator
vanishes.

SVZ identified two places for isospin breaking - the operator expansion coefficients
and the matrix elements between the vacuum. The relevance of this is that the expan-
sion coefficients can be found explicitly, whereas the matrix elements require additional
assumptions or independent experimental data. The expansion in po\ryers of.llQ2 is then
associated with various diagrams. The first term, for instance, corresponds to single
photon exchange (as shown in Fig. 2.1).

The use of SR is particularly reliant on techniques to ensure that the sum converges
quickly and that we only need to add up the first few terms to obtain a good approximation
to the exact result (otherwise this technique would be unreliable). To do this, one often
looks not at the actual quantity of interest (in our present case the correlator in Eq. (3.4)),
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but at a transform of the quantity. These transforms ensure that the series converges more
quickly. The Borel transform of the correlator is given by,

rzco-(Mr) 1
(m" * m¿)

2L
224tr rplg#f ((*a - *") + - 1. ^) , (3.7)gl o"|., , M6 \ A_ * g"Án )

where A is a parameter later determined to be approximately 200 MeV. The electromag-
netic (O(a)) and strong (O(*"-^o)) contributions to isospin violation are quite distinct.
SVZ conclude that the first electromagnetic (EM) term is small, despite its leading po-
sition in the lf Q2 power series. They also discuss a cancellation between the p and u
contributions to this correlator, which we shall discuss further below.

This first SR analysis of p - c.., mixing concentrated on its prediction for the quark
mass difference (corriparing it to previous extractions of this difference). In their analysis
they thus concentrated on the region around q2 : m7 which was assumed to be saturated
by the nearby p and ø poles. Hatsuda et al. l5l used the correlator to investigate the
q2-dependence of the mixing, following GHT [36]. To do this they equated the correlator
of Eq. (3.a) with the vector meson propagator Dr,i: i(0lT(pra,)10) to arrive at

n,' : no.r.rz¡. (3 g)@:v (

This calculation ignored the vector meson widths, which for the p is rather significant.
From their analysis they concluded that there is a significant momentum dependence to
flr., in support of GHT. They also found a node in the mixing amplitucle near q2 - 0.

Maltman [52] argued that this analysis was slightly flawed. Firstly, the identification in
Eq' (3.8) of the current correlator with the meson propagator is only valid if the hadronic
currents themselves are used as the interpolating fields for the vector mesons. This is due
to an argument that is becoming increasingly familiar in this field, i.e. quantities such
as propagators, when off-shell, are dependent on the choice of interpolating field (unlike
the current correlator) and that only Lhe total S-matrix elements are physical quantities
(and hence are not dependent on interpolating field choice). As such, this analysis can
say little that is interpolation field field independent about the off-shell behaviour of flp-.
Secondly, they assume that all isospin violation in this vector meson system is due to
p-a.' mixing. Maltman allows for the possibility that the isospin pure interpolating fields
p7 and QI can themselves couple to the ,/' and -/p hadronic currents respectively. This
would allow for the intrinsic decay of the a1 to two pions (which would be ignored in
the Hatsuda et al. analysis where (}lJol''y):0) to contribute to ete- _. r*r-. The
resulting calculation indicates that the intrinsic decay of the ar¡ is non-negligible in the
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p-c,; interference region because the correlator result underpredicts the isospin violation

seen in experiment. Thirdly, the possible contribution of the / and higher resonance poles

is ignored. Naively, this is not expected to be as strong as the p and ø contributions, but

as noted by SVZ [49], the stronger p and ø terms partially cancel, so the higher resonances

cannot be ignored. The / contribution turns out to be important in Maltman's analysis.

The SR technique was again used to study p-ø mixing by Iqbal et al.153,54]. Their

first paper [53] concentrated on extending the Hatsuda eú ø/. analysis by including the

meson widths, which had been neglected in the propagator of Eq. (3.8). This has a

significant effect on the q2 behaviour of nr.(q') in their analysis. A more elaborate

calculation foilowed [54]. It is shown here that the difference between the p and c¿ widths

is of importance, as they obtain the "no width" results of Hatsuda et al. in the artificial

case where the widths are set equal.

3.3 Chiral Perturbation Theory

Chiral Perturbation Theory (ChPT), which seeks to reproduce the symmetries of QCD
in a model independent, Iow--energy, effective meson theory should provide a useful tool in

examining isospin violating systems. Unfortunatel¡ it is unreliable at energies around the

lowest vector meson masses. Despite this, its low energy predictions for isospin violation

should be of interest.

ChPT will be discussed in greater detail in Chapter 6, but I shall present a brief
outline of it here to facilitate the discussion of its application to p-a mixing. It provides

an effective theory for the pseudoscalar octet organised as a perturbative series in 92 and

chiral symmetry violation (which allows for a convenient use of Feynman diagrams, with
the familiar loop structure). As such it relies upon small q2, thus making it unsuitable for
the vector meson pole region. This is further complicated by higher order terms sometimes

giving very large contributions and thus truncation at a given order should be taken with
great care.

The construction of the ChPT Lagrangian, however, allows for an easy extraction of
the hadronic currents. Maltman therefore used this [52] to compare his QCD SR analysis
of the current correlator (Eq. (3.3)) to the ChPT prediction. Initially, he went to order
qa (the one-loop result). This gave a markedly different result near q2 : 0, from which
he concluded that the series must be very slowly convergent, and so the next order would
need to be considered. The two-loop result [55] provides large corrections to both the
magnitude and q2 dependence of the former calculation but it is likely that even the two-
loop expression for the correlator is not well converged example of the limitations
of ChPT.
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Urech also used ChPT to approach p-, mixing [56] though in a very different way

to Maltman. As mentioned, vector mesons are generally too heavy to be accommodated

in ChPT. The standard line of reasoning is that their effects are felt through the low

energy constants of the O(qn) Lagrangian (see Chapter 5). This idea was examined

by constructing a chiral model that included the vector mesons, which could then be

compared with ChPT [57]. It was found that the vector meson contributions did indeed

seem to saturate the low energy constants. Following the techniques of this paper, Urech

derived an expression for the off-diagonal element of the matrix propagator. As in the

QCD SR result (Eq. (3.7), the result consists of a strong piece proportional to the quark

mass difference and an EM piece from one-photon exchange. Urech makes no comment

on any momentum dependence though.

3.4 Discussron

We have seen that it is very difficult to draw unambiguous conclusions from the various

calculations for p-ø mixing. This difficulty stems from the fact that there is no definitive
way to treat vector mesons. What is common to all of the calculations done for p -
u mixing, though, is a strong momentum dependence of the mixing amplitude with a

node at or near the point 82 : 0. In the next chapter this behaviour is shown to be

unavoidable for a large class of models on general grounds.



Chapter 4

Effective models and rnonr.entum
d.pendence

The various calculations for p - e mixing of the previous chapter all predicted a

considerable momentum dependence. Furthermore, they all gave rise to a mixing which

decreased as 92 decreased until it vanished at or near q2 : 0. This prompted a study by our

group at Adelaide into the general behaviour one could expect from the process [58]. Our

aim was to make as general a statement as possible about p-ø mixing. The conclusion

(the analysis is presented in the next section) was that for a wide class of models the

mixing should indeed vanish at q2 - 0 (the node theorem). This observation in turn
prompted questions about vector meson dominance (VMD), where one would expect the

p-7 coupling to also obey this theorem for the same class of models. This then led to a
revisiting of the formulation of VMD, since this naively appeared to be in contradiction
to the standard formulation of VMD where the coupling is constant.

4.I The node theorem

We begin by considering an effective Lagrangian model (..g., L(í,u,i,1þ,rþ,...)),
where there are no explicit mass mixing terms in the bare Lagrangian. Examples of mass

mixing terms arem|.poraq or oporr'with ø some scalar field; the second is of the type
described by Coleman and Glashow in their tadpole mixing scheme (see Section 2.1).
We also assume the vector mesons have a local coupling to conserved currents which
satisfy the usual vector current commutation relations and that the effective Lagrangian
is renormalised in a way which preserves these features. As the p and c¿ couple to the EM
current, which is necessarily conserved, this does not seem like an unrealistic assumption.
The boson-exchange model of Ref. [43] where, e.g., Jl - g-ñ1p N, is one simple example
of such a model.

29
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Consider the dressing of the bare vector propagatot, Dor,, which is given by

iD¡",: iDor, + iDo*ic"PiDop,, (4.1)

where Dry is the dressed propagator. It follows that the mixing tensor (analogous to the
full self-energy function for a single vector boson such as the p [bg])

c,"(q) : i I d,ar eiq, glr!iþ)4(0)) l0) (4 2)

is transverse (we shall prove this below). We recognise Eq. (a.2) as being the current
correlator of trq. (3.3) and note that this was taken to have a transverse form in the sum
rules treatment with little comment. Here, the operat or JI is the operator appearing
in the equation of motion for the field operator ø given in Eq. (1.14). Note that when
J! is a conserved current (i.e. ðrJ3 :0), the Proca condition }rap :0 follows from
taking the divergenceof Eq. (1.1a) (see, e.g., Lurie, pp. 186 i90 [16], or other field theory
texts [19,60]). The operator { is similarly defined.

Having defined Cp'through Eqs. (a.1) and (a.2) we wish to study the one-particle-
irreducible self-energy or polarisation, flp'(q) (defined through Eq. (a.3) below),

iDr, : iDot", + iDo*ü.PiDor. (4.3)

The starting point for our argument is that C,"(q) is transverse, so let us briefly recall the
proof of this. As shown, for example,by ltzykson and Zrber (pp.2l7-224) [18], provided
we use covariant time-ordering the divergence of CP'leads to a naive commutator of the
appropriate currents

qrCr,(q) : - I o^, 
"i0.,0, {0(ro) (ol $(r)ti(o) l0)

* d(-ro) (01rí(0)ri(") lo)j (4.4)
f: - J o'* 

"od, 
(01[Jr,(0,i), Jí(0)) l0).","" (4.b)

Covariant time-ordering follows from the use of a suitable renormalisation scheme, which
preserves current conservation. That is, there is a cancellation between the seagull and
Schwinger terms. Thus, for any model in which the isovector- and isoscalar- vector cur-
rents satisfy the same commutation relations as ecD we find

quCu" (q) : o. (4.6)

Thus' by Lorentz invariance, as there is only one available four-vector, the tensor must
be of the form given in Eq. (a.Z)

c,,(q): (n,, +) ck\ Ø.7)
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Having established that CP'(q) is transverse, we now turn our attention to flr,. For

simplicity consider first the case of a single vector meson (".g. u p or a) without coupling

to other channels. For such a system one can readily see (by comparing Eqs. (4.1) and

(a.3) that CP' and the one-particle irreducible self-energy, n" , are related via

l'o Dou : C'" Doo, (4'8)

(where D and Do are defined below). As the bare and dressed vector meson propagators

(D0 amd D) are not, in general, transverse, then CP" being transverse implies flp' is also

transverse. Hence

tr,'(q):(n,'-+)il(q') . (4.e)

We are now in a position to establish the behaviour of the scalar function, fl(qt).
In a general theory of massive vector bosons coupled to a conserved current, the bare

propagator has the form (compared to Eq. (1.23) for the photon)

/ Qu?'\ 1Do,,: (-nu"* *)F_ã (4.10)

whence

@");) : (*' - q')gr, * qrq,. (4.11)

Multiplying Eq. (a.3) by D-l on the right and (Do)-r on the left we have

D -1
Itu @");) t rrt,

(^' - o2 + ltçq2¡)s,, * (4.r2)

(4.13)

th the spectral

first re-writing

9p8,

Thus the full propagator has the form

Dr,(q) : -ep' + (1 - rr(q')lq') (q,q'l^')
q2-m2-[(qt)

Having established this form for the propagator, we wish to compare it wi
representation [16] of the vector field (Vr) propagator which we obtain by
it as

Du,(q") : I d,n*"-,0'" (0lT(vr(r)y,(o))10)

: I,o'fr(*-'i)'
where ø(r) is the spectral density of the vector states. Defining

D(q') = [ a,3-îL
Jro q' - f'

(4.14)

(4.15)
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we can rewrite Eq. (a.14) in Renard form [30]

1

9p, * ,q-
Dr,(q') : D(qt) (r(o) - D(q,))q,q,

By comparing the coefficients of g¡", in Eqs. (4.18) and (4.16) we deduce

_1
D(o2\\r / Ç2-m2-II(q')'

(4.16)

(4.r7)

while from the coefficients of qrq, we have

1 (1 - Il(q')lq')
þrorol - D(q'))

1 q'+ II(o) - il(qr)
*'(q'-nt2-il(q,))

q' (*'+ II(0))(q, - m2 - II(qr)) (4.18)

Cancelling (q'-m2 - n(q')) from each side of Eq. (a.18) we obtain after a few lines of
algebra

il(O), ,-f 
{ø, _ 11, _ il(qr)) : o, vqr.

Since trq. (+.19) is true lor arbitrarg q2 it then immediatelyfollows that

II(0) : e. (4.20)

This is an important constraint on the self-energy function, namely that n(qt) should
vanish as q2 -- 0 at least as fast as q2 . Note that for the p self energy there will in general
be counterterms for the mass (which are currently included in m). The physical mass is
given by the pole location, i.e. *rrn ": rn2 * II(mfnr").

While the preceding discussion dealt with the single channel case, for p - e mixing
'¡/e are concerned with two coupled channels. Our calculations therefore involve matrices.
As we now demonstrate, this does not change our conclusion.

The matrix analogue of Bq. (a.12) is

D;j : *f,lr, * (IIook\ - q')T* rIr.(q2)T*
flr.(q2)T* m2.gr, + (I_.(qr) - Qr)T*

(4.1e)

(4.21)

where we have defined rr, = gp, - kuq,lq\ for brevity. By obtaining the inverse of this
we have the two-channel propagator

s.gp, * o(p,a)qrq,
fIo.(q2)T*

fIo.(q2)T*
sp9p, i o(t, P)qrq,

(4.22)
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where

q2-n--(q?)-*'.
q'-froo(q')-^'o

] ,{ni.(q') - lq' - rloo(q')]".}
q'm;
Tr'o-(ø') - sps,,.

(4.23)

(4.24)

(4.25)

(4.26)o

In the uncoupled case [flp.(q2) : 0] Eq. (4.22) clearly reverts to the appropriate form of

the one particle propagator, Ee. (4.13), as desired.

We can now make the comparison between Eq. (4.22) and the Renard form [30] of the

propagator, as given by Eq. (4.16). The transversality of the off-diagonal terms of the

propagator, requires that flr.(O) : 0. Note that the physical po and (, masses) which arise

from locating the poles in the diagonalised propagator matrix DP' , no longer correspond

to exact isospin eigenstates (as predicted by Glashow [22]).
In conclusion, it is important to review what has and has not been established. There

is as yet no unique way to derive an effective field theory including vector mesons from

QCD. Our result, that IIr.(0) should vanish, applies to those effective theories in which:

(i) the vector mesons have local couplings to conserved currents which satisfy the same

commutation relations as QCD [i.e., Bq. (a.5) is zero] and (ii) there is no explicit mass-

mixing term in the bare Lagrangian. This includes a broad range of commonly used,

phenomenological theories. It does not include the model treatment of Ref. [46] for ex-

ample, where the mesons are bi-local objects in a truncated effective action. However,

it is interesting to note that a node near q2 : 0 was found in this model in any case.

The presence of an explicit mass-mixing term in the bare Lagrangian will shift the mixing
amplitudeby a constant (i.e., by mf,. for a Lagrangian term like T^\-prrr).

4.2 The consequences of rnomentum dependence for
VMD

Following this, and the preceding examinations of p-u mixing, it would appear that
a rather convincing case has been made for its momentum dependence in general and we

have shown that it is unavoidable in a large class of theories. This might, it was argued,
seriously damage the standard picture of nuclear CSV described in Section 2.5. Leaving
aside, for one moment, any questions that one might have about the use of vector mesons
as mediators of the strong interaction in nuclear physics (CSV or no), this prompted a
considerable amount of activity. Alternative mechanisms for CSV have been proposed

[37-39]- Indeed, as the vector mesons are off-shell, the individual mechanisms should not
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be examined in isolation, because they are dependent on the choice of interpolating fields
for the vector mesons and are not physical quantities. It has been argued that one could

find a set of interpolating fields for the rho and omega such that ø// nuclear CSV occurs

through a constant ø-t¿ mixing with the CSV vertex contributions vanishing [61]. However
this possibility has been questioned on the grounds of unitarity and analyticity [62]. This
entire argument is symptomatic of the lack of a methodic field theory treatment of the
strong interaction in this energy range for the I/1/ interaction in particular, despite the
somewhat hopeful descriptions of it being "well understood." It is clear that much work
is still required in this area.

The appeal of the Standard Picture (see Section 2.5), though, provided a consider-
able incentive to demonstrate that there must be something "wrong" with momentum
dependent p-c.., mixing. So, what has actually been said about p-ur mixing? The mixing
of vector particles (which couple to conserved currents and without explicit mass mixing
terms) should vanish at q2 - 0. But then this should also apply to the mixing between
the photon and the p for such models. The same models which have been used to ex-
amine the question of p-c¿ mixing should then also be able to be applied to studies of
p-7 mixing. They can then be compared with the successful phenomenology of vector
meson dominance (VMD, see Cha,pter 1). However, VMD has traditionally assumed the
coupling of the photon to the p was independenl of q2. Thus, a momentum dependence
for the p-7 coupling (a direct consequence of the node theorem of the previous section)
would naively appear to ruin photon-hadron phenomenology, and therefore there must be
something wrong with it. The first person to raise this question was Miller [63] and it has
been discussed subsequently 125, 641.

What is the resolution of this apparent contradiction? Consider the well known con-
straint on the pion form-factor, f;(0) :1. In the infinite wavelength limit, the photon
sees only the charge of the pion. Essentially, at q2 - 0 the photon interacts with a point-
like pion, there is no need to involve coupling through the p meson. In simple physical
terms the photon decouples from the aector meson eractly as the node theorem would pre-
dict. ln the traditional VMD picture the parameters must be carefully constrained so as
to maintain the condition f;(0) : 1. Surely then, one could build a VMD based model
of the photon-hadron interaction by adding the non-resonant photon-pion contact piece
to a q2 dependent vector meson contribution.

The more deeply one considers the traditional VMD treatment with its constant cou-
pling of the photon to the vector meson, the more physically troublesome it seems. For
instance, in dressing the photon propagator, such a contribution would shift the pole away
from q2 : 0, giving the photon a mass, which must then be returned to zero by the choice
of an appropriate counterterm in the Lagrangian [65]. It is now appropriate to return to
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Sakurai's original work on VMD [11,17].

4.3 Sakurai and the two representations of VMD

Sakurai was troubled by this photon mass problem. His concern \ryas to ensure that

adding electromagnetism to a strong interaction model based on vector mesons gave a

(flavour) gauge invariant theory. The naive 1- p veúex prescription usually seen in

discussions of VMD, i.e.,

"*'o
9p

as motivated by Eq.(1.17), suggests a coupling term in the effective Lagrangian of the

form

L.fr : -emzp osuAu. (4.27)
9p

This is suggested by the substitution of the field current identity (Uq. (t.Z)) into the

interaction piece of the electromagnetic Lagrangian, -ejf;M¡P. However electromag-

netism cannot be incorporated into the rho-pion Lagrangian, trq. (1.a), simply by adding

Eq. Ø.27) and a kinetic term for the photon. This would result in the photon acquiring

an irnaginøry mass [11] when its propagator is dressed in the manner of Fig.4.1 using

p - ^l vertices determined by trq. (4.27). In the traditional VMD treatment a mass coun-

terterm must then be introduced for the photon to ensure that it remains massless in the
renormalised theory.

+

+

Figure 4.1: VMD dressing of the photon propagator by a series of inter-
mediate p propagators.

We can find a term, though, that emulates Eq. (4.27) while ensuring that the photon
remains massless in a more natural way. Such a term is

Ltp : -]-Fu,pu". (4.2g)
¿9p

It is helpful to re-express this in momentum space which can be done using integration
by parts to transform )rA,ôpp" to -7rðuA,p, and then using ôrn iq, giving

F*P" -t 2q2ArP'' (4.2g)
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The other term in Frrp" can be discarded because it contains a piece that can be written
as eppp and thus vanishes as the p field is divergenceless when coupling to conserved

currents. However, the interaction Lagrangian of trq. (4.28) is not sufficient as it would
decouple the photon from the p (and hence then from hadronic matter) at q2 :0. What
is needed is another term which directly couples the photon to hadronic matter. This is
the usual QED type of photon-matter interaction

- eArJP, (4.30)

where -/, is the hadronic current to which the p couples. The pion component (for
example) of this current is given in Bq. (1.18). Thus the interaction between the photon
and hadronic matter is of exactly the same form as that between the p and hadronic
matter (though suppressed by a factor of ef gonn). This term is all that is present at

Q2 : 0 where the influence of the p-meson in the photon-pion interaction vanishes.

To summarise, the photon and vector meson part of the Lagrangian discussed imme-
diately above is

11rfvvor : -;Ft",Ft"'-|p*p'" *t^'rrro'-gpnnpt,Jp -eArJ, - *o*or'. 
(4.31)

We shall refer to this as the f,rst representationof VMD, and denote this as VMD1. We

note that this representation has a direct photon-matter coupling as well as a photon-p
coupling which vanishes at q2 - g.

