EFFECT OF TRAINING
ON CORTICOSPINAL CONTROL
OF HUMAN MOTOR UNITS

A thesis submitted
for the Degree of

DOCTOR OF PHILOSOPHY

in

The Department of Physiology,
The University of Adelaide,
Adelaide, South Australia.

by

John Gregory Semmler, B.Appl.Sc., B.Sc.(Hons.)

November, 1996
CONTENTS

Abstract ... vii
Declaration ... viii
Acknowledgements .. ix
List of Illustrations ... x
List of Tables ... xii
Aims and General Introduction ... xiv

1 LITERATURE REVIEW ... 1

1.1 Single Motor Units ... 1
 1.1.1 Motor unit types .. 2
 1.1.2 Control properties of motor units .. 3
 1.1.2.1 Orderly recruitment of motor units ... 3
 1.1.2.2 Motor unit discharge rate modulation 5
 1.1.2.3 Recruitment vs. rate modulation .. 6

1.2 The First Dorsal Interosseous muscle ... 7
 1.2.1 Anatomy of the first dorsai interosseous muscle 8
 1.2.2 Control properties of motor units in the first dorsai
 interosseous muscle ... 9

1.3 The Corticospinal Component of the Pyramidal Tract 10
 1.3.1 The origin, course and projections of the corticospinal tract 10
 1.3.2 The fibres of the corticospinal tract ... 12
 1.3.3 Corticomotorneuronal cells and fine control of finger
 movements .. 13
 1.3.3.1 Electrophysiological studies ... 13
 1.3.3.2 Behavioural studies ... 15
 1.3.3.3 Anatomical studies ... 16
 1.3.3.4 Neurophysiological studies .. 16
 1.3.3.5 Developmental studies .. 20

1.4 Motor Unit Synchronization ... 22
1.4.1 Methods to detect synchronous activity within a muscle.. 22
 1.4.1.1 The surface EMG technique.. 23
 1.4.1.2 Cross-correlation of motor unit action potentials....................................... 25
1.4.2 The mechanism of motor unit synchronization... 26
1.4.3 The origin of the common pre-synaptic inputs.. 28
1.4.4 Common drive of motor units and motor unit synchronization............................... 32

1.5 Neural adaptations to various muscle usage patterns... 34
 1.5.1 Handedness.. 35
 1.5.2 Skill-training .. 41
 1.5.3 Strength training .. 43
 1.5.3.1 EMG studies .. 44
 1.5.3.2 Motor unit discharge properties... 45
 1.5.4 The mechanisms of neural reorganisation.. 46

1.6 Physiological Tremor... 48
 1.6.1 Physiological tremor production... 48
 1.6.2 Central nervous system factors affecting physiological tremor.......................... 48

2 INFLUENCE OF HANDEDNESS ON MOTOR UNIT
DISCHARGE PROPERTIES AND FORCE TREMOR.............. 53

2.1 Introduction... 53

2.2 Methods .. 55
 2.2.1 Experimental apparatus... 56
 2.2.1.1 Protocol 1: MU discharge properties.. 58
 2.2.1.2 Protocol 2: Tremor during force matching.. 59
 2.2.2 Analysis .. 59
 2.2.2.1 MU discharge .. 59
 2.2.2.2 Cross-correlation histograms .. 61
 2.2.2.3 Force tremor... 65
 2.2.3 Statistical analysis .. 66
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>Results</td>
<td>66</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Discharge properties of individual motor units</td>
<td>66</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Incidence of significant synchronization peaks</td>
<td>67</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Strength of synchronization peaks</td>
<td>58</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Width of significant synchronization peak</td>
<td>72</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Relationships between synchronization strength and discharge properties of motor units</td>
<td>72</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Handedness and tremor</td>
<td>73</td>
</tr>
<tr>
<td>2.3.7</td>
<td>Motor unit discharge properties and tremor</td>
<td>75</td>
</tr>
<tr>
<td>2.4</td>
<td>Discussion</td>
<td>78</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Motor unit discharge properties and handedness</td>
<td>81</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Mechanisms of tremor generation</td>
<td>84</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Handedness, motor unit discharge, and tremor</td>
<td>85</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Motor unit synchronization and tremor</td>
<td>87</td>
</tr>
<tr>
<td>3</td>
<td>RELATIONSHIP BETWEEN MOTOR UNIT SHORT-TERM SYNCHRONIZATION AND COMMON DRIVE</td>
<td>90</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>90</td>
</tr>
<tr>
<td>3.2</td>
<td>Methods</td>
<td>92</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Experimental apparatus</td>
<td>92</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Analysis</td>
<td>93</td>
</tr>
<tr>
<td>3.2.2.1</td>
<td>Motor unit synchronization cross-correlograms</td>
<td>94</td>
</tr>
<tr>
<td>3.2.2.2</td>
<td>Common drive cross-correlation functions</td>
<td>94</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Statistical analysis</td>
<td>100</td>
</tr>
<tr>
<td>3.3</td>
<td>Discussion</td>
<td>106</td>
</tr>
<tr>
<td>3.3</td>
<td>Discussion</td>
<td>101</td>
</tr>
</tbody>
</table>
4 MOTOR UNIT DISCHARGE AND FORCE TREMOR IN SKILL- AND STRENGTH-TRAINED INDIVIDUALS 109

