Pathophysiology of Syringomyelia

by

Marcus A. Stoodley

Department of Surgery (Neurosurgery)

University of Adelaide

Submitted as part requirement for the degree of Doctor of Philosophy, August 1996
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>FINANCIAL SUPPORT</td>
<td>vii</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>viii</td>
</tr>
<tr>
<td>STYLE CONVENTIONS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1 Syringomyelia</td>
<td>1</td>
</tr>
<tr>
<td>1.1 History</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Definitions</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Epidemiology</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Associated Conditions</td>
<td>3</td>
</tr>
<tr>
<td>1.5 Classification</td>
<td>10</td>
</tr>
<tr>
<td>1.6 Clinical Features</td>
<td>11</td>
</tr>
<tr>
<td>1.7 Diagnostic Tests</td>
<td>13</td>
</tr>
<tr>
<td>1.8 Natural History</td>
<td>16</td>
</tr>
<tr>
<td>1.9 Pathology</td>
<td>17</td>
</tr>
<tr>
<td>1.10 Treatment and Outcome</td>
<td>19</td>
</tr>
<tr>
<td>1.11 Theories of Pathogenesis</td>
<td>30</td>
</tr>
<tr>
<td>1.12 Animal Models</td>
<td>47</td>
</tr>
<tr>
<td>1.13 Summary</td>
<td>55</td>
</tr>
<tr>
<td>2 Anatomy and Physiology of CNS Extracellular Fluid and CSF</td>
<td>56</td>
</tr>
<tr>
<td>2.1 Development of CSF spaces and the choroid plexuses</td>
<td>56</td>
</tr>
<tr>
<td>2.2 The central canal</td>
<td>57</td>
</tr>
<tr>
<td>2.3 Formation of CSF</td>
<td>65</td>
</tr>
<tr>
<td>2.4 Absorption of CSF</td>
<td>66</td>
</tr>
<tr>
<td>2.5 Flow of CSF and extracellular fluid</td>
<td>68</td>
</tr>
<tr>
<td>2.6 Pressure and pulsations in the nervous system</td>
<td>78</td>
</tr>
<tr>
<td>2.7 Function of CSF</td>
<td>80</td>
</tr>
<tr>
<td>2.8 Neural vasculature and barrier structures</td>
<td>81</td>
</tr>
<tr>
<td>2.9 CSF tracers</td>
<td>83</td>
</tr>
<tr>
<td>2.10 Summary</td>
<td>86</td>
</tr>
<tr>
<td>AIMS AND HYPOTHESES</td>
<td>88</td>
</tr>
</tbody>
</table>
GENERAL METHODS

1 ANIMALS USED AND ETHICS APPROVAL 89
2 NEUROLOGICAL EXAMINATION 91
3 ANAESTHESIA 92
 3.1 ANAESTHESIA OF RATS 92
 3.2 ANAESTHESIA OF SHEEP 92
4 PERFUSION-FIXATION 93
 4.1 PERFUSION-FIXATION OF RATS 93
 4.2 PERFUSION-FIXATION OF SHEEP 93
5 TISSUE PROCESSING 95
 5.1 TISSUE REMOVAL FROM RATS 95
 5.2 TISSUE REMOVAL FROM SHEEP 95
 5.3 PARAFFIN SECTIONS 96
 5.4 VIBRATOME SECTIONS AND LOCALISATION OF HRP WITH TMB 96
6 PHOTOGRAPHY 97