The alternative formulation of VMD, has survived to become the standard represen-
tation. Its Lagrangian is given by

1 (F;.)' (p'r,)'
e'm2,Ttt p

9p

2

^7(A',)'
1

4

1

P'rA''- ; (:)
' \aP /

LvMl)2 : -; 4
* -rn'?. 2/ t\2 t

p\Pp) - 9pnnPp

(4.32)
Note the last term which is a photon mass counterterm to restore the masslessness of
the photon. In the limit of exact universality (gp:gp,,) lhe two representations become
equivalent and one can transform between them using

P', - P, t 3Ar, (4.33)
9p

A I
p

e

Ap 1-
2

(4.34)

e 1- (4.35 )

Substitutingf.or p'r,A', and e'in Eq. (4.J2) gives Eq. (4.81) +o((elg).). W" shall refer
to trq. (4.32) as the second representation of VMD, which we will denote as VMD2. The
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appearance of a photon mass term at first seems slightly troublesome. However, when

dressing the photon in the manner of Fig.4.1, we see that the propagator has the correct

form as q' - 0.The dressed propagator is given by

iD(q') : -:&+ úfu# r, - ^+,#afu . (4 86)
q'--d q"--f eP '1 "oP ' s'P

Summing this using the general operator identity

I 1 1_:-*--B
A_B A'A af,nj+11_r_

A,A (4.37)

we obtain (*: *o)

Ir
,te-m- TN

2 4 -1e
iD(q')

-L 2I gTk' - m2)p

-1

--+

-?, q2 (4.38)

-1,
q'(r + "'l g3)

(4.3e)

as q2 -- 0. This therefore results in a redefinition of the coupling constant

e2 -- e2(r - "'lg3),
(4.40)

and interestingly the photon propagator is significantly modified away from 92 : 0. Both

forms of VMD were discussed by Sakurai [17].

The use of the two models can be compared by describing the process 1 --. r+r-. The

relevant terms in the Lagrangian can be identified for each case. From lvunr (Eq. (4.31))

and .Cvuo, (Eq. (4.32)) we have, respectively,

^el" : --Frrp" - eJrAP - gonnpPJr, (4.41)PL 
29,

r em2Lz : --f orOP - gpnnpt"JP. (4.42)

If the photon coupled to the pions directly, then to lowest order the Feynman amplitude
for this process would be (as in scalar electrodynamics [18])

M!,-n+n- - þr+r-leJpl}l - -"(p+ - p-)r, (4.49)

where "/, is given in Eq. (1.i9). However, in the presence of the vector meson interactions
of Eqs. (4.41) and (a.42), the total amplitude is modified. The pion form factor, F,(qr),
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which represents the contribution from the intermediate steps connecting the photon to
the pions, is defined by the relation

Mlr-nr n- - -r'(p+ - p-)'F*(q'), (4.44)

where no* Mf,-,+,- is the full amplitude including all possible processes. The form-
factor is the multiplicative deviation from a pointlike behaviour of the coupling of the
photon to the pion field. We discuss F"(qr) in detail later.

To lowest order, we have for Lt (see trq. (4.29))

F^(q') : q2 gpnn
1 (4.45)

nz - m2, go

and for L2

F*(qt)-- -*7 -go'n.
o- - rni so 

' (4'46)

In the limit of zero momentum transfer, the photon can resolve none of the structure and
"sees" only the charge of the pions, and hence we must have

f',,(O¡ : 1. (4.47)

The reader may notice that trq. (4.47) is automatically satisfied by the dispersion relation
of Frazer and Fuìco, trq. (t.1) and by vMDl (Eq. (4.45)) but must be imposed on the
VMD2 result (Eq. (4.46)) by appropriately choosing parameters, (i.e., at the simplest level
we can set gpnn:9p).This is the basis of Sakurai's argument for universality mentioned
earlier, i.e', that the photon couples to the p as in Eq. (4.a2) and that therefore gpnn
must equal gr- This is a direct consequence of assuming complete p doninance of the
form-factor (i.e., VMD2). The other implications of exact universality, namely that

Çprn:9pNN:...:9p (4.48)

result from the assumption that the interactions are all generated from the gauge principle
(i.e., by minimal substitution for the covariant derivativegiven in Eq. (1.6))

As Sakurai pointed out, the two representations of VMD are equivalent in the limit of
exact universality (as we would expect from Eqs. (4.33-4.3b)). Without universality only
VMD1 automatically maintains the condition 4(0) : 1. In the VMD2 approach in the
absence of exact universality to maintain this condition the fine tuning of parameters is
required. Due to the popularity of the second interpretation, though, 4(0) : 1 is simply
viewed as a constraint on various introduced parameters [70]. We illustrate the difference
between the two representations in Fig. 4.2.
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i) ^{

v

T -i"ú
8p-4

gp

a) b)

Figure 4.2: Contributions to the pion form-factor in the two representa-

tions of vector meson dominance a) VMDI b) VMD2.

4"4 The use of VMDI-

So, interestingly, the question raised by Miller [63] had already been answered thirty
years ago. VMD can be reformulated so that the p-1 coupling is momentum dependent

and vanishes at q2 - 0. However, this fact was not commonly known, so \rye gave an

example of its use [66], which was then extended to the incorporation of a typical model
used for p-ø mixing into a p-'f mixing model [67]. The purpose of this first section is to
show that one can fit the measured pion form-factor with a 1 - p coupling that vanishes

at q2 - 0, i.e. using VMD1 (see Ref. [66]).
In the process of fitting the data, we extracted a revised value of the p-t., mixing

amplitude at the ø pole, IIo.(*'.). At the time the widely quoted value of for IIp. [35],
had been obtained from the branching ratio formula for the c,.r,

B(u --+ rr) : f (a.' --+ rr)ll(*:),

derived from a p-c.,; mixing analysis where

l(ø -- rr) - llI*f imol ol'lþ -, rr).

Using the branching ratio determined in 1985 by the Novosibirsk group 1271, B(a --+

r7r) - (2.3 + 0.4+0.2)%, Coon and Barrett obtained nr- : -4520* 600MeV2. A better,
more direct method would be to extract fIp, from a fit to the cross-section of the reaction

-¡--re' e -'+ 7l ' 7l uslng

p

ii) p
+

o(o\:* (q' - +*7
s5/z lF"(q\l',

and the form-facto¡ determined by VMD1 (Bq. (4.45)).

So far, we have not introduced any effects of isospin violation into our VMD1 system,
and hence the ø (which cannot otherwise couple to a rrr- state) does not appear. To

2

(4.4e)



40 CHAPTER 4. EFFECTIVE MODE¿S AT\TD MOMENTUM DEPE¡úDE¡\TCE

do this, we introduce the isospin violation in the standard way and combine the VMDl
form-factor of Eq. (4.45) and the mixed state contribution of Eq. (2.\1),

F"(q') - 1 -
q2 g rnn q2 eg pnn

where,

grïq2 - mf; I imol r(q')] 9.lq' - rn2. + im-I'.]

il0,

(4.50)

(4.51)
nN

e
sp - s. m2, - mzo - i(mrl. - mrl r(q2))

The ø decay formula of Coon and Barrett can now be seen to follow from Eq. (a.50) with
an approximation for e (namely that l. is very small and that mzo: m2.). Because the
width of the c,: is very small we can safely neglect any momentum dependence in it, and
simply use f.(ml) [68,69].

All parameters except Ilp. are fixed by various data as discussed below. The results
of fitting this remaining parameter to the data are shown in Fig. 4.3 with the resonance
region shown in close-up in Fig. 4.4. The mass and width of the u are as given by the
Particle Data Group (PDG) [31], m- :781.94 + 0.12 MeV and f. : 8.43 + 0.10 MeV.
There has recently been considerable interest in the value of the p parameters,,rnp and f,
with studies showing that the optimal values [69,70] may differ slightly from those given
by the PDG. The value of flp, is not sensitive to the masses and widths, and we obtained
a good fit with mp:772 MeY and fr:l{9 MeV, which are close to the PDG values.

The values of the coupling constants are, however, quite important for an extraction
oÏfIp..We obtained g, and gpnn from f(p -- e+e-) - 6.8 MeV and f(p -- rr) - 14g
MeV, namely g'o**f +n -2.9, g3l+T - 2.0. This shows, for example, that universality is
not strictly obeyed (as mentioned previously). VMD1 and VMD2 naively differ at order
gonnlg, - r.2 before any separate fine tuning of parameters is carried out.

Historically the ratio g.f g, rvas believed to be around 3 [71], a figure supported in
a recent QCD-based analysis [72]. Empirically though, the ratio can be determined [20]
from leptonic partial decay rates [31] giving

9. : 3.5 + 0.18 (4.52)

Using these parameters we obta,inecl a best fit around the resonance region shown in Fig. 4
(y2ld-o.f .:14.1125) with flp. : -3800 MeV2. In this analysis there are two principle
sources of error in the value of flp-. The first is a statistical uncertai¡ty of 310 MeV2 for
the fit to data, and the second, of approximately 200 MeV2, is due to the error quoted
in Eq. (4.52)' Adding these in quadrature gives us a final value for the total ¡¡ixing
amplitude, to be compared with the value -4520 + 600 MeV2 obtained by Coon and
Barrett [35]. We find

ilp. : -3900 + 370 MeV2. (4.b3)

9p

m.l(p --+ e+e-)
mol(a --+ e+e-)
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Figure 4.3: Cross-section of e+e- -- n*r- plotted as a function of the
energy in the centre of mass. The experimental data is from Refs. 177,271.

It is now clear that a momentum dependent p - 7 coupling, together with a direct

coupling of the photon to hadronic matter, yields an entirely adequate model of the pion

form-factor. In fact, this picture is basically suggested by attempts to examine the p-1
coupling via a quark loop. Model calculations typically find that the loop is momentum-
dependent, and vanishes at q2 :0 (unless gauge invariance is spoiled by form-factors, or
something of this nature). However, coupling the photon to quarks in the loop implies
that the photon must also couple to the quarks in hadronic matter. Thus, in general

we might expect a direct photon-hadron coupling (independent of the p-meson), and this
leads us to consider VMDI as the more natural representation of vector meson dominance.
It should now be clear that the appropriate representation of vector meson dominance to
be used in combination with mixing amplitudes that vanish aI q2:0 is VMDI. To use

VMD2 in conjunction with such vector mixing amplitudes is clearly inconsistent. As long
as one is clear on this point, there are no dire consequences for momentum dependence
in p-a mixing.

4l
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Figure 4.4: cross-section for ete- --+ r*¡r- in the region around the
resonance where p-cr mixing is most noticeable. The experimental data
is from Refs. [17,21].

4.5 A VMDl-like rnodel

One can no\¡/ expand upon the previous section, by examining moclels for the photon-
hadron interaction. We shall define a "VMD1-like" model to be one in which the photon
couples to the hadronic field both directly and via a g2-dependent coupling (with a node
at q2 - 0) to vector mesons. A VMDl-like model may differ from pure VMD1 as the
coupling of the photon to the p (generated by some microscopic process) will not generally
be linear in q2 for g2 sufficiently far from zero. Hence go, which is a constant in VMD1
(and VMD2 as they share the same gp tp to universality [11,68]), may acquire some
momentum dependence in a VMDl-tike model; the test for the phenomenological validity
of the model is then that this momentum dependenc e for g, is not too strong. For example,
we can easily determine the coupling of the photon to the pion field via the p meson for a
VMDl-like model to establish the connection between the p-l mixing amplitude ,no-r(qt),
of the model with g, of VMDI. We note the appearance in Eq. (a.5a) of the p-7 mixing
term, flik'), which can be determinedfrom Feynman rules, and which will, in general,
be q2-dependent. such an analysis gives for any vMDl-like model

-¿Mr(q') : -i"(p* - p-)"[Dr(qr)]r" F,(qr)
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(4.54)

ilD^,(q')lr" ilt.,*(q')), + ilDÁq2)l'" iln.,r(q',)l",ilD r(q',)l"iÍl o,k')1,

-i"(p* - p- ) "ilD.,(q')lu"
1+

l-(q') gprr

q'- *?¡ imolo e

where D, n and I denote propagators, one-particle irreducible mixing amplitudes and

proper vertices respectively. Here p+ and p- are the outgoing momenta of the zr* and n-
respectively. For this model to reproduce the phenomenologically successful VMD, and

hence provide a good fit to the data (assuming exact universality),II-(q') and g, must

be related by (comparing Eqs. (4.45) and (a.5a))

r})oo'(q') : -ffi. (4.55)

Thus Eq. (4.55) is the central equation of this examination, since vector-meson mixing

models (".8., p-t.r mixing) can also be used to calculate p-''l mixing and then confronted

with traditional VMD phenomenology.

The results quoted in the review by Bauer et al. [73] for p meson parameters are

summarised in Tables I and XXXII of that reference. They list a range of values which

vary depending on the details of the fit to the p mass (rnr) and width (fp). Within the

context of the traditional VMD (i.e., VMD2) framework they extract g2r(q2 :0)/4n from
p0 photoproduction (lp -- pop) and g\k' : m2)f 4r from po -- e*e-. The three sets of

results quoted are (in an obvious shorthand notation):

fe : 135, 145, 155 MeV,

ffLP : 767, 774, 776 MeV,

g"(q' :0)lar : 2.43 +0.r0,2.27 + 0.23, 2.r8 +0.22,

g\k' : rn2)l4r : 2.2I +0.017, 2.20+0.06, 2.11 + 0.06

(4.56)

(4.57)

(4.58)

(4.5e)

respectively. We see that gois a free parameter of the traditional VMD model (VMD2)
which is adjusted to fit the available cross section data. The central feature of the VMD2
model is that it presumes a constant value for its coupling constant gr. We note in passing

that the universality condition is

9p - gpnn - gffi;u - gppp (4.60)

andwhereexperimentallywefind [73,74)1or eachof these92fLtr -2. Forexample,the
values of gpnn corresponding to the above three sets of results are

g'o**(q' : rn2) l4r - 2.6r,2.77 ,2.95 (4.61)

and are extracted from po --+ r*r-. It should be noted that the p¡f¡{ interaction La-
grangian is here defined as in Refs. [43, 75] with no factor of two [11, T4] and hence
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gpNN : grNiu12.As a typically used value 1s g|**lØ;r) :0.41 we see that universality is
not accurate to better than 40%in gf,,which corresponds to - 20To in go.

The results of the VMD2 analysis [73] are approximately consistent with g, being a

constant and so trq. (+.55) tells us fI- in VMDl-like lrodels should be roughly linear in
q2.

We shall now present our calculation [67] of the process within the context of the
model used by Piekarawicz and Williams (PW) discussed earlier [43]. They considered

p-a,' mixing as being generated by a nucleon loop within the Walecka model. The p

coupling is not a simple, vector coupling, but rather [76]

I
J pNN

2M
llr*:go¡r¡¡¡1qli oprQ', (4.62)

where C o : f oxw lgrw* : 6.1 and M is the nucleon mass. With the introduction of tensor
coupling the model is no longer renormalisable, but to one loop order we can introduce
some appropriate renormalisation prescription. As the mixings are transverse, we write
IIr,(q'): (9r,-Çpq,f q2)n(q') (see Eq. (a.9). The photon couples to charge, like a vector
and so, unlike the PW calculation, we have only a proton loop to consider. Here we can
safely neglect the coupling of the photon to the nucleon magnetic moment and so there
is no neutron loop contribution nor any tensor-tensor contribution to the proton loop.
This sets up two kinds of mixing, vector-vector IIfi and vector-tensor flfi, where (using
dimensional regularisation with the associated scale, ¡z)

'¡e9pNN
-o-' 2tr2

I
dr r(I - r)ln

M2-r(1 -x)q21 'l
l"6 )l

II""(q')

II",(q') -q2

3e 2p
(4.63)

(4.64)
Ne9pN

8r2
! - ., - [' ¿, ,n ( 

lttt2 - r(t - r)q2
L'Jo\p,

Note that these functions vanish at q2 - 0, as expected from the nocle theorem since we
have coupling to conserved currents. To remove the divergence and scale-dependence we
add a counter-term

Lcr-ogPNwCrn Fltu- " 2n' PPur'

to the Lagrangian in a minimal way so as to renormalise the model to one loop. This
will contribú,e -iC7gp¡,tweq2 f 12 to the p-7 vertex, which will acld to the contribution ilI
generated by the nucleon loop. The counter-term will contain pieces proportional l,o If e,

7 and ln¡Ì to cancel the similarterms in Eqs. (4.63) and (a.6a), and a constant piece, B,
which will be chosen to fit the extracted value for gr(0). The counter-term can be written
AS

cr : -: (å . ?) *.,(i* ?) - (å - ?) rn t,2 * t3, (4 6b)
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which gives us the renormalised mixing,

45

rr-(q') 2M2 BM4 + 2M'q" - qn

Jq2 Jq"JaMr=T

400 600
q (Mev)

#=+nnr)-o)

arctan
q2

4M2 - q2

+2 arctan

We find that the choice þ : 8.32 in our counter-term approximately reproduces the

extracted value of 9r(0) at q2 - 0.
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Figure 4.5: The PW model prediction for the mixing amplitude is re-
lated to the traditional VMD coupling gok') using the central result of
Eq. (+.55). The resulting behaviour of. gzelar versus q = JF is then
plotted in the timelike region for this model. Shown for comparison are
a typical pair of results (2.27 +0.23 at Ç:0 and2.20 +0.06 at q:mo,
see text) taken from a traditional VMD based analysis of cross section
data in Ref. [73].

The results for go(q2) for the PW model are shown in Fig. 4.5. Despite this model
having a node in the p-7 mixin g at q2 : 0 the resulting q2 dependence of g, is small. As
can be seen from this plot, we obtain values of g'zp(O) ler) : 2.14 and Srr@) l@T) : 2.6

compared to the experimental averages 2.3 and 2.17 respectively.

It should be remembered that Eq. (4.55) is only as reliable as universality, which is itself
violated at a level of 30-40% . Based on this important observation) we can conclude then
that the PW model provides a result consistent with the spread of extracted results given
in Ref. [73]' It should be noted that any VMDl-like model which predicts a significantly

T
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in Ref. [7e]. It should be noted that any VMDl-like model which predicts a significantly
greater deviation from linearity with q2 over this momentum region will fail to reproduce
phenomenology because of Eq. (4.55).

4.6 Discusslon

In summary, we have provided a general proof that in a wide class of models, those
in which the vector mesons couple to conserved currents and there is no explicit mass

mixing, the mixing amplitude vanishes at q2 :0. As p-7 mixing would also be subject to
this theorem in such models, we have explicitly shown in Eq. (4.55) that the vanishing of
vector-vector mixing at q2 - 0 is completely consistent with the standard phenomenology
of vector meson dominance provided one uses the appropriate formulation, namely VMD1.
We have, in addition, applied the same type of model used in a study of p-a mixing
to extract the momentum dependence of p-7 mixing and have compared the r-esult to
the VMD2 based analysis of the experimental data. We see that the phenomenological
constraints of VMD can provide a useful independent test of VMD-like models of vector
mixing.



Chapter 5

Isospin violation ln F,, with
ChPT

As mentioned earlier, Chiral Perturbation Theory (ChPT) seeks to produce, in a
model independent way, a low energy meson theory from the symmetries of the initial

QCD Lagrangian. The principle symmetry used in this construction is chiral symmetry

(ChS). ChS is the simultaneous requirement of isospin symmetry and helicity conservation,

i.e. SU(2)z,ASU(2)p. Having ffiu : ^o l0 violates helicity conservation but not isospin

symmetry. In the real world we have mu I *o t 0 and both symmetries are broken

by quark masses. Since rn, and m¿ are small on the hadronic scale the violation of
chiral symmetry is small. Isospin is also explicitly violated by electromagnetic and weak

interactions. The systematic nature of ChPT is then able to give us a model independent

method for examining isospin breaking in its regime of applicability. Despite the potential
usefulness of this there is still relatively little in the literature on this matter [52,55,56,
77,78).

The pion form-factor, Fn(q'), r¡¡as one of the first quantities calculated using ChPT

[79]. It has recently been generalised to off-shell pions [80]. However, these one-loop
treatments assume rrlu : m¿. In this chapter, we extend this to the case with rnu I rn¿,

following the work of Maltman [52, 55.,77]. The previous calculations of F,(qr) are briefly
reviewed and the isospin-violating calculation is then discussed in detail. It should be
noted that the calculation is quite complicated, as it simultaneously involves three small
parameters, Q2, o and ffi'- rn¿. We shall work to first order in each of these, which is
sufficient for a starting point.

a

(q2)

47
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5.1 An introduction to ChPT

Although there are many excellent reviews of ChPT [81], to keep this chapter relatively
self containecl, I present a short summary of the theory. This will also be useful in showing

how we set up the calculation. The basic idea is to take the known symmetries of QCD and

reproduce them in a low-energy meson theory. Thus we start with the QCD Lagrangian
given byl

LQCD :Drþ@)(iP -m¡)tþ(r)-Irr,o",". (5 1)
j

In the chiral limit the quark masses are zero and the fermion fields, tþ, can be split into
left and right handed helicity components,

,Þr,n: (1 + fr),á (5 2)

These transform independenúly under the chiral transformation,

,þr,n t e'o"rþL,R, (5 3)

leaving Eq. (5.1) unchanged. Massless QCD is then said tobe chirally symmetric. These
transformations can then be generaliscd to separate left and right handed transfor-mations
rather than just the single eio"u transforming both fields. In this case we have

,þ¡,,n - (J"'^rþ",^ (b.4)

where UL and (JR are unitary 1// x ly'/ matrices, 1{/ being the number of flavours. One
normally only considers the up, down and strange quarks, for reasons that will become
apparent later. The heavier quark flavours play no dynamical role in the region of interest
and do not need to be explicitly included. If strange quarks are included the flavour
symmetry changes from SU(2)fl^'o,. to SU(3)n"uo* and the chiral symmetry group is then
su(3)¿8su(3)".

