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ABSTRACT

The class of Markov data compression algorithms provides the best known
compression for ordinary symbol data. Of these, the PPM (Prediction by Partial
Matching) algorithm by Cleary and Witten (1984) is the most successful. This
thesis reviews the class of Markov algorithms and introduces algorithms similar
to PPM which are used as a vehicle for examining adaptivity in data compression

algorithms in general.

Despite the amount of research into adaptive data compression algorithms, the
term “adaptive” is not well defined. The term can be clarified by viewing the
problem of adapting as that of tracking a source through a source space using the
data the source is generating as a trail. Adaptive algorithms achieve this by making
assumptions about source trajectories. These assumptions can be used to clagsify
data compression algorithms into four groups with respect to adaptivity: not
adaptive, initially adaptive, asymptotically adaptive and locally adaptive. These
groups correspond roughly to classes of source trajectory. A new class of source
called multimodal sources is introduced, members of which jump among a finite
number of distinct points in the source space.

After common source trajectories have been identified, modifications to Markov
algorithms are described that enable them to track each kind of source. Some
of the modifications involve complex algorithms which are discussed in detail.
Experimental results show that these modifications can substantially improve

compression performance.

Of particular interest are sources with a multimodal trajectory. Such sources can
be compressed well using a combination of locally adaptive and asymptotically
adaptive models. The result is a multimodal algorithm which is independent of

any particular sub-model. Experimental results support this approach.

Finally, there is a discussion of the possible applications of data compression
techniques in the field of user interfaces. By predicting the user’s behavior and
presenting the predictions to the user in an invokable form, it is possible to

eliminate redundancy in the user interface just as it can be eliminated in data

streams.
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NOTES ON
PRESENTATION

References: All references are cited in the form [<firstauthor><year>]. Cita-
tions are set in bold face the first time they appear and ordinary face thereafter.
All references cited in the text appear in the reference list and the index. Citations

of references in the same year by the same author appear identical.

Special terms: New or important terminology has been set in bold face and

appears in the index.

Tables and Figures: Unless otherwise stated, all tables and diagrams appearing
in this thesis were created specifically for the thesis and are original to the thesis.
All references to tables and figures in the text are set in bold face so that the text
describing any particular table or figure can be found quickly.

Captions: Every table and figure in the thesis has a title which summarizes the
diagram and appears in the table of contents. In addition, some tables and figures
have a caption (a paragraph of descriptive text). Captions have been included
mainly to aid the casual reader.

Intra-document references: References to entities within this thesis appear
with the first letter in upper case (e.g. “Section 78.5”). References to entities in

other documents appear with the first letter in lower case (e.g. “section 78.5").

Italics: Italics is used both for emphasis and for program and algorithm
identifiers.

Notation: Section 1.2 describes much of the notation and terminology of the

thesis. Appendix E contains a summary of the mathematical notation used in this
thesis.

Typesetting: This thesis was typeset in twelve-point Times font using the
TEX[Knuth79][Knuth84] typesetting system.

Graphics: Most of the diagrams of this thesis were generated on a Macintosh?
computer using the program MacDraw.? Histograms were produced on a Mac-

intosh using the program Ezcel.® The tree diagrams of Chapter 2 were plotted

1 Macintosh is a trade mark of Apple Computer, Inc.
2 MacDraw is a trademark of Claris Corporation.
3 Ezcel is a trademark of Microsoft Corporation.
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from PostScript* code generated directly by a DHPC program. The graphs in
Chapter 4 and Chapter 5 were generated by a plotting program developed by the

author. The “range frame” style of these graphs was inspired by the graphic design
book [Tufte83] (esp. p. 132).

4 PostScript is a trade mark of Adobe Systems Incorporated.



CHAPTER 1
INTRODUCTORY SURVEY

1.1 Introduction

The purpose of data compression is to remove redundancy from data so that
it takes less time to transmit and less space to store. Data compression increases
system throughput, improves network security and relieves programmers of the
task of packing data efficiently. Because data compression operates at the logical

level, it cannot be made obsolete by advances in storage or network technology.

The purpose of data compression research is to develop and analyse methods
for representing information in the minimum amount of space. Data compression
research is important to Computer Science because it explores one extreme of the
compactness/speed trade-off present in all decisions about data representation.
To store or transmit data, a representation must be chosen; there are no default
representations. With this in mind, we proceed in the examination of data

representations with the one-eyed view that compression is paramount.

1.1.1 Compression as Representation

In order to be stored or transmitted, information must first be represented in
a physical medium. Choosing a representation means associating meaning to the

states of a physical object. Representations vary in two respects:

e the amount of physical medium used.
e the processing power needed to perform various operations.

Unfortunately, representations that minimize one cost do not always minimize

the other and a compromise is usually necessary.

We view data compression as the translation of a message from one repre-
sentation to a different representation that uses less space. Data compression is
defined relatively, and strictly it is incorrect to refer to any particular represen-
tation as “compressed” without first defining an “uncompressed” representation
to which it can be compared. In practice, compression performance is usually
expressed relative to an unstated set of natural representations which is the
set of minimum-length representations that use the same amount of space for all

data values; “compressed” representations use less space on average.

18
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In order to use less space than a natural representation, compressed represen-
tations use code strings of varying length to represent the different data values.
This variation in length often increases the time required to perform operations
on compressed representations. For example, elements of a compressed array can
no longer be accessed at random. Thus, we expect to find data compression only

where the cost of space is high relative to the cost of time.

1.1.2 Data Compression in Ancient Greece

The problem of choosing a representation has been around for as long as
humanity has had to represent information. In ancient Greece, the cost of papyrus
was orders of magnitude more expensive than the cost of paper is to us today.®
As a result, texts were written with no punctuation and no spaces, ylelding a
space saving at a cost of reading time. The ancient Greeks and Romans used a
telegraph system that employed varying numbers of torches to convey letters of
the alphabet[Havelock78](pp. 86-87) but it employed neither data compression

nor error correction.

In the late eighteenth century, the British Admiralty employed a series of
cabins that transmitted six-bit signals using shutters.® Some of the 28 = 64
permutations were mapped onto the alphabet and the remaining code space was
allocated to common words and phrases, resulting in a form of data compression.
In particular, one code, used to represent the message “Sentence of court martial
to be put into execution”, simultaneously provided a high degree of compression
and a “fatal” vulnerability to errors. More serious omissions of error detection
have occurred in our own time. The worst case was probably that of a nuclear
alert being triggered by the failure of a ten cent communications chip (a 74175).
The chip caused the “number of missiles” field in an unchecksummed network filler

packet to go positive and signal a major attack[Borning87](p. 113).

In recent years, the acceleration of technology has resulted in some long strings
of words falling into common use. The response has been to replace them with
newly created shorter words. The new word is typically an acronym. For example
the phrase “Central Processing Unit” is now usually written as “CPU”. Acronyms

have been used as a data compression technique for ages. In Roman civilization,

5 Dr. R.F. Newbold of the University of Adelaide Classics Department has estimated it as
100 to 1000 times more expensive (private communication (permission to quote kindly granted
12 May 1989)).

'6 The shutter cabin story appears in the introductory chapters of a book “Text Compres-
sion” [Bell89] (to appear) and I am grateful to the authors for discovering the story. The book
contains further details of the system and some references.
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tombstone space was costly as was the cost of engraving. The result was the
common S.T.L. (Sit Terra Levis) which means “Let the earth rest lightly upon
her”.” Acronyms were also used by the Romans to squeeze lengthy imperial

honours onto coins.

Perhaps the earliest widely-known example of data compression in a represen-
tation is Morse code which makes some attempt to allocate shorter codes to the
more frequent letters. In the normally used variant of Morse code, the letter Y

(— » — —) takes three and a half times as long to transmit as the letter E ().

The result of the drive to reduce sentence length can be found in many
languages whose commonly used words are shorter than rarely used words. In
general, the more often a word is used, the shorter it is[Zipf49] (p. 64). Some
common combinations, such as “do not” (“don’t”) are explicitly shortened using

an apostrophe.

Another example of compression can be found in the Arabic number system
which represents numbers by digits of increasing powers of a base (using O(logy n)

space) rather than the simpler system of using a number of strokes (O(n) space).

The natural world is full of examples of data compression. A particularly
good example is the coding of genetic information. Ordinary DNA is highly
redundant, containing long tracts of unused bases. Viral DNA, on the other
hand, is under strong selection pressure to become small. The result is that
“some small viruses (like $X174) [have] evolved overlapping genes, in which part
of the nucleotide sequence encoding one protein is used (in the same or a different
reading frame) to encode a second protein.”[Alberts83](pp. 239-240)(emphasis
by Alberts). This phenomenon can be compared with the superstring problem
discussed in Section 1.5.2.5.

Finally, we find examples of data compression in everyday life. Newspaper
headlines are set in a large font which is time efficient (easy to read, even at
a distance) but is space inefficient (uses lots of space). On the other hand, the
classified advertisements are set in a font which is time inefficient (hard to read) but

space efficient.® The examples of data compression are summarized in Table 1.

The requirement for simple and fast decodability by humans restricted the
field of data compression to representations that have a one-to-one correspondence

between objects and their representations. With the advent of computers,

" Others were D.M. for Dis Manibus meaning “To the ghosts of the underworld” and B.M. for
Bene Merenti meaning “To one deserving well”.

8 Helman and Langdon used the example of legal fine print to make the same point[Helman88].
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Context

Technique

Ancient Greece
Shutter Cabin
Acronyms
Morse Code
Arabic Digits
Viral DNA
Newspapers

Spaces omitted

Spare codes used to transmit phrases
Words replaced by letters

Shorter codes assigned to frequent letters
Base b used rather than base 1

Genes overlap in the nucleotide sequence
Use of fine print

Data compression techniques are not the exclusive domain of computer systems.
This table lists some uses of data compression in everyday life.

Table 1: Examples of everyday data compression.

representations which would be prohibitively expensive for humans to use, have

suddenly become feasible.

1.1.3 Founding Work by Shannon

In 1948 Shannon [Shannon48]° laid the foundation of the field of information

theory, a discipline that concerns itself with the communication of information

over noisy channels.

Shannon divided communication into five components (Figure 1).

Information
Source Transmitter Receiver Destination
> Signal > L_I Recovea ™ >
Message Signal Message
Noise
Source

Shannon’s model of communication (1948) revolves around an abstracted chan-
nel through which a source communicates with a destination. The transmitter
and receiver are used to overcome the limitations (e.g. noise) of the channel,

Figure 1: Shannon’s model of communication.
(Redrawn from figure 1 of [Shannon48))

9 This paper was later reprinted in a book[Shannon49] that also contained a related paper by

Weayver.
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1.  An information source which produces a changing value over
time. Shannon’s model is fairly general, encompassing multidimensional

continuous sources as well as discrete sources.

2. A transmitter which translates the message into a signal suitable for

transmission over the channel.

3. A channel which is the medium used to transmit the signal. The
channel can use any physical process as long as it carries the signal.1®
Shannon modelled only the channel’s capacity to convey information. Both

noiseless and noisy channels are considered.
4. A receiver which translates the channel signal into the message.
5. A destination which is the process for whom the message is intended.

Shannon’s model is general and covers many aspects of communication
including error correction, data compression and cryptography. Although these
three aspects are closely related (Section 1.16), it is wise to separate them in theory
and practice as they have conflicting design goals. In communication systems
that employ all three techniques, messages are typically compressed by a data
compression layer, encrypted and then expanded by an error correcting layer. The

three transformations are performed in reverse order at the receiving end.

As we are chiefly concerned with data compression, we will operate under the

following assumptions which are additional restrictions on Shannon’s model;1?

Assumption 1: Sources produce a sequence of symbols from a fixed, finite
‘source alphabet.

Assumption 2: The channel carries a sequence of symbols from a fixed,
finite channel alphabet.

Assumption 3: The cost of transmitting each channel symbol is identi-
cal.12

19 For the purposes of theoretical data compression, disks and networks can both be treated as
channels. In practice each can take the role of the other. If user A sends a mail message to user B
on the same machine, the disk on which the message is stored acts as a small network. Conversely,
a megabyte of data could be stored on a network and retrieved a day or so later by transmitting
it to a non-existent network address on the other side of the world.

11 For a detailed discussion of more general cases, see Shannon’s original paper [Shannon48]. For
an additional overview of the whole field of information theory see [Usher84].

12 Work has been done on channels with unequal symbol costs [Perl?ﬁ][Altenkamp'TS] but like
much of this early work, it has largely been superseded by arithmetic coding and in this case a
particular version of arithmetic coding described by Guazzo[Guazzo80].
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Assumption 4: The channel is noiseless.

It is not clear whether it is best to model a source as a random process that
produces an infinite stream of symbols (as is implicit in Shannon’s approach) or as
a random variable which produces a single finite string (as proposed by Rissanen
and Langdon[Rissanen81]). Both models are useful. Infinite messages can be
used to model communication lines and finite messages can be used to model the

compression of files. In this thesis both models will be used.

1.2 Common Notation and Data Structures

A number of constructs, concepts and data structures arise so often in data
compression that we present them here before continuing. The section starts
with notation and moves onto data structures. Discussion of data structure
implementation is deferred until later sections.

