A STUDY OF POWER TRANSMISSION IN ACTIVELY CONTROLLED SIMPLE STRUCTURES

Xia Pan

Submitted for the Degree of Doctor of Philosophy
August 1996
Contents

Abstract vi

Statement of originality vii

Acknowledgments viii

List of symbols ix

1 Overview 1
 1.1 Introduction 1
 1.2 Literature review 2
 1.2.1 Analysis of vibration in simple structures 2
 1.2.2 Active control 3
 1.2.3 Measurement of vibratory intensity in simple structures 8
 1.3 New work 10

2 Minimizing the forced response and vibratory power transmission in an infinite beam 11
 2.1 Introduction 11
 2.2 Theory 12
 2.2.1 Minimizing acceleration 12
 2.2.2 Minimizing power transmission 13
 2.3 Numerical results 16
 2.3.1 Comparison of acceleration and power transmission control 16
 2.3.2 Effect of error sensor and control force location 18
2.4 Comparison of theory with experiment .. 26
2.5 Summary .. 28

3 Minimizing the forced response of a finite beam 29

3.1 Introduction .. 29
3.2 Theory ... 30
 3.2.1 Minimizing acceleration .. 30
3.3 Numerical results ... 33
 3.3.1 Effect of boundary impedance .. 33
 3.3.2 Effect of control force location .. 37
 3.3.3 Effect of error sensor location .. 39
 3.3.4 Effect of forcing frequency ... 43
 3.3.5 Comparison with control of semi-infinite beam 46
3.4 Summary .. 51

4 Minimizing acceleration and power transmission in a semi-infinite plate 52

4.1 Introduction .. 52
4.2 Theory ... 53
 4.2.1 Minimization of acceleration with a line of in-phase control forces 53
 4.2.2 Minimization of acceleration with a line of three independently driven control forces 54
 4.2.3 Power transmission .. 55
 4.2.4 Minimization of power transmission with a line of in-phase point control forces 56
 4.2.5 Minimization of power transmission with a line of three independently driven point control forces 58
4.3 Numerical results ... 59
 4.3.1 One primary and one control force 60
 4.3.2 A row of in-phase, uniform amplitude control forces and a single primary force 67
 4.3.3 A row of in-phase, uniform amplitude control forces and a row of in-phase, uniform amplitude primary forces 69
7.2.4 Minimization of power transmission with a line of in-phase point control forces ... 118
7.2.5 Minimization of power transmission with a line of independently driven point control forces ... 120
7.3 Numerical results ... 122
7.3.1 Definition of the near field ... 122
7.3.2 Power transmission reduction ... 123
7.3.3 Effect of error sensor type, location and number ... 125
7.3.4 Effect of control force type and location ... 132
7.3.5 Effect of thickness, radius and frequency ... 134
7.4 Summary ... 136

8 An experimental study of active control of power transmission in a semi-infinite cylinder ... 137
8.1 Introduction ... 137
8.2 Experimental arrangement ... 137
8.3 Test procedure ... 142
8.4 Numerical and experimental results ... 143
8.5 Summary ... 147

9 Conclusions and recommendations ... 149

A Classification of beam boundary conditions ... 152
A.1 Beam boundary impedance ... 152
A.2 Equivalent boundary impedance of an infinite beam ... 157

B Response of a finite beam to a point force ... 159

C Response of a semi-infinite plate to a line of point forces driven in phase ... 162

D Modal decomposition method in a semi-infinite plate ... 167

E Measurement of amplitude reflection coefficient in a semi-infinite plate ... 169
F Response of a semi-infinite cylinder to a line of point forces driven in phase

F.1 Determining the wavenumbers and constants α and β

F.2 Determining the flexural wavelength

F.3 Simply supported end conditions

F.4 Equilibrium conditions at the point of an applied force

F.5 Determination of the eigenvector

G Modal decomposition method in a semi-infinite cylinder

H Measurement of vibratory intensity in simple structures

H.1 Measurement of vibratory intensity in an infinite beam

H.2 Measurement of vibratory intensity in a semi-infinite plate

H.3 Measurement of vibratory intensity in a semi-infinite cylinder

References

Publications originating from this thesis work
Abstract

Feedforward active control of harmonic vibratory power transmission in simple structures is investigated theoretically and experimentally. The structures investigated are a beam, a plate and a cylinder. Primary excitation is used to represent unwanted noise or vibration. Secondary excitation is introduced using control sources which are adjusted to minimize acceleration or power transmission in the structures. The primary and secondary excitation is produced by either electromagnetic force actuators (shakers) or piezoelectric ceramics.

The theoretical predictions are compared to the experimental test results. In addition, vibratory intensity distributions before and after control are investigated.

Both the theoretical and experimental results demonstrate that it is possible to minimize vibratory power transmission in the test simple structures using a maximum of three control sources in the test frequency range. The study also indicates that, in most cases, the harmonic vibratory power transmission in simple structures can be measured by using a maximum of two accelerometers in the test frequency range.