Now, of course' the quarks do have mass, but it is only small and s<,r we can say
that chiral symmetry is an approrimale symmetry of QCD, and we expect it to have
some relevance to the way the theory works, and provide a guide in our construction
of a meson theory. To construct this meson theory, we consider the QCD generating
functional,

expfiWp,,rt",s,p)l: 
ltoril[Dú][Dc"t)"*o [; I anrLacn(tr,rr,r,e)l . (5 b)

1To work with this, one needs to remove the unphysical gauge degree of freedom which is usually
accomplished by adding a gauge fixing term to Eq. (5.1), however this is not important for our discussion
and will be omitted.
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The sources for the left and right handed vector currents are given by

Ir: liÀ 12, rt" 7 riÀ f 2, (5.6)

where the À" are the Gell-Mann matrices that make up the generators of SU(3). The

sources for the scalar and pseudoscalar "currentst' are given by

s:sols"Àf2, p:po*p"Àf2. (5.7)

If we define f,$co to be the massless QCD Lagrangian (Eq. (5.1) with r.nt :0) the full

QCD Lagrangian, now with sources, can be written,

Lqcn(Iu,rt",s,p): 4[co - 4¡,1þlpe¡, - 4n1,r,,8n - 4(t - htp)q. (5.8)

Defining vector and axial vector current sources through

49

(5 e)

we can rewrite Eq. (5.8) in terms of these vector and axial vector sources

Lqco(u,a,s,p) : f,$co - qØ+ /au)q - ø(" - hup)q. (5.10)

The role of the sources is an important one and any low energy theory attempting to
emulate QCD must be expressible in a form involving such sources. We will want as

many symmetries as possible of the QCD Lagrangian to be manifest in the effective

theory (by construction).

As it happens, if u, and øu transform as gauge fields, and the scalar and pseudoscalar

fields transform like

(s + ip)(ø) -i A(r)(s + ip)Ll(r) (b.11)

(s - ip)(ø) --+ I(c)(s - iflRt@) (5.12)

then .Cqcn has a larger /ocal SU(3)r 8 SU(3)¿ (or SU(3)v s SU(3)Á) symmetry as opposed

to the global SU(3)¿ I SU(3)R chiral symmetry for 3 flavours. Thus we would insist that
the effective theory also be invariant under such a transformation. This point is crucial.
We have demonstrated that a low energy theory based on QCD should at zeroth order
be invariant under local SU(3)v I SU(f).q il Eqs. (5.11) and (5.12) hold. We know,
though, that chiral symmetry is broleen in QCD by the quark masses, and this is done by
identifying s with the quark mass matrix,

ø2,aTp: Up+ Ap
taaaILL:up-o'p)

":-= (

0

rnd

0

n'Lu

0

0

(5.13)
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which, being a constant, does not transform in the manner of Eqs. (5.11) and (5.12), thus
breaking the SU(3)v I SU(3)1 symmetry. Setting s to be the quark mass matrix in our
low energy theory will therefore break chiral symmetry in exactly the same way as it is

broken in QCD.
Importantly for our work, the mass matrix in Eq. (5.13) breaks more than just chiral

symmetry, it also breaks isospin symmetry (in the strong interaction itself) if mu t *¡
Knowing the symmetry structure, we can now construct the meson theory with these

features. The Lagrangian is written as a series in powers of q',

L:ÐLrn, (5.14)
n:7

where lhe Lzn are the pieces of the Lagrangian at order n in the chiral series. At each

order one writes down all the terms allowable by the symmetry, with coefficients that are
then fixed by comparison to experiment. Thus, as it has an infinite number of terms,
the theory is non-renormalisable (one cannot change a finite number of parameters and
remove all divergences), but to a given order in the chiral series, it produces finite ans\ryers

(as the next order in the series contains the necessary counter-terms).
The lowest order term in the chiral Lagrangian (trq. (5.1a)) is,

h : (pr(JI Dru r urx + xïu), (b.15)- 4\
where,

"'nl' ,

T: ToÀo

n' + n" IJJ tfzn* JÍx*
,,f2"- _iT3 + 

"" IJJ ,/zNo
{zx- t/zt7o -z"rlJj

(5.16)

-F is a constant with dimensions of mass and (A) denotes the trace of matrix A. The
covariant derivative is

DrU : 7rU + i[u,U] - i{a,U}, (b.17)

and the field, ¡ is given by,

x :2Bo(s - ip). (b.1s)

The lowest order part of the Lagrangian, Eq. (5.15), is what we need to give the kinetic
and mass terms for (say) the pion field, when we set s in Eq. (5.18) to the quark mass
matrix of Eq' (5'13). We simply expand the exponential of [/ in terms of the pion field
to give

F2

7zBo(m(ut +u)) : uo(-@n,)+þ@*^)* ). (5.1e)

U
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Making the appropriate identifications gives us the following relations between the quark

masses and the meson masses [81]

m?+: (*,+rn¿)Bo, m2no: (^'+m¿)Bo-ó+ 0(6')
tnzy+ : (*' + n")Bo, T'n26o : (*o + m")Bo 

(5'20)

where the second-order CSV parameter, ó, is given by

U_Bo. (m,-m¿)2 
.

4 (*" - rr¿u - *o| 
(5'21)

One can easily see from this, that if the quark masses vanish, then so do the meson masses.

Our calculation will be to one loop order. In ChPT the number of loops corresponds

to a particular chiral order, in this case qa which can be seen from a consideration of

momentum contributions arising from vertices, propagators and loop integration. This

means that we only require L2 and La; the former will provide the interaction pieces to

make up the loop (and possible lowest order tree in reactions) and the latter will provide

the tree-level counterterms required to cancel any divergences arising from the loop.

The next order piece of the Lagrangian is given by,

La : h(DtUDt"UI)t + L2(D\UD,Ut)(Dt'UD"Ut) + h(DtUDpIJ¡ D,UD',Ut)

+L4(Dt"u D,uI)&ut + UxI) + Ls(Dt"u pr'¡¡t(yUI + Uxt))

*Lo(xut + u xr)' * Lr(yut - uxI)' * Ls(yut yuÏ + rlyt rl yt¡

+iLs(Lt",URu"Ut) + HlLp,Rp', + Lt",Lp',) + Ur(xtù. (5.22)

This constitutes the complete set of terms allowed by the symmetry of order qa in mo-

mentum (rememberi.g X as defined in Eq. (5.1S) contributes as order q2.)

5.2 The standard ChPT treatrnent of f"@')

To obtain F"(q') we need some way to incorporate the photon into ChPT. To do this,

the covariant derivative of Eq. (5.17) is rewritten as

DuU - ApU + ielAu,,U), (5.23)

where we have constructed the matrix A, from the four-vector function, Au(r), multiplied
by the charge matrix, Q

o - ('l' (5.24)(^,*år) :0,+0,
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In this way we can make the identification

AP 
: i',1,,îä:"+ o'), (b 2b)

where Ar(") is a four vector, and the other quantities are matrices. This is merely a

simplification, we have removed the axial current sources and all but the third and eighth
components of the vector current sources. The isospin conserving (*, : rn¿) treatment
was first performed by Gasser and Leutwyler [79] and then extended to the case where
the pions are off-shell by Rudy et al. [80]. I shall not present the details of the calculation
(as this will be done for themuf *o case) but merely quote the result

Fi=o(q')-r+ tl#+ffia], (526)

where

A : 2tn(mf,lml +t"ç^|l^rà - B,

B : r + 2(r - 4*r_lqr)H(qr l^?) + (1 _ +m2rf q2)H(qr l*ro)
tr is the finite part of the low energy constant (see Eq. (5.22)

L: LÇ(mo) : (6.9 + 0.2) x 10-3,

F : Í* is the pion decay constant, 92.4 MeV and

H(q'l^'") -) r9 4m?
-; I arccot

q"

4m?

nf -r,o<q'<4-7

(5.27)

-t -L
t-4\1 +lq'

, q' > 4m'*
1 - !y1

q2 -1

5.3 The (rr, - ,rnd) contribution
We are now in a position to examine contributiors lo the F,(qz) resulting from the

quark mass difference. The basic procedure will be to look at the A8, coupling to the two
pion final state. No attempt has been made to examine the A3, __, :^r:u- for the case of
unequal quark masses, and although any such contribution will be small compared with
the isospin conserving contribution, it could be of comparable size to that for A", - rtrr- .

Thus, our procedure now is to search the Lagrangian for terms linear in A, and then
choose the special case that only Af is nonzero. Now by looking at the effect of the
covariant derivative, trq. (5.23), in the Lagrangian Eqs. (5.15) ancl (5.22) we can deduce
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the interaction piece, ArJu. This will, of course, appear inside a trace where the property

Tr(1"Àö) :6"b12 will ensure that we find A8'J8.

Before obtaining JN from the Lagrangian, it is useful to have in mind a picture of the

terms in the Lagrangian that will be relevant to us. The possible graphs are shown in

Fig.5.1. We see can see from this that the pieces of fi we are looking for are firstly

the tree-level piece frorrr L2, r*r- (corresponding to Fig 5.1.a). For M any meson in

Eq. (5.16) we need terms of the form M M from JN, to give the vertex (i) in Fig 5.1.b, and

MMr+r- (ii) from the kinetic and mass pieces oI Lz. Fig 5.1.c is generated by a term

in -fN of the f.orm MM¡r*r-. Our final piece comes from',Ca, which (as this is already

O(qn)) can only be a tree level term of the form discussed above for Fig 5.1(a)"

(a)

(b) \ÂÂÂj.u (ii)

(c)

I
I
I

I
I
,

Figure 5.1: The chiral contributions to 7 -- rrr-

We can now begin to calculate fiby making a few helpful simplifications in .C. Keeping

in mind Lhat ôr(UtU):0, this allows us to send

Pt2

ilo,u, ouul - ;F'zKa,uur - uta,u)A,). (5.28)

We can now expand t/ (an exponential) in powers of zr, to give

ôtuuI - utatu : þ{uroo - trôrn)+ fr{"ra ¡r - Lrtrtr3)

1. r+ '*(ôuo'nt - n2arr'¡ + intrarrr - arrtr), (5.2g)

where n is the matrix given in Eq. (5.16). Setting A3rto zero and keeping only A| allows
us to obtain from trq. (5.28) the terms we want from the current. The current, 4, is given
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in fuìl in the appendix, Eq. (B.t). However, only a few terms in the current are releva¡t
to our calculation. These terms contributing to the photon-hadron vertex in Fig.5.1 are

Ji : rf@rrt Ro - a,Ro Ko + at"K+ I{- - apl{- K+) +'Énn{a,*-tr+ K+ K-

-Ô¡r+ r- I{+ I{- + ôrI{- I{+ r+ 7r- - 0rI{+ K- r+ r- * 0*tr+ r- I{o Ilo

-Ôrtr- r+ I{oÃo + 0rI7o Kor+ r- - 0rl{o Ko r+ o-). (5.30)

We notice in trq. (5.30) that there is no tree-level contribution (Fig. 5.1(a)) coming from
Lz' To calculate the vertices in Fig. 5.1(b) we require the ra parts of the kinetic and mass
terms of L2. This is given by (we assume here summation over the Lorentz indices of the
partial derivative)

nKEl,LTï,\ : 
6p,r(zAr+r- 

0I{+ It- - ðr- ðI{+ Ii- - r+r- TIi+AI{- - 0r+0¡r- K+ I{-
- ôr+ r- I{ + 

A I{ - | 2r+ 0r- I{+ A I{ - I 20r+ r- I{o A I7o - ðr+ r- 0 Iio I(
-r+ r- Ô I{o A Ko - 0r+ Ôr- I{o I7o + 2r+ ðr- ô I{o Ilo - r+ 0r- I{o A Ro¡

rmass Bo 
rtiiiïl : 

6prl(2m" I ma ! m")r+r- I{+ It- I (^,I2m¿ ! m")r+r- I{o kol.
This takes care of the contributions from L2. We must now go T,o La, given in

Eq. (5.22). As it turns out, this has no coupling of A8, to the two pion final state.
We might have expected a contribution from L¿ to Fig. 5.1(a). Usually in ChpT this
is responsible for removing the divergences (as well as the unphysical dependence on the
scale, p) associated with the loops of Fig. 5.1(b) and (c). Thus, the loop graphs themselves
must combine to give a finite answer.

We are now in a position to construct the Feynman amplitudes associated with the
graphs of Fig. 5.1, remembering that q : -i0. The problem is now completely standard
(a good discussion of the relevant loop integrals can be found in, for example Ref. [g2]).
We obtain the amplitudefor A8 -+ T*'r-, M, defrning the associated form-factor by

M,: (p* - p-),Flk\. (5.31)

The calculation of the amplitude is described in detail in the appendix, so we merely
present the result for the form-factor here

Flk, 'ßl i ",n*?<*_ i ^n(:___r_\l' 
' 
: 

n n lgwn- '";rr* g6orrq' l;1* - ;i; )l (5.32)

Using trq' (5.20) we can rewrite this form-factor in terms of the quark masses,

p1(qr):Æl ' 2¡ mulffi"-- i 
^n(- rr¿-TtLu 

)l .,5.33)
ar\q ): 4p, Lgurq 

tn md+m" g6o.rq= \ffi/ J

It is then easilv seen that the contribution to the pion form-factor from ,4f vanishes when
TI7,: m¿ a'n'd hence the contribution examined previously (Eq. (b.26)) is that due to ,43
only.
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5.4 Discussron

Setting q2 : 4m2, in Eq. (5.32) reveals a very small (0(10-4)) correction to the leading

order expression Flk') as given in Bq.(5.26). The first response to this might be to assume

that A| contributes little to the pion form-factor in the low q2 region relevant to ChPT.

While this is possibly quite true, that is not to say that the higher order contributions

might not be larger than those of Eq. (5.32). Indeed, there is evidence to suggest that

this could be the case [55]. Basically, the low energy constants of Eq. (5.22) are the result

of "integrating out" the heavy resonances in an extended Lagrangian that includes the

vector mesons as well as the pseudoscalar octet. Thus, in any calculation where the low

energy constants are absent, such as this one, the effects of the vector resonances are

not included. As the isospin violation in F"(q2) is largely due to the cu we would expect

these constants to play a leading role. We can compare this with the case of the decay

q - r.o.l.y where the one loop ChPT prediction [83] is approximately 170 times smaller

than the experimental result. The (?(q6) contributions then bring the ChPT result into

satisfactory accord with experiment. Maltman finds a similar situation in his calculation

for the mixed current correlator (0ly/,3y,810). Isospin violation is most visible in the pion

form-factor data around the ø pole where we determine that the ø contributes with a

strength - 3To that of the p. Although one cannot probe the resonance pole region

using ChPT, it would thus be very interesting to see a similar two loop study of the pion

form-factor including isospin violating effects.
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Chapter 6

New analysis of the pion form-factor

There are a number of features of the standard extraction of the value for flo, (dis-

cussed in Chapter 2) that deserve closer scrutiny. Foremost of these is that this value is

traditionally calculated [35] by comparing a formula for the decay u --+ r*r- with the

branching ratio quoted for this decay [27]. We believe that a fit to the pion form-factor
data is a much more direct method and as such should produce a more reliable result.
An initial attempt has been made at this (see Section 4.4). However, the purpose of
that previous exerciserilas mainly to illustrate the use of VMD1, rather than to carefully
extract the value of. fI*. In this chapter we shall take an existing, and very precise, fit to
the pion form-factor and match the results from that to our model to obtain information
about p-ur mixing.

Upon establishing this procedure, there are two further issues to address. Firstly,
we should develop a general scheme where momentum dependence in flp. can be acco-

modated. The second point of contention is the accuracy of the Renard argument (see

Section 2.4). Although the basic mechanism is physically reasonable, the cancellation is

clearly not exact (this will be fully explained in Section 6.3), and so our aim is to see if
there is any residual competition between ur -) rr¡r- and IIp-. This study, published
recently [84], is presented below.

6.1 An S-matrix approach

The cross-section for e*e- '-. rlr- in the p-ø resonance region displays a narrow
interference shoulder resulting from the superposition of narrow, resonant u and broad,
resonant p exchange amplitudes [27]. The strength of the ø "interference" amplitude has
generally been taken to provide a measurement of p-c.r mixing [85,66].

To obtain properties of unstable particles which are process-independent and physi-
cally meaningful, one determines the locations of the resonance poles in the amplitude

57
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under consideration, and makes expansions about these pole locations [85]. The (com-
plex) pole locations are properties of the S-matrix and hence independent of the choice

of ìnterpolating f,elds, and the separate terms in the Laurent expansion about the pole
position have well-defined physical meaning [85]. T]re irnportance of such an "S-matrix"
formalism for characterising resonance properties has been stressed recently by a number
of authors in the context of providing gauge- and process-independent definitions of the
Zo mass and width in the Standard Model [86,87].

For our purposes this means that: (1) the "physical" {p,a.'} fields are to be identified
as those combinations of the {pt,ut} fields containing the corresponding S-matrix poles
and (2) to analyse e*e- --+ rtr- one should include both resonant ter-ms involving the
complex p and cu pole locations and "background" (i.e. non-resonant) terms. In quoting
experimental results we will, therefore, restrict ourselves to analyses which satisfy these
requirements (as closely as possible). To our knowledge, only one such exists: the fifth fit
of Ref. [70] which is performed explicitly in the S-matrix formalism, though without an
s-dependent background. As stressed in Ref. [70], using the S-matrix formalism, one finds
a somewhat lower real part for the (complex) p pole position (ño : 757.00 t 0.b9, lo :
143.4I+7-27 MeV) than is obtained in conventional, non-S-matrix formalism treatments.
Therefore, for comparison we will also employ the results of the second fit of the more
conventional (but non-S-matrix) formalism of Ref. [69], which employs an s-dependent
background, an s-dependent p width, and imposes the (likely too large) Particle Data
Group value for the p mass by hand.

6.2 Mixing Formalism

Let us turn to the question of p-tr mixing in the presence of a q2-dependent off-
diagonal element of the self-energy matrix. We shall work consistently to first order in
isospin breaking (generically, O(r)), which will mean to first order in flp..

As we consider only vector mesons coupled to conserved currents, \À/e can replace
Dr,(q') by -g*D(q2). We will refer to D(qr) as the ,,scalar propagator,,. We assume
that the isospin-pure fields, pr ar'd u,r¡, have already been renormalised - i."., that the
relevant counterterms have been absorbed into the complex mass and wavefunction renor-
malisations. Taking the full expression for the dressed propagator and keeping terms to
O(r), one finds

D'oo D'r.
D'o- D:, ):(

(q'-*'o-illrk'D-'
D,o.kr)

D,r_(qr)
(q'-*'.-n1-k'D-t

D'(q') :

(6 1)
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where the renormalised self-energies are defined here such that

uf*(q'?) -' o as q' - *'*. (6.2)

We then have flf;*(q") : Olk' - *'o)'f, not to be confused with the unrenormalised

f|*(q') of Section 4.1, subject to the node condition. From the complex pole positions,

rn2¡, we define the (real) mass (rîz¡) and width (l¿) via,

m2k Z ñ'* - irît,*l*. (6.3)

To O(e), n'r.(ø') is then (see Eq. (4.22)

nto.Gr)
\r.(q')

k' - *3 - nl,k'))(q' - ^'. - ilI.k'))
D Io 

ok2 )rt o- k\ n',.. (q', ),

which contains both a broad p resonance and narrotvv c¡, resonance piece.

As explained above, the physical p and c¿ fields are defined to be those combinations of

the p¡ and t,r¡ for which only the diagonal elements of the propagator matrix contain poles,

in the p,a., basis. Thìs definition is, in fact, implicit in the standard interpretation of the

et e- -, rr r- experiment, which associates the broad resonant part of the full amplitude

with the p and the narrow resonant part with the c¿. Using different linear combinations

of pr, ø¡, (call them p', a') than those given above (p, r), one would find also narrow

resonant structure in the off-diagonal element of the vector meson propagator in the {p',
c.r') basis, preventing, for example, the association of the narro\¡/ resonant behaviour with
the c¿' pole term alone. Despite this, the Bernicha et al. paper [70] on whose data fit we

rely do not use this physical basis. For most of their paper, they use the isospin pure

basis, which contains the propagator in Eq. (6.a). Their analysis would therefore be of

little use to us were it not for their "freezing" the q2 in the D'ork\ propagator in one of
a number of fits, which gives an expression of our desired form (given in Eq. (6.26)). It
is therefore of note to point out that the more standard Ref. [69] does use the physical

basis, in which only two poles occur (but includes momentum dependent widths).
We define the transformation between the physical and isospin pure bases by (to O(r))

p : pI - etu)l,¡ u) : ttl * eZ pl

where we have allowed for two distinct mixing parameters, €1 and e2. With

D',í(* - y) = -i(\lT (pq(r)cu"(y)) l0),

one then has for the scalar propagator, to O(e),

D o-(q') : DI.G\ - erDl--(q2) + eznlorçnz¡.

(6.5)

(6.6)

(6 4)

(6 7)
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The condition that Do.(q') contains no p orø pole then fixes et,zbV demanding that the
numerator of Eq. (6.7) vanish at these poles. Hence we find

,r:@ ,": no:(^J)=, 
.,

m2. - ml - il!r(mr.)' " - ,rr. - nt2o * tIj.(nfi) (6 8)

To O(e) the diagonal propagator elements are unchanged, Dpp: DIro þnc) similarly for
the ø). We now have an expression for the physical vector-meson propagator in terms of
the isospin pure propagator elements.

There are a number of points to note about Eqs. (6.5) and (6.8). When il..(q2) j" qr-
dependent, we thus see explicitly that et I ez, the relation between the isospin-pure and
physical bases is not a simple rotation as usually assumed. This is a universal feature of
q2-dependent mixing in field theory. However, as the p and ø poles are nearby, the single
parameter, e which is usually used to describe the transformation in trq. (6.b) reducing it
to a simple rotation, is a good approximation.

As an illustration, let us consider the case where this momentum dependence is purely
linear (which is, admittedly a rather restrictive assumption) so that

ilr.(q') : ilï. + q'fr'o- (6.9)

then to first order in isospin breaking, II). is just the off-cliagonal elernent of the wave-
function renormalisation matrix, Z. The results in Eqs. (6.5) and (6.8) then reproduce
those that follow from the more familiar formalism of first defining r-enormalised fields,
óiþ:p,a),via

ó;: (z-l/\"uóu (6.10)

(where öt : pt and þ2 - uò and then identifying the physical, renormalised fields by
rotating of the {/i} basis to diagonalise the (symmetric) meson mass-squared matrix
and hence also the propagator. Put simply, in the special case that the mixing is linear,
the physical propagator is diagonal and the effect of the mixing survives only through
the wave-function renormalisation of the physical fields. We shall, however, keep our
discussion completely general.