Permeating all data compression is the notion of symbol. Symbols come in
two types. Source symbols are used to construct source messages. Channel
symbols are carried by the channel and are used to communicate the message.
In practice the two sets of symbols usually coincide. In this thesis, n is a constant
used to denote the number of different source symbols and A is used to denote the
fixed, finite, ordered set of n symbols, with 4 = {a1...an}. The set of channel
symbols is not defined formally, as the focus of the thesis is on source modelling.

Experience has shown that it is important to distinguish?? between symbols and
instances of symbols which in this thesis are referred to simply as instances.?* The
set of symbols defines the set of values that symbol-valued ob jects (instances) can
take. A message (also called a message string) consists of a sequence of instances.
Instances can be thought of as Petri net[Peterson? 7] like tokens that come in
n different colours[Genrich81] and flow through data compression systems. The
set of symbols can be thought of as the set of colours of such tokens. There are
only ever exactly n symbols but the number of instances in existence can vary
from zero to infinity.

A sample is a bag of instances. Samples are usually represented in the form
of a frequency for each symbol with the sum of the frequencies corresponding to
the number of instances in the sample,

13 As far as the author is aware, this distinction is a new one,

14 . . .
Other names considered were “event”, “arrival”, “occurence”, “element”, “item”, “observa-
tion”, “outcome” and “symbol instance”.
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S is used to denote the set of all finite strings of instances, with S denoting
the set of all strings of length [ instances. e denotes the empty string. The set of
all strings of a given length is ordered. If z is a string then z; denotes the k’th
instance in «, with z1 being the first (leftmost) instance. |z| denotes the length of
z. If z and y are strings or instances then zy denotes the concatenation of ¢ and
Y. Tk, 1 denotes ... x;. A set of strings satisfy the prefix property if no string
is a prefix of any other string in the set. The term history is used to refer to the
string consisting of the concatcnation of all the instances generated by the source
to date, with the last (rightmost) instance of the string being the most recently

generated instance. In formal descriptions, h denotes the history string.

R denotes the set of real numbers. Z denotes the set of integers. It is
convenient, when introducing constants and variables, to introduce their domain as
well. Thus the phrase “we introduce a constant z € Z[0, 10]” introduces the integer
constant = which lies in the range [0, 10]. Square brackets denote a closed interval
(¢ € [a,b] = a < z < b), round brackets an open one (z € (a,0) = a.< z < b).

The word “iff” is used as an abbreviation for the phrase “if and only if”.

The first data structure that arises repeatedly is the history buffer. Many
data compression algorithms require access to the most recent m instances
generated by the source. The history buffer stores these in m slots each of which
contains an instance. The slots are numbered Z[1, m] with slot 1 holding the most

recently received instance (the youngest) and slot m holding the least recently
received instance (the oldest) (Figure 2).

Oldest Youngest
Instance (m=8) Instance
] T

8 7 6 5 4 3 2 {1

Many data compression techniques require random access to the most recent m
instances the source has generated. A sliding history buffer fulfills this need.

Figure 2: A history buffer.

When a new instance arrives, the instances in the history buffer are shifted
one slot. The instance in slot 7 is moved to slot i + 1. The instance in slot m
is discarded and the newly arrived instance is placed in slot 1. History buffers

provide the same functionality as fixed-length queues but also allow any of their
elements to be read.



Section 1.2: Common Notation and Data Structures 25

The second common data structure is the digital search tree, sometimes
referred to as a trie[Knuth?73](section 6.3). Because “trie” looks like a spelling
mistake, we will use “tree” instead. Unless otherwise stated, the word “tree”
in this thesis is used to refer to a digital search tree whose arcs are labelled by
symbols.

A digital search tree consists of a set of nodes with one node being distinguished
as the root node. Each node can have from 0 to n child nodes. The term arc
is used to refer to the link between a node and one of its child nodes. The term
branch is used to refer to a sequence of arcs and nodes commencing at the root
node and connecting nodes of monotonically increasing depth. A branch need not

terminate at a leaf node.

Each arc in a tree is labelled with a symbol that is different from those of
its sibling arcs. Each node in the tree corresponds to the string constructed by
concatenating the symbols labelling the arcs on the path from the root to the
node in question. This string is known as the node’s string. Nodes are most
easily referred to by their string. In a forwards tree, the symbol labelling the
arc connecting to the root node forms the first (leftmost) instance of the string; in
a backwards tree it forms the last (rightmost) instance (Figure 3). The root
node always represents the empty string.

A Backwards Tree A Forwards Tree

Backwards and forwards digital search trees arise repeatedly in data compres-
sion. Each node corresponds to the string constructed by moving from the root
to the node. The root node corresponds to the empty string. The only difference
between backwards and forwards trees is the direction of their strings.

Figure 3: Backwards and forwards digital search trees.
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The depth of a tree node is defined to be the number of arcs linking the node
to the root node. The root node has a depth of zero. The depth of a tree is defined
to be the depth of the deepest node in the tree. When we refer to the number of
nodes in a tree, the root node is included; a tree consisting of only the root node

contains one node.

Trees are often augmented with extra attributes. Information is usually

attached to the nodes. Sometimes probabilities are associated with each arc.

A tree is degenerate iff every node has less than two child nodes. A tree
is balanced iff the heights of the two subtrees of every node differ by at most 1
(from [Wirth76](p. 215)).2* A tree is uniformly k-furcated if every non-leaf
has exactly k child nodes. A tree is uniformly furcated if it is uniformly-k-
furcated for some k. A tree is solid if every leaf is of the same depth and the tree
is k-furcated where k is the maximum furcation allowed (usually k = n). A tree

is solid to depth d if it is solid and one of its leaves is of depth d.

Digital search trees arise repeatedly in data compression. A tree can be used
to store a dictionary of strings. The set of strings corresponding to the leaves of a

tree is guaranteed to satisfy the prefix property.

Trees are often used in conjunction with history buffers. A node in a tree
matches the history if the node’s string = is identical to the string formed by the
|z| most recent elements of the history.'® Thus, for any given history and tree,
there is a distinguished branch stretching out from the root such that the string
of each node on the branch matches the history. This is called the matching
branch and the nodes on the branch are called matching nodes. The deepest
node of a matching branch, which is not necessarily a leaf node, is called the tip of
the branch. The depth of the tip node is constrained by the length of the history
as well as the depth of the relevant part of the tree.

Algorithms in this thesis will be specified in an Ada-like[USDODA&3]"

programming language. Liberties with the notation have been taken so as to

18 In contrast, the term unbalanced trees is used to refer to a method of managing trees that
does not attempt to maintain balance.

16 With the symbol labelling the arc connected to the root node being compared with the most
recent instance in the history in the case of a backwards tree and being compared with the |z|’th
most recent instance in the history in the case of a forwards tree. A node’s string does not match
if the history is shorter than the string.

17 Ada is a registered trade mark of the US-Government-Ada Joint Program Office.
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simplify the code. The inc operator increments its integer argument. The dec

operator decrements its integer argument. The construct

loop

<statements>

exit if <condition>;
<statements>

end

describes an infinite loop that is terminated only when control encounters an “exit

if <condition>” statement whose condition evaluates to true. The statement

return <expression>

terminates execution of a function, returning the value of the expression as the

function’s value.

ezists(u) is a function that returns true iff node u exists. isleaf (u) is a function
that returns true iff u is a leaf. The procedure new creates a new node and assigns
it to its argument. The new node’s attributes are automatically initialized to

“sensible” values (e.g. in the case of a sample of instances an empty sample).

Program variables are declared inline with the code. Their scope extends to

the end of the enclosing construct.

1.3 The Problem of Data Compression

Shannon’s model presents the problem of data compression as that of con-
structing transmitters and receivers that can translate between compressed and
uncompressed representations. It is worth spending some time elaborating upon
this problem for, as history has shown, the manner in which the problem is ap-
proached radically affects the solutions that are apparent.

1.3.1 Real vs Quantized Information

Shannon devised a measure for the quantity of information H that knowledge

of the occurrence of an event of probability p yields.

H(p) = —logp
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The log is to the base of digit that H is to be measured in. Rather than use
indefinite logarithms, we choose base e as a suitable base!® and use natural

logarithms (In) throughout.

Events that have a high probability convey little information when they occur.
Events that are unlikely convey a lot of information. The quantity H (p) can take

any real value in the range [0, 00]. Information is a continuous quantity.

In contrast, information in the digital world of computers is quantized. A
memory unit can be in one of n € Z[2, 00) states. In practice n is usually a power

of two. The amount of information held by the unit is

n
- pilnp;
i=1

where p; is the probability of the unit taking the value ¢. This is maximized when
each p; is 1/n in which case the register always holds exactly Inn nats; to assume
any other probabilities would be wasting space. Thus the set of all quantities of

information that can be stored as independent units in a, computer is
{ln¢|: € N},

a set of real values which we will call the bucket set. Each bucket in the set has
a bucket size i and a bucket capacity Inz.

The problem of representing continuous sized pieces of information using
buckets of quantized size has been central to the difficulties faced by the field
over the last forty years. The traditional solution to the problem is the technique
of blocking,

1.3.2 Pure Blocking

Consider the problem of converting a stream of numbers of base m into a
stream of numbers of base n with n > m. The simplest method, of copying each

input bucket into each output bucket, wastes a proportion

Inn—Inm
wim,n) = ==

of the space in the output buckets. Efficient conversion can be achieved by

buffering a input buckets and b output buckets, effectively forming two large

18 1t is common to refer to digits of base two as “bits” after the contraction binary digits. The
author proposes that digits of base e be called nats after natural digits (Purists please note: “nits”
would be confused with “bits”, both lexicographically and phonetically). Base e has the advantage
of forcing the user to recognise that information is a continuous quantity, not quantized to bits.
Shannon called base e units natural units[Shannon48](p. 380)
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buckets of size n® and m®. The closer the sizes of these buckets, the more efficient
the conversion. The values of a and b that are most efficient can be determined
by minimizing

n® — lnm? _ alnm

ln
w(a’ b) - In nb B blnn
which is the proportion of the output bucket wasted. w must fall in the range
[0,1). The problem is now

alnm
] . > ] —_
n;,lglw(a, b): w(a,b) >0 where w(a,b) =1 rxm—-
which is the same as
max g such that gl <1
a,b blnn blnn
max K ad such that < l where K = ln_m_

ab b b~ K Inn

The result means that for a given m and n, buffer sizes a and b can be chosen
so as to approximate 1/K as closely as desired and hence convert the streams as
efficiently as desired. This is a consequence of Shannon’s fundamental theorem
for a noiseless channel[Shannon48). Unfortunately as a and b increase, so does the

cost of coding,.

1.3.3 Impure Blocking

In the example of the previous section, the input packets all had a uniform
probability of 1/m and so compression did not take place. For non-uniform
probabilities, events of arbitrary and varying probabilities must be mapped onto
uniform output buckets. Again, if n > m, input values can be mapped onto output
values at high cost. Pure blocking is more efficient but does not make use of the

varying probabilities.

The simplest efficient solution is to form a mapping between input strings and
output strings of various lengths with the aim of matching their probabilities as
closely as possible. In the input case, the probability is the estimated probability
for the string. In the output case it is set at m =" (where  is the length of the string)
so as to maximize information content. To simplify parsing, each set of strings

must possess the prefix property. This mapping technique is called blocking.

1.3.4 A Classification of Algorithms

The previous sections have shown that a non-trivial mapping is necessary in
order to achieve efficient translation between source events (source strings) and
channel events (channel strings). The technique of blocking encompasses nearly
all the early data compression techniques and can be used to classify the techniques
into four groups (Figure 4).
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Channel
Fixed Variable

Fixed _
Fixed-to-Fixed Fixed-to-Variable
Example: Top-bit stripping Example: n-gram/Huffman
Source
Variable

Variable-to-Fixed Variable-to-Variable
Example: Dictionary/fixed | Example: Dictionary/Huffman

Early data compression techniques were all based upon simple mappings between
source strings and channel strings. These early techniques can be divided into
four groups based on the uniformity or non-uniformity of the lengths of the
source and channel strings.

Figure 4: Four kinds of blocking.

Although each of these techniques can, in theory, provide optimal?® coding, in
practice variable-to-variable coding provides the most flexibility in matching the
characteristics of the source with those of the channel. Later we will see how more
advanced techniques enable the separation of the source and channel events that
are so tightly bound in blocking techniques. For now, we continue to review the

history of data compression.

1.4 Huffman Coding: Too Good Too Soon

Huffman coding marked the first major practical advance in the field. Huffman
coding was born in a theoretical paper and manifested itself in a number of different
practical schemes. As a result, the term “Huffman Coding” does not refer to any

specific practical technique.

1.4.1 Shannon-Fano Coding and Huffman Coding

Shannon showed that for a given source and channel, coding techniques existed
that would code the source with an average code length of as close to the entropy of
the source as desired. Actually finding such a code was a separate problem. Given

a finite set of messages with associated probabilities, the problem was to find a

19 Here the word “optimal” is used to mean “as close to optimal as desired”.
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technique for allocating a binary code string to each message so as to minimize

the average code length.

