An Analysis of Geology Curricula in Secondary and Tertiary Education.

IAN CLARK

Thesis submitted for the degree of
Doctor of Philosophy in Geology

THE UNIVERSITY OF ADELAIDE
Department of Geology and Geophysics

October 1996
TABLE OF CONTENTS

ABSTRACT .. 1

ACKNOWLEDGEMENTS .. IV

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1 FOCUS OF THE STUDY ... 1

1.2 BACKGROUND FOR THE RESEARCH ... 1

1.21 The Political Context ... 2

1.22 The Developing Technology .. 2

1.3 RATIONALE .. 3

1.4 JUSTIFICATION FOR THE RESEARCH ... 4

1.5 THE RESEARCH QUESTIONS ... 6

1.6 ORGANISATION OF THIS THESIS ... 6

CHAPTER 2 ... 9

LITERATURE REVIEW ... 9

2.1 INTRODUCTION .. 9

2.2 QUALITY TEACHING .. 10

2.21 Characteristics of Quality Teaching ... 12

2.22 Quality Learning .. 15

2.3 CONCEPT MAPPING ... 20

2.31 Learning Theory and Constructivism .. 21

2.32 Using Concept Maps for Teaching and Learning .. 23

2.32 Concept Maps and Curriculum Design ... 28

2.34 Other uses of concept maps .. 29

2.4 OTHER TEACHING MODIFICATIONS TO IMPROVE QUALITY 29

2.41 Self-Directed Learning .. 29

2.42 Problem-Based Learning .. 30

2.5 JOURNALS AND EVALUATION ... 30

2.51 Journals and Learning .. 31

2.6 CONCLUSION ... 34
CHAPTER 3 .. 37

GEOLOGY/EARTH SCIENCE IN THE SCHOOL CURRICULUM 37

3.1 INTRODUCTION ... 37

3.2 MAJOR CONCEPTS IN GEOLOGY/EARTH SCIENCE CURRICULA 38
 3.2.1 Development of K-12 Earth Science in the United States 38
 3.2.2 Development of K-12 Earth Science in the United Kingdom 45

3.3 GEOLOGY/EARTH SCIENCE EDUCATION IN AUSTRALIAN SCHOOLS.... 47
 3.3.1 The Nature of the Australian School System 48
 3.3.1.1 Primary school geoscience education 48
 3.3.1.2 Junior secondary geoscience education 49
 3.3.1.3 Senior secondary geoscience education 50
 3.3.2 Assessment .. 50

3.4 THE AUSTRALIAN K-12 CURRICULUM STATEMENT 52
 3.4.1 Common and Agreed National Goals for Schooling in Australia 53
 3.4.2 The Science Statements and Profiles 53
 3.4.3 Earth Literacy and the Australian Science Curriculum 55

3.5 REVIEW OF AUSTRALIAN SENIOR SECONDARY GEOSCIENCE
 CURRICULA .. 56
 3.5.1 Length Of The Course ... 56
 3.5.2 Nature of the Courses ... 57
 3.5.3 Aims & Objectives of Australian Geoscience Courses 58
 3.5.4 The Content of Australian Geoscience Courses 59
 3.5.4.1 Queensland .. 60
 3.5.4.2 New South Wales ... 60
 3.5.4.3 South Australia/Northern Territory 63
 3.5.4.4 Victoria .. 64
 3.5.4.5 Tasmania ... 65
 3.5.4.6 Western Australia .. 67
 3.5.5 Comparison of Geology/Earth Science Curriculum 68
 3.5.6 Assessment Methods .. 72
 3.5.7 Teaching and Learning Advice ... 77
 3.5.8 Student Numbers ... 77

3.6 SUMMARY .. 78

CHAPTER 4 .. 81

INTRODUCTORY TERTIARY GEOLOGY/EARTH SCIENCE
 CURRICULUM .. 81

4.1 INTRODUCTION .. 81

4.2 AN INVESTIGATION OF THE NATURE OF STUDENTS' PRIOR KNOWLEDGE.
 .. 82
 4.2.1 Orientation Study Of Students' Prior Knowledge 82
 4.2.2 Results Of The Orientation Study 86
 4.2.3 Detailed Study Of Students' Prior Knowledge 88
 4.2.4 Results Of The Detailed Study 90
4.3 CONCLUSION

CHAPTER 5
IMPROVING THE QUALITY OF TEACHING AND LEARNING IN GEOLOGY EDUCATION

5.1 INTRODUCTION
5.11 Traditional Teaching Methods

5.2 TEACHING ENVIRONMENT
5.21 Lectures
5.22 Practical classes
5.13 Fieldwork
5.23 Texts and References

5.3 MODIFIED TEACHING ENVIRONMENT
5.31 Introduction of Computer Delivery
5.32 Introduction of Concept Maps
5.33 Developing Understanding