Recall thatllfoQz) and n*-þ') vanish by definition as q2 - *,, anrJ m2- (respectively)
at least as fast u. (q' - ^7,)'where m2o and m2, are complex (see trq. (6 3)) The usual
assumption is that these two quantities are zero in the vicinity of the resonance region,
which leads to the standard Breit-Wigner form for the vector meson propagato rs. I!r(q2)
and lf;,(q2) are, of course, momentum-dependent in general since the vector propagators
must be real below the rr and rl thresholds. Note that, from trqs. (6.7) and (6.g), any
deviation from the Breit-wigner form and/or any non-linearity in the q2-dependence of
il o.(q') will produce a non-zero off-diagonal element of the vector pr-opagato r eaen in the
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physical basis. This means that a background (non-resonant) term is completely unavoid-

able even in the traditional VMD framework, where all contributions are associated with
vector meson exchange. In general this background will be q2-dependent. Finally, even

in the vicinity of the p and ø poles, where it should be reasonable to set llfl(q2) and

LII.Q') to zero, the p¡ admixture into the physical u,' is governed, not by fIp'(mz,) as

usually assumed, but by ¡¡o'(m2e).

We will see that these findings related to the momentum dependence of self-energies,

while important in principle, do relatively little to change the quantitative analysis of the

data. Isospin violation is such a small effect that it is only observable at the c,., pole, and

so the non-resonant off-diagonal piece is unlikely to play much of a role in any fit, other
than as part of a general background. Our lack of knowledge of the momentum dependent

behaviour of fIp. and the fact that the real parts of the complex meson poles are quite

close together means that determining that the mixing is extracted at one pole rather
than the other will have little practical significance. Despite this, an understanding of the
principle of defining the physical fields in terms of the poles in the matrix propagator is

useful and provides a relatively transparent framework for understanding what is seen in
the data.

6.3 Contributions to the pion form-factor

The time-like BM pion form-factor is given, in the interference region, by

F,(q,) : 
ls-**D-,{rt- 

+ eon,DroÏ!1 * sonnD*+] -background, (6.11)

where g,nn is the coupling of the physical ø to the two pion final state and f ,-, and /]., are
the electromagnetic p and r*., couplings. The third piece of Eq. (6.11), !pnnDp,f-.r, r'esults

from the non-vanishing of the off-diagonal element of the physical meson propagator and,
being non-resonant, can be absorbed into the background, as can any deviations from
the Breit-Wigner form for the p and u propagators. Since the variation of q2 over the
interference region is tiny, \rye can presumably also safely neglect any q2-depenclence of f -,f.t, gpnn and g.nn (this is a standard assumption in VMD). The photon-meson coupling,
fv1, is related to the "universality couplinB", gv, of traditional VMD treatments by
fr-r: -"ñTlg, (see the discussion surrounding Eq.(4.48) on page 3g). As we have
assumed a renormalisation at compler points on the q2 plane, one might neecl to carefully
examine the use of real coupling constants as we might expect this scheme to deliver
complex renormalisation constants [88]. We shall not address this issue here, but note it
for future consideration.
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We now focus on the resonant u,' exchange contribution, whose magnitude and phase,

relative to the resonant p exchange, are extracted experimentally. We have

gurr : þrrlu¡ + ezpt) : luyx.r I €2gp,nn, (6.12)

where c2 is given in Eq. (6.8) which we shall rewrite as

(6.13)

to introduce a new quantity

1
ñ.1-

- ------=- - z
ffipI p

that will be helpful in our analysis. Note that z xl but equals I only if we neglect the ø
width and p - (, mass difference. This brings us to the Renard argument [30], mentioned
in Section 2.4. Since, in general, g.,nn f 0, flo,(qz) could contain a contribution from
the intermediate nn state which, because essentially the entire p width is due to the nr
mode, is given by

TI7:@") n:t"n\î@',)
gprTT

G(Re n\i@Ð - irîxpt p),,

7

)l
-1ñ'. - ñ'o

ñrl, (6.14)

(6.15)

where

G : 9-,'n 
(6.16)

9 ptrr

is the ratio of the p¡ and ø¡ couplings to rr. In arriving at Eq. (6.1b) we have used
the facts that (1) the imaginary part of the p self-energy at reson ance (q2 : *3) is, by
definition, -ñol, and (2) gpnn: gptnn to o(e). Defrning frr. through

ilp,:fr'. - icñ'Llp, (6.12)

we rewrite e2 as

,, : "*Iilr.(*}) - icfnpt p) (6.18)

and define a new quantity,

Z2 : (-i z f ñ pl p)It p.(m2p)

This allows us to rewrite Eq. (6.12) as

(6.1e)

lJ-rr : g-,nn (l - z) + èzgptn, (6.20)
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We shall also define, for convenience,

2

63

(6.21)
frr. TN

T p

TN f p

The standard Renard analysis (see Section2.a) approximates z by 1 (see trq. (6.t+)). The

contribution to u --+ 7t7t from the intrinsic u¡ decay is then exactly cancelled in Bq. (6.20).

Using the (preferred) experimental analysis of Ref. [70], however, we find

z :0.9324 + 0.3511 i . (6.22)

(For comparison, the analysis of Ref. [69] gives 1.023+0.2038i). Because of the substantial
imaginary part, the intrinsic decay cannot be neglected in e+e- --+ rt¡r-

Substituting the results above into Eq. (6.11), we find

'{
F^(q'): !90,,, [l'"*l"nd"*.- (f t - ")G -;ri) e. * or] f background, (6.23)

e

where we have expanded the propagators Drp,.,, of Eq. (6.11) in Laurent series about the

simple Breit-Wigner poles Po,.:- 1l@' - ^'r,.). The ratio of the physical couplings to
the photon is given by t

l..* f #1 : lr.*leiö.+"- ,
J p', ' (6'24)

with /"+"- the "leptonic phase" (to be discussed in more detail below, see also Eq. (2.13)).
This analysis essentially follows that in Section 2.3. We emphasise that the present work
represents a logical refinement of the standard analysis. As such, our conclusions are really
implicit in the earlier work, but have not been realised due to various approximations.
Experimentally,

ln?.r(, -- "+"-\f'l'lr"*l : lA;n¡: "--l''l 
: 0'30 + 0'01 (6'25)

using the values found in Ref. [70]. The form of F"(q') in Eq. (6.23) is what is required
for comparison with experimental data, for which one has [70]

Fn x pr* Aeióp,; A: -0.0109 t0.0011; ó: (116.7 +5.g)". (6.26)

As will be demonstrated, the uncertainty in the Orsay phase, /, makes a precise extraction
of fr'l.(rn2r) impossible. Indeed, the two contributions to the u., exchange amplitude (i.e.,
multiplyin 8 P.) either have nearly the same phase or they differ in phase by close to n

(clepending on the relative signs of G and f¡. t" either case, a large range of combinations
of G and Í, all producing nearly the same overall phase, will produce the same value of
21. The experirnental data can thus place only rather weak constraints on the relative size
of the two contributions, as we will see more quantitatively below.
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Let us write r.*, the ratio of electromagnetic couplings given in Eq. (6.24), in terms of
the corresponding isospin-pure ratio, rt : f.nlf o,-r. In the limit of eract isospin, in which
G would be zero and p-cu mixing not observed, this ratio would be 1/3 [72]. However,

as isospin is slightly broken we expect r¡ to be slightly different from 1/3, the way G is
not exactly zero. However, for simplicitv we demand that r¡ be real 1 and this will place

constraints on /"+"- (given in Eq. (6.24)). In analogy to Eq. (6.15), we have

f-, : f.nI€zÍprt,
f o. : f rtr - €tf .,t,

(6.27)

(6.28)

and one finds

r"* : (rr + er) lQ - etrt). (6.29)

To O(e) the constraint that r¡ be real now means that we can determine the leptonic
phase. Rearranging trq. (6.29) to obtain an expression for r¡, and then demanding that
the imaginary part of this vanish, we obtain

sin/"+"- - 
Im(ez) + lr'.l2lm(er).

1""* I (6'30)

Tgnoring the small clifference in e1 and e2 (since rl* is small, see Eq. (6.8)) we obtain

sin/"+"_ - 
(1 + lrr*l2)Imez. 

(6.J1)
l/ exl

In order to simplify the discussion of our main point, which is the effect of including
the intrinsic decay on the experimental analysis, let us now make the usuaì assumption
that the imaginary part of flr. is dominated by rr intermediate states. (Note, however,
that, because the argument is complex, there may also be a small imaginary part of flp.
even in the absence of real intermediate states; to illustrate this consider the model of
Ref. [46]' with confined quark propagators, where the phase of the quark loop contribu-
tion to IIo.(*3) at complex q2 : m3 is about -13" [89], despite the model having, for
this contribution, no available intermediate states.) Making this nr dominance assump-
tion, frr. (and thus i) b".o-"s pure real and the imaginary part of IIo.(m|) recluces to
-Gfnplp. Using trqs. (6.18) and (6.31) the leptonic phase becomes

sin /,+"- : - (t ;:i.,') rt o" z + G rm z) (6.32)

which is completely fixed by G and Ûr.. W" see then that in the small angle limit where
tand: sind, Eq. (6.32) reduces to the standard lepton phase given in Bq. (2.13), upon

lAs we have renormalised at complex pole positions, however, this assumption deserves further inves-
tigation [88].
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substitutingfor i (see Eq. (6.21)) and setting r.*: I13. For each possible flr., only one

solution for G gives both the correct experimental magnitude for the ø pole pre-factor

(A) and has a phase lying in the second quadrant, as required by experiment. Knowing

úr. and G, Eq. (6.32) allows us to compute the total phase, /. Those pairs (ÍIo-, G)

producing the experimentally allowed (A, ó) constitute our full solution set. This is

shown, explicitly, below.

So the problem now reduces to that of two unknowns, fr,r,ç*'r) and G which combine

in a non-linear v/ay to give a theoretical prediction for the experimentally determined.4.

and the Orsay phase, /. Comparing Eq. (6.23) with (6.26)

lr.*leió"+"- (0 - ,)c - i"i) : Ae;ö. (6.33)

We now wish to find G in terms of io-. To do this we take the modulus squared of both

sides (to eliminate phases). This sets up a quadratic equati on aG2 + bG + c : 0,, where

o, : (1 - Re z)2 + (Im z)2 (6.34)

b - 2[(1 - Re z)Im 
" 

'i + Im z Re z i) (6.35)

c : [(Im z)2 * (Re ")']T' - A'llr.*l'. (6.36)

'We can therefore solve for G in terms of ?. Our other constraint is that of the Orsay

phase in te¡ms of the leptonic and hadronic phases, ó : ö"+.- * dn"¿. The hadronic phase

is obtained from Eq. (6.33) giving

tan/¡.¿ : -,'^! ",Iotl 
i 

=.(r - Re z)G *r;;Í' (6'37)

The Orsay phase is now obtained by inverting Eqs. (6.32) and (6.37). This then gives us

/ as a function of f, which we can no\l¡ compare to the experimental value for the Orsay
phase.

6.4 Numerical results

The results of the above analysis are presented in Fig. 6.1, where we have used as

input the results of Ref. [70]. The spread in G values reflects the experimental error in
A. We see that, barring theoretical input on the precise size of G, experimental data is
incapable of providing even reasonably precise constraints on the individual magnitudes
of G and Í1n-(*'). The reason for this situation has been explained above. If we fix
A at its central value, the experimental phase alone would restrict nr,@}) to the range
(-1090 MeV2, -5980 MeV2). Including the experimental error on A extends, for example,
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the phase constraint range to (-840 MeV2, -6240 MeV2). For comparison, artificially

setting G : 0 produces ilo"þ"}) : -3960 MeVz. One may repeat the above analysis

using the input parameters of Ref. [69] (where, however, the p pole position is presumably

ioo high by about 10 MeV [70]). For the central A value, the experirnentally allowecl

range of llo,,(m2o) is (-3720 MeV2, -5080 MeV2). The large uncertainty in the extracted

values of fr,p.(m2p) and G is thus not an artefact of the particular fit of Ref. [70]. The small

(+600 MeV2) error usually quoted for íL*(m'r) [35], and associated with the experimental

error in the determination of ,4, thus represents a highly inaccurate statement of the true

uncertainty in the extraction of this quantity from the experimental data. It is important

to stress that no further information or, úr.(-l) is obtainable from the e+ e- ---+ zr*zr- data

without additional theoretical input.

Note, for example, that, in the model of Ref. [46], as currently parametlised, the sign

of G is determined to be positive, and the magnitude to be - 0.02. Such a value of

G, however, coupled with the phase correction mentioned above, would fail to satisfy

the experimental phase constraint. This shows that, despite the weakness of the exper-

imental constraints for the magnitudes of G and fr.',(ml), the experimental results are,

nonetheless, still capable of providing non-trivial constraints for models of the mixing.

0.10 4000

2000

0.00 0
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-2000

-4000

-6000

-8000

-0.10

-0.20
105 1 10 120 125

Figure 6.1: The allowed values of G: g,,nnf gp,nn ana i(nzl) (in MeV2)
are plotted as a function of the Orsay phase, /. The vertical (dotted)
lines indicate the experimental uncertainty in d (: 116.? + 5.8)" and the
uncertainty in the amplitude A (0.0109 +0.0011) (see text) gives rise to
the spread of possible values of G at each value of /.
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6.5 A word on transformations between bases

It is now useful to generalise the procedure in quantum field theory for a transformation

between bases, such as the one we have used here to arrive at our final form for the pion

form-factor. In this analysis, an important point becomes clear.

Consider a two-channel vector boson system in the isospin-pure (1) basis, which we

shall denote (suppressing all Lorentz indices) by the column vector

(6.38)

The propagator for this two channel system is a 2 x 2 matrix given by (see Eq. (6.6))

n{¡: $lrvtlvÐlo) (6.3e)

which we can write in matrix from as

DI : plryly.)t)lo) (6.40)

where the row vector (Vt)' is the transpose of Eq. (6.38).

We now wish to consider the process A --+ B which is mediated by the vector bosons

VI. To do this, we need to determine the vertex functions between theVI and the initial
and final states A and B. Once again we have column vectors (we give Lhe V A vertex as

an example)

rL, (6.41)

(6.42)

(ol"(y/A)lo)

(ol' ( i;,:) r,
If tve assume, as \rye did for the pion form-factor calculation, that these vertices are
pointlike, the vertex functions are given simply by coupling constants. Using the notation

/ to denote the coupling of the vector boson to the initial state, and g to the final state,
we would have

Qtnù' (6.43)

(6.44)
If VB

We now have all the pieces to construct the amplitude for the one boson exchange process.
This is given by

Tr : (lrv), n,rl". (6.45)
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Suppose now that we wish to make a linear transformation to a different basis, as we

did for the pion form-factor (see Eq. (6.5)). In that case we wanted a basis, the "physical
basis", in which the propagator would have poles only on its diagonal" We can express

this in a matrix equation

vI -- v -- CvI. (6.46)

Here C is a 2 x 2 matrix and hence the transpose of V will be given by

vr : (v,), cr. (6.47)

As the propagator and the vertex functions are constructed from V1 these will also be

subject to a transformation when we change to the new basis. For the propagator we

have

DI --+ D QlrQvI (vI¡r cr¡10¡

CDICT. (6.48)

Similarly the vertex functions transform like (see the transformation for the u - r.7r vertex,
Eq. (6.12))

lI, o -. ly¡ : $lrQvl A)10) : ct|o
tlsy--, tBy : plr(BVI)rCr)10) :tLrc, (6.49)

Therefore, recalling trq. (6.a5), the amplitude transforms like

TI -+T : (lrv)r}rcnrcrclru"
: lay Dlys. (6.50)

We easily see from this that the amplitudes as determined in the two bases are only
equal if the transformation between them is orthogonal, i.e., CrC : I. However, the
transformation between the {pt,rr} and {p,ø} that we have used (see Eqs. (6.b) and
(6.8)) bases is not orthogonal in the general case (i.e., when et * ez as occurs when
there was momentum dependence present). Thus the choice of physical basis is one of
significance, rather than mere convenience.

6.6 Conclusron

In general, there is a contribution to the p-cu interference in e+e- -- r*r- from the
intrinsic QI --+ zrzr-coupling. Given the current level of accuracy of the experimentally
extracted Orsay phase, we cannot extract any value for p-u mixing which is even rea-
sonably precise in the absence of additional theoretical input. It is important to stress
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that this conclusion, and the central result of Eq. (6.2g), do not depend in the least on
the possible q2-dependence orrrr,(q2) nor on the use of the.g-matrix formalism: even for
constant IIr. and a more traditional Breit-Wigner analysis where quantities are defined at
real mass points (rather than complex poles) one would still have a significant imaginary
part of " (Eq'(6.14)) and hence a residual contribution from the direct coupling which,
being nearly parallel to that associated with p-c,,, mixing, would lead also to the conclu-
sion stated above' It is an entirely straightforward matter for the reader to reproduce the
steps leading to Eq' (6.23) when there is no momentum dependence and the traditional
Breit-Wigner form for the resonances is used. We see that the central result is that z is
not exactly 1 (i'e', when we do not neglect the p-a mass difierence and the c¿ width) and
that this leads to significant quantitative uncertainties in the extraction of the p--rt mixing
amplitude.

A significant improvement in the determination of the experimental phase would allow
one to simultaneously extract the mixing and the isospin-breaking ratio, G (Eq. (6.16)).
However, both these quantities are constructs of the matrix model we have used (i.e.,
that traditionally used) and this must be considered when discussing them. They are not
model independent like the ø pole prefactor, Aeiö (see Eq. (6.26).

We note that (1) even if G were zero, the data would provide the value of the mixing
amplitude at m2, and not ^',, (2) since it is the complex S-matrix pole positions of the
p and c¿ which govern the mixing parameters 61,2r only an analysis utilising the S-matrix
formalism can provide reliable input for these pole positions, and hence for the analysisof the isospin-breaking interference in e*e- -- r*r- , (3) the simultaneous use of theexperimental magnitude and phase can provide non-trivial constraints on models of thevector meson mixing process and (a) ror q2 dependent mixing, the transformation betweenthe isospin pure and physicar bases is no ronger a simple rotation.

Due to the similarities of the vector propagator structure and dependence on the updown mass diflerence one might expect that p-o mixing and 1-zo mixing studies coulddraw upon each other' The diagonalisation to mass eigenstates used for the p-asystem
would possibly be able to be used in the 7 - zo system (though the nocle condition,rr'rz(0) : 0, ensures there is no off-diagonal photon term [g0]), although the two poresfor this system are very far apart (unlike the p-u,, case). The momentum depenclentbehaviour of f7'r2o(q2) can be calculated perturbatively and therefore we can examine thebehaviour of the non-resonant off-diagonal pieces of the physical propagator, which wecannot in the p-a case.



70 CHAPTER 6. NEW A¡úA¿}'SIS OF THE PION FORM-FACTOR



Chapter 7

Conclusion

QCD is almost universally accepted as the theory for the strong interaction. However,
in the low to medium energy region it leads to strong interactions and we cannot use
perturbation theory for calculations in the same way that we can for the Electro-Weak
theory' For this reason we still need effective models for hadronic systems, many of
which predate the invention of QCD. If QCD is the correct theory, then the profound
achievement of a solution to it, far from making such models obsolete, will enable us to
improve them as we calculate the parameters of appropriate effective Lagrangians from
first principles' As quarks and gluons are not the degrees of freeclom we observe directly
in Nature, effective hadronic models of the strong interaction will remain with us in muchthe same way as Dirac's equation for the electron did not replace chemistry. It is the
importance of being able to develop a clear and systematic understanding of these modelsthat has motivated the present work.

In the Standard Model (which combines QCD with the Electro-weak sector) the pho-ton couples to conserved quark currents. In effective Lagrangian models of the photon-hadron interaction, the photon couples to vector mesons and may or may not also coupledirectly to the matter fields' we saw that there were two versions of the vector Me-son Dqrninance (vMD) model, one with direct photon-matter coupling (vMDi) and onewithout (Vtvtoz;' with QCD in mind, \.ve concentrated on models in which the vectormesons couple to conserved currents' our initial study was of the p-asystem. we foundthat for this class of models, p-t-, mixing wourd necessarily vanish at q2 - 0 (the nodetheorem) and hence concrude that in generar q2 dependence carì be expected although itmay be small in some models.

Naturally, this constraint would also apply to the mixing between the photon andvector mesons in these ,,conselved 
current,, models. VMD, though, had traditiqnallybeen used with a constant coupling of the photon to vector rnesons (r,ve ref'erred to tlris

71
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as VMD2), not one that vanished at q2: g. It was thus wrongly argued by some that

this would decouple the photon from hadronic matter aL q2 : 0, thereby ruining the

phenomenology. To clarify this confusion, we discussed a representation of VMD in which

the coupling of the photon to the vecl,or rneson r/oes salisly tl're node theoleur (VMD1) and

discussed the field transformations from one effective Lagrangian to the other. ln changing

from the traditional VMD2 to VMDl a direct coupling of the photon to hadronic matter

is generated thereby ensuring the photon does not decouple from matter at q2:0. This

raises a central point of this thesis - when performing phenomenological calculations

using effective models it is crucial to apply the one effective Lagrangian to the entire

calculation of the physical observable. Mixing inconsistent models can lead to meaningless

results as the above example clearly shows.

In building a model with couplings to conserved currents, we predicted a momentum

dependence for p-ø mixing. However, the experimental determination of this quantity

had assumed that it was a constant. We therefore performed a fit to the data for the pion

form-factor, with a parametrisation that would take account of momentum dependence.