Shannon soon discovered a nearly-suitable coding technique. Fano simulta-
neously discovered it?° and it has become known as the Shannon-Fano coding
technique. The messages are sorted by probability and then subdivided recur-
sively at as close to power of two boundaries as possible. The resultant binary tree
when labelled with 0s and 1s describes the set of code strings.?? This technique
yields an average code length (in bits) of [H, H + 1) where H is the entropy of the

set of source messages.

The Shannon-Fano coding technique, though efficient, was not optimal. Very
soon, Huffman proposed a variation that was optimal[Huffman52]. For the

problem as specified, a Huffman code cannot be bettered.

To form a Huffman code, the two least probable messages are combined into
a single pseudo message whose probability is the sum of the probabilities of its
component messages. The pseudo message replaces the two messages in the list of
messages and the grouping process is repeated iteratively until there is only one

pseudo message left. The resultant binary tree describes the set of code strings.

It is a little known fact that Huffman generalized his coding technique for
channel alphabets of more than two symbols. Traditionally, his code is associated
with the binary alphabet, presumably because it is most easily implemented in
that form.

The codes just described provide a mapping from a set of messages to code
strings. Because it is not practical to manipulate sets of messages whose cardinality
is greater than the number of atoms in the universe, Huffman coding is usually
applied to each individual instance. Unfortunately, the minor redundancies that
are a function of having to code each message into an integer number of bits
are accumulated for each instance. This results in unbounded inefficiency if the
greatest probability is close to one. This inefficiency can be reduced by using
blocking to run the code at a higher level, For example, binary source streams are
often organized into fixed length (say 12-bit) blocks to which Huffman coding is
applied.

Unfortunately, the optimality of the Huffman code at the message level is often

mistaken for optimality at the instance level.

20 Reportedly([Bell89]) described in R.M. Fano “The transmission of information”, Technical
Report 65, Research Laboratory of Electronics, MIT, Cambridge, MA, 1949. (The author of this
thesis has not obtained a copy of this report).

21 In this thesis, the two binary digits are referred to as “0” and “1”. The words “zero” and
“one” are reserved for expressing quantities or attributes.
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1.4.2 Huffman as a Back-End Coder

Huffman coding has been used as a back-end coder in a variety of data
compression schemes. The common theme is the division of instance streams
into events with a large number of outcomes whose probabilities are roughly
even. Huffman codes tend to perform well with large alphabets and this fact can
be exploited by constructing source alphabets of words rather than characters.
McCarthy[Mccarthy73] described a compression technique which maps strings

onto Huffman codes.

Another example of Huffman as a back-end coder is described by Jakobs-
son[Jakobsson78] who divided the input stream into k-bit blocks each of which
was assigned a probability based on the number of 0s and 1s that it contained.

These blocks and their probabilities were then used to drive a Huffman code.

1.4.3 Multi-Group Huffman Coding

One of the more interesting variations on Huffman coding is the so-called
“multi-group coding” technique. The earliest publication of the technique seems
to be by Hazboun and Bassiouni in [Hazboun82]. Bassiouni went on to present
variations of the technique in [Bassiouni85] and [Bassiounis6] (with Ok). A

similar technique is described in [Cormack85].

The multi-group technique is designed to compress sources that generate bursts
(runs) of instances from disjoint subsets of the symbol set. Such a source might
generate a burst of letters followed by a burst of digits followed by a burst of

spaces. Such sources are common in databases containing fields of different types.

To design a multi-group algorithm, a Huffman tree is constructed for each
subset (class or group) of symbols. An extra pseudo symbol called the “failure
symbol” is inserted into each tree. Each instance is coded by looking it up in the
current Huffman tree. If the instance’s symbol is in the tree, the symbol’s code is
transmitted. If the instance’s symbol is not in the tree, the code for the failure
symbol is transmitted to indicate that the current tree is to be changed. Separate
Huffman trees are used to send a code identifying the new current tree which is

then used to transmit the original instance.

A similar scheme involving multiple Huffman trees is described by Cormack
[Cormack85]. In this version, all the trees contain all possible symbols and the
current tree is determined solely by the most recently coded instance. This
eliminates the need for failure trees. The technique was successfully applied at
the device driver level in a database system and produced good compression on a

wide variety of data using almost no memory.
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1.4.4 Dynamic Huffman Coding

To honour the twenty-fifth anniversary of Huffman coding, Gallager [Gal-
lager78], presented three new theorems about Huffman codes, the first of which
showed that a Huffman tree with a distinguished node can be converted, in time
logarithmic to the number of nodes in the tree, to another Huffman tree which
would require no structural change (in order to remain a Huffman tree) were the
count on the distinguished node incremented. The conversion involves swapping
subtrees of equal weights. Knuth seized on Gallager’s idea and detailed an algo-
rithm which can efficiently maintain a Huffman tree whose leaf weights are being
decremented as well as incremented[Knuth85]. A similar principle was used by
Moffat[Moffat88] in his design of a data structure for arithmetic coding (Sec-
tion 1.11.5).

The capacity to modify Huffman trees dynamically, opens up other possibili-
ties. Moffat[Moffat87] described a two-pass technique in which the actual symbol
frequencies are transmitted after the first pass. The message is transmitted on the
second pass during which both sender and receiver count down the frequency of

each symbol. The last instance of the message need not be explicitly transmitted.

The ability to efficiently update a Huffman tree allows Huffman codes to be
altered during transmission. This means that they can be configured in the style
of modern one-pass data compression techniques using the statistics of the history

to construct the code for the instance or instances to follow.

1.4.5 Recent Results

The Huffman code is remarkably versatile and resilient. Despite its age,
research results are still rolling in. It is worth briefly examining some of this

work in order to illustrate the dominance of the Huffman code.

Johnsen[Johnsen80] proved that given a two symbol channel alphabet, the
most probable symbol can immediately be assigned a single bit code if its
probability equals or exceeds 0.4. Golomb[Golomb80] investigated the kind

of sources that maximize the number of choices of optimal but coding-distinct
Huffman trees.

Even today, interesting practical work is still being performed. In 1985
MclIntyre and Pechura[McIntyre85] performed experiments which indicated that
for small files (and in many cases large ones) two pass (so-called dynamic) Huffman
coding is less efficient than (so-called static) one-pass Huffman coding which uses
a fixed coding tree for all files.
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In one sense, Huffman’s code was too good too soon. Its proof of optimality
at the message level led many to believe that it was impossible to do better, while
its inefficiency at the instance level sidetracked the field into blocking. Today
the Huffman optimality theorem seems rather restricted. With hindsight we can
identify the two mistaken assumptions that were made on the switch from the
message level to the instance level. The first was that instances in a message
are independent of one another. The second was that each source symbol must
be mapped onto a discrete number of channel symbols. It would be thirty years

before these assumptions would be exposed and discarded.

1.5 Thirty Years of Ad Hoc Data Compression

Following Huffman’s publication and the proliferation of computers, the field
of data compression expanded. Although some of the work was rigorous and
theoretically sound, much of it was not. It may seem a little harsh to classify all
of the techniques to be described in this section as ad hoc, but in the light of the
modern framework, it is hard to view them as otherwise. At least one other author

agrees roughly with this categorization[Horspool88](end of first paragraph).

In the spirit of Huffman, this period was characterised by the simplicity of its
source models and the directness of its coding schemes. Whereas contemporary
compression systems code a particular message instance in a storm of probabilities,
coding schemes of the 1950s, 60s and 70s are characterized by their intelligible
mapping between source symbols and channel symbols. Certainly the notion of
representation is more explicit in these older schemes.

Much of the research of this period focussed on the derivation of higher order
source alphabets, in which each symbol corresponds to a string of ordinary source
instances. Such alphabet extensions were used to project sources with highly
skewed distributions onto flatter sources for which simple coding schemes (such
as the Huffman or the fixed length codes) could more efficiently be driven. This

section examines some of the ad hoc techniques that arose during this thirty year
period (= 1950-= 1980).

1.5.1 Run Length Coding

Run length coding?? is a technique that parses the message into consecutive

sequences (runs) of identical instances. As with Huffman coding, run length

22 1t is not clear whether this form of coding should be termed “Run Length Encoding” or “Run
Length Coding”. The former is the name used in much of the literature. The later conforms with
the names of other forms of coding (e.g. Huffman coding, arithmetic coding, adaptive coding). The
later form will be used in this thesis.



Section 1.5: Thirty Years of Ad Hoc Data Compression 35

coding takes many forms and has been used as a component of many compression
algorithms. Run length coding can usually be identified by its trade mark of coding
a run of identical data values by a single instance of the repeated value followed

by a repetition count.

1.5.1.1 Binary Run Length Coding

Binary run-length codes are of particular interest because they can represent
their data as a sequence of lengths of alternate 0 and 1 runs; the symbol repeated
in each run need not be sent. Furthermore, because binary codes have such a small
alphabet, it is likely that long runs of instances of the more frequent symbol will

occur.

One of the earliest and most influential descriptions of run length coding can
be found in a correspondence by Golomb[Golomb66]. This letter addresses the
case of a binary memoryless source?? that emits 1s with probability p and 0s with
probability ¢ (where ¢ = (1 — p) and p > ¢). Golomb’s technique is to parse the
message into runs of zero or more 1s terminated by a 0. This yields a sequence of
run lengths (a sequence of natural numbers) which are coded into binary words of

varying length.

Golomb observed that the probability of a run of length n +m is half that of a
run of length n for m = —loggp. From this he concluded that if the infinite
set of lengths were to be mapped onto binary strings (codewords) of varying
length (satisfying the prefix property) then the set of code words should contain
m codewords of each possible codeword length.

Golomb proposed a code that satisfies this condition for a given m. The length
L to be encoded is expressed in the form (Q2™)+ R. The codeword is Q expressed
in base one?* followed by R (the remainder) expressed in binary as m bits. This
code satisfies the required property because the number of bits required to transmit
the remainder R is fixed for a given m and the number of bits needed to transmit
the quotient grows by one bit for each increase in run length of m. A slightly
more complicated version caters for values of m that are not powers of two. This
Golomb code forms a subset of a particular arithmetic code developed by Langdon
and Rissanen[Langdon82].

33 A memoryless source is a source that generates each instance with a fixed probability
distribution and independently of all the other instances it has generated or will generate.

24 Base one uses only one digit (1). Numbers are represented by the number of occurrences of
the digit. For example the decimal number 3 is represented by 111 in base one. In the case of the
Golomb code, the base one representation is terminated by a 0 so that the end of the number can
be detected in the binary code stream. Thus 1 is represented by 10 and 3 by 1110.
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Despite its age, the technique of run length coding is still being studied. In
a comprehensive paper[Tanaka82], Tanaka and Leon-Garcia described a form of
run length coding that is highly efficient for binary memoryless sources. They
defined a mode m code to be a code that maps a run of 0s of length m into one bit
(0) and runs of length 0...2™ — 1 into m 41 bits (1. ..). The input is divided up
into blocks of L bits. Each block is processed separately. The number of 1s in the
block is counted and the probability of a 0 is estimated. The optimal m for this
p is calculated and the block is encoded with a mode m code. The authors prove
that the largest possible difference between the coding rate and the corresponding
entropy is 0.0405 bits. Typically, the efficiency is 99% of the entropy. Coding is
fast because the order m codes can be precomputed.

A remarkable similarity exists between the efficiency curves of Tanaka’s and
Leon-Garcia’s code (figure 1 of [Tanaka82]) and that of Langdon and Rissanen’s
binary arithmetic code (figure 2 of [Langdon81]). Both curves consist of a series
of humps of exponentially decreasing width which represent the “modes” at which
the code can operate; both have a lower bound in efficiency of about 96%. Langdon
suspects that the similarity is because both techniques assign an integer-length
code string increase to the less popular symbol.25 This similarity shows well
how, in the field of data compression, information properties can be harnessed
in radically different ways to the same effect. We will see more of this in the
section on Markov algorithms (Section 1.10).

Bahl and Kobayashi[Bahl74] presented a scheme for coding a binary memo-
ryless source for an image coding application. In particular, two of the schemes
cover two of the four blocking classes (Section 1.3.4) and are worthy of further

description.

The first coding scheme is a variable-to-fixed run-length code. The probability
p of the most likely digit is used to select an N. Then, N-bit words are transmitted
which contain the lengths of successive runs of 0s and 1s. If the run length exceeds
the capacity of the word size, the maximum value is transmitted and the counter
is reset. An alternative method is to transmit a sequence of the lengths of “runs”

defined to be sequences of zero or more 0s followed by a single 1.

The second scheme is a more complicated variable-to-variable run-length code.
It suffices to say that the run lengths are coded using varying-length binary codes

with the shorter run lengths assigned shorter codes than the longer run lengths.

25 Private correspondence in a mail message 12 August 1988. Permission to quote was granted
in another mail message on 6 May 1989.
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A further refinement, called multi-mode Golomb coding, assigns shorter codes to
the more probable run lengths. Because a memoryless source produces a geometric
run-length distribution the shortest codes are assigned to runs with near average

length rather than to runs with shorter lengths.