EXPERIMENTS 98

1 PRELIMINARY EXPERIMENTS 98
 1.1 INTRAPARENCHYMAL KAOLIN MODEL OF SYRINGOMYEelia 98
 1.2 DEVELOPMENT OF METHODS FOR STUDYING SPINAL FLUID FLOW 108
 1.3 COMPARISON OF MOUNTED AND FLOATING TMB PROCESSING 112
2 SPINAL FLUID FLOW IN NORMAL RATS 115
 2.1 METHODS 115
 2.2 RESULTS 116
 2.3 DISCUSSION 125
3 SPINAL FLUID FLOW IN NORMAL SHEEP 130
 3.1 METHODS 130
 3.2 RESULTS 131
 3.3 DISCUSSION 134
4 SPINAL FLUID FLOW IN RATS WITH ISOLATION OF THE CENTRAL CANAL FROM THE
 SUBARACHNOID SPACE 136
 4.1 METHODS 136
 4.2 RESULTS 136
 4.3 DISCUSSION 139
5 SPINAL FLUID FLOW IN SHEEP WITH REDUCED ARTERIAL PULSATIONS 140
 5.1 METHODS 140
 5.2 RESULTS 141
 5.3 DISCUSSION 144
6 SPINAL FLUID FLOW IN SHEEP WITH REDUCED SPINAL CSF PRESSURE 147
 6.1 METHODS 147
 6.2 RESULTS 147
 6.3 DISCUSSION 149
7 SPINAL FLUID FLOW IN RATS WITH NON-COMMUNICATING SYRINGOMYEelia 151
 7.1 METHODS 151
 7.2 RESULTS 153
 7.3 DISCUSSION 199
8 HUMAN CENTRAL CANAL MORPHOLOGY 204
 8.1 METHODS 204
 8.2 RESULTS 207
 8.3 DISCUSSION 214
9 ATTEMPTS TO DEVELOP A SHEEP MODEL OF SYRINGOMYELIA 216
9.1 METHODS 216
9.2 RESULTS 217
9.3 DISCUSSION 223
10 PERIVASCULAR FLOW IN THE CEREBELLUM AND BRAINSTEM 226
10.1 METHODS 226
10.2 RESULTS 227
10.3 DISCUSSION 232

GENERAL DISCUSSION 236

1 CHOICE OF ANIMAL MODELS 236
2 CHOICE OF CSF TRACER 236
3 EXPERIMENTAL TECHNIQUES 237
 3.1 PERFUSION-FIXATION 237
 3.2 CSF STUDIES 238
4 EXPERIMENTAL MODELS OF SYRINGOMYELIA 238
5 NORMAL CSF FLOW 239
6 CSF FLOW IN SYRINGOMYELIA 240
7 FUTURE WORK AND UNANSWERED QUESTIONS 241

CONCLUSIONS 244

APPENDICES 245

1 BUFFERS AND FIXATIVES 245
2 TMB PROCESSING 245
 MOUNTED SECTION PROCESSING 245
 FLOATING SECTION PROCESSING 246
3 PUBLICATIONS 247
 PAPERS SUBMITTED FOR PUBLICATION 247
4 PRESENTATIONS AT SCIENTIFIC MEETINGS 247
5 PRIZES 248

REFERENCES 249
ABSTRACT

The normal physiology of cerebrospinal fluid (CSF) in the spinal subarachnoid space and spinal cord and the pathophysiology of non-communicating syringomyelia are poorly understood. The hypothesis examined in this thesis is that CSF is driven from the subarachnoid space into perivascular spaces and the central canal by arterial pulsations and that this is the driving force for the development of non-communicating syringomyelia. Horseradish peroxidase (HRP) was used as a CSF tracer in rats and sheep. In normal rats and in normal sheep CSF flowed rapidly from the subarachnoid space, through perivascular spaces and into the central canal. Flow into the central canal was not via the fourth ventricle or the caudal opening of the central canal. The effect of arterial pulsations on this flow was examined by ligating the brachiocephalic artery in sheep before injecting HRP into the subarachnoid space. There was no flow into the central canal in sheep with damped arterial pulsations. Reducing the spinal subarachnoid pressure did not appear to alter flow into the central canal. CSF flow was also studied in the rat intraparenchymal kaolin model of non-communicating syringomyelia. Rapid flow into the central canal occurred at 1 day, 3 days, 1 week and 6 weeks after kaolin injection. There was rapid flow into isolated, enlarged segments of central canal even when there was evidence that the enlarged segments were causing pressure effects on surrounding tissue. These results support the hypothesis that arterial pulsation-driven CSF flow from perivascular spaces into the central canal is the driving force for the development of non-communicating syringomyelia. An additional finding from this work was that rapid perivascular CSF flow occurs in the cerebellum as it does elsewhere in the nervous system. A technique for studying the three-dimensional morphology of the human central canal was also developed.