Although we found that the implications of a momentum dependence was a small effect,

we discovered through our careful re-analysis that the value obtained for the mixing is very

model-dependent (i.e., very dependent on the size of the intrinsic ay --+ nn decay). This

highlights the importance of discussing the "extraction" of fIp. in terms of the particular
model used, and its inherent assumptions. We feel that this point has perhaps been

overlooked in the past.

We now come to prediction and avenues for further work. It has recently been sug-

gested that p-cu mixing could provide an. enhancement of CP violation processes in B
meson decays. Considering the model dependent nature of the various parameters rele-

vant to p-t.' mixing, one would need to take care in applying the information obtained
from the pion form-factor data to B decay. Turning to a more familiar application, the
implications for CSV in the 1/,¡{ interaction of a node in the mixing of the p and (, are

very profound indeed. However, keeping in mind our own admonition, a comprehensive

treatment of the .fy'N interaction within a single effective Lagrangian framework remains

to be done.

I
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Appendix A

Field current identity

The following is an analysis by Hatsuda [g1] of the Fielcl current Identity (FCI)
introduced in Eq' (1'2), that proves it can only be strictlyrealised on mass-shell. Consider
the action for the NJL model [g2,93] with covariant derivative Du: ô, - iAt"

S: ldarg(tp- M),þ_ 
þtl,r,,t)r+n,þ+tþn+r{,,þt,,þ, (A 1)

where I{, is the current source, g is a coupling constant with dimensions of mass a,ndAu here is some external four vector electromagnetic field. From this we construct thegenerating functional

Z[q,n,At",I{t]: ltÙ{rOtl]expiS. @.2)
To make this relevant to a meson theory, we need to bosonise the fermion field. This canbe done by introducing a new field, p, with the gaussian weighting

f lnr,l.*v; I dn*(gp, - rþ.,t,,þlù,.
This gives us

z: f tnrt'n,þDp,l.*p;(rl,(;Ø+,1+rl -2 /-M)rþ+srp, +n,þ+rþn). (A3)
Integrating over the fermion fields leads us to

z: ltnn)det(ip-r'/+ r -2 /- M).*pi(srn, -,t(¡Ø+ A+ $ -2 /- u)-rn).
(A.4)Now if we only want p in the determinant we make the change of variabres

Ap + I{p _ 2p, ___+ _pt" 
(A.b)

to give

z - lLno,rdet(iþ- /- M)."oi(l(A+ x + p)2 -n(iø- /- M)-,,t

- lwr,l."o, (-i @*þ)), +s;ra- r{ ¡ p), -nuø_ /_ M)-,n

(A.6)
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The first term is the kinetic piece for the p field (which comes from an expansion of the
determinant [93,94] and neglecting terms higher order in derivatives), the second generates

the mass and mixing terms and the third is the interaction piece for the p and quarks.
We can easily see that this corresponds to VMD2 - the photon-p mixing is independent of
momentum, and all coupling of the photon to the quark field is mediated by the p-meson.
Making a field redefinition gives us

z: lloe,l"*p ,(-'rrl,,(p- A- t(D'z +trt _ n(iø- /+,/+ rf - Ml-'r). (A 8)
\+ q /

We recognise this as akin to VMD1, with a q2 dependent mixing between the photon and
the p and a direct coupling of the photon to the quark field.

We can consider, however, a second bosonisation procedure using the á-function

lWaXn'p, -,þt,rþ): ltnoulexp t I dar(s'p, - rþt,rþ)À'. (A e)

This ó function strictly imposes the field current identity by demanding that p, o 4M
at the operator leuel. So, inserting the á function in Z (see Eqs. (4.1) and (4.2))

z : 
lln+D1þDpD^1.*pt (rÞU.Ø+,/+ Il- I - u)rt, + g'À.p - s2 p2 + nrl, +,ún),

(A.10)
where we have replaced the fermion four-point term of Eq. (4.1) by a quadrati c p term,
using the ó function of Eq. (4.9). We can now once again integrate over the fermion fields
and expand the determinant to obtain

z- lDpDÀlexp i _Fî"çq+ K-t)
4

+ s2Q'p - p2) - nUø+ ,^+ II - l- M)-'n
(A.1i)

So now making the change of variables

A+ I{ - I --+ I
we have

(A.12)

z: ltnolrlexp o(-Io:,fÀ) + s'z@+ r{ + 
^).p- 

s,p, -n(iø- l- u)-'n).
(A.13)

It is now not possible to perform the À functional integral to leave a sensible form for
the functional integral over the p field. i.e., the resulting field theory for p would not
correspond to any acceptable field theory describing a massive vector particle. To see this
we recall the discrete result

S¡A¡xó* +\óiJi : (2t)"12 J¡lnoo**'(-3å
.1

det,4-1 exp jk

(4.14)
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We extend this to the continuous case to obtain

ItnOl .*p I darday -f,ø,øl*,,(*,y)ó,(ù + ó,(r)J*(*)

det M-r
""p I d,a rday 6u çr) M;: ó, (y) (A.i5)

For Eq. (4.13) the operator M is obtained from the gauge field kinetic term for the l,

I o^, I anys,ç*)M,,(*,y)^,@): I an, -Io_,r^rF,,(À)@) (A.16)

to give us

M*,(r,ù : --f,Gr,O, - 0u0,)6a(x - y). (A.12)

This operator Mw has zero modes, namely gradient fields. As such it ha,s zero eigen-
values and hence its determinant does not exist. Therefore we cannot use Eq. (A.15).
Furthermore, the inverse of M would definitely not have the form to produce a kinetic
term for the p, field. We conclude from this that it is not possible to stricily impose the
field current identity in a massive vector meson theory. This is our main conclusion.

As an aside, integration of Eq. (A.13) over ptt brings us back to Eq. (A.7) but now
with À - p. Note however, that this does not impose the ó function condition of Bq. (A.g)
and so we have gained nothing.

Having established that the FCI cannot be strictly imposed, we turn our attention
to the two-point functions for the current, Ju: ú^tutþ and the p. To construct the first
quantity, we consider

(r,r.) = ft,ja^ tl (A 18)P v IK=0,,4=0,?=0

The Lagrangian for a massive vector field is given by [1g]

L
1 1*r*F,(V) ,v,
4 (A.1e)

so we now consider the action in Eq. (4.7). comparing the coefficient of the quadratic p
term with the vector meson mass term in Eq. (4.19), we replace the parameter g (which
has dimensions of mass) Iry ,/2* to give

s: I o^-l-'¡r(p)'+ï^'ro-t r{ ¡ p), - n(iø- l- u)-,,1. . (A.20)

Using this action in Eq. (4.13) we obtain

ç^' ltndlsr, - m2prp,)"is)f z
m2(igr, - *, (prp,)).

(J rJ")

(A.21)
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(A.22)

The second term in Eq. (4.21) is simply the massive vector meson propagatol

(p,p') : i (-g,,+ e+) -]-t\ rr¿- / q" - rn"

We therefore have

(JrJ,) : i^' (n,, **'g:' - q:q"\

\ q'-m" /

'*' (q'g'!" - q'!q'\ 
.:' 

\ q--rn- / 
(A'23)

As expected, this is transverse. We also note that as q2 -, 0 the piece proportional
to !¡tv vanishes (the qrq, does not figure in any interactions as we assume coupling to
conserved currents). As stated the p field two-point function is just the massive vector
meson propagator (Eq. (4.22)) and does zoú vanish ut q2 - 0. However, at q2 : ^',both
functions in Eqs. (A.22) and (4.23) become singular and differ only by an irrelevant finite
piece. It is interesting to note that for a particle with a finite width (that is, an unstable
particle such as the p meson) even this equality breaks down since the vector propagator
is no longer singular on the real axis. We can conclude from this that although the FCI
cannot be strictly imposed in general, it can be realised on-mass-shcll for stable particles
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Appendix

El.1 chiral Perturbation Theory expressions

The full expression for the current, ,/, is given by

ti : 1t¡zJzaxolio + t¡zr/iar+ K- - ;¡zr,fsax- 6+
-uaKorlox- x+)16/lF,) _ (iaK+r{-2 K+)16/jFr)
+Uar{- r{- 1ç+'z¡¡ç{iFr¡ _ t¡zr/iaKor{o

-Uar{oKo' xo¡ ¡1{zrr) - QAx* Rox- tio) l6[zlr)
+(iôr{- Ko K* Ko) l({srr) + (iAKor{- r{+ Ko) l({zrr)
+ (i ô I< o 1l o tro' ¡ ¡ ç.,,f2 r, ¡

+ (; I z 1þ-¡ zar 
"Il 

o K + r- ) I F, - çt ¡ +r/ia tr+ I( - K + tr- ) I F,
+ (i I 4\f3A r + Il o Ii o r - ) I F, + (i I 4 \f3 Ar - I{ - Ii + r* ) I F,
- 1, ¡ +r[Zan- Ko I{o n* ) I F, _ 

ç; ¡ z rþ ¡ zar 3 I{ - I{o n* ) I F,
-1t ¡ +axo non-.,r+ 

¡ ¡ (ßrr¡ _ q; ¡ +ax+ x- r- r+) I (Jsrr)
+ U I 4A I{ - r{ + n - o+ ) I 6f3 F, ) + (i I 4A r{ o r{ o n - n+ ) I 6/j F, )
-ç;¡ztþ¡zar- I{oK+r")lr, + ç¡zr[t¡zar+ r{- r{otrr)lF,
_ç; ¡aaxo xorr") ¡ç{zr2) _ (i lsar(* rç o3) l(Jirr)
+ U I 8A I{ - rc + r!) I g,rz Fr)
+ U I BA r( r{o rï I 6/J Fr) _ (i I 2A K + r( o n_ n 

") 
I ({i rr)

+ U I 2A K o r{ + r - r s) I $/z Fr) _ 
1; ¡ za xo r{ _ 

r+ r s) I 6/, Fr)
+Ql2AI{- I{on+ns)f (r/r4\ + (il4AKor{or"ry)f F2 _
ur4aI{+K-rsrs)f F2 + (il4aK-I{+4nu)f F, - 1t¡+axoliotr=trr)f F2
-ç;¡s'fiaxot<o"!¡¡r,
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-(ilBJSaI{+ K-12)lr'z + Qllt/lTr{- r{+r!)lF2
+(ilB\hat<oxor!¡¡12¡

APPENDIX B, APPENDIX

(8.1)

8.2 IJseful Integrals

The following integrals are treated in some detail in Refs. [82,95]. However, Golowich
and Kambor expand the expressions in powers of q2 as required for ChPT.

Let us define the one-point integral, in D - 4 - e dimensions

'L D-4^, ?r t dDk 1

l61.2tt"-'Al*") = I çn¡, k2 - m2, (B.2)

where ¡; is an arbitrary mass scale required to to keep the action ([ dD rli^¡) dimensionless

Evaluating A(*') gives us

(B 3)

where

L:? - ^r tIn tr
€,

(B 4)

For convenience we define the quantity

n- '- t6r2' (B'5)

The higher-point functions are, of course, moïe complicated, but are related in such a

way that one can simplify expressions before calculating them explicitly.

A: m2 (^ - n4+ r) + ot.t

o ¡1D-n B(q',*') : f lLI ç2"¡o

otD-nlr(q',-') : f iZI ç2"¡o

o¡rD-oBr,(q2,m2) : f ILI lzr¡o
From simple Lorentz covariance, we can rewrite these as,

Br(q',*') : qrB',(q',^')
Br,(q2,,m2) : quq,Bzt(q2,m') t g*Bzz(q2,m2)

The functions F21 and 8,22 can be written in terms or A(m2) and B(q2,mr) [g2)

8,,(q,,*r) : #l^ i k, - *r)B - *, * f]
B,r(qr,*r) : 

å l, - 
(2*, - {lt * r*, - {]

I
(kr-*r)((k+q)r_*r)

lcp

(k'-^')((k+q)'-^')
krk,

(k, - ^r)((k 
-r q), - ^r)

(8.6)

(B 7)

(8.8)

(8.11)

(B.e)

(8.10)

(8.12)
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A(*') is given in Eq. (B.3) and B(q',,m2) is given by

85

(8.14)

(8.15)

(8.16)

(8.17)

(8.18)

(B.1e)

(B.20)

(8.13)

We see from Eq. (B.a) that B(q',m2) is divergent. Not only that but, as Golowich and

Kambor [95] point out, it should be expanded in powers of q2 or otherwise our use of it
in ChPT will not be consistent. To do this they define

B(q',*'):O- Io'Orrrff

B(q"^',) 
: :tî":.',:Ë1 ,î',' ù*,)

lq' 1 qn

6*r+ 60*^+ "'

We note now that

B(0,m2): lroç*'¡: A@') 
- 1um' m.

We therefore rewrite Eqs. (B.11) and (8.12) using

B(q',^') :B(r',^') + #) - r

We arrive at [95]

m2

q'

1-!4\n*L
qt) m2

Calculation for A8 ---+ rtqr-

Brr(qt,*')

Brr(q',*')

J3
4F2

åt(
q2

B
A5

I___
'm26 l

(12

8.3

Now equipped with various ways to handle the integrals appearing in our calculation,
we present the relevant details, which would be a distraction in the main body of the text.

We begin by considering Fig. 5.1. We split the contributions to the amplitude into a,
ö, and c, (tn an obvious way). The outgoing pions are assigned momentap+ and p- and
we let k be the loop momentum in amplitudes ó, and cr. From Eq. (5.30) we know that
a,,:0 to this order in the chiral series. So we turn to the O(ra) pieces of fi to determine
c, which is given by,

Itu* p-), - zk,);*, - V{*.- 1{ol, (B.21)
rc" _ m"¡+
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u,:fi|
(k' - *'6*)((k + q), - *'y*) - V{* * 1(ol. (B.26)

(2kp + q,)(3(p+ - p-)' k - (q. k + k' ))

Before attempting to evaluate this, it helps to first consider that, because Bt: -812,
we can add terms independent of k to the numerator of trq. (8.26), hence

I:
2

1: ,
1:
2

:0.

So the only surviving piece of Eq. (8.26) is (recalling the factor ø defined in Eq. (B 5))

b,": #l_ (k, - *'**)((k + q)2 - ^ry*)
- lK+ {-, 1(o]

3k'ço+ -p-),(2k,+q,

: #"fo* - p-)'(28,,(K*) * qrB,(I{+)) - [1(* *- 1t0]

: #"fr* - p-)'Bzz(1(*) - [1{+ .-+ 1{o],

)

(8.27)
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as q.(p+ -p-):0.
We now have the expression for the amplitude,

ArIp : br+c,
t/3 , J-: 
4pzo(n' - p-)r(2Bzz(I{+) - A(I{+) - [x* .,- 1(0]). (8.2s)

we now turn to Eqs. (B.B) and (B.20) to find expressions for A(m2) and Brr(qr,,*r)
respectively. Substituting, we find

2822(I{+) - A(It\ - [fr+ <-+ 1(o] : n'¿ K+ q4

#,"
1 1

2

(8.2e)*T" 60 *'K* *To
Bqs' (B'28) and (B'29) can then be combined to give us an expression for the form-factorFlk'),8q. (5.32).
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Appendix C

Historical perspective on p-ø mixing

This appendix is devoted to the early studies of p - a mixing from 1g64 to IgT2,
the period before the Standard Picture (outlined in Chapter 2) had been established.
Ironically, the papers quoted here contain detailed investigations of many of the topics
that have been discussed in the recent literature (which never referred to any of these
early papers) and I will draw attention to this.

C.1 Historical perspective

Here we shall present the initial theoretical investigations of p-c.., mixing and explain
how this was then used in nuclear CSV. This turns out to shed an interesting light on the
current literature about momentum dependence.

C.1.1 The earliest work on p_a mixing

In chapter 2 we have discussed the earliest work on p-a mixing, which amounts to
two papers' I shail mention these here again. The first proposal of p-c.., mixing was byGlashow' Because of the closeness of the p and ûr masses he proposed that one could
expect mixing due to an electromagnetic process (as EM does not respect isospin) [22].At the time QCD was unknown and the isospin violation due to *. *m¿ could not have
been appreciated' This was then used as an example for the tadpole mixing scheme ofcoleman and Glashow [23] following a suggestion by Julian schwinger.

Tadpole mixing is independent of momentum and as such would be classed as ,,mass,,
(or "particle") mixing' coleman and sch.itzer (cs) argued that this is actua¡y unsuitablefor the mixingof spin 1 particles [96]. Previous studies had ciiscussed mass mixingwithinthe framework of a Schrödinger equation acting on a space of one particle states. cs

89
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sought to discuss the mixing within a field-theoretic context. We shall briefly describe

their method below as it is important to subsequent treatments of p-c*.'mixing.

They defined the n channel propagator by

(c 1)

In the case of ø-<,.' mixing we are considering only a 2 channel propagator (see, for example,

Eq. (6.1)). Eq. (C.t) can then be compared with an alternative matrix definition of the

n channel propagator,

D(q') (c 2)r / q2-H(q2)'

The (matrix) dressing function, H(q'), could then be approximated by M3 +6m2 ¡q26s,
where Ml is diagonal, and the other pieces (6m2 and 62),, with their off-diagonal terms

generate the mixing between the states. CS noted that for processes occurring in a limited
energy range, for example, pion production around the p and u., pole regìon, mass mixing
(H(q'): M2 where M2 is a constant) would be a reasonable appr-oximation. However,

mass mixing violates the conservation of the current to which the mesons couple. As vector

mesons play an important role in models for hadronic trM form-factors, this would have

disastrous consequences (such as altering the proton charge). This problem is removed
and curlent conservation maintained if the correction to the propagator vanishes at zero

momentum transfer, in agreement with the node theorem discussed in Chapter 4.

A similar study was undertaken by Harte and Sachs (HS) [97]. Like CS, they set up
a propagator matrix with off-diagonal pieces, paying particular attention to the role of
the complex nature of the poles for unstable particles such as the p and c¿. HS describe

how to obtain the "physical" meson fields from the pure states of definite G-parity, by

"diagonalising" the matrix propagator (though we know from Chapter 6 that in general,

the propagator matrix cannot be strictly diagonalised). From this one sees that the trans-
formation between bases is not a simple rotation (as in the first paper by Glashow 122)),
though due to the closeness of the masses, one can safely make such an approximation.
The procedure used by us for analysing the pion form-factor (see Chapter 6) is the same

as used by HS and naturally we also find that the transformation between bases is not
the simple rotation usually assumed. Sachs and Willemsen [98] also consider the mo-
mentum dependence of p-cu mixing in an analysis of various data (e+e- -- ntzr- and
r+lp--+r*Ir-*A++).

Because of this the reader may thus wonder why recent "suggestions" of momentum
dependence have attracted such strong resistance. Surely Coleman ancl Schnitzer had
produced a definitive statement on this in 1964? The answer lies in the the fact that with
the end of the 1960's p-ø mixing ceased to be a topic in particle physics and was brought

I
.14 t-

(zo¡n -
-ik (r-s\

ln(ô),,
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in, in a rather pragmatic spirit, to nuclear and intermediate energy physics. Study was

thus devoted not so much to the mixing itself, but rather the role it could play in building
CSV potentials within the one boson exchange model of the l/// interaction. However, if
momentumdependence was discussed in such detail in the early papers on p-c..' mixing
it would seem strange for it to have been neglected when the CSV models were built.
It is thus interesting to note that the Coon and Barrett [35] paper mentions that flr. is

extracted at its mass-shell value, although merely as an aside. Going back to the earlier
paper [28], however) \¡r'e find the words,

The mixing ... will vary with meson momenta if the mixing is "current"
rather than "mass" mixing. Since we will employ (the mixing amplitude) only
ai q2 - m2o or m2r, however, the difference between the two mixing schemes is

negligible. In any case we use the standard mass mixing scheme, since there
is no evidence that the more complicated current mixing scheme is necessary.

This certainly demonstrates a familiarity with the theoretical studies mentioned above.
The second sentence, though, is never explained, why would the mixing amplitude be set
at the mass-shell points? Clearly this would be kinematically unfeasible. To understand
this, we have to study the first papers on the use of p-ø mixing in nuclear physics.

C.L.z CSV and p-a mixing

The original paper is that of Downs and Nogami (DN) who considered CSV generated
by p-co mixing [99]. Although DN quoted the paper by Coleman ancl Schnitzer [96],
they did not mention anything about possible consequences of mornentum dependence
in the mixing. But they did discuss the amplitude for the 1/1/ interaction i' terms of
lhe physicøl vector meson states as compared with the isospin pure states. Henley and
Keliher (HK) elaborated on this treatment and included a full discussion of momentum
dependence [100]. It is this paper that provided the basis for the Standard picture.