Teuhola[Teuhola78] described another modification of the Golomb code in
which runs of instances of the more probable symbol are parsed into subruns of
length 2%, 2k+1 for some predefined base power k determined by p. The number of
such complete subruns is transmitted in base one and the length of the leftover is
transmitted in j bits where logy j is the length of the last complete subrun. This
scheme is fairly insensitive to the base power k because of the “binary exponential

backoff”. It is also simpler than multi-mode Golomb coding,

1.5.1.2 Bit Vector Compression

A number of other techniques for compressing binary memoryless sources
are worth mentioning even though they do not use run-lengths explicitly. Such
techniques are sometimes referred to as bit vector compression techniques.
Whereas run-length coding relies directly on the occurrence of runs of symbols, bit

vector techniques rely on the increased occurrence of the more frequent symbol.

A technique described by Jakobsson[J akobsson78] divides the input bit stream
into k-bit blocks each of which can be assigned a probability based upon the
number of 0s and 1s. These blocks and their probabilities are used to drive a
Huffman code. Jakobsson analyses the scheme and shows that good compression

can be achieved even for k as low as 10.

In a later paper, J akobsson[Jakobsson82] described a similar blocking
technique. The source bit stream is parsed into blocks of k bits and an index
is constructed with one bit corresponding to each block. Each bit of the index is
set to 0 if its corresponding block is all 0s. The source is then coded by sending
the index followed by the non-zero blocks. Before this takes place, the index is
coded in the same way. This process repeats iteratively until a predetermined level

count is reached.

1.5.2 Dictionary Techniques

One of the most obvious redundancies of many data sets (and in particular text
files) is the repeated occurrence of substrings. For example, a particular identifier
may be referred to in a program text many times. It is therefore not surprising

to find that a great many data compression techniques have been based on the
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detection and elimination of these repeated strings.26 Techniques that “factorize”

common substrings are known as “dictionary techniques”.

Dictionary techniques construct a dictionary of common substrings either on
the fly or in a separate pass. Channel instance strings are associated with each
dictionary entry and the message is transmitted by parsing the message into
dictionary entries and transmitting the corresponding channel strings. Dictionary
techniques can be fixed-to-fixed (e.g. entries are all the same length and are
mapped to fixed length codes), fixed-to-varying (e.g. dictionary consists of n-
grams,?” which are coded using a Huffman code), varying-to-fixed (e.g. dictionary
contains different length words which are coded into 12 bit integers) or varying-to-
varying (e.g. dictionary contains arbitrary strings which are coded using Huffman

coding) (Figure 4).

1.5.2.1 Parsing Strategies

Given a dictionary and a message, there are many ways in which the message
can be expressed in terms of the dictionary. For example, if the dictionary
contained the strings listed in Table 2, and the message was wooloomooloo, the

message could be parsed in any of the following ways.

woo-loo-moo=-loo
woo-loom-oo0loo
woo-loomooloo
wool-oom-o00loo

wool-oomoo-loo

The way in which a message is parsed affects compression. In the example, if
each word was mapped to a fixed length code, a two-word parsing would use half
the space of a four word parsing. A number of different parsing algorithms exist

which vary in speed and efficiency.

An optimal algorithm can be constructed by mapping the parsing problem
onto a shortest path problem and solving that (Figure 5). The arcs of the graph
are labelled with dictionary entries (with their associated codeword length cost).
"The nodes correspond to positions in the message. The approach is more efficient
than it might sound because for a given dictionary, most strings have cut points

at which a parsing division must occur. In the example, a cut point would occur

28' The term “string” is usually taken to mean a text string. In this context the term includes
arbitrary byte streams. By “string” is meant “sequence of source instances”.
27 An n-gram is any sequence of instances of length n.
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Dictionary

loo

loom
loomooloo
moo

ooloo

oom

o0omoo

woo

wool

This dictionary, which is used in the wooloomooloo example has been specially
designed to highlight the ambiguity of the parsing problem. This dictionary
does not have the prefix property (Section 1.2).

Table 2: Example dictionary.

at woo-loomooloo if the word wool were not in the dictionary. The end points of

the message are always cut points.

For a given message and a given dictionary, the parsing problem can be mapped
onto the shortest path problem by constructing a directed acyclic graph of all
possible parses. The graph can then be solved in linear time using dynamic
programming. This graph corresponds to the wooloomooloo example.

Figure 5: Parsing problem mapped onto shortest path problem.

The problem of optimal parsing is similar to the problem faced by the TEX
typesetting system of breaking paragraphs into lines[Knuth79][Knuth84]. TgEX
uses dynamic programming to solve the problem. Dynamic programming was
earlier proposed as a solution to the parsing problem by Wagner[Wagner73] who
showed that for a given dictionary, optimal parsing could be performed in time
linear in the length of the text to be parsed. It should be noted that the problem

of choosing an optimal dictionary for a given text is NP-complete[Storer82].
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Although optimal parsing can be implemented with reasonable efficiency, much
faster techniques exist that perform nearly as well. The LFF (longest fragment
first) heuristic examines the entire string and iteratively replaces the longest
matching substring with its codeword. By far and away the most popular parsing
algorithm, however, is the “greedy algorithm”, which works sequentially through
the string parsing at each step the longest dictionary entry that matches the next
few instances in the message. In the example above, the greedy parsing algorithm
would parse wooloomooloo as wool-oomoo-loo. Greedy parsing is not optimal;
by parsing the longest phrase first (wool), the algorithm misses out on the big
prize (lLoomooloo). In practice, greedy parsing performs nearly as well as optimal
parsing but is simpler and faster[Schuegraf74]. Unless otherwise stated, all the

dictionary techniques reviewed in this chapter use greedy parsing.

1.5.2.2 Static vs Semi-Adaptive Dictionaries

In their book on text compression[Bell89], Bell, Cleary and Witten divided
dictionary techniques into static and semi-adaptive techniques. Static techniques
use the same dictionary for all files. This enables the dictionary to be embedded in
the compression program; it need not be transmitted. Semi-adaptive techniques
construct a different dictionary for each message and transmit the dictionary
along with the coded message. Static techniques are one pass and semi-adaptive
techniques are two pass.

Unfortunately, much of the literature on dictionary techniques does not
distinguish between static techniques and semi-adaptive techniques with many
authors failing to specify clearly whether the technique they are describing
transmits a dictionary.

1.5.2.3 Early Dictionary Techniques

The earliest work on dictionary techniques seems to be by Schwartz [Schwa-
rtz63] who described a greedy-parsing static-dictionary technique that replaces
words (in a text) matching dictionary entries with fixed length codes; text that
doesn’t match is transmitted verbatim. The theoretical basis of the technique is
that 500 to 1000 well chosen words will cover about 75% of most English texts.
This early work is interesting because it employed a “split dictionary” in which
one part contains word roots and the other part contains word endings. This
organization resulted in a small dictionary that could synthesize a large number

of long words. The authors discuss techniques for automatically improving the

dictionary given extra training texts.
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Four years later, White[White67] presented a similar, greedy-parsing static-
dictionary technique that used fixed length codes. The dictionary consisted mostly
of highly probable English words but also contained special strings, capitalized
words and suffixes. The technique contained a lot of ad-hoc tuning to cater for
the specialized class of texts being compressed. The authors concluded that a
dictionary containing 1000 words will yield about 50% compression for English
text.

Other early work on dictionary coding was done by Notley[Notley70] who
described a multi-pass algorithm to construct a dictionary of commonly occurring
substrings (a “Cumulative Occurrence Library”). The technique was designed
for authorship fingerprinting but Notley also admits to a data compression
application. On each pass, greedy parsing is used to find the longest matching
dictionary entry. If there is no matching entry, a new symbol is added to the
dictionary. If there is an entry, the entry’s count is incremented. If a count
reaches a threshold, a new entry consisting of the concatenation of the entry and
the previously parsed entry is inserted into the dictionary. Entries with a low count
are discarded. The dictionary develops during the sequence of passes. The message
is coded by transmitting the dictionary and then the message coded using fixed
length coding. Mayne and J ames[Mayne75] developed this technique further by

investigating heuristics for adding and removing dictionary entries.

Many of the earlier dictionary techniques for text compression use words as
dictionary entities. Clare, Cook and Lynch[Clare72] noted that the words of
natural language texts exhibit a Poisson rank-frequency distribution (see also
[Zipf49]) with a small number of common words accounting for a large proportion
of word occurrences. If a fixed length coding scheme is used, dictionaries tend
to become less efficient the bigger they get. The solution proposed was to use

arbitrary text fragments as dictionary entries rather than words.

One of the strangest dictionary techniques employs both a dictionary and
run length coding. Lynch[Lynch73] achieved good compression using a two pass
technique. In the first pass, each instance of the message is replaced by a fixed-
length code, whose 0 bit content increases with the probability of the instance’s
symbol. The most frequent symbol is represented by 00000000 and the least
frequent symbol by 11111111, The second pass performs run length coding on the

result. This technique was extended to use digrams and 12-bit codes.

Other early work was done by McCarthy[McCarthy73] who described a

technique for constructing a dictionary from a sample of the file to be compressed.
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McCarthy went to more effort to make sure that the dictionary and the consequent
encoding were closer to optimal. The dictionary construction procedure iteratively
selects strings according to the compression they will yield. Optimal parsing is
implemented using the dynamic programming technique described in [Wagner73].

The resultant parse is used to drive a Huffman code.

Rubin[Rubin76] continued McCarthy’s approach, experimenting with differ-
ent methods for building the dictionary. Rubin constructed the dictionary iter-
atively, parsing the message on each pass and maintaining occurrence statistics.
After each pass, the dictionary was refined by “augmenting” (adding symbols to)
the “best” (according to some metric) entries and inserting them to the dictio-
nary. Rubin tried a number of metrics for “best” based on length and frequency
and concluded that frequency alone was the best measure. Three augmentation
schemes were implemented: prepend a symbol, append a symbol and append an
entry. The last method worked best, presumably because adding a symbol to the
start or end of a group can simply rob the symbol from an end of another group
(in the message string). Rubin tried coding the dictionary entries using Huffman
coding but found it ineffective because the dictionary usually contained roughly

equiprobable entries.

1.5.2.4 Later Dictionary Techniques

Wolff[Wolff78] described a static dictionary technique in which the dictionary
is constructed during multiple passes over the text. Each pass adds a new entry
to the dictionary. The number of passes depends on how large a dictionary is
required. Before the first pass, the dictionary is primed with the character set.
On each pass, greedy parsing is used to parse the message string into dictionary
phrases. During the pass, a count is kept of the frequency of all pairs of phrases. At
the end of the pass, the most frequently occurring pair are added to the dictionary.
The message is coded using a binary fixed length code.

Cooper and Lynch[Cooper78] described a greedy-parsing/fixed length code
dictionary technique for compressing files containing chemical structure informa-
tion (Wiswesser Line Notation).

Weiss and Vernor[Weiss78] described a dictionary technique that employs a
dictionary of 1024 text words. The technique replaces words in the message text
by sixteen-bit codes. Text that does not match a dictionary entry is included
verbatim. Two of the spare six bits in the dictionary pointers are used to indicate

the presence of a pointer, one is used to indicate that the word’s first letter is
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capitalized and three are used to describe how the coded word ends (e.g. question

mark, comma).

Because dictionary compression techniques require a lot of table searching, an
investigation was made into how hardware could be employed to perform this task
more quickly. Lea[Lea78] described an associative memory that could be used to

eliminate the table searches in dictionary compression schemes.

Compression can be achieved by finding the m most frequently occurring
n-grams (typically n is 2 or 3). Yannakoudakis, Goyal and Huggill [Yan-
nakoudakis82] described such a method. They note that this method is “an
attempt to convert the normal hyperbolic distribution of single letters to a rect-
angular or equiprobable distribution of symbol groups (n-grams) by considering
frequently occurring strings of up to n letters in length.” (p. 17) Again the as-

sumption of fixed length channel strings is made.

Surprisingly good compression has been achieved by applying Huffman coding
to the output of a dictionary compression scheme[Bassiouni86]. This is an unusual
approach because compression algorithms aim to produce white noise. In this
algorithm, the second pass catches some redundancy missed in the first. The first
phase consists of a dictionary compression scheme that augments the dictionary
entry numbers with bit fields to indicate capitalization and various common
endings. Run length encoding is used as an alternative to referring to a dictionary
entry. The second phase uses a multi-group technique (Section 1.4.3) to remove
redundancy in the output of the first pass. Although particularly ad-hoc, this
technique removes approximately 65% of English text files and illustrates how the

combination of a number of techniques can sometimes be effective.

1.5.2.5 Compressing the Dictionary

Once the dictionary has been constructed and the message encoded, it remains
only to transmit the dictionary and the coded message. A final opportunity
remains for compression if the dictionary itself can be compressed. One way of
doing this is to construct a string of overlapping dictionary entries and store each
entry as a pointer into the string. Gallant analysed the problem of finding a
minimal length superstring of a finite set of substrings[Gallant80] and proved
that it was NP complete. Efficient algorithms may exist for this problem but it is
likely that they would be neglected in practice for the same reasons that optimal

parsing is neglected.
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The problem of compressing the dictionary can be avoided by organising
the transmitter and receiver to simultaneously build identical dictionaries as
compression proceeds. This idea has been incorporated into the class of Lempel-
Ziv compression algorithms. Lempel-Ziv algorithms are theoretically based,
fast and have so completely surpassed the dictionary techniques just described

that discussion of them is deferred to a section specifically devoted to them
(Section 1.7).