5.4 MODIFYING THE TEACHING TO ACHIEVE MEANINGFUL LEARNING
5.41 Presentation of the Unit
5.42 Modifications to the Teaching Procedure
5.421 Pre-testing
5.422 Introduction of concept maps
5.423 The lectures
5.424 The practicals
5.425 Tutorials
5.43 Teaching Students to Construct Concept Maps

5.5 CONCEPT MAPS IN COURSE PLANNING
5.51 Preparation of Concept Maps
5.52 Outcomes of Preparing Concept Maps During Subject Planning

5.6 OTHER TEACHING INNOVATIONS
5.61 Demonstrations and Interactive Lectures
5.62 Rock Descriptions
5.63 Lectorials
5.64 Grid Mapping

5.7 CONCLUSION

CHAPTER 6
EVALUATION OF TEACHING AND LEARNING

6.1 INTRODUCTION

6.2 EVALUATION QUESTIONNAIRES
6.21 Summative/ratings questionnaires
6.22 Formative/diagnostic Questionnaires

6.3 STUDENT INTERVIEWS
CHAPTER 9

SUMMARY AND CONCLUSIONS

9.1 INTRODUCTION

9.2 SECONDARY GEOLOGY/EARTH SCIENCE
 9.21 Syllabus Content and Framework
 9.22 Assessment
 9.23 Teaching

9.3 INTRODUCTORY TERTIARY GEOLOGY/EARTH SCIENCE

9.4 QUALITY TEACHING AND LEARNING
 9.41 The Overall Outcomes
 9.42 Concept Mapping and Science Education

9.43 Computer Delivery and Courseware
 9.44 Evaluation and Action Research

9.5 CONCLUSION

APPENDIX

ERRATA

p 45 10th last line should read:
 "A review of the content of junior secondary school science curricula shows that the
 geoscience..."

p 48, Section 3.4 First sentence of the third paragraph should read:
 "Each of the statements in each of the eight areas of learning is divided into content
 and process strands which reflect the major elements of learning in the area."

p 63, Section 3.55 Section heading should be:
 "Comparison of Geology/Earth Science Curricula"

p 53 4th last line should read:
 "In Victoria a 4 unit course over two years was available..."

p 85 First sentence of last paragraph should read:
 "For all questions except question 4 the students who had studied geoscience at
 senior secondary level performed better than those who had not."

p 186 Sections 7.42 and 7.421 and Figure 7.2:

GP1 and GP2 on Figure 7.2 denote the Bachelor of Applied Science students and
the Bachelor of Education students respectively.
ABSTRACT

This work investigates the geology curriculum at three levels and the relationship that exists between one level and the next. For the secondary school level the emphasis is on the senior geology/earth science curricula and the way in which they link to the introductory geology curriculum at tertiary level. The introductory tertiary geology curriculum is viewed from the perspective of the effect of prior knowledge on student performance and the advanced tertiary geology curriculum is investigated in the context of quality teaching and learning using the structural geology part as a focus.

The review of the senior secondary school curriculum compares geology/earth science curricula for the Australian states and the K-12 science curriculum statements for Australia, the United States, and England and Wales. The content of each of the Australian state senior secondary school geology/earth science curricula is described in detail and the aims and objectives and assessment methods are compared. The development of the goals and the content of the Earth Systems approach to science education is reviewed and is used as a framework for comparison of the content of all of the curricula including the K-12 statements. The content of the Australian state senior secondary school geology/earth science curricula is also compared using a more traditional framework.

The reviews of the Australian state senior secondary school geology/earth science curricula are used as the basis for studying pre-requisite knowledge required for introductory tertiary geology/earth science subjects. The methods and results of the study are described and recommendations are made for further study using a modified methodology.

The advanced geology curriculum study is concerned with the context specific skills that are important in coming to an understanding of what is good teaching in geology using the advanced undergraduate structural geology curriculum as a case study. It describes the results of an action research project which was carried-out with subsequent groups of second year undergraduate students at the University of Adelaide and the University of
South Australia. During the project the teaching methodologies were modified to try to improve the quality of student learning. The modifications involved changing the way information was delivered to students including the move towards the electronic classroom, changing the structure and organisation of the curriculum and introducing and encouraging students to use new learning strategies, particularly concept maps.

The outcomes of the modifications were evaluated quantitatively using end of year subject examinations results, and qualitatively by analysing student evaluation of the subject and teaching questionnaires, student interviews, and reflective journals kept by the students. The quantitative results showed that there was a statistically significant improvement in student learning as measured by exam performance as a result of the modifications and this was supported by their comments in the evaluation questionnaires and their journals.