HK began with physical states, defined in the normal, diagonalised manner. They
then, following sachs and willemsen [98], gave the mixing parameter, €, ã Ç2 dependent
piece. This represents a slight misunderstanding, as the parameters of the mixing between
bases are invariably chosen to be constants (see, for example, Eq. (6.8)) and it is rather
ilr-(qt) that is momentum dependent. This, however, does not affect the rest of the HK
analysis, which is presented below. Let (in general we can consider this to be a truncated
Taylor series expansion)

ilr-(q'): n!9 +
q2

*ro
rt!, (c.3)
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and note that the node theorem would imply that nl0j : 0 (though this was not considered

by HK and is immaterial to their argument). Now, ignoring the widths of the vector

meson propagators (I shall use rà to denote a real valued mass), the isospin pure state

contribution to nuclear CSV has an amplitude proportional to

ntllicsv : --: _Dr.(/t) úq"-m; q.-mi

which can be rewritten

(r+ t+)

(c.4)

(c.5)

They then made the standard assumption (static limit) Ç0 : 0 and took the Pourier

transform of Eq. (C.5) to obtain the potent\al,Vp-: [r3(1) *r3(2)]Au, where

au(r) :  rsos. I #"'o'yc+lÅñ,- r+æ) (c 6)

The other crucial part of their argument comes in rewriting trq. (C.3)

il'.?q') : (rrt? + n!)l - nL]@' lrî22, + t) (c T)

the second term on the right hand side of Eq. (C.7) then gives rise to a ó3(r) function
potential. As this term was expected to be ineffective due to the strong repulsion which
acts at short distance between nucleons they concluded that it can be ignored and that
the first term is the only one that needs to be considered (which from Eq. (C.3) gives us)

tr!? + ilt!:n,.7î,|). (c s)

Hence they argued that it is the value of the mixing amplitude at the timelike mass-shell

that is required for a process occurring at spacelike q2. Clearly the argument is sustained
for a mixing obeying the node theorem, in which case II!| : 0. This explains the quote
on page 91 and shows how, with time, the mixing came to be (falsely) assumed to be
independent of momentum. Eq. (C.6) can then be used to construct the CSV potential of
the standard picture [28] (for simplicity consider only the vector part of the meson-nucleon

coupling, though there is also a contribution from the tensor coupling)

Au(r) :sg9!1,)_(+_a11) (ce)4r ñ2.-ñ7\ r r I
\plHlr) is used because this is how it appears in Ref. [28], where it is assumed to be
a constant. The analogous expression in HK showed that the arguments of this mixing
function would be fixed at the p and c¡J mass points fol the e-mpr and e-^-' pieces respec-
tively. The above argument ignores the effects due to the p1ú1/ ancl øly'l/ form factors

Acsv : q')trr.(
2
pTNrîu'z. -
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and which are always included in actual ly'ly' calculations. The above approximations
should be contrasted with a more correct treatment discussed elsewhere [36,44j.

To summarise the HK treatment, they argued that the appropriate value to use in
nuclear CSV models is IIr,(rnf) extracted in the pion form factor and the momentum
dependence is lost in the short distance nucleon interaction. This conclusion is not sup-
ported by a more careful analysis.
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Appendix D

Published work

Below is a list of my published papers. Following this I have included reprints (where
possible).

1) Self Energy of the Pion,
Heath B. o'connell and Anthony w. Thomas, Phys. Rev. c 49 (1994) 54g.

2) Constraints on the momentum dependence of rho-omega miring,
H. o'Connell, B. Pearce, A. Thomas and A. Williams, phys. Lett. 8336 (1994) 1.

3) Rho-omega miúng, uector rneson dominance and the pion electrornagnetic form-factor,
H.B. O'Connell, B.C. Pearce, A.W. Thomas, A.G. williams, hep-ph/9b012b1, To appear
in "Progress in Particle and Nuclear Physics," ed. A. Faessler (Elsevier).

4) Rho-omega miring and the pion electromagnetic form-factor,
H. o'connell, B. Pearce, A. Thomas, A. williams, phys. Lett. B3b4 (1ggb) 14.

5) Vector Meson Miúng and Charge Symmetry Violation,
H. o'connell, A. williams, G. Krein and M. Bracco, phys. Lett. B BZ0 (1996) 12.

6) Analysis of rho-omega miring and interference in the pion form-factor,
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Abstract

Within a broad class of models we show that the amplitude for p0 - ar mixing must vanish at the transition from time-like
to space-like four-momentum. Hence in such models the mixing is either zero everywhere or is necessarily momentum-
dependent. This lends support to the conclusions of other studies of rho-omega mixing and calls into question standard

assumptions about the role of rho-omega mixing in the theoretical understanding of charge-symmetry breaking in nuclear
systems.

Charge symmetry violation (CSV) is a small but well established feature of the strong nucleon-nucleon
(NN) force t1-3l.The class III force which differentiates thenn and pp systems is best established through
the Okamoto-Nolen-Schiffer anomaly in the binding energies of mirror nuclei [4,5]. In the np system the

class IV CSV interaction mixes spin-singlet and spin-triplet states. Despite presenting a difficult experimental

challenge this has been seen in high precision measurements at TRIUMF and IUCF [6,7]
Although there is still no universally accepted theoretical description of the short and intermediate range

NN force, the one-boson-exchange model provides a conceptually simple, yet quantitatively reliable framework

[8]. Within that approach p -, mixing is a major component of both class III and class IV CSV forces

Í1,3,9-121. For on-mass-shell vector mesons, p - @ mixing is observed directly in the measurement of the pion
form-factor in the time-like region ( that is, in the reactio n et e- -- nrt ir- t 13 I ) . The best value of the strong

interaction conrribution to this amplitude at present is (p01I1,,.1ø) = -(5130 f 600)MeV2 (on mass shell)

from Hatsuda et al. t l4l . (A small, calculable, electromagnetic contribution of = 610MeV2 from p ---+ y ---+ û)

has been subtracted from the dara (-4520 t 600MeV2) to leave the strong mixing amplitude.) \Vithin QCD
this provides an important constraint on the mass differences of the u and d quarks [5].

Of course, with respect to the CSV component of the NN force a significant extension is required. In
particular, the exchanged vector meson has a space-like momentum, far from the on-shell point. For roughly
twenty years it was customary to assume that the p - a mixing amplitude was a constant over this range of
four-momentum. Only a few years ago Goldman, Henderson, and Thomas (GHT) questioned this assumption

I E-mail: hoconnel@physics.adelaide.edu.au,
2 E-mail: bpearce@physics.adelaide.edu.au.
3 E-mail: athomas@physics.adelaide.edu.au.
a E-mail: awilliam@physics.adelaide.edu.au.
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[16]. Within a simple model they showed that the mixing amplitude had a node near q2 = 0 so that neither

the sign nor magnitude in the spaceJike region was determined by the on-shell value, Since the initial work by

GHT a qualitatively similar result has been obtained using many theoretical approaches including mixing via an

,rfñ toop using thep -r? mass difference [17], several qQcalculations [18,19], and an approach using QCD

sum-rulãs ll4,2}l. All of these calculations revealed a node at or near q2 = O, with a consequent change in the

sign of the mixing amplitude. The presence of this node in the corresponding coordinate space CSV potential

has been stressed in Refs. 114,16,19,2ll. Related studies of the ø'0 - 4 mixing have also been recently made

including Nñ l22l and qQ [23] loops, and chiral perturbation theory [24]. Significant momentum dependence

was also observed in these studies.

It is important to note that the only calculation which found a node at exactly 42 = 0 was that of Piekarewicz

and Williams t 171. In this work alone was local current conservation guaranteed exactly' We have been led

to examine the general constraint on the mixing amplitude at q2 = 0 by this observation as well as by several

inquiries from K. yazakj [25]. Our findings can be summarised very easily. We argue that the mixing amplitude

uunirh"5 at q2 =0 in any effective Lagrangian model [e.g., L(p,rÐ,n,,1 ,,1t,"')], where there are no explicit

mass mixing terms [e.g., Mzrrpo, or cpoa with ø some scalar field] in the bare Lagrangian and where the

vector mesons have a local óoìpling to conserved currents which satisfy thc usual vector current commutation

relations. The boson-exchange model of Ref. [17] where, e.g., Jt = g'ÑypN, is one particular example. It
follows that the mixing tensor (analogous to the full self-energy function for a single vector boson such as the

p 126l)

cþ,(q) =i [ ¿a*rio', (olref G) /ä(0)) l0). (l)
J

is transverse. Here, the operator J# is the operator appearing in the equation of.motion for the field opcrator

ú), i.e., the Proca equatión given by ôrFr"' - Mz,or = Já. Note that when J# is a conserved current then

a*J# =0, which ensr¡res that the proca equation leads to the same subsidiary condition as the free field case,

í*or =0 (see, e.g., Lurie, pp. 186-190, t30l).The operator Jf, is similarly defined. We see then that Cp' can

be written in the form,

cþ, (q) = ( e*, - t+\ c@2) . (2)
\" s¿)

From this it follows that the one-particle-ineducible self-energy or polarisation,flP'(q) (defined through

Eq. (ó) below), must also be transverse t261 . The essence of the argument below is that since there are

no massless, strongly interacting vector particlãs fI¡" cannot be singular al. q2 = 0 and therefore fI(42) (see

Eq. (7) below) must vanish at-q2 - 0, ai suggested for the pure p case 1271. As we have already noted this

isìomething that was approximately true in all models, but guaranteed only in Ref. [17]'
Let us UiieRy recall tire proof of the transversality of Cþ'(q).As shown, for example, by Itzykson and

Zuber (pp. Zl7-224) [28], provided we use covariant time-ordering the divergence of Cþ" leads to a naive

commutator of the appropriate currents

r
qucp'(q) =- | aa*"io''â,,10(xo) (01$(x)t'",(0) l0)+ 0(-*o) (0lJä(0) tf (x)lo)) (3)

.t

= - [ ¿3*rit'x (01 t.4(0, x),JLe)] lo)noiu". (4)
.t

That is, there is a cancellation between the seagull and Schwinger terms. Thus, for any model in which the

isovector- and isoscalar-vector currents satisfy the same commutation relations as QCD we find

1t"CP'(q) = 0' (5)
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Thus, by Lorentz invariance, the tensor must be of the form given in Eq. (2).
For simplicity we consider first the case of a single vector meson (e.g. a p or o) without channel coupling.

For such a system one can readily see that since Cþ' is transverse the one-particle ineducible self-energy, flp',
defined through [26]

flþo Do, = Ct"" Doo, (6)

(where D and D0 are defined below) is also transverse. Hence

rrp,(q) = (r*" Ðne\. e)

We are now in a position to establish the behaviour of the scalar functioî,fl(qz).In a general theory of
massive vector bosons coupled to a conserved current, the bare propagator has the form

Do*,=(-r*,.W);* (8)

whence

@\;) = (M2 - Q2)E¡", * q*q,. (9)

The polarisation is incorporated in the standard way to give the dressed propagator

D*) = @\;:, +t:Iþ, = (M2 - qz +rr(q2))sr, + (t -rP) n*n,. (10)

Thus the full propagator has the form

Dr,(Q) = -8p, * | - ll?\ ls2) Qpq,lMz) (il)
- M2 - It(q2)

Having established this form for the propagator, we wish to compare it with the spectral representation of the

propagator [28-30],

.V.pU)/ Qt"e,\D*,(ø)=_i|a,f,jlr*,_;). (t2)

Since no massless 

'riut", 

"*ir, 
in the strong-interaction sector we must have 16 ) 0. Hence it is a straightforward

exercise to show that we can write for some function F(qz) l29l

D*,(ø) = F(q2)sp,+ lf rfol - F(q2))4¡,e,. (13)'q'

By comparing the coefficients of g, inEqs. (11) and (13) we deduce

F(q2) = F=æ+¡ø, (14)

while from the coefficienl.s of qrq, we have

I q2 + n(o) -rt(qz)
q2 (M2 + il(o) )(q2 - ¡'tz -rl(q2))'

( 1s)
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from which we obtain

II10) ô 4"'i' (q'- Mz -ß(ûD =0, Yq'
q'

and thus

II(0) = g.

( l6)

( l8)

( 17)

This embodies the principal result of the investigation, namely that[I(qz) should vanish as q2 -- 0 at least as

fast as q2.

Whilã the preceding discussion dealt with the single channel case, for p - ú) mixing we are concerned

with two 
"oufl"d 

channels. Our calculations therefore involve matrices. As we now demonstrate, this does not

change our conclusion.
The matrix analogue of Eq. ( 10) is

-l
þvD

where we have deûned T*, = gp, - (gpg,f q2¡ for brevity. By obtaining the inverse of this we have the

two-channel propagator

D _!(s,Bp,*a(p,r)q,"q, flr,(q2)T¡", l. (19)
"P'=ã\ tlo'{ø2)T*, spg*v+a(o,p)qpq, )'

where

s,= e2 -fr,,(qz) - M2, (20)

sp= e2 -noo{e2) - Mzo (21)

I
a(p,a) = 7¡7{n'0,(q') - ¡nz -fiop(et)lt,} (22)

a = f(p,(qz) - rps,. Q3)

In the uncoupled case l|lp,(q\ = 0l Eq. (i9) clea¡ly reverts lo the appropriate form of the one-particle

propagator, Eq. ( 1 1 ), as desired.- 
W'e-can now make the comparison between Eq. (19) and the Renard form [29] of the propagato¡ as given

by Eq. ( 13). The transversalily of the off-diagonal terms of the propagator demands that flo-(0) = 0. A similar

analysis leads one to conclude the same for [oo(e2) and tl,i?2). Note that the physical p0 and ú, masses

which arise from locating the poles in the diagonalised propagator matrix DP' no longer conesno1fl,"1o^ 
"Lu:t

isospin eigenstates. To lowesr order in CSv thJphysical p-mass is given by uofv" = lM2o*flop11¡4u[vs¡z¡1t/2,
i.e., the pole in Ofi.fne physical ¿d-mass is similarly defined'

In conclusion, it is imporiant to review what has and has not been established. There is no unique way

to derive an effective field theory including vector mesons from QCD. Our result that IIp,(O) (as well as

IIpe(O) and fI,.(O)) should uunith applies to those effective theories in which: (i) the vector mesons have

loch couplings to conserved currents which satisfy the same commutation relations as QCD [i.e., Eq' (4) is

zerol and (ii) there is no explicit mass-mixing term in the bare Lagrangian. This includes a broad range of

commonly used, phenomenological theories. It does not include the model treatment of Ref. I l8] for example,

where the mesons are bi-local objects in a truncated effective action. However, it is interesting to note that a

node near Qz = O was found in this model in any case. The presence of an explicit mass-mixing term in the
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bare Lagrangian will shift the mixing amplitude by a constant (i.e., by Mzp,). We believe that such a term will
lead to difficulties in matching the effective model onto the known behaviour of QCD in the high-momentum
limit, [33].

Finally the fact that II(q2) is momentum-dependent or vanishes everywhere in this class of models implies
that the conventional assumption of a non-zero, constant p - ar mixing amplitude remains questionable. This
study then lends support to those earlier calculations, which we briefly discussed, where it was concluded that
the mixing may play a minor role in the explanation of CSV in nuclear physics. It remains an interesting
challenge to find possible alternate mechanisms to describe charge-symmetry violation in the NN-interaction
[31,321.

One of us (AWT) would like to thank Prof. K. Yazaki for several stimulating discussions. This work was

supported by the Australian Research Council.
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PHYSICAL REVIEW C

There is now considerable evidence that the form factor
for the emission of an off-mass-shell pion by a free nucleon
is relatively soft [1-3]. In a dipole parametrization a
mass less than 1 GeV is typical. On the other hand, con-
ventional one-boson-exchange potentials (OBEP) typi-
cally require a much harder zr,ð[-l[ form factor in order
to reproduce the experimental phase shifts and deuteron
properties [4,5]. Recently it has been proven possible
to obtain equally good fits with a soft form factor pro-
vided an additional, heavy pion (zr') exchange is included
[0]. (An interesting alternative has been proposed by the
Bochum group [7].)

Clearly it is of considerable interest to establish the
physical mechanism behind the additional short-distance
pseudoscalar exchange. It need not be a real r' meson,
but could be a convenient representation of a more com-
plicated short-distance physics involving quark-gluon or
quark-meson exchange [8-10]. Saito's novel suggestion
was that the radiative corrections associated with the in-
ternal structure of the pion itself might lead to a pion
propagator that could be simulated by the exchange of
an elementary pion and aheavier r/ [11]. His suggestion
echoed earlier work by Goldman et aI. on the off-shell
variation of the p-ø mixing amplitude [12]; see also Ref.

[13].
In Saito's work the pion proagator was modeled as the

propagator of an elementary n meson coupled to a q-Q

pair. As in Refs. [12,13], the propagators of the q-q- pair

*Electronic address: hoconnel@physics.adelaide.edu.au
tElectronic address: athomas@physics.adelaide.edu.au

JANUARY 1994

were taken to be free Dirac propagators (with quark mass
rn). While this introduces an unphysical threshold at 2m,
it is not necessarily a fatal flaw in the spacelike region,
where we need the propagator for .llll scattering. Indeed
there is a physical cut which begins at (rn^ * m) and
by choosing m to be a typical constituent quark mass (-
400 MeV) one might expect to simulate the effect of this
cut.

In the model of Saito the renormalized pion propagator
is written in the form

G(q'):
qz _Ð(q2) _ mf)z'

(1)

where X(q2) is

dDk -lr2 + '+*'
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Self-energy of the pion

Heath B. O'Connell* and Anthony W. Thomast
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'We reexamine a recent calculation of the effect òf dressing on the pion propagator in the one-
pion-exchange potential. Our results confirm the qualitative features of the earlier work, namely
that the correction can be represented as the exchange of an effective r' meson. However, at a
quantitative level this approximation does not work well over a wide range of momentum transfer
unless the mass of the zr' is made too large to be of significance in nucleon nucleon scattering.

PACS number(s): 21.30.*y, 13.75.Cs, 14.40.4q

x(q') : rco'znl
1

iEo : ,, h I o^r q*¡g.] *a *,

iEu-s,hIo^*çr_f*,**,

iE": -szq2h I

(2r)D [(k + )'-*'ll&-E)'-*'kl'
(2)

and the factor of 6 arises from color and isospin. For
D : 4 the integral in Eq. (2) is highly singular. In Ref.
[11] it was rewritten as a sum of three terms:

X:Xo*!¿*E", (3)

where

(4)

(5)

(6)
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(14)

Under an appropriate change of variables it appears that
Ðo and X6 are both independent of q2 an,d can bc incor-
porated into the bare mass term. This argunent is not
correct for a subtle reason. Both of the integrals in Eqs.

(a) and (5) are quadratically divergent and it is known
from the study of the axial anomaly that linear shifts in
the integration variable aie not permitted in this case

[14]. There is in fact a surface term proportional to q2.

Fortunately for the analysis of Saito, this would affect
only X1 and X2 (the second and third terms in a Tay-
Ior expansion about q2 :0), and it is X2 alone which
determines En(q'); see Eq. (12) below.

\Me have chosen to evaluate Eq. (Z) directly using di-
mensional regularization 115], rather than relying on the
expansion (3). Our result for X(q2) is:

¡) "l
r(q') : # J, 

hzeþ'z)r(r- 1) + Tqzr(t -,) - ^'
+2p(q2)lnlq2r(r - n) - m2l (7)

where p(g2) :3q2n(I - æ) - nL2, n'L being the fermion
mass. 'We can remove the divergences in this expression
by adding counter terms to the Lagrangian, and bearing
in mind the conditions we wish to impose on the renor-
malized self-energy, E¿(q2), in order that the pion prop-

agator reproduces the physical properties of the pion in
free space, namely

z"(rn'^): o, år* @?) : o, (8)' ðqt

To enstrre this we add the following counterterms to the

Lagrangian,

1 ". I - "Lcr : _à"n .(. + rnl)ir + ;.PÍ2, (9)

where
â-a: f|¡E(m?), P:Y(*'"). (10)

This gives us

ERQ'):D(s') - þ -(q' -^?)o, (11)

and

G^(qr): ¿_^7_5aqg, (12)

where ER(q2) vanishes ut (q2 - rn2*)2 at' the physical pion
MASS.

After some algebra we find that I¿(q2) takes the form

(13 )E.tu\:# l,' o,þfr,lr" (
q2n( t-r)-rn2
ntlt(l - r) -'rr? ) - ,n' - *'"¡ (i* )]

)l

which becomes

ERQ\:#{

+4q2

-2q'

+(3q2 - 4Tn2)

ffH) *'z"
1

2
q2

l;t

(#-Ð 4m2
q'

3
2

1
arctan

arctan

arctan

fi*'z .V'q-'

3

1
arctan

for 0 ( q2 < 4rn2. For q2 ( 0 we have

2q'

l[* ' ( 1 \
LV 

a - -arctan 
\¡^n, - t) 

-

)l

rt2 1

- 
- -arctanml 4 4^J -lm'i

1
+(3q2 - 4ïn2)

-2(q'-*'-)#l'-^{#) 1

4m2

--l

q2ER
6gt
4"'

4q'

lrnz m2\ 1 "('ä- *:) -¡rt'-*?)

rT¿2

ls1 aT!,2 +7+l
ls'I

ffi+t-t
+ +

[;

1

4m2
n'n

i)''( (

)

1

1

1rn2 1-

lq2l- 4Ln ffi+t+t
+

nL2 1

rn2, 4

-(m2
,tn;

q22
m2

,rn;
1 1

*'z^
4m2

--l
mi

arctan
4m2 r )lr

4n2
fl'n

(15 )
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FIG. 1. The ratio of the free to renormalized pion propa-
gators as a function of q2. The solid curve is our exact result,
the dashed curve is a simple parametrization fwith mass pa-
rameter À : 1.295 GeV; see Eq. (18)], and the dash-dotted
curve is the result assuming zr plus zr' exchange [Eq. (19) with
M:^1.

An appropriate value fot gnn can be determined from

the pion-nucleon coupling constant t# :1a.6 [16]. An
analysis within the consituent quark model yields the fol-
Ìowing relation

s,n:!?n^*. (16)
Ð rnN

In Fig. 1 we show the ratio (represented by the solid
line) of the free to the renormalized pion propagator as

a function of 92. (The quark mass is set at 400 MeV
for the reasons explained earlier.) In order to clarify its
similarity to the phenomenological introduction of a rl
meson \¡/e recall that ÐÃ(q2) is proportionalto (q2 -m2.)2 .

One might then approximate XÃ(q2) as

sll¡ 2r t(q' - *7)'>"\q")-ffi, (rT)

with c a dimensionless constant and Â a mass parameter.
In this approximation the ratio .R : G(q2)lGR(q') it

R:I- "(q' - *? (18)
k' - Ìr2)

The dashed line in Fig. 1 which is almost identical to the
solid curve shows the fit obtained for .4. : 1.29 GeV (with
c : 1.63).

0.60

-0.50 -0.40 -0.50 -o.20 -0.10 0.00 0.10
q2(cev'z)

FIG. 2. Same as Fig. 1 but with the parameters in the zrl

case adjusted to give a best fit lM : 2.16 GeV and C :5.73
in Eq. (1e)1.