1.5.3 Exploiting Specific Knowledge

The techniques described so far are fairly general. Most of them will perform
effectively on a variety of data. However, if more information is known about the
data to be compressed, the compressor can be tailored for the specific situation.
Examples of specific data sets are computer programs, English text, bibliographic
data, chemical data, signal data and sparse databases.

If detailed information is available about the structure of messages, a specific
compressor can be constructed which exploits that knowledge. Katajainen,
Penttonen and Teuhola[Katajainen86], described a method for compressing
program files in which a parse tree is constructed and coded using Huffman coding,.
A better technique is to construct a probabilistic grammar for the set of source
messages and code each message as a sequence of syntax graph decisions[Stone86).
Such a technique could be embedded in programs that automatically generate
interactive programming environments[Reps84).

1.5.4 Data Base Compression Techniques

The requirements of data base representation lead to a perspective of data
compression slightly different from that of mainstream data, compression research.
Data base compression differs from ordinary file compression in two ways. First,
data bases tend to be sparse and are unusually easy to compress. Second, there
is usually the need to be able to access the data quickly and at random. These
characteristics tend to constrain the set of possible data compression techniques to
those that provide a simple mapping. An example is the compression of file indexes
that must remain accessible in their compressed state. This section describes some

of the techniques used to compress data bases.

In a sequence of sorted items, it is usual to find that adjacent elements share
a common head string. The technique of differencing reduces the length of
each element by replacing the head string that cach shares with the previous

element by a number that is the length of the shared head string. This is called
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front-compression. In rear-compaction?® as much of the tail of a word is removed
without making it identical to the previous word. Rear compaction is capable of

losing information and is suited only to specialist indexing applications.

Eggers and Shoshani[Eggers80] presented a method for compressing large,
sparse data bases. In a sparse data base, one particular constant value fills most
of the data base. The first stage of compression is to serialize the data base. The
constant is then deleted from the data stream and a map is constructed containing
the location of the deleted runs and the remaining data. This operation can be
repeated to eliminate other constants in the remaining data. This technique allows
search techniques with a logarithmic access time (e.g. binary search) to be used
on the compressed data base. The second part of the paper describes how this can

be extended to the case of databases not all of whose keys are used.

Other ad-hoc techniques can be used to great effect. The printable members
of the ASCII?® character set utilize only seven of the eight bits of the standard
ASCII code and it is possible to store each character in only seven bits. If lower
case characters are unused, only six bits are required. By eliminating these bits,
text storage can be reduced by 25%. Fixed length text data is notorious for
containing trailing blanks. Trailing blanks can be eliminated by deleting them
(i.e. compaction, if the definition of a text file allows it) or by replacing them
using run-length coding. Another method for reducing “whitespace” is to use

tabbing, in which runs of blanks are replaced by a single tab character.

Scientific data bases offer enormous scope for compression[Bassiouni85]. They
often contain long sequences of almost identical numbers (taken perhaps from a

slowly varying instrument) which can be compressed using a differencing technique.

In general, the techniques used to compress data bases are oriented around
recovery speed and the properties of the specific data being compressed. Data
bases are usually so easy to compress that the extra effort required to shave off
an extra few percent is usually not considered worthwhile. As a result, techniques

developed to represent data bases are not at the frontier of the field.

oL A compression technique never loses information. A compaction technique can sometimes
lose information[Severance83][Reghbati81]. This thesis is concerned only with compression
techniques.

2% American Standard Code for Information Interchange.
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1.5.5 The Practitioner’s View

With so many compression techniques available, it is interesting to observe the

reaction of practitioners in the field whose job it is to manage large bodies of data.

There is an abundance of literature which reviews data compression techniques
(e.g. [Reghbati8l], [Gottlieb75], [Cooper82], [Severance83], [Peterson79]).
Most of these works describe a subset of the ad-hoc data compression techniques
and follow it up with a brief comparison in which a particular point of view
is put forward. Most papers do not even mention the modern techniques
described in Section 1.8. For example, a recent review paper[Lelewer87] in
a review journal described static and dynamic Huffman compression in great
detail, briefly described LZ78 and Bentley, Sleator, Tarjan and Wei’s move-to-front
scheme[Bentley86] but only mentioned Markov modelling (a major focus of this
thesis) in the fourth last paragraph of the paper. The issue of modelling was hardly
addressed, as Witten and Bell pointed out in their review of the paper[Witten&9).
Hopefully the modern paradigm will become well known in a few years. Some up-
to-date works are appearing[Helman88] [Witten87) [Abrahamsong89].

With so many techniques to choose from and few formal guidelines, it seems
that the reaction of the average data practitioner has been to ignore data
compression altogether! Welch[Welch84] gives three reasons for the neglect of
data compression: poor execution speed, the inability of most techniques to
compress different kinds of data, and the unpredictability of the size of compressed
data. Severance[Severance83] also gives three reasons: designers underestimating
the compression possible, wariness of the extra complexity introduced by a data
compression layer, and the narrowness and mathematical mystique surrounding

the data compression literature.

“What is clear nevertheless is that typical commercial databases can in fact be compacted
by 30-90%, and that this should be of more applied interest than current usage of
compression techniques would indicate.” [Severance83]

It is of significance that most reviewers complain that data compression
techniques are not used as much as they should be. Perhaps the point to be made is
that some data compression is better than none. Indeed, as the greatest gains are
to be made by taking the simplest measures, it is surprising that data compression
techniques are not already in wide practical use. As simple a technique as null
suppression can reduce a data base by up to 70%[Severance83]. In addition, there
are indications that data compression does not significantly impact on processing
efficiency and in some cases can actually improve it[Smith76]. This is in contrast

to the commonly held belief that data compression will slow one’s system down.
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Another problem with data compression is deciding how it is to be used. Data
compression mechanisms can be located in disk drivers, in ordinary programs
(e.g. editors), in separate utilities that must be explicitly invoked or in background
jobs. Choosing the location can be difficult. Perhaps one of the most aggressive
implementations is described by Raita[Raita87] whose program hunts down and

compresses users’ files that have not recently been accessed.

To summarize, there is a very large gap between data compression research and
practice. This gap can only be closed by commercial pressures (as has happened
with facsimile compression) or by researchers presenting a simpler, more concrete

image of data compression.

1.6 Adaptive Data Compression

All the techniques so far described either use fixed statistics, or make two
passes over the message, the first pass to gather statistics and the second pass to
code the message (using the statistics). Bell, Cleary and Witten[Bell89] called the

fixed statistics techniques “static” and the two pass techniques “semi-adaptive”.
q p

Static and semi-adaptive techniques are unsatisfactory for general-purpose
data compression. Static techniques cannot adapt to unexpected data, and semi-

adaptive techniques require two passes, making them unsuitable for communica-

tion lines.

“Adaptive” techniques combine the best of static and semi-static techniques
by making a single sequential pass over the message, adapting as they go. At each
step, the next piece of message is transmitted using a code constructed from the
history. This is possible because both the transmitter and receiver have access to
the history and can independently construct the code used to transmit the next

piece of the message.

An example of an adaptive technique is a technique in which each instance is
transmitted using a Huffman code constructed from the history. A straightforward
implementation would be prohibitively inefficient because it would require that a
new Huffman tree be constructed from the history for each instance transmitted.
The trick is to design a data structure that can be incrementally updated at low

cost. Such a dynamic technique has already been devised for Huffman coding
(Section 1.4.4).

The advantages of adapting during a single pass might be considered reason
enough to dispense with static and semi-adaptive techniques altogether. In fact,

arguments exist that permanently lay the question to rest.
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A static technique will always yield better compression than an adaptive
technique on the data for which the static technique has been tuned. This is
because the adaptive technique must spend time learning what the static technique
already “knows”. The best that could be expected under these conditions is
that adaptive algorithms use up at most M nats more channel space for any
message than the best static model, where M is the amount of information
contained in the static model. Such a theorem has been proven under fairly
general conditions[Cleary84] (in particular, the source must be ergodic). Static
models exhibit an unbounded inefliciency if they are fed unsuitable data. Thus,
the only advantage that static models have over dynamic models is a constant-

order compression advantage for the particular kind of data for which they were

tuned.

The same theorem shows that adaptive techniques are superior to semi-
adaptive techniques. At best, a semi-adaptive technique can construct and
transmit the optimal static model for the given data. Transmission of the model
will cost M nats. If an adaptive model uses no more than M nats more than the
best static model (the proof of which was discussed in the last paragraph) then it

can perform no worse than the semi-adaptive model. Thus semi-adaptive models

have no advantage over adaptive models.

The conclusions above enable us to add a new assumption to our view of data
compression.30

Assumption 5: Compression takes place in a single pass; the transmitter
can only see a small finite part of the remainder of the message.

1.7 Ziv and Lempel Algorithms

1.7.1 Adaptive Dictionary Compression

All dictionary techniques have to find some method of transmitting the
dictionary from the transmitter to the receiver. The dictionary techniques that
we have seen so far do this either by using a static dictionary which doesn’t need

to be transmitted (static techniques) or by transmitting the dictionary before
transmitting the message (semi-adaptive techniques).

Adaptive dictionary techniques do not ever transmit the dictionary explic-
itly. Instead the transmitter and receiver both build the dictionary incrementally,

adding to it as each instance (or group of instances) is transmitted. At each point

30 The previous assumptions are listed in Section 1.1.3.
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during the coding, the current dictionary is used to transmit the next portion of
the message.

The notion of sender and receiver simultaneously maintaining identical models
of the source is fundamental to the modern paradigm of data compression
(Section 1.8). Thus, even though Ziv and Lempel techniques are dictionary based,

it would be unfair to classify them as ad-hoc techniques.

1.7.2 The Launch of LZ Compression

Ziv and Lempel coding (LZ coding®!) refers to two distinct but related
coding techniques first presented by Ziv and Lempel in two papers published in
1977[Ziv77] and 1978[Ziv78]. The fundamental idea behind LZ algorithms is
that substrings of the message are replaced by a reference (e.g. an (offset,length)

tuple) to a substring in an earlier part of the message.

Ziv and Lempel’s approach was to hide a good idea in a sea of mathematics.
Bell, Cleary and Witten restate this feeling in gentler terms, summarizing the

problem well:32

“It is a common misconception that LZ coding is a single, well-defined algorithm. The
original LZ papers were highly theoretical, and subsequent accounts by other authors
give more accessible descriptions. Because these subsequent descriptions are innovative to
some extent, a very blurred picture has emerged of what LZ coding really is. With so many
variations on the theme, LZ coding is best described as a growing family of algorithms,
with each member reflecting different design decisions.” [Bell89] (section 8.3(v))

In order to avoid such confusion, the two original algorithms will be described
in detail, followed by a discussion of their variations. A more detailed discussion
and explanation of LZ algorithms and all their variations can be found in the
book by Bell, Cleary and Witten[Bell89] which introduces a naming scheme for
the algorithms based on the name of the authors. The two algorithms by Ziv
and Lempel are named LZ77 and LZ78. Mathematical notation used in the

following descriptions does not follow the original papers, but rather the book
whose notation is simpler.

it According to [Bell89], the technique is usually referred to as “Ziv and Lempel coding” (after
the ordering of the authors’ names in the original papers) but when acronymized is referred to as
“LZ” coding (because of a historical mistake).

32 Quotes from and comments on the book BellSQ} refer to a near-final draft of the book printed
on 16 May 1988. Permission to quote from the draft (conditional on stating that it was a draft)
was granted by Tim Bell in an electronic mail message to the author of this thesis on 19 December
1988 for which appreciation is recorded.
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1.7.3 LZ77

The LZ77 algorithm takes two parameters:

® N € Z[1, ), the length of a sliding window buffer.
e F € Z[1,N — 1], the maximum length of a matching string.

with ' <« N. Typical values that are used in practice are N ~ 213 and F ~ 24

as usual, powers of two encourage an efficient implementation.

Message Lempel Ziv ossags
slides out slides in
4—Wl|o|o|l|o|lo|m|o]|o]|!l |o]o |¢—
1 N-F|N-F+1 N

The LZ77 algorithm slides the message through a buffer from right to left. The
Lempel holds the text already transmitted and the Ziv holds the text to be
transmitted. At each step, the next part of the Ziv is transmitted to the receiver
by expressing it as a substring of the Lempel using an offset and a length.

Figure 6: The LZ77 algorithm.

Execution of LZ77 revolves around a sliding window buffer of length N through
which the message is passed from right to left. The buffer’s elements are numbered
consecutively with 1 at the far left and N at the far right. We will call the N — F
leftmost elements (elements [1, N — F]) the Lempel and the F rightmost elements
(elements [N — F + 1, N]) the Ziv.3® The Lempel holds the most recent N — F
instances that have been transmitted and the Ziv holds the next F instances to

be transmitted.

To start, the algorithm initializes the Lempel to a pre-defined string and slides
the first part of the message string into the Ziv. Coding proceeds by finding the
longest substring in the buffer whose leftmost element lies in the Lempel and which
matches the first zero or more instances in the Ziv, and transmitting it (along with
the next instance a) as the triple (s, I, a) where s € Z[1, N — F] is the position
in the Lempel where the matching string starts,3 [ € Z[0, F] is the length of the
matching string and @ € A is the instance following the matching string. The
message is then slid into the buffer from the right until the next instance to be
encoded is at the leftmost element of the Ziv (ie. element N — F 4 1).

