Neural Theory and Model of Selective
Visual Attention and 2D Shape
Recognition in Visual Clutter

by

Peter Lozo, B.Sc.

A thesis submitted in fulfilment of the requirement for the degree of

Doctor of Philosophy

The University of Adelaide
Faculty of Engineering
Department of Electrical and Electronic Engineering

June 1996
Contents

Abstract vii
Declaration ix
Acknowledgments x
List of Publications xii
List of Patents xiv
List of Principal Symbols xv
List of Figures xvii

1 Introduction 1

1.1 Background and Motivation ... 1

1.2 The Need for Selective Visual Attention 3

1.3 Artificial Neural Networks and Computer Vision 6

1.3.1 Related neural architectures for 2D and/or 3D object recognition ... 15

1.4 Neuro-Engineering with Non-linear Neural Networks 17

1.5 Outline of the Thesis ... 23

1.6 Major Contributions of the Thesis .. 26
2 Neurophysiological and Psychological Background 28

2.1 Introduction and Overview .. 28
2.2 General neuroscience ... 29
2.3 Presynaptic Facilitation in Aplysia 32
2.4 Primate Visual Neurophysiology 33
2.5 Psychological Background on Selective Attention 38
2.6 Conclusions ... 42

3 Mathematical and Theoretical Foundations 44

3.1 Introduction and Overview 44
3.2 Theories and Models of Vision 45
3.3 Mathematics of Non-linear Neural Networks 48
3.3.1 Model of Chemical Synapses 50
3.4 Adaptive Resonance Theory and Implementation 52
3.4.1 Strength of ART ... 53
3.4.2 Weakness of ART's Attentional Subsystem 55
3.4.3 ART-3 Neural Network 59
3.5 The Concept of Selective Attention Adaptive Resonance Theory (SAART) .. 69
3.6 Conclusions ... 71

4 Novel Neural Layers, Mechanisms and Design Principles 73

4.1 Introduction and Overview 73
4.2 Modulation of Synaptic Transmission Gain 75
4.2.1 Model of Facilitated Chemical Synapses 75
5.2 Determination of Steady State .. 171
5.3 Determination of Critical Values ... 176
5.4 Intuition in the Parameter Selection ... 178
5.5 Example of a Design .. 179
5.6 Absolute Stability Requirement ... 182
5.7 Simulation of Designed Layers .. 186
 5.7.1 Simulation of Selective Information Transfer 188
 5.7.2 Simulation of the FFE-FBPF Neural Circuit 193
5.8 Conclusions .. 196

6 Self-regulation, Spatial Attention and Memory Guided Search 198
 6.1 Introduction and Overview ... 198
 6.2 Detection of Match/Mismatch and Resonant States 199
 6.2.1 Simulation of the Match/Mismatch Neural Circuit 203
 6.3 Storage and Self-regulation of Memory 207
 6.3.1 Self-regulated Attentional Neural Circuit 213
 6.3.1.1 Simulation of a Self-regulated Neural Circuit 219
 6.4 Spatial Attention, Translational Invariance and Memory Guided Search .. 224
 6.4.1 Advanced Neural Model of Visual Spatial Attention 228
 6.4.2 Memory Guided Search in Cluttered Environments 233
 6.5 Conclusions .. 235

7 SAART Neural Network ... 236
 7.1 Introduction and Overview ... 236
7.2 SAART Neural Network Architecture ... 237
 7.2.1 Implementation of SAART's Processing Fields 239
 7.2.1.1 SAART's Field A1 ... 240
 7.2.1.2 SAART's Field B1 ... 242
 7.2.1.3 SAART's Field B3 ... 244
 7.2.1.4 SAART's Field B2 ... 247
 7.2.1.5 SAART's Field C1 ... 250
 7.2.2 Gated Decay LTM Equations ... 254
 7.2.3 Simulation of the SAART Neural Network 255
7.3 Direct Memory Access SAART Neural Network 258
 7.3.1 Processing Stages in BU-DMA SAART Network 261
 7.3.2 Simulation of the BU-DMA SAART Neural Network 266
 7.3.2.1 Learning in Noisy but Patterned Inputs 266
 7.3.2.2 Object Recognition in Cluttered Visual Images 272
 7.3.2.3 Simulation of Perceptual Reversals 279
7.4 Conclusions ... 281

8 Advanced SAART Neural Network Concepts 283
 8.1 Introduction and Overview ... 283
 8.2 Advanced SAART-1 Neural Network 284
 8.3 Concepts for Size Invariant Recognition 287
 8.4 Concepts for Orientation Invariant Recognition 289
 8.5 Conclusions ... 291
9 Conclusions and Recommendations 292
 9.1 Introduction and Overview ... 292
 9.2 Neurobiological Implications ... 293
 9.2.1 Visual Perception .. 295
 9.2.2 2-D versus 3-D Representation 297
 9.3 Conclusions ... 298
 9.3 Recommendations .. 298
A Basic Structure of a Modulated Competitive Neural Layer 301
B Parameters for the Simulated Circuits and Networks 308
 B.1 Equations for the Oscillatory Neural Layers 308
 B.2 Parameters for the SAART Neural Network 312
C Adding Selective Attention to ART-3 Neural Network 314
D Log-polar Transform vs. Parallel Frames of Reference 318
 D.1 Background ... 318
 D.2 Non-linear retino-cortical transformation 319
 D.3 The case against the log-polar transform 321
 D.4 Massively parallel and competing frames of reference 323
 D.5 Conclusion ... 326
Bibliography ... 328
Abstract

Extensive psychophysical and the more recent neurophysiological data from single cellular recordings suggest that selective attention and memory guided processing are some of the key properties of the primate visual brain that endows it with cognitive visual abilities that have not yet been matched by traditional artificial intelligence nor by the current artificial neural network models of learning and pattern recognition. Most neural network models of object and pattern recognition either ignore the mechanism of selective attention or are based on feedforward processes that ignore the role of the feedback pathways and the established memory, which therefore limits their application to simple visual scenarios.

This thesis proposes a neural theory, Selective Attention Adaptive Resonance Theory, and a neuro-engineered solution to selective visual attention, memory guided processing and illumination invariant recognition of complete (unoccluded) but distorted 2D shapes of 3D objects in cluttered visual images. We propose a family of modulated competitive neural layers and neuroengineering design principles for the design of multi-layered competitive 2-D neural circuits whose stability and success depends on feedforward-feedback interactions. The proposed feedback pathways and the top-down modulatory processes simultaneously supervise and stabilise the circuit dynamics, selectively retune the signal transmission gains and the filtering characteristics of the lower layers to enable unsupervised learning and recognition of 2D shapes obtained from unoccluded 3D objects in cluttered images. We propose neural circuits and networks that are capable of self-regulated attentional learning, selective attention and memory guided processing, autonomous detection of novelty/familiarity, distortion and illumination invariant recognition of familiar 2D shapes of real objects in cluttered images.

We conclude that flexible design principles that are based on feedforward-feedback interactions in a closed-loop real-time competitive neural circuit whose modulatory
mechanisms can dynamically retune the signal transmission gains and the cellular receptive field profiles at various stages of processing overcomes some of the problems and limitations that are faced by the rigid architecture of the current artificial neural networks. The neuro-engineeering design principles, mechanisms and circuits as proposed in the thesis provide a new and robust method for solving some of the most difficult problems in visual object recognition that are currently not well handled by the state-of-the-art artificial neural networks and the more conventional computer vision systems. These design principles also open new avenues for further research into more advanced modelling of cognitive and perceptual real-time artificial neural systems that use selective information processing.