If the renormalized pion plopagator were to be approx-
imated by the sum of elementary zr and zr' exchanges
(with zrl mass M) we should instead find

1.10

1.00

0.90

0.80

0.70

.9
o

É.

(1e)

where C : sz,,Nls?^r. To fi.rst order we would identify
lt: M and c : C and the result of this choice is shown
as the dot-dashed line in Fig. 1. It clearly is not a good
representation of the renormalized propagator. In fact,
in order to fit even moderately well over the range of
92 shown the zrl mass must be made considerably larger.
Our best fit using Eq. (19) is shown in Fig. 2 where we

used a zr' mass M :2.0 GeV and C :5.73. (The other
two curves are as in Fig. 1.) While the corresponding
zr'-Af coupling constant is in the range quoted in Ref. [6]
the mass is far too large for this zrl to play any role in
-l{11 scattering.

In conclusion, while the very interesting suggestion of
Saito has been confirmed qualitatively, we are forced to
conclude that this is not the source of the 7r' meson
needed in I{1{ scattering.

It is a pleasure to thank Dr. A. A. Rawlinson for many
helpful discussions. One of us (A.W.T.) would like to
acknowledge the hospitality of J. Speth, K. Holinde, and
the theory group at IKP Jülich where this work was com-
pleted. This work was supported by the Australian Re-
search Council and the Alexander von Humboldt Foun-
dation.
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amplitude at the @ pole, II pa(mz.¡ . lne present work
improves significantly on an initial analysis reported
by us elsewhere [9].

VMD assumes that the dominant role in the inter-
action of the phototn with hadronic matter is played by
vector mesons [ 15,16]. It is an attempt to model non-
perturbative interactions determined by QCD, which
cannot yet be evaluated in this low-energy regime.

The traditional representation of VMD, which we shall

refer to as VMD2, is described by a Lagrangian in
which the photon couples to hadronic matter exclu-

sively lhrough a vector meson, to which it couples

with afixed strength proportional to the mass squared

of the meson.
For the photon-rho-pion system, the relevant part

of the VMD2 Lagrangian is

Lv¡¡oz = - IFp, FP' - I p ¡", pþ' + Lrmzo( 
e ù2

H.B. O'Connell et al. / Pltysics LetÍers B 354 ( i,999 t4-19 t5

not appear), which VMD2 lacks, in fits to ete- --
¡rrT-. Thirdly, the constraint Fr(0) = 1, which re-
flects the fact that the photon sees only the charge of
the pion at zero momentum transfer, is only realised

by Eq. (2) in the limit of universality (gp = gpoo),
which is seen to be only approximate in nature [23].

For these reasons we prefer the alternative formula-
tion [16] which we shall call VMD1 [9] and which
is apparently less widely known. It has the following
Lagrangian

.4wor = -IFþ,FI, -Ipp,pp, +lm?ooun*

- Bp,op¡,Jff - eArJf - {-F*,0*'. (4)
zgp

The key features ofthis representation are the absence

of a photon mass term and the presence of a term
F¡r, pp" , which produces a momentum-dependent 7-
p coupling of the form l9l, Lyp = -e l2gpFp, pþ' ---+

-e f goqzA¡"p¡'. This, of course, decouples the photon
from the p at q2 = 0, hence keeping the photon mass-

less in a natural way. However, the photon is still able

to couple to the hadronic current through the direct
coupling -eA*Jft, giving us a non-resonant term. We

now have a form-factor of the form

F,(qz)=t-@. (s)
gpLQ' - mzo + imof o(Q2) l',

Note that Eq. (5) automatically satisfies F;(0) = L
We emphasise that a simple field redefinition maps

these two forms of VMD into one another if univer-
sality is taken to be exact and if we work to all orders
in perturbation theory. Of course, the predictions will
differ somewhat if universality is violated and if the

perturbation expansion for the models is truncated in
an inconsistent way. We illustrate the difference be-

tween the two representations in Fig. 1.

At present the widely quoted value of for If r. =
ITp,(mI) [10], is obtained from the branching ra-

tio formula for the a, B(a '--+ 7rîr) = f(a ---+

rrr)f f(o), derived from a p-ø mixing analy-

sis where f (a --+ 1r1r) - lilr,f impf cl'f (p -
ø'ø'). Using the branching ratio determined in 1985

by the Novosibirsk group [l'71, B(ø -- rrr) =
(2.3 + 0.4 I 0.2)Vo, Coon and Barrett obtained
If pot = -4520 * 600 MeV2. lily'e aim to extract If oa
from a fit to the cross-section of the reactio n et e- '-
7¡'' 'r uslng

- SproP¡"ft ppAp +;(;)' mf;A*Au,

(1)

(2)

1em;

6p

where J# is the pion current, (r x ô*rr)3, and F¡r,

and p¡r, are the EM and p freld strength tensors (here

e : lnD. From Eq. (1) one arives at a pion form-
factor of the form

- a. ^'o Spor
t r\.1 )-,,1 , q2_mzo+imrlo(Q2\ gp,

where conventionally one takes lll-191

ro(qz) = r" ( 4- iÈ\''' 2. (3)ymv-+ml) Jæ
This VMD2 Lagrangian, rederived by Bando et al.

[20] from a model based on hidden local gauge sym-
metry, has some unappealing features. Firstly, the p-
7 interaction is supposed to be modelling the quark-
polarisation of the photon, which necessarily vanishes

at q2 = 0 to preserve EM gauge invariance [21],
whereas the coupling determined by Eq. ( 1) is fixed.
Hence the VMD2 dressing of the photon propagator

shifts the pole away from zero, and a bare photon mass

must be introduced into the Lagrangian to counterbal-
ance this and ensure that the dressed photon is mass-

less. Secondly, recent studies 119,221 have used a non-
resonant term (i.e., a contribution in which the p does
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Fig. L Contributions to the pion folm-factor in the two representations of vectol meson dominance a) VMDI b) VMD2.

8p
._2-g-

8p

, a2¡r ¡ o2 - 4^2-¡3/2o(q")= 3:---,s1'--lF"(q')l', (6)

and the form-factor determined by VMD1 (Eq. (5) ).
So far, we have not introduced any effects of charge

symmetry violation (CSV) into our system, and hence

the ø (which cannot otherwise couple Lo a rtr-
state) does not appear. In their recent examination of
the EM pion and nucleon form-factors using VMDl,
Dönges et al. I l8] introduced the a through a covari-
ant derivative in the pion kinetic term. This produces
a direct contribution from ar ---+ 2¡¡ wilhout any p-(')
mixing, but does not provide a good representation of
data in the resonance region. We shall use the mixed
propagator [7], where the mixing is introduced by
an off-diagonal piece, IIo, in tbe vector meson self-
energy. To first order in CSV [i.e., to O(IIo.)1, the
propagator is given by (we ignorepieces proportional
to qþ as we couple to conserved currents)

I I to Ifr.f sos,
IIo.fsos, 1lt,

which is that the direct decay of the isospin pure ¿d to
two pions cancels the imaginary piece of the two pion
loop contribution to the mixing self-energy. This is
based on some reasonable assumptions, but is a point
worthy of further study in its own right. Since it is
beyond tbe scope ofthe present work we do notpursue
this further here. Accepting these arguments means
that we can neglect the pure isospin state ø¡ coupling
to two pions (M'.,-o, = 0) with the understanding
that it is the real part of the mixing amplitude that is
being extracted. To lowest order in the mixing, Eq. ( I )
becomes

Mf-o,= Ml,-,,+

+ My,-..lno. 1
(e)

llv

where .rp = qz - npp(q\ - *20 = q2 - *'o *
imof o(e2), and similarly for the o.

In a matrix notation, the Feynman amplitude for the
process y --+ 7r1r, proceeding via vector mesons, can

be written in the folm

iML-" = (iMi,-n, iM",_,,)

iDvø
iMr-0,
iMy-.¡ (8)

which we recognise as the sum of the two diagrams
shown in Fig.2.

Tbe couplings tl-rat e¡rier ihis expression, ihrough
MË,-ro, Mr-4, and My-r,, always involve the
unphysical pure isospin states p¡ and o ¡. However, we
can re-express Eq. (9) in terms of the physical states

by first diagonalising the vector meson propagator.
This leads to the result

ttMl-,, = Ml-,,:Mr-o + Mt-,,: Mr-,sP Jø

I

= Ml-,, My-p' sp

no, 1

,sp - sa sa
( r0)+ Ml-,, My-r,

which is the form usually seen in older works. A1-

though at first glance there seems to be a slight dis-

8¡"r, (7)

( )

where the matrix D,* is given by Eq. (7) and the
other Feynman amplitudes are derived from ^Cvvtr.
We will now make the standard simplification [24]
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Fig. 2. The contribution of p-ar mixing to the pion form-factor from the states of pure isospin. These diagrams are pfesent in addition to

those in Fig. la).

crepancy between Eqs. (9) and (10) they are equiv-

alent - e.g., see Ref. [9] and the discussion of the

Orsay phase by Coon et al. [8].
'We are now in a position to write down the CSV

form-factor based on the VMD1 form-factor of
Eq. (5) and the mixed state contribution of Eq' ( 10),

Fn(q2) = 1 -
q2

golQ2 - m2, + imrf o(ez))

q2egpro

g,lq2 - m2.+ im,l.l' (11)

where Fig. 3. Cross-section of ete- - ø+ø- plotted as a function of
the energy in the centre of mass. The experimental data is from
Refs. [ 17,25].

2.O

có.-¡ l.J
o

.9
E

c 1,0
'E
o
Ø

,i' o.s

O

-- fl,, - no.
' - ,o - sd ffiZ. - *20 - i(m,f . - mof o(ø2))'

(12)

The ø decay formula of Coon and Barrett can now be

seen to follow from Eq. ( l1) with an approximation
for e (namely that f. is very small and that m2o =
m2.).Because the width of the ø is very small we can

safely neglect any momentum dependence in it, and

simply we f ,(m?.) [9,19].
All parameters except ll o, are fixed by various data

as discussed below. The results of fitting this remain-
ing parameter to the data are shown in Fig. 3 with
the resonance region shown in close-up in Fig. 4. The

mass and width of the a are as given by the Particle

Data Group (PDG) 1261, m, =181.94 t 0.12 MeV

400 500 600 700
lnvoriont Moss (MeV)

800 900

and f , = 8.43 + 0.10 MeV. There has recently been

considerable interest in the value of the p parameters,

mo and 1-o with studies showing that the optimal val-

ses Í19,221may differ slightly from those given by
the PDG. The value of IIp. is not sensitive to the

masses and widths, and we have obtained a good fit
with mo = l'l2MeY and l, = 149 MeY which are

close to the PDG values.

The values of the coupling constants are however

quite important for an extraction of IIp.. We obtain

Bp and Bp,o from f (p - e+e-) - 6.8 MeV and

f (p - trtr) - 149 MeV: 12oorf 4r, - 2.9, 82rf 4, -
2.0 which show, for example, that universality is not

strictly obeyed (as mentioned previously). VMDI and
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760 780
lnvoriont Moss (MeV)
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Fig. 4. Cross-sectionfor e+e- - ,jr* jr- in the region around the
resonance where p-a mixìng is most noticeable. The experimental
data is from Refs. [ 17,25].

VMD2 differ at order goo,f gp - 1.2.
Historically the ratio g.f gp was believed to be

around 3 1271, a figure supported in a recent QCD-
based analysis [28]. Empirically though, the ratio
can be determined l22l from leptonic partial rates

[26] giving

mrf (p + e+e-)
mrl(o -- e+e-) = 3.5 t 0.18. ( 13)

Using these parametel's we obtain a best fit around
the resonance region shown in Fig. 4 (y2 ld.o.f. =
14.ll25) wifh IIo. = -3800 MeV2. In this analysis
there are two principle sources of error in the value of
If o,.The fir'st is a statistical uncertainty of 310 MeV2
for the fit to data, and the second, of approximately
200 MeY2, is due to the eror quoted in Eq. (13).
Adding these in quadrature gives us a final value for
the total mixing amplitude, to be compared with the
value -4520 t 600 MeV2 obtained by Coon and Bar-
rett [ 10]. We find

ilp, = -3800 t 370 MeV2. (14)

It is now clear that a momentum dependent y"-p
coupling, together with a direct coupling of the photon
to hadronic matter, yields an entirely adequate model
of the pion form-factor. In fact, this picture is basi-
cally suggested by attempts to examine the y* -p cou-
pling via a quark loop. Model calculations typically
find that the loop is momentum-dependent, and van-
ishes at q2 = 0 (unless gauge invariance is spoiled by
form-factors, or something of this nature). Howeveç
coupling the photon to quarks in the loop implies that

the photon must also couple to the quarks in hadronic
matter, thus introducing a direct photon-hadron cou-
pling (independent of the p-meson), and leads us to
take VMDI as the preferred representation of vector
meson dominance. It should now be clear that the ap-
propriate representation of vector meson dominance
to be used in combination with mixing amplitudes that
vanish at 42 = 0 is VMD1. To use VMD2 in conjunc-
tion with such vector mixing amplitudes is inconsis-
tent. As long as one is clear on this point, there are no
dire consequences for momentum dependence in p-a
mixing.

One of us (HOC) would like to thank M. Benayoun
(Collège de France, Paris) for helpful discussions.
This work was supported by the Australian Research
Council.
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Abstract

Wediscusstheconsistencyof thetraditionalvectormesondominance(VMD) modelforphotonscouplingtomatter,with
the vanishing of vector meson-meson and meson-photon mixing self-energies at q2 = 0. This vanishing of vector mixing
has been demonstrated in the context of rho-omega mixing for a large class of effective theories. As a further constraint on
such models, we here apply them to a study of photon-meson mixing and VMD. As an example we compare the predicted
momentum dependence of one such model with a momentum-dependent version of VMD discussed by Sakurai in the

1960's. We find that it produces a result which is consistent with the traditional VMD phenomenology. We conclude that
comparison with VMD phenomenology can provide a useful constraint on such models.

PACS: 12.4O.Yv; 13.60.-r; ll.3O.Hv; 14.80.Dq
Keywords: Vector meson; Rho-omega mixing; Vector meson dominance; Charge symmetry

The experimental extraction of flp, (in the pion EM
form-factor t 1l ) is in the timelike q2 region around
the p-a mass, yet it is used to generate charge sym-
metry violation (CSV) in boson exchange models of
the NN interaction in the spacelike region [2,3]. The
traditional assumption was that the mixing amplitude
was independenfof q2.

This assumption was first questioned by Goldman
et al. [4] who constructed a model in which the p and
¿r mixed via a quark loop contribution which is non-
vanishing if and only if m, * m¿ . Thet conclusion of
a significant momentum dependence was subsequently
supported by other studies, which included an analo-

I E-mail: hoconnel @physics.adelaide.edu.au.
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gous NNloop calculation [ 5 ] using the n-p mass dif-
ference and more elaborate quark-loop model calcula,
tions [6]. All of these predicted a similar momentum-
dependence forIo,(Qz) with a node near the origin
(q2 = O). At a more formal level, it was subsequently
shown that the vector-vector mixings must identically
vanish at q2 = 0 in a large class of effective theories

[7] where the mixing occurs exclusively through cou-
pling of the vector mesons to conserved currents and
where the vector currents commute in the usual way.
Recent work in chiral perturbation theory and QCD
sum rules has also suggested that such mixing matrix
elements must, in general, be expected to be momen-
tum dependent [8].

In response to this, alternative mechanisms involv-
ing CSV have been proposed [9]. Indeed, as the vec-
tor mesons are off shell, the individual mechanisms



should not be examined in isolation, because they are
dependent on the choice of interpolating fields for the
vector mesons and are not physical quantities. It has

been argued that one could find a set of interpolat-
ing fields for the rho and omega such that all ilrclear
CSV occurs through a constant p-ø mixing with the
CSV vertex contributions vanishing [ 10]. However
this possibility has been questioned on the grounds of
unitarity and analyticity I I I ].

The same models which have been used to examine
the question of p-ot mixingcan also be applied to stud-
ies of p-y mixing. They can then be compared to phe-
nomenology and vector meson dominance (VMD)
models, which have traditionally assumed the cou-
pling of the photon to the rho was independ ent of q2 .

The first person to raise this question was Miller I l2].
The purpose of this letter is to carefully explore the
issues raised and compare numerical predictions for
sucb a mixing model with experimental data. As dis-
cussed recently [3], the appropriate representation
of VMD to use with a momentum dependent photon-
rho coupling is VMDl, given by the Lagrangian I 14]

L, = -f,F*,Fþ' - lpp,pþ' + lmf;orots

- gponp¡"Jþ - eA*JP - l-r*rcu'+..., (l)
¿gp

where -/, is the hadronic current and Fp, and p* arc
the EM and p field strength tensors respectively (the
dots refer to the hadronic part of the Lagrangian).
From this we obtain the VMDI expression for the
form-factor for the pion [ 13]

r*DG\=l- ,"428!', . (2)r \t ' 
'p(qz-^'o*imolp)'

Note that in the limit of exact universality gprr = gp

and we recover the usual VMD2 model prediction for
the pion form-factor [13,14]. Recall that in this tra-
ditional VMD (i.e., VMD2) model the photon cou-
ples to hadrons only through first coupling to vector
mesons witha constanl coupling strength, e.9., for the
p-7 coupling we have nf,{D2 (ø2) : -^'or l go.

We shall define a VMDl-like model to be one in
which the photon couples to the hadronic fleld both
directly and via a q2-dependent coupling (with a node
at q2 = 0) to vector mesons. A VMDl-likemodel may
differ from pure VMD1 as the coupling of the photon
to the rho (generated by some microscopic process)

H.B. O'Connell et al./ Physics Letters B 370 (1996) l2-16 l3

will not generally be linear in 42. Hence gp, which
is a constant in VMDI (and VMD2 as they share
the same go [13,14)), may acquire some momentum
dependence in a VMDI-like model; the test for the
phenomenological validity of the model is then that
this momentum dependence for go is not too strong.
For example, we can easily determine the coupling of
the photon to the pion field via the rho meson for a for
a VMDl-like model. We note the appearance in Eq.
(3) of the photon-rho mixing term,tIfiQ2¡, which
can be determined from Feynman rules, and which
will, in general, be q2-dependent. Such an analysis
gives for any VMDI-like model

-iMt" G, : -ie(p+ - p- ),lDy(q\fPo Fo(qz)

= il D y ( q2 ) lt"o i[Î y, (q2 ) l, + i[ D 7 G\ ] 
t"

x i¡il, o 
( ø2 ) l,,i[ D p( q\ f" iff p, ( q2 ) l,

= -ie(p+ - p-),ilDy(q2)l*"

, (, * . n':(1',) 
= 

gE!-\, (3)
\ s"-mi+tmdp e /

where D, II and f denote propagators, one-particle
irreducible mixing amplitudes and proper vertices, re-
spectively. Here p+ and p- are the outgoing momenta
of the ø'+ and tr-, respectively. For this modcl to
reproduce the phenomenologically successful VMD,
and hence provide a good fit to the data (assuming
exact universality),flpy(ø2) and gp must be related
by (comparing Eqs. (2) and (3))

rlvnr k\ = -4 .
8p\Ç- ) ' 

(4)

Note that this resulr then implies that II)fDt (q2) =
çq2lmz)nff"(q'). Eq. (4) arises from the simple
VMDI picture when universality is assumed and is
also consistent with the usual VMD2 picture as ex-
plained elsewhere [ 13,14].

Thus Eq, (4) is the central equation of this work,
since vector-meson mixing models (e.g., p-a míx-
ing) can also be used to calculate p-7 mixing and
then confronted with traditional VMD phenomenol-
ogy. The results quoted in the review by Bauer et al.

I 15] are summarized in Tables I and XXXII of that
reference. They list a range of values which vary de-
pending on the details of the fit to the p mass (mr) and
width ( fp ) . Within the context of the traditional VMD
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(i.e., VMD2) framework they extract B2p(q2 = $ latr
from p0 photoproducrion (yp - pop) and g2o(q2 =
m2ì l4T from p0 -- ete-. The three sets of results
quoted are (in an obvious shorthand notation): Io =
I35,I45,155 MeY mp =767,774,776MeY, g2o1q2 =

Q I ar = 2.43 *0. lO, 2.27 +0.23, 2.18 t 0.22, g'o\' =
*2r) f 4, = 2.21t0.017,2.20+0.06,2.1110.06, re-
spectively. 'We see that go is a free parameter of the
traditional VMD model (VMD2) which is adjusted
to fit the available cross section data. The central fea-
ture of the VMD2 model is that it presumes a constant
value for its coupling constant Bp. We note in passing

that the universality condition is go - gp¡r - g;îiï/ -
Bppp and where experimentally we find [5,16] for
each of these g2f 4er - 2. For example, the values

of Boro corresponding to the above three sets of re-

sults are gzr,o(e2 = m2ìl4T - 2.61,2.77,2.95 and

are extracted from p0 --. ,Ír*ir-.It should be noted

that the pNN interaction Lagrangian is here defined
as in Refs. [3,5] with no factor of two [14,16] and

hence go¡y¡s = B'fr'¡v|2. As a typically used value is

g2o,vNl(4rr) = 0.41 we see that universality is not ac-

curate to better than 40Vo in 8|, which corresponds to

- 20Vo \n go.

The results of the VMD2 analysis [ 15 ] are approx-
imately consistent with go being a constant and so

we see from Eq. (4) that fI, in VMDI-like models

should not deviate too strongly from behaviour linear
with q2.

We shall now examine the process within the con-

text of the model used by Piekarewicz and Williams
(PW) who considered p-a mixingas being generated

by a nucleon loop [5] within the Vy'alecka model. Us-
ing nucleon loops as the intermediate states removes
the formation of unphysical thresholds in the low 42

region and allows us to use well-known parameters.