33 Warning: This Ziv and Lempel terminology is unique to this thesis.
34 This is traditionally indexed from the rightmost position (N — F) of the Lempel! with
(N-F )—1.
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The following notes reveal how ingenious the algorithm really is:

o The extra instance a is transmitted to cover the case that no match is

found (i.e. when [ = 0).

o The matching string can start near the end of the Lempel and extend
into the Ziv. This works because the decoder will have reconstructed the
part of the matching string in the Ziv by the time that section itself must
be copied. This feature means that the algorithm efficiently codes runs of

identical instances.

e The “dictionary” for this technique consists of every substring in the
Lempel. Despite this, it is never explicitly transmitted because it is
updated incrementally by both the coder and the decoder.

e The algorithm is locally adaptive (Chapter 3) because its model is based
solely upon the previous N — F instances.

e Searching the buffer for the longest matching string is expensive but
bounded by N and F. The algorithm codes and decodes in time linear in
the length of the message.

¢ Decoding is extremely fast. The decoder uses a buffer identical to the
coder and repeatedly copies the substrings specified by the stream of triples
from the Lempel to the Ziv. The message comes out the leftmost side of
the Lempel.

¢ Because N and F are finite, s, [ and a can all be packed into fixed-length
bit fields.

* The sliding window can be implemented using mod N arithmetic
(Section 4.5), which eliminates the need for explicit buffer sliding which
becomes expensive for large N.

e Ziv and Lempel showed that LZ77 could perform at least as well as a

semi-adaptive dictionary technique.

91
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1.7.4 LZ77 Variants

Bell, Cleary and Witten[Bell89] identified four LZ77 variants. Rather than

enumerate them, we will briefly mention the modifications they introduced.

Infinite Window Width: LZ77 uses a fixed length window which means that its
model is always based on the previous N — F instances seen. However, if N is set
to oo, the model is based on the entire history. For such a high N, transmitting s
(the offset) becomes a problem which can be solved by using a varying length code
for s in which an integer of value ¢ is coded in O(logg i) bits.®® This means that the
more recently a string has occurred, the shorter is its code string. With the window
width limit removed, one might suspect that a straightforward implementation of
the technique would have a quadratic time complexity in the size of the input
message. However, Rodeh, Pratt and Even[Rodeh81] showed that sophisticated
data structures can reduce the time cost to linear complexity.

Infinite Maximum Matching Length: The maximum matching length F can
be similarly generalized.

Eliminate Instance: Transmitting an instance (a) as the third element of a
triple is wasteful if the instance could have appeared as part of the next triple. In
one variant, each tuple is preceded by a bit which specifies whether (a) or (s,0) is
to be transmitted. At each step, the coder chooses the alternative that will most
compactly represent the matching substring.

Variable width pointers: Brent[Brent87] described a technique in which the
results of a variant of LZ77 are coded using a Huffman code.

1.7.5 LZ78

The LZ78 algorithm is similar to LZ77 except that the Lempel is replaced by
a continually growing dictionary of d € Z[1, c0) phrases (strings) numbered from

0 to d — 1. No limit is placed on the length of the Ziv. The algorithm has no
parameters.

35 A good discussion of this form of integer coding can be found in Appendix A of [Bell89].
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The LZ78 algorithm builds a dictionary of phrases and repeatedly transmits
the number of the longest dictionary entry matching the Ziv, followed by one
instance after that. After each phrase is transmitted, a new phrase is added
to the dictionary. The new phrase is the phrase transmitted plus the following
instance. This diagram depicts the state of the algorithm midway through the
processing of the string wooloomooloo,

Figure 7: The LZ78 algorithm.

To start, the algorithm initializes the dictionary to a single phrase consisting
of the empty string and sets d «— 1. At each step, the algorithm transmits a new
phrase p € § in the Ziv consisting of the longest matching phrase m € S in the
dictionary plus the next instance ¢ € A. Thus p = ma and Ziv="p...”. pis
transmitted as m’s dictionary entry number (requiring [logs d] bits) followed by a
which is transmitted raw. The new phrase p is then inserted into the dictionary,

some more of the message is slid into the Ziv, and the process repeats.

The effect of this is to parse the input into phrases, each of which consists
of the longest previous phrase plus one instance. Ziv and Lempel proved that
this technique converges on the entropy of a stationary ergodic source as the
message length tends to infinity. While this result is important theoretically,
convergence is so slow that the property is meaningless in practice. Bell, Cleary
and Witten[Bell89] calculated that for a symbol set of 256 the technique will still
be 20% inefficient when d = 240,

Here are some important features of the algorithm:

® The dictionary in this algorithm can be efficiently implemented using a
digital search tree (Figure 8). Each parsing step involves travelling from
the root to the node corresponding to m, and then attaching a new node

(corresponding to p) to m with an arc labelled a.
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The dictionary (Lempel) of the LZ78 algorithm can be organized as a forwards
tree. At each step, the algorithm transmits the number of the tip of the longest
matching branch. The new phrase is then added by appending a new leaf to the
tip node. This diagram depicts the state of the algorithm midway through the
processing of the string wooloomooloo.

Figure 8: The LZ78 algorithm implemented using a tree.

¢ As it stands, the size of the dictionary increases forever. In practice,
memory will eventually run out and some action must be taken. A common

solution is to empty the dictionary and continue.

Langdon[Langdon83] cast light on the underlying mechanism of LZ78 by
noting that following its creation, each node in the tree gains one descendent3® for
each occurrence of the node’s phrase (or an extension thereof) in the subsequent
sequence of phrases. Because the code space is divided evenly between nodes,

LZ78 is really using a statistical technique at the phrase level.

Langdon showed that the actual probability that could be assigned to each arc
of the LZT78 tree is ¢/p where ¢ and p are the number of descendents of the child
and parent nodes of the arc. In the wooloomooloo example (Figure 8), the arcs
from o to ol and from o to oo have probability 1/3, as does the imaginary arc
from o to o (i.e. stop at that node).

1.7.6 LZ78 Variants

Bell, Cleary and Witten[Bell89] identified six LZ78 variants. Rather than

enumerate them, we will briefly mention the modifications they introduced.

Eliminate Instance: The explicit transmission of the last instance a of each
new phrase p can be avoided by priming the dictionary with the symbol set and

transmitting a as the first instance of the next phrase[Welch84]. This means

36 Here, the set of “descendents” of a node r is identical to the set of nodes contained in the
subtree rooted in r. The set includes 7.
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that the decoder has to decode the k + 1’th phrase in order to insert the k’th
phrase into the tree. A special case arises when the k + 1'th phrase’s m is the
same as the k’th phrase, which can be handled by noting that the k’th phrase’s
a must equal its m’s first instance. Eliminating the transmission of a was the
most important modification made to LZ78. A highly optimized version of this
algorithm forms the core of the popular compress program that runs under the
UNIX[Ritchie78] operating system. An innovative feature of compress is that
when it runs out of memory, it freezes the dictionary and empties it only when
compression performance drops.

Dictionary Management: When the dictionary becomes full, some variations
(e.g. [Tischer87]) remove the Least Recently Used (LRU) phrase to make room
for the new phrase, thus introducing local adaptivity similar to that of LZ77.

Rapid Phrase Growth: The LZ78 algorithm grows its dictionary phrases one
instance at a time. In an effort to increases the rate of phrase growth, one technique
inserts the concatenation of the k¥ —1°th and k’th phrase into the dictionary at each
step rather than inserting just the k’th phrase. Another technique inserts not only
the new phrase into the tree, but all substrings less that a maximum length whose
last instance falls within the phrase in the message. When the dictionary is full,
phrases that have only been used once are removed and compression continues.
Eventually the dictionary becomes static.

Window/tree approach: The highest performance LZ algorithm to date is the
LZFG[Fiala89] algorithm which has aspects of both LZ77 and LZ78. The message
is passed through a sliding window buffer as in LZ77, but the instances in the
window are parsed into phrases as in LZ78. A tree is maintained that contains only
those phrases in the window. Coding takes place by transmitting (offset,length)
pairs (as in LZ77) that match the buffer starting at a phrase boundary. This

variation is fast, gives good compression and manages memory effectively.

More detailed discussion of and references to LZ77 and LZ78 and their variants

can be found in the book by Bell, Cleary and Witten[Bell89] from which much of
the information in this section was obtained.

Ziv and Lempel have continued and extended their work in data compression.

In [Lempel86] they follow up that work by extending their results to two
dimensional data (e.g. bitmaps).
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1.7.7 Other Dynamic Dictionary Techniques

A few adaptive dictionary techniques have arisen that don’t quite fit into the
Ziv and Lempel mould. Bentley, Sleator, Tarjan and Wei[Bentley86] described
a one-pass locally adaptive technique that maintains a list of words. No strict
definition of a word is given. At each step, the next input word is compared with
all the words in the list. If the next input word is in the list, the number of the
word in the list is transmitted and the word is moved to the head of the list. If
it isn’t in the list, the word is transmitted explicitly, preceded by a number that
is one more than the number of elements in the list, and then the word is added
to the list. The scheme requires that the word numbers be transmitted in space
proportional to the logarithm of the number. Ryabko[Ryabko87] claimed that
he invented a similar algorithm.

This work attracted criticism from Horspool and Cormack[Horspool87] who
claimed that they had investigated this form of algorithm and found it inferior to
other, more popular techniques such as Ziv and Lempel coding. More importantly
they stated that their experiments show that a climbing heuristic in which words
are moved one position up the list rather than all the way to head of the list,
performs as well as the LRU heuristic employed by Bentley et al. The climbing
heuristic is easier to implement.

Perhaps what separates the Bentley technique from the class of Ziv and Lempel
techniques is that it transmits words verbatim if they are not present in the list.
Ziv and Lempel algorithms build up their dictionary implicitly and incrementally.

1.8 The Modern Paradigm of Data Compression

The algorithms that have been discussed up to this point all conform to the
blocking paradigm of data compression presented in Section 1.3. Even the recent
Ziv and Lempel algorithms employ blocking, though the mapping from source to
channel strings changes at each step.

In the early 1980s, a new paradigm of data compression arose which we call the
modern paradigm of data compression. The modern paradigm is provably
better (in theory, with respect to compression) than blocking techniques and
contains many of the previous techniques as special cases. The remainder of this

chapter focuses on the modern paradigm and the compression techniques that

arose from it.
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1.8.1 The Information Market Place

The blocking paradigm of data compression can be likened to a market
place of two traders (model/coder) who can only trade by swapping (bartering)
goods (source strings/channel strings). The aim of each trader is to minimize
the difference in value (information content) between the goods being traded.
Unfortunately, this market of strings approach has the effect of warping the outlook
of the traders to the extent that the internal organization of each becomes governed
by the other. There seems little point in presenting strings of value 0.001 bits for

trade if the minimum valued channel string that could be swapped for it is worth
1 bit.

In particular, the bartering mentality has impacted badly on source modelling
which, up until recently, has been concerned only with choosing sets of source
strings (dictionaries). An alternative to bartering is to find a currency of
information that would allow the modeller to get on with modelling and the coder

to get on with coding without recourse to each other.

1.8.2 Predictions: A Currency of Information

In the modern3? paradigm, predictions act as a currency of information that
allows the separation of model and coder.

In everyday life, to “predict” means to nominate an event. If the event occurs,
the prediction is said to be correct. In data compression, the concept of a prediction
is generalized to the specification of a finite set of exhaustive, mutually exclusive
events and their probabilities. The “correctness” of such a prediction depends on

the closeness with which the prediction’s probabilities match the true probabilities.

The question remains of what the events of a prediction should correspond
to (mean). Assumption 5 (Section 1.6) constrains the events to yield information
about the remaining part of the message. The set of events could range from the
set of all possible strings, to partial information about the next instance. Without
loss of generality we choose the set of events to be the set of symbols. This yields

the following advantages.

* Predicting a single instance is as powerful as predicting more than one
instance. Once a mechanism is established which predicts a single instance

it can be invoked recursively to predict as many instances as desired.

37 The term “modern” has been used to describe the paradigm of data compression about to be
described. For example, from [Witten87](iii): “This contrasts with the more modern model-based
paradigm for coding. . ”.
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e The instance is the smallest convenient unit of a message.
o Instance prediction data structures are relatively easy to manipulate.
We define the set of all predictions to be

P:Vpe P, p(A) >R A Va€ 4, pla)>0 A Y pla)=1
a€A
Predictions are functions that map source symbols to probabilities. A prediction
p is called safe iff p(a) > 0, Va € A.

Although P is a good theoretical working definition of the set of predictions,
it cannot be used in practice because a p € P is capable of containing an infinite
amount of information (if, for example, p(a) is transcendental for some a). In
practice, each prediction must be approximated by a member of the set of all
samples

X:Vr e X, z(A) — Z[0, c0)

Any prediction p € P can be represented as a sample € X with infinitesimal
loss of accuracy by setting z such that z(a) —% < yp(a) < z(a) +%— where y
is an abbreviation for > aca®(a). = is p rounded to a particular fixed-point
accuracy. The representation of predictions by a group of integers not only allows
a precise approximation to any p, but also allows predictions to be constructed
from collections of instances sampled under particular source conditions. Each
z(a) stores the frequency of symbol a. Thus z is a structure that can be used in

practice to turn instances into frequencies into predictions.