4.1 Introduction .. 109

4.2 Methods .. 111

4.2.1 Experimental arrangement ... 112

4.2.2 Protocol .. 112

4.2.2 Analysis .. 114

4.2.2.1 Force tremor ... 114

4.2.2.2 Motor unit discharge .. 114

4.2.3 Statistical analysis .. 116

4.3 Results .. 116

4.3.1 Motor unit synchronization and training status .. 118

4.3.2 Common drive and training status ... 121

4.3.3 Training status and tremor ... 123

4.3.4 Motor unit discharge properties and tremor ... 125

4.4 Discussion ... 129

4.4.1 Discharge of single motor units and training status 129

4.4.2 Motor unit short-term synchronization and training status 130

4.4.3 Common drive and training status ... 133

4.4.4 Training status, motor unit discharge and tremor 134

5 THE SURFACE EMG TECHNIQUE IS NOT AN ACCURATE ESTIMATE OF MOTOR UNIT SYNCHRONIZATION 139

5.1 Introduction .. 139

5.2 Methods .. 142

5.2.1 Experimental arrangement ... 142

5.2.2 Protocol .. 143
5.2.3 Analysis

5.2.3.1 Motor unit discrimination

5.2.3.2 Spike triggered averaging and motor unit synchronization

5.2.3.3 Cross-correlation and motor unit synchronization

5.2.4 Statistical Analysis

5.3 Results

5.3.1 Handedness and strength of MU synchronization

5.3.2 Handedness and width of the central synchronous peak

5.3.3 Training and strength of MU synchronization

5.3.4 Training and width of the central synchronous peak

5.3.5 Surface EMG and cross-correlation measures of MU synchronization

5.4 Discussion

5.4.1 Relationship between the strength of motor unit synchrony using the surface EMG and cross-correlation techniques

5.4.1.1 The surface EMG and cross-correlation methods: are they measuring the same phenomenon?

5.4.1.2 Evidence for technical limitations to the surface EMG method

5.4.2 Motor unit synchronization in trained individuals

5.4.3 The width of the central synchronous peak

6 HEMISPHERIC DIFFERENCES IN MOTOR CORTEX EXCITABILITY DURING SIMPLE INDEX FINGER ABDUCTION

6.1 Introduction

6.2 Methods

6.2.1 Experimental apparatus

6.2.2 Protocol 1: Contraction induced facilitation of MEPs with TMS

6.2.3 Protocol 2: Contraction induced facilitation of MEPs with TES
ABSTRACT

The influence of different muscle usage patterns on corticospinal control of human motor units (MUs) was studied during voluntary isometric abduction of the index finger to activate the first dorsal interosseous (FDI) muscles. The primary aim was to quantify any control differences in MUs from hands which had been trained over many years, and to determine if any observed differences in these hands influenced the precision of force production.

Measures of correlated MU discharge patterns were different in FDI muscles of individuals with different hand preferences, and in individuals trained over many years for skill- or strength-related tasks. The mean strength of MU synchronization was weak, and of equivalent strength in both hands of skill-trained subjects and the dominant (skilled) hand of untrained right-handed (RH) subjects. A second measure of correlated MU discharge (common drive), which was found to arise from a separate mechanism to that of MU synchronization, was also weaker in skill-trained subjects compared to untrained and strength-trained subjects. A reduction in both measures of correlated MU discharge in skill-trained subjects indicate that certain features of the neural control of the FDI motoneuron pool are different in these individuals.

As corticospinal inputs are likely to be important for MU synchronization, transcranial magnetic stimulation (TMS) was used as a more direct measure of hemispheric differences in corticospinal excitability. TMS over each hemisphere in untrained RH subjects revealed that the corticospinal inputs controlling FDI were more active, and therefore contributed relatively more to the net excitatory command, when the non-dominant hand was used to perform index finger abduction. These hemispheric differences in corticospinal excitability were sufficient to explain the differences in MU synchrony in dominant and non-dominant hands during comparable low-force contractions. It is likely that reduced synchrony in 'skilled' hands is due to a reduced excitability of corticospinal inputs to the FDI motoneuron pool when these hands are used to perform the simple index finger abduction task.

The amplitude of the tremor force fluctuations of the index finger were much lower in skill-trained subjects. However, the weaker MU synchrony observed in these subjects was not responsible for the reduced force tremor, as correlations between the overall extent of MU synchrony and tremor were weak, and all non-significant.

Results from this thesis support the view that neural control of FDI muscle is different in individuals with different patterns of long-term muscle use. This enhances the possibility that a specific, short-term training regimen can modify the neural control of muscles, and is an area which warrants further investigation.