The rho-coupling is not a simple, vector coupling, but
rather [ 17]

ff,wN=SpNNTP +iffior,ø', (5)

where Co: f pn¡tf gpN.¡v = 6.1 and M is the nucleon

mass. With the introduction of tensor coupling the
model is no longer renormalizable, but to one loop or-
der we can introduce some appropriate renormaliza-
tion prescription. As the mixings are transverse, we

write fr¡",(Qz) = (g*, - qpq,lq2)il(q2) lll. Tne

photon couples to charge, like a vector and so, unlike
the PW calculation, we have only a proton loop to con-
sider. Here we can safely neglect the coupling of the
photon to the nucleon magnetic moment and so there
is no neutron loop contribution nor any tensor-tensor
contribution to the proton loop. This sets up two kinds
of mixing, vector-vector ilfí and vector-tensor flf,f ,

where (using dimensional regularization with the âs-

sociated scale, p)

f7,,(q2) = -q'zry

I dx x(l -x) ln (6)

(8)

0

ÍIur(qz) = -q'#

dx ln (7)

Note that these functions vanish at q2 = 0, as expected

from the node theorem since we have coupling to con-
served currents [7]. To remove the divergence and

scale-dependence we add a counter-term

gpxNCr

¿77'
Lct=e PwF"

to the Lagrangian in a minimal way so as to renor-
malize the model to one ioop. This wiil contribute

-iCyg,p¡¡¡¡eq2 lê to the photon-rho vertex, which will
add to the contribution III generated by the nucleon
loop. The counter-term will contain pieces propor-

tional to I f e, y and ln p,2 to cancel the similar terms

in Eqs. (6) and (7), and a constant piece, p, which
will be chosen to fit the extracted value for g, (0). The

counter-term is

cr=-!
e

I
0

(¿ . ?) .,(í- ?)

?)t" P'2+P'
1

+t2

which gives us the renormalized mixing,
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Fig. 1. The PVr' model prediction for the mixing amplitude is

related to the traditional VMD coupling gp(q2) wing the cen-

tral result of Eq. (a). The resulting behaviour of g2rf4r versus

S= \/52 is then ploned in the timelike region for this model.
Shown for comparison are a typical pair of results (2.27 +0.23 at

4 = 0 and 2.20+0.06 at q = ,np, see text) taken from a traditional
VMD based analysis of cross section data in Ref. [5].

ro,(82\ =s,s#l;(* .'#
8M4 +2M2q2 - qa

arctan
3q3

ln M2

4M2 - q2
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q2

4Mz - q2

l5

we can conclude then that the PW model provides a
result consistent with the spread of extracted results
given in Ref. [ 15]. It should be noted thar any VMDI-
like model which predicts a significantly greater de-
viation from linearity with q2 will fail to reproduce
phenomenology because ofEq. (4).

In summary, we have explicitly shown in Eq. (4)
that the vanishing of vector-vector mixing at 42 = Q 15

completely consistent with the standard phenomenol-
ogy of vector meson dominance (VMD). 'We have,
in addition, applied the same type of model used in
a study of p-ø mixing to extract the momentum de-
pendence of p-y mixing and have compared the re-
sult to the VMD2 based analysis of the experimental
data. We see that the phenomenological constraints of
VMD can provide a useful independent test of VMD-
like models of vector mixing and future studies should
take adequate account of this. It would, of course, be
preferable to reanalyze the data used in Ref. [ 15 ] from
the outset using VMDI rather than VMD2, but this
more difficult task is left for future investigation.
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The formalism underlyìng the *?tJr1.Titî1Y'liÎzr- in rhe p - ø interference region
is carefully revisited. we show that the standard neglect of the pure 1 = 0 omega, L¡,

"direct" coupling to rr is not valid, and extract those combinations of the direct
coupling and p-a mixing allowed by experiment. The latter is shorvn to be only very

weakly constrained by experiment, and we conclude that data from the e*e- --. n+i-
interference region cannot be used to fix the value of p-u mixing in a

model-independent way unless the errors on the experimental phase can b"e significantly
reduced. Certain other modifications of the usual formalism necessitated ùy the

unavoidable momentum-dependence of p-ø mixing are also discussed.
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The cross-section for e*e- -- T*rr- in the p-u resonance region displays a narrow
interference shoulder resulting from the superposition of narrow resonant c¿ and broad
resonant p exchange amplitudes [1]. The strength of the ø "interference" amplitude has
generally been taken to provide a measurement of p7-uy mixing (where pr, ur are the pure
isovector p and isoscalar u; states) [2,3]. The extracted mixinghas then been used to gen-

erate p¡-ar mixing contributions to various few-body observables [a-6], a program which,
combined rvith estimates for other sources of isospin-breaking, produces predictions for
few-body isospin breaking in satisfactory accord with experiment [õ]. The phenomenolog-
ical success. for those observables for which prat contributions are significant, rests, in-
extricably. on two assumptions, (1) that the interference amplitude is dominated by prar
mixing (i.e.. negligible "direct" ,ìy --+ zrn contribution to the physical r,., decay amplitude)
and (2) that the resulting mixing amplitude is independent of momentum-squared, so the
extracted value can be used unchanged in meson-exchange forces in 1èw-body systems,
where q2 < 0.

The neglect of "direct" ,or - zrn coupling (i.e., coupling which does nol go via mixing
with the p¡) can actually be re-interpreted physically, this re-interpretation simuitaneously
providing the conventional justification for taking the p¡-c,'¡ self'-energy,ilr', to be real in
modern analyses of. ere- -- rrr- [7,8]. As will become clear belorv, however, cor-rections
to the underlying argument, usually thought to be small, have unexpectediy large effects
on the extraction of the p-ø mixing contribution from experimental data.

The assumption of the g2-independence of.lI"(q2) is more problematic [9.10]. In gen-
etal, one knows that a system of,, e.g., nucleons, vector mesons and pseudoscalar mesons,
can be described b}t an effective low-energy Lagrangian, constructed so as to be compati-
ble with QCD (e.g., one might think of the effective chiral Lagrangian, L"fr, obtainable via
the Coleman-Callan-Wess-Zumino construction [11]). Such a Lagrangian, involving terms
of arbitraril¡r high order in derivatives, will produce momentum-dependence in all observ-
ables which can in principle become momentum-dependent. This has been seen explicitly
for the off-diagonal (mixing) elements of meson propagators by a number of authols, em-
ploying.¡aricus models [12,13], as well as QCD sum rule and Chiral Pertuibation Theory
(ChPT) techniques [1a]. Such q2-dependence has also been shown to be consistent with
the usual vector meson dominance (VMD) framework [15]. The possibility [16] that an
alternative choice of interpoiating fields might, nonetheless, correspond to the standard
assumption of g2-independence has been shown to be incompatible with the constraints
of unitarit¡- and analyticity [17]. It is thus appropriate to revisit and generalize the usual
analysis.

As has been known for some time, to obtain properties of unstable particles which
are process-independent and physically meaningful, one determines the locations of the
resonance poles in the amplitude under consideration, and makes expansions about these
poie locations [18]. The (complex) pole locations are properties of the S-matrix and
hence independent of the choice of interpolating fields, and the separate terms in the
Laurent expansion about the pole position have well-defined physical meaning [18]. The
importance of such an "S-matrix" formalism for characterizing resonance properties has
been st¡essed recently by a number of authors in the context of providing gauge- ancl
process-independent definitions of the Zo mass and width in the Standard lvlodel [19,20].
For our purposes this means that: (1) the "physical" {p, ,} fields are to be identifiecl
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as those combinations of the {pt, ,t} fields containing the corresponding S-matrix poles
and (2) to analyze e*e- "+ r*r- one should include both resonant terms involving the
complex p and ø pole locations (and hence constant widths) and "background" (i.e. non-
resonant) terms. In quoting experimental results we will, therefore, restrict ourselves to
analyses which, as closely as possible, satisfy these requirements. To our knowledge, only
one such exists: the fifth fit of Ref. [21] (performed explicitly in the S-matrix formalism,
though without an s-dependence to the background). As stressed in Ref. [21], using the
S-matrix formalism, one finds a somewhat lower real part for the (complex) p pole position
(ño = 757.00 t 0.59, lp: I43.4I +.1.27 MeV) than is obtained in conventional, non-
S-matrix formalism treatments. For comparison below we will also employ the results of
the second fit of the more conventional (but non-S-matrix) formalism of Ref. [22], which
employs an s-dependent background, an s-dependent p width, and imposes the (likely too
large) Particle Data Group value for the p mass by hand.

Let us turn to the question of p - c,.,r mixing in the presence of a g2-dependent off-
diagonal element of the self-energy matrix. We shall work consistently to first order in
isospin breaking (genericaliy,O(e)), which will mean to first order in llp.. The dressing
of the bare, two-channel meson propagator has been treated in Ref. [10].

As we consider vector mesons coupled to conserved currents, we can replace Dur(qr)
by -gr"D(q2). We refer to D(q') as the "scalar propagator'. We assume that the isospin-
pure fields p¡ and ø¡ have already been renormalized, i.e., that the relevant counterterms
have been absorbed into the mass and wavefunction renormalizations. Taking then the
fuii expression for the dressed propagator and keeping terms to O(e). one finds

D,(qr): ( 2'r, ?i" l : ( k' -\,ok'D-' nþk')^. \=\ o'i DL ): [ '^ n,,.(à;¡" tt -n.)tfD-' ), (0.1)

where the renormalized self-energies II¡¡(g2) - ffi2k as q2 -- mzn. Defining n[?(qt) :
l1or(qt) - *7,, rve then ha"e ll[o/(q2) : Olk, - *r,,)r].From the complex pole positions,
ml, w9 define the (real) mass (riz¡) and width (i¡.) via, mzk j ñ"0-iñ,tlt. To o(e),
D'r.(q'), is then [10]

D,r,(qr) = ,^, 
nr-(q') _ Drrre)r*(qr)D,..(qr), (0.2)(q' - *'o - uÍ?(q,)) (q, - m2, - rtt9(q)

which contains both a broad p resonance and narrow u resonance piece.
As explained above, the physical p and ø fields are defined to be those combinations of

the p¡ and ø¡ for which only the diagonal elements of the propagator matrix contain poles,
in the p, c,; basis. This definition is, in fact, implicit in the standard interpretation of the
e*e- '- r*¡r- experiment, which associates the broad resonant part of the full amplitude
with the p and the narrow resonant part with the t¿. Using diffãrent linear combinations
of p¡, r^.'¡, (call them p', u') than those given above (p, rj, one would find also narrow
resonant structure in the off-diagonal element of the vector meson propagator in the {p,,o"r') basis, preventing, for example, the association of the narrow resonant behaviour with
the ¿¿' pole term alone.

We define the transformation between the physical and isospin pure bases by (to O(r))
p : pI - €trÐI¡ (Ð : (tr * ez pt (0 3)
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where, in general, e1 + e2 when the mixing is

-i(0lT(pP(r)r'(y))10), one then has for the scalar

D o-(q') : D'r,(q') - eÐ1.-(

The condition that D o,(q') contain no p or ø pole

no.(*'.),r:m, ê2:

q2-dependent. With Drrí(, -
propagator, to O(e),

q\ + ernlorkf).

then fixes e1,2 to be

IJr,(m2o)

y):

(0.4)

(0.5)
m2.-*7+n!flç-rr¡

When t|o'(q') is q2-dependent, we thus see explicitly that e1 f e2; Lhe relation between
the isospin-pure and physical bases is not a simple rotation. This is a universal feature of
q2-dependent mixing in field theory. Recall ttrat lI!0/(ø2) and nfoJ(q') vanish by definition
as q2 -, mf,,, at least as fast as (q' - *7,)'. The usual assumption is that these two
quantities are zero in the vicinity of the resonance region, which leads to the standard
Breit-Wigner form for the vector meson propagator.. ll!?(q') and li!0j(q2) are, of course,
momentum-dependent in general since the vector propagators must be real below the ¡-n
and r7 thresholds. Note that, from Eqs. (0.a) and (0.5), any deviation fì'om the Breit-
Wigner form and/or any non-linearity in the q2-dependence of fro-(q') will produce a

non-zero off-diagonal element of the vector propagator euen in the physical basis. This
means that a background (non-resonant) term is completely unavoidable even in the
traditional VIVID framework, where all contributions are associated with vector meson
exchange. Nloreover. in general, this background will be s- (i.e., q2)-dependent. Finally,
even in the vicinity of the p and r,,' poles, where it should be reasonable to."t ll(o)(q')
and tl!Oj(q2) to zero. the p¡ admixture into the physical ø is governed, not by lIp'(m2.)
as usually assumed, but by II"(*7).

The time-like EII pion form-factor is given, in the interference region, by

F.(q'):þ.,*D..b * 9o^*Door-L * grnnD*+l-background, (0 6)

where g,nn is the coupling of the physical omega to the two pion final state and /r., and

iu1 are the electromagnetic p and ar couplings. The third piece of Eq. (0.6), gpnnDp,f,t,
results from the non-vanishing of the off-diagonal element of the physical meson propagator
and, being non-resonant, can be absorbed into the background, for the purposes of our
discussion, as can any deviations from the Breit-Wigner form for the p and ø propagators.
Since the variation of g2 over the interference region is tiny, we can presumably also safely
neglect any q2-dependence of f., f,t, gpon arrd g,nn. fv^, is relatecl to the "universality
coupling" [I5], gr, of traditional VMD treatments by fv., - -eñ22 I gv.

'We 
now focus on the resonant ø exchange contribution, whose magnitude and phase,

relative to the resonant p exchange, are extracted experimentally. We have

guzn : (trrlu¡ + ezpt) : gu¡.,¡¡ ! e2!p.nn, (0.7)

where e2 is given in Eq. (0.5) or, equivalently,by ez- -izfIp.(m|)lriirlø where

, =1, -* -, (ñ'" - al)l-' 
(o.s)--L- ñolo ',\ ñrl, ))
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Notethat z xl but equals I only if weneglect theø width and p-@ mass difference.
This brings us to the Renard argument [7]. Since, in general, g,¡nn f 0, lir.(q2) must
contain a contribution from the intermediate zrzr state rvhich, because essentially the entire
p width is due to the nn mode, is given by

I?î(r2) : n:-r7î@7): G(Rerrlîør,) - iñ,pt p), (0.e)
g ptrr

where G : g-rnnlgp¡,ois the ratio of the pr ald.ør couplings to nzr. In arriving at Eq. 0.9
we have used the facts that (1) the imaginary part of the p self-energy at resonance
(j' : m2r) is, by definition, -ñrlp, and (2) go** : ¡ptîr to O(e). we have then, defining
fIo., bV np, : lo- - icñlp,

,, = "*1ilr.,(*7) - icñer pl (0.10)

and hence
gurr : g.,nn (L - z) + è2!p1nn, (0.11)

where ë2: (-izlñ,plp)irp-(*7). we shall also define, for convenience,

i : il,.(*3)lñ,tr. (0.12)

The standard Renard analysis [7] involves approximating z by 1. The cont¡ibution to
Q + Trit from the intrinsic ø¡ decay is then exactly cancelled in Eq. (0.11). Using the
(preferred) experimental analysis of Ref. [21], however, we find

z:0.9324 +0.3511 t. (0.13)

(For comparison, the analysis of Ref. [22] gives 1.023+0.2038i). Because of the substantial
imaginary part, the intrinsic decay cannot be neglected in e+e- -- tr*ä-

Substituting the results above into Eq. (0.6), we find

f
F.(q'): l9o,** llr"*l"io.*.- (f t - ")G -izi) r. + pr]* background, (0.14)

where we have replaced the p_ropagatorc Dpp,,, of Eq. (0.6) with the simple Breit-Wigner
pole terms Po,. = L l@, - *ro,_), and where

= lr"*leió"+"-, (0.15)
FJ(ñ

'€x - f
Jm

with d'+'- the "leptonic phase" (to be discussed in more detail below). Experimentail¡

, , lA?.f (, -- ,+"-\1112
lr'*l : LAr õl = 0.30 * 0.01 (0.16)

using the values found in Ref. [21]. The- fo¡m of F*(q') in Eq. (0.14) is what is required
for comparison with experimental data [21], for which ãne hus

Fn x po + Ae;öp-. A : -0.0109 t 0.0011; ö: (n6.? + 5.g)". (0.17)
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One can now see that the uncertainty in the Orsay phase, /, makes a precise extraction
of. tIr,(m|) impossible. Indeed, the two contributions to the ø exchange amplitude (i.e.,
multiplying P,) have either nearly the.,same phase or differ in phase by close to a- (de-

pending on the relative signs of G and ?). In either case, a large range of combinations of
G and ?, all producing nearly the same overall phase, will produce the same value of A.
The experimental data can thus place only rather weak constraints on the relative size of
the two contributions, as we wili see more quantitatively below.

Let us write r"*, the ratio of electromagnetic couplings, in terms of the corresponding
isospin-pure ratio, rr = f,nllrrr. Usin1 f,t : f.,^, * ezf pn and /rt : lp,t - e1f,,^,, one

finds r"* : (rt + ez)l 0 - etrl), where r¡ is real. To O(e) one then has

sin þ"+"_ - 
Im(ez) + lr"*l2lm(er). (0.1g)

lr"*l

Ignoring the small difference in e1 and e2 (since r"2* is small) we obtain

sin/"+.- - 
(1 + lr".l2)Imez (0.r9)

lt.*l

In order to simplify the discussion of our main point, which is the effect of including
lhe direct coupling on the experimental analysis, let us now make the usual assumption
that the imaginary part of IIr. is dominated by rr intermediate states. (Note, however,
that, because the argument is complex, there may be an imaginary part of flp. even in the
absence of real intermediate states; for example, in the model of Ref. [13], with confined
quark propagators, the phase of the quark loop contribution tofIr.(m2) is about -13" [23],
despite the model having, for this contribution, no available intermediate states.) ùIaking
this assumption, flo, (and thus 7) becomes pure real and the imaginary part of tIr.(*3)
reduces to -Grîzrlr. Using Eqs. (0.10) and (0.19) the leptonic phase becomes

/ t + lt"*l') rr n" z I GIm:) (0.20)sin /"r"- : - (, lr"*l ) \- 
-* -

which is completely fixed by G and ûr,. Fo, each possible frr,, only one solution for G
both gives the correct experimental magnitude for the ø exchange amplitude (A) and has

a phase lying in the second quadrant, as required by experiment. Knowing II* and G,
Eqn. (0.20) allows us to compute the total phase, /. Those pairs (flp,, G) producing the
experimentally allowed (.4, /) constitute our full solution set.

The results of the above analysis are presented in Fig. 1, where we have used as input
the results of the analysis of Ref. [21], for the reasons explained above. The spread in
G values reflects the experimental error in A. We will supplement the experimental con-
straints by imposing the theoretical prejudice -0.05 < G < 0.05. We see that, barring
theoretical input on the precise size of G, experimental data is incapable of providing
even reasonably precise constraints on the individual magnitudes of G and IIr.(ml). The
reason for this situation has been explained above. If we fix A at its central value, the ex-
perimental phase alone would restrict n*@|) to the range (-1090 NIeV2, -5980 NIeV2),
the G constraint to the range (-2290 NIeV2, -6180 rVIeVz). Including the experimental er-
ror on A extends. for example, the phase constraint range to (-840 1VIeV2,-6240 ìvIeV2).
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For comparison, artificially setting G :0 produces ilo-(mzr): -3g60 IVIeV2. One may
repeat the above analysis using the input parameters of Ref. [22] (where, horvever, the
p pole position is presumably high by about 10 iVIeV [21]). For tire central A value, the
experimentally allowed range of lIo,(mf;) is (-3220 NIeV2,-5080 \,IeV2). The large un-
certainty in the extracted values ottlo,@|) and G is thus nob an artifact of the particulal
fit of Ref. [21]. The small (+600 MeV2) error usually quoted for IIr.,(rn|), uttd associatecl
with the experimental error in the determination of A, thus represents a highl5r inaccurate
statement of the true uncertainty in the extraction of this quantity lrom the experimental
data. It is important to stress that no further informatiot otr lir.lrnl) is obtainable from
the e+e- -- r*r- data without additional theoretical input.

Note that, in the model of Ref. [13], as currently parametrized, the sign of G is
determined to be positive, and the magnitude to be - 0.02. Such a value of G. however,
coupled with the phase correction mentioned above, would fail to satisfy the experimentai
phase constraint. This shows that. despite the weakness of the experimental constraints
for the magnitudes of G and lir.(rnl), the experimental results ale, nonetheless, still
capable of providing non-triviai constraints for models of the mixing.

In conclusion, we have shown that, in general, there is a contribution to the p-ø
interference in e*e- '- r*T- which arises from the intrinsic i¿r --+ rzr coupling, and
that this contribution. given the current level of accuracv of the experimentally extractecl
Orsay phase, precludes any even reasonably precise extraction of the p-ø, mixing in the
absence of additional iheoretical input. It is important to stress that this conclusion ancl
the central result of Eq. (0.14) do not depend ìn the least on the possible q2-clepenclence
of lIr,(q2) nor on the use of the S'-matrix formalism: even for constant IIr. ancl a more
traditional Breit-Wigner analysis one would still have a significanr imaginary part of z
and hence a residuai contribution from the direct coupling rvhich, being neariv parallel to
that associated with p-ø mixing, would lead also to the conclusion stated above. Note,
however, that a significant improvement in the determination of the experimental phase
would allow one to simultaneously extract the self-energy and the isospin-breaking ratio,
G. In addition to the main point, just discussed, we also note that (1) even if C were,
for some reason, to be zero, the data would provide the value of the mixing amplitucle at
rn2, and not mf,, (2) since it is the complex S-matrix pole positions of the) and,i., which
govern the mixing parameters €1,2, only an analysis utilizing the S-matrix I'ormalism can
provide reliable input for these pole positions, and hence for the analysis of the isospin-
breaking interference in ere- -- T*r- and (3) the simultaneous use of the experimental
magnitude and phase can provide non-trivial constraints on models of the vector meson
mixing process.
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