In summary, predictions form a currency of information. A piece of information
consists of a prediction and an outcome. Under the modern paradigm, without

loss of generality, the events in a prediction can be restricted to the set of symbols.

1.8.3 The Modern Paradigm

The modern paradigm uses predictions to divide compression into separate
modelling and coding units. The modern paradigm is best summarized by a
diagram (Figure 9).
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Message Coder Decoder Message
instances > Channel instances >
Predictions Predictions
Model Model
Shannon Transmitter Shannon Receiver

The modern paradigm of data compression specifies an internal organization of
Shannon’s transmitter and receiver, and constrains the interface of its parts. The
model units must be identical deterministic automata that receive a stream of
instances and produce a stream of safe predictions, one for each instance. Each
prediction must be generated before the arrival of the corresponding instance.
The coder unit must accept a stream of instances and predictions of instances
and use the predictions to code the instances efficiently. The decoder unit must
reverse this using the identical stream of predictions generated by the receiver’s
model.

Figure 9: The modern paradigm of data compression.

Model: The model accepts a sequence of instances and produces a stream
of predictions, one for each instance. Each prediction is produced just

before the instance it predicts is read.

Coder: The coder accepts a stream of predictions and a stream of

instances and produces a stream of channel instances.

Each step transmits an instance.3® At the start of each step, the model
constructs a prediction p (of the next instance) and passes it to the coder.
The coder uses the prediction to transmit the next instance g using as close to
—In p(a) nats as it can. Meanwhile, the receiver’s model has generated an identical
prediction which the decoder uses to identify the instance that was transmitted.
The transmitter and receiver both use the new instance to update their models.

The cycle repeats until the entire message 1s transmitted.

38 In fact, because of coder buffering, the channel instance(s) containing the coded instance may
not be delivered to the receiver instantaneously. However, so long as the decoder can decode the
instances in the order in which they were coded, the instance can be considered to be transmitted
instantaneously.
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Important features of the modern paradigm are listed below.

e The model (predictor) can be any deterministic automata so long as
it produces safe predictions in finite time. However, its predictions must

approximate the true probabilities if compression is to take place.
e The prediction for each message instance can be different.

The modern paradigm was put together for the first time in a landmark paper
by Rissanen and Langdon[Rissanen81], who divided compression into modelling
and coding. Their main theorem showed that only one instance need be predicted
and is worth repeating here.

“For every adaptive or nonadaptive recursive model using alphabet extension, there
exists another adaptive or nonadaptive recursive model respectively, using no alphabet
extension, which has the same number of parameters (and hence requiring the same
number of binary digits for its description), and which has the same ideal codelength
—log P(s) for every string s. The converse is not true.” [Rissanen81](p. 18(V.(ii)))

To assist in proving this theorem (for all finite strings), the authors defined
sources as producers of finite strings. This can be contrasted to classical sources

which produce infinite strings.

Cleary and Witten’s theorem (Section 1.6) showing that adaptive codes are at
least as powerful as static and semi-adaptive codes, in conjunction with Rissanen
and Langdon’s theorem showing the superiority of single-instance prediction over
alphabet extension, establishes the modern paradigm as superior, in terms of

compression, to other classes of algorithm.

1.8.4 Modelling

A model conforming to the modern paradigm must produce a prediction for
each instance in the message. Each prediction is based upon the history. The set
of all models is thus defined as

C:Vee C, ¢(S) = P

A close inspection of this definition reveals that it also serves to define the set of
sources. Without loss of generality, a source can also be defined as a generator
of predictions. For both models and sources, predictions are used as a method of
expressing what the source is going to do next. Thus the set C describes the set
of all sources as well as the set of all models. The incremental construction of a

model can be viewed as the reconstruction of the source from the history.
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Because real-world sources are extremely complex, it is impractical to recon-
struct them exactly. Instead, it is usual to restrict consideration to a class of
sources of a particular complexity. Modelling then consists of using the history to
select a particular model from the class. Thus the class of models that a compres-
sion algorithm is capable of constructing will determine the class of sources that it

is capable of compressing.

The actual class of sources selected for modelling depends on the sophistication
of modelling algorithms and the amount of processing power available. Modelling
is an open-ended task because its complexity is bounded only by the complexity of
real-world sources; as long as the need for greater compression remains, researchers
will continue to develop increasingly sophisticated models. Eventually the models
will incorporate mechanisms of artificial intelligence.®® Future data COmMpressors

might excel at compressing newspaper articles because of their knowledge of world
politics,

To date, the most successful models are Markov models. Because Markov
models are central to this thesis, discussion of them is deferred until Section 1.10

where they are discussed in detail.

1.8.5 Coding
The modern paradigm requires a coder with the following properties.

¢ Instances must be coded and decoded in the same order.

e Instances of symbols with probability p(a) must be coded in as close to
—In p(a) nats of channel instances as desired.

This may seem a tall order but without such a coder, alphabet extension would
prevail over single instance predictions. Luckily, the recently developed technique
of arithmetic coding satisfies these conditions. Discussion of arithmetic coding is
deferred until Section 1.9.

39 The founda,t.ion for this development is already being layed in the field of Artificial Intelligence.
For example, Dietterich and Michalski[Dietterich85] describe an Al technique for predicting
complex sequences.
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1.8.6 Not So Modern A Paradigm

The modern paradigm of data compression consists of four main concepts: the
separation of modelling and coding, adaptive modelling, single-instance prediction
and arithmetic coding. Each of these concepts was present in Shannon’s original
papers ([Shannon48] [Shannon51]). The separation of modelling and coding
is implicit in Shannon’s concept of entropy. Shannon advocated single-instance
prediction. The Shannon-Fano code employs the range division concept of
arithmetic coding. A later paper by Shannon covers adaptive modelling and

contains a diagram (Figure 10) that is almost identical to Figure 9.

COMPARISON COMPARISON ORIGINAL
REDUCED TEXT X

TEXT
e L —_— —_— —_— —
\\ PREDICTDR}——J} ﬁ\l_ PREDICTOR JA)'

Fig. 2—Communication system using reduced text.

ORIGINAL
TEXT

Figure 10: Shannon’s compression paradigm.

(Reproduced photographically from figure 2 of [Shannon51])

Shannon’s predictions were mere ordering of symbols. Shannon used the
metaphor of identical twins to describe the concept of mutually-tracking deter-
ministic predictors.

“To put this another way, the reduced text can be considered to be an encoded form of
the original, the result of passing the original text through a reversible transducer. In
fact, a communication system could be constructed in which only the reduced text is
transmitted from one point to the other. This could be set up as shown in Fig. 2, with
two identical prediction devices.” [Shannon51](p. 55)

Shannon used this technique to measure the redundancy of English by asking
human subjects to predict the next character of an English text basing their
prediction on zero or more previous characters. The success rate of the humans
gave an indication of the amount of information contained within the text. For
a 100 character context, the entropy was between 0.6 bits and 1.3 bits. In 1976,
Kauffman[Kauffman76] continued this work in the context of learning by using
this method as a measure of subjective information in a text. The work was

sponsored by the U.S. Air Force who wanted to improve their teaching programs.

Despite the fact that all these concepts were present, it took thirty years
before they were combined into a coherent whole. The failure of these concepts
to be integrated and adopted at the time they were discovered can be attributed
to their impracticality in the 19505 (an era in which programmers spent weeks

shaving off milliseconds) combined with the early adoption of Huffman coding.
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1.9 Arithmetic Coding

This section presents an established coding technique called arithmetic
coding that satisfies the coder requirements of the modern paradigm. Under
the modern paradigm, the coder’s task is to accept a stream of instances and
a stream of corresponding predictions and code each instance in as close to the
predicted entropy of the instance’s symbol as possible. For example, if a prediction
specifies that symbol a will occur with a probability of 0.25 then it is the coder’s
job to ensure that if an instance of the symbol does occur, it will use up two bits
(— logg 0.25 bits) of code string. Similarly, if the prediction specified a probability
of 345/999 then it is the coder’s job to code instances of that symbol in as close
to —logy 345/999 bits as possible.

The technique of arithmetic coding achieves this seemingly impossible task
by packing more than one source instance into the same channel instance. The
following description, which differs from the usual expositions of arithmetic coding,
follows the reasoning that led the author of this thesis to belatedly rediscover the

technique in late 1986; it is closest to Guazzo’s approach[Guazzo80).

1.9.1 A Description of Arithmetic Coding

In this approach, coding is viewed as the filling of buckets (Section 1.3.1).
The coder receives packets of information which are placed into buckets. When a
bucket is full, it is shipped to the channel.

. Coder
Information packets Output buckets
(entropy of source instances) (channel instances)

In the past, coders could only efficiently code source events whose information
content was a multiple of the bucket capacity. In contrast, arithmetic coders
can accept a stream of events of arbitrary information content (including events
containing far less than a bucketful of information) and code them as efficiently
as required. Logically, the arithmetic coder treats the information as a liquid

(instead of a solid), using the arriving information to fill each bucket exactly
before shipping it.

Figure 11: The coder’s job is to fill output buckets.
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In the blocking paradigm, recognition of a source string implies the emission
of the corresponding channel string. Coding and decoding is simple because the
events are constrained to correspond to codes that are multiples of the channel
bucket capacity. In the modern paradigm, the coder must code packets containing
an arbitrary amount of information. If coding is to be efficient, a technique must
be found for partially filling a bucket (Figure 11).

In fact partial bucket filling is commonplace. Consider a coder about to fill a
bucket of size 256 with the outcome of an event that succeeds or fails with equal
probability. If the bucket is viewed as an eight bit byte, the coder can optimally
code the outcome by setting the “top bit” of the byte to 0 upon failure and 1
upon success. This can be done by adding either 0 or 128 to the byte. The fact
that this information can be placed in the bucket arithmetically conflicts with the
notion of the bucket being indivisible. What is happening here?

:
Toass To2ss
1129
4128 128
127

Traditionally, a byte is filled with information by setting its bits in turn (left
top). The setting of the top bit of a byte can be viewed as the halving of the
range of the byte (left bottom). By dividing the range unevenly, arithmetic
coders can efficiently code events of arbitrary probability, The range division
shown on the right could be used to accurately code two events of probability
127/256 and 129/256.

Figure 12: Restricting ranges is the same as filling bits.

If the top bit is 0, the value of the byte is in the range Z[0,127]; if 1, the value
of the byte is in the range Z[128,255]. Each outcome is allocated half the range
of the byte. This division serves to represent exactly one bit because 128/256
of the byte’s possible values are allocated to each event of probability 1/2. Now
consider the case in which the probabilities are not 1/2 each but rather 129 /256 and
127/256. This event can be optimally coded by the same splitting process, the only

difference being that we can no longer point to a “bit” (Figure 12). Constraining



Section 1.9: Arithmetic Coding 65

a number from a range of width a down to a range of width b corresponds to the
transmission of Ina — Inb nats. For large a and b with a ~ b, this information
quantity can be very small. Arbitrary range divisions can be decoded by the

decoder in much the same way that bit aligned divisions can be decoded.

Returning to the example, so far a single event has been coded into a bucket by
splitting the bucket’s range into two parts and using the outcome of the event to
select one of the ranges. If the bucket were shipped at this stage, it would contain
roughly one bit of information and most of its capacity would be wasted. The
remainder of the bucket’s capacity can be used by treating the remaining range as
another bucket. If the event with probability 129/256 occurred, there will remain
a “bucket” of size 129. If the event with probability 127/256 occurred, there will
remain a “bucket” of size 127. This range can be divided again and the process

repeated.

Eventually, the range decreases to a single value (the bucket fills up). When
this happens the bucket must be shipped and a new (empty) bucket used.

The description above covers the basic mechanism of arithmetic coding,.
However, some tricky implementation problems must be resolved before the

technique becomes practical.

Problem: Range Resolution Coding the events of probability 127/256 and
129/256 onto the range Z[0, 255] was efficient because the range had exactly enough
resolution to represent the division. As a bucket fills and its remaining capacity
decreases, so does the accuracy with which the remaining range can accommodate
a range division. In the extreme, the coder might be expected to code a prediction
of (1/1000,999/1000) into a range Z[0,1]. In such a case, the coder would have to
allocate the range Z[0, 0] to one symbol and the range Z[1, 1] to the other resulting
in a great inefficiency (because the 999/1000 event contains far less than one bit

of information). If there were three symbols to code, the coder would be blocked.

Whenever the range of the bucket being filled becomes too narrow to support
the level of accuracy required to efficiently code the next prediction, a new empty
bucket can be used to widen the range out again. The new bucket is merged
logically to the old bucket and the two buckets treated as a single super bucket.
The new super bucket has a size that is the product of the remaining sizes of the
old, nearly-full bucket and the new empty bucket. For example, if the old bucket
had a remaining range of Z[18, 20] (a size of 3) and the new bucket had a range of
Z[0,255], the new super bucket would be of size 3 x 256 (size 768) (Figure 13). A

good way of viewing the super bucket is as a two digit number with the first digit
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255 767

20

18 0 0

-.0 I ] B

Two buckets of different sizes (e.g. a partially full and an empty bucket) can be
treated as one large bucket whose range is the product of the ranges of the two
smaller buckets.

Figure 13: Addition of a new bucket extends the range.

expressed in base 3 and the second in base 256. The two buckets together form a
new range that can be divided in the original manner. Eventually, the divisions
result in the range of the first bucket diminishing to a single value. When this
happens, that bucket can be shipped.

The technique of bucket merging can be performed with many buckets. By
adding new buckets whenever the size of the super bucket falls below a threshold,
any desired accuracy can be maintained indefinitely. By shipping full buckets,
only finite memory is required to maintain the accuracy. If the bucket size is small

e.g. 2), many buckets can be joined together to form a target range of the required
g y g g
accuracy.

Problem: Carry-Over Maintenance of a finite, bounded number of buckets in a
super bucket “filling station” is possible provided that full buckets can be shipped
when new buckets are created. Unfortunately, such a property is not guaranteed,
as it is possible for the division of the super bucket’s range to occur in such a way
that the top digit of the super bucket (the value of the oldest bucket) is never
resolved. In such circumstances, the oldest bucket cannot be shipped. This results
in a build up of nearly-full buckets.

The author of this thesis couldn’t solve this problem. Nor, it seems could
Guazzo.

“One disadvantage of the algorithm is that we have to keep a buffer of secondary symbols
that are still liable to be overwritten. This should be no surprise; if we are unwilling to
send to the output symbols that are not “full” of information, we should be prepared to
wait until we have some “piece of information” that fits into them.” [Guazzo80](p. 19)
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In a strict sense, Guazzo is correct. However, in practice, the buffer itself
can be compressed to O(logn) of its previous size, using negligible space. A close
examination shows that deferment of bucket shipping can only occur when all the
deferred buckets (except for the working buckets and one other bucket) have the
maximum value. This means that buffered buckets can be stored by a counter. It
is poetic justice that arithmetic coding algorithms use run-length coding internally.

Other solutions also exist (Section 1.9.2).

The “derivation” of arithmetic coding given above was motivated by practical
considerations. In contrast, other presentations of the technique suggest that
every other discovery of the technique was motivated by theoretical considerations.
In theory, arithmetic coding is even simpler than might be supposed from the
discussion above. If the multi-bucket register is considered to be of infinite length,
the technique becomes entirely arithmetic with no bucket manipulations involved.

The principle behind the theoretical technique is simply:

Principle of Arithmetic Coding: A set of messages is optimally coded
by exhaustively dividing the range [0,1) among the messages in proportion
to their probability. A message is coded by transmitting any number in
its subrange using channel digits (The narrower the range, the more digits
being required).

Thus, in theory, an arithmetic code would represent a ten megabyte message
as a single, very accurate number in the range [0, 1). As numbers of such accuracy
are intractable to manipulate, practical arithmetic coding relies on using fixed
precision arithmetic, which boils down to bucket shuffling. In practice, buckets
are not manipulated explicitly. Instead, an arithmetic code manipulates two fixed
width registers called the A register and the C register (from [Langdon84]). The
A register stores the width of the current range. The C' register stores the position
of the lower bound of the current range. The two registers can be imagined to be
positioned at the end of the code string being generated (Figure 14). Whenever
the A register (which represents the available precision) gets too small, both
registers are shifted to the right (their contents are shifted left). It’s all done with

shifting, adding and mirrors. The result is a highly efficient, practical technique.
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Zeros A register (range width)
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Arithmetic coding can be implemented using two registers that operate on the
end of the code string. Here, coding is viewed in the more theoretical sense as
the production of a single number in the range R[0,1). The A register holds the
width of the remaining range. The C register holds the lowest digits of the start
of the range. As the range narrows, the registers conceptually shift to the right
emitting the code string to the left.

Figure 14: Arithmetic coding using fixed precision registers.

(Based on the diagram on p. 802 of [Langdon82])

In summary, arithmetic codes operate by subdividing ranges in proportion
to the specified probabilities. Ingenious mechanisms are used to overcome the
problems of resolution maintenance and bucket buffering. Arithmetic codes satisfy
the requirements of the modern paradigm of data compression by coding a sequence
of events of continually changing probabilities in as close to their information

theoretic space as desired.

1.9.2 The Development of Arithmetic Coding

Although the idea behind arithmetic coding is simple, the field of arithmetic
codes is messy and complex. There is no single code called “the arithmetic code”.
Instead there is a class of codes. The development of arithmetic codes has been
messy too; no brilliant flash ushering in the new age; rather, three decades of
sparks which finally ignited in a few key papers. This section does not aim to
unravel these developments, only outline them. For a more detailed description
see Appendix 1 of [Langdon84].

There are a variety of arithmetic codes and many different ways of implement-
ing them. The technique of practical arithmetic coding can be decomposed into

three sufficient concepts:

o the representation of a message by a fraction in the range [0, 1).
e the use of fixed-precision registers.

e the avoidance of indefinite carry over.
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The idea of a message being represented by a fraction first appeared in
Shannon’s 1948 paper[Shannon48](p. 402) as part of the proof of his “Fundamental
Theorem for a Noiseless Channel”. Shannon proposed that messages be arranged
in decreasing order of probability and that the chosen message be transmitted as
a binary fraction (being the sum of the probabilities of messages earlier in the list)
long enough to identify the message’s probability range. This idea is used in the

Shannon-Fano code described in Section 1.4.1.

It took thirty years before Shannon’s idea was developed into a practical coding
scheme. During this time, the area received attention by Abramson, Elias, J elinek,
Schalkwijk, Cover (see [Langdon84] for references) but was blocked by the twin
problems of precision and the requirement of having to decode the instances in the
same order in which they were encoded (FIFO (First In, First Out) operation as
opposed to LIFO (Last In, First Out) operation).

In 1976, Pasco[Pasco76] and Rissanen[Rissanen76] independently4° discov-
ered the use of fixed-length registers. However, as presented, both techniques were
impractical. Rissanen’s technique was LIFO and Pasco’s, while FIFO, did not

solve the indefinite carry over problem.

Another burst of publications followed in 1979, detailing practical techniques.
Guazzo[Guazzo80] described a practical arithmetic coding scheme but couldn’t
solve the carry over problem (Section 1.9.1). Guazzo showed that arithmetic
coding allowed a source with one set of characteristics to be coded into a channel
with a different set of characteristics (a constrained channel) including the
case of a channel whose symbols occur with equal probability. Rubin[Rubin79]
refined Pasco’s FIFO algorithm, by describing a technique for preventing carry
over. Rissanen and Langdon[Rissanen79] not only described a practical technique

but generalized and characterized the family of arithmetic codes.

Three solutions to the carry over problem have been proposed. The first,
proposed by Guazzo is simply to terminate the code (as if the end of the message
has been reached) every so often and continue afresh. The second solution,
proposed by [Jones81](IV.iii(22-24)), is to use a counter to store the buckets
that threaten to overflow (i.e. internal run-length coding). The third solution,
called bit stuffing, by Langdon and Rissanen[Langdon81], is to insert a 0 bit
into the output stream after a fixed limit of 1s have been shifted out of the coder

register; the artificially placed 0 bit catches any carry that might occur and allows

.40 Actually, whether the discoveries were independent is unclear. A pendix 1 of [Langdon84]
implies that they were independent whereas the second paragraph of FRissanen79 states that
they were not.
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the run of 1 bits to be written immediately. For a limit of k bits, an extra bit will
be inserted on average once every 2% output bits (because the output approximates

a memoryless binary source with equiprobable symbols).

Of these solutions, bit stuffing is probably the best in practice. Regular
termination of the message is inelegant and wastes space. The use of a counter
is extremely simple and elegant but does not guarantee an upper bound on the
effective buffering (a disadvantage for real time systems); if the code string is
1111111, .. (for a binary channel), the first instance of the code string will appear
only after the entire message has been processed. Bit stuffing does not require

regular termination and provides an upper bound on the effective buffering.

By 1980, arithmetic coding had been well fleshed out. It remained only to

popularize it and to refine its implementation.

1.9.3 The Popularization of Arithmetic Coding

Although arithmetic coding was well-developed in 1980, there was no clear
public image of it as there was (say) of Huffman coding. The situation is much
the same today despite the publication of “accessible” descriptions.

In 1981, Langdon wrote a comprehensive “Introduction to Arithmetic Codes”
in an IBM Research Report. This was revised and republished in 1984[Langdon84].
Jones[Jones81], who independently discovered arithmetic coding, gave a detailed
description of an algorithm down to the program code level. Witten, Neal and
Cleary[Witten87] probably drew the most attention to arithmetic coding through
their publication in the popular Communications of the ACM in which they not
only described the technique but also presented a full implementation in one of the
most prevalent programming languages — C [Kernighan88]. Despite all these
efforts, arithmetic coding remains relatively unknown.

1.9.4 Refinements of Arithmetic Coding

By 1980 there were arithmetic codes that could code predictions to as close to
their entropy as required. Further work focussed exclusively on making the codes
more efficient.

The most important refinement work on arithmetic codes was Langdon and
Rissanen’s work on binary arithmetic codes. Binary arithmetic codes operate
upon binary source and channel symbol sets. Just as binary run-length codes are

special, so are binary arithmetic codes. In particular, binary arithmetic codes can
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be used to code a source symbol set of arbitrary size by arranging the symbols in

a binary tree and coding each traversal decision.

In 1981, Langdon and Rissanen[Langdon81] published the remarkable fact that
for a prediction consisting of two events, the probability of the least likely event
could be approximated by a power of two (i.e. p ~ %, ;lf, % ...) with a relative loss
of compression of at most 4%. This fact was used to replace the multiplication
operation of previous arithmetic codes with a more efficient shift operation (at the
< 4% cost) — a great improvement over previous codes. The simplified code is
described by four simple equations involving only shift and addition operations.
A and C denote the entire numbers of Figure 14. Q(s) is the skew number,
being minus the power of two approximating the probability of the least probable
symbol. Here, a prediction consists of a skew number[Langdon79] and a bit
identifying the least probable symbol, which for the purposes of exposition, we

assume to be 1.
A(s0) = A(s) — A(s1)

A(s1) = A(s) x 2790
C(s0) = C(s)
C(s1) = C(s) + A(s0)

In alater paper[Langdon82], an additional approximation was used to make the
technique even more efficient. A minor problem with the technique above is that
the subtraction cannot take place concurrently with the shift. These operations
were made concurrent by replacing A(s) in the second equation by the greatest
power of two less than or equal to A(s). This resulted in an even simpler algorithm

suitable for hardware implementation.

In a joint effort between different IBM research centers, the code in [Lang-
don82] was developed into a general purpose “turnkey” binary arithmetic code
called the Adaptive Q-Coder (or Q-Coder for short) which is suitable for
hardware and software implementation[Langdon88][Mitchell87]. In particular,
algorithm “[Langdon82]” was modified to improve compression performance by re-
placing the powers of two (2_Q(s) values) in the equation by precomputed values
slightly larger than the greatest power of two less than or equal to A(s). These
values were precomputed and stored in a lookup table. This modification partly
compensated for the approximations made in [Langdon82].

The Q-coder also keeps track of the frequencies of the binary symbols and
uses them to make the prediction (taking the form of most probable symbol and

a power of two) for each message instance. The user merely feeds the Q-coder a
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sequence of binary events and it does the rest. Further discussion of the Q-coder
is deferred until Section 1.11.7.

Martin, Langdon and Todd[Martin83] adapted arithmetic codes for use on
constrained channels such as magnetic recording devices in which state transitions

cannot occur too often or too rarely.

1.10 Markov Models

The modern paradigm permits the use of any model that can produce a stream
of safe predictions, one for each instance. Currently, the most successful class of
model is the class of Markov models, particularly the subclass of variable-order,
finite-context Markov models. Later chapters of this thesis focus on Markov models
and use them as a basis for exploring adaptive techniques. This section discusses

Markov models in detail.

1.10.1 Markov Chains, Markov Sources and Markov Models

In this section we give a brief description of Markov chains[Feller57] [Kar-
1in69] [Bhat72] and their relationship to Markov sources and Markov models.

A Markov chain consists of a set of states. The set can be infinite but we
will consider only finite Markov Chains containing ¢ states numbered 1 to g with
Q@ ={Z[1,¢]}. Time is quantized. At any point in time, a chain is in a particular
state. At each tick, the chain changes state (possibly to the same state). If a chain
is in state 4, it will change to state j with probability P; ;. The conditions

Vi, > Pij=1 and Vj, ) Pj=1
jeQ i€Q
hold; each row forms a prediction of the next state. A Markov chain is a directed

graph, each node of whose outward arcs are labelled with probabilities summing

to one.

A Markov source is the same as a Markov chain except that each node has
exactly n outward arcs, each labelled with a different symbol. At each tick, the
source moves to the next state in accordance with the probabilities on the outward
arcs of its current state, and emits an instance of the symbol associated with the
arc taken,

Markov Models are identical to Markov Sources (Section 1.8.4). Markov

sources and models are simply stochastic deterministic*! finite state machines.

41 Deterministic in the sense that no two arcs leading from any node are labelled by the same
symbol.
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As Markov models tend to be unmanageable unless they are finite and
ergodic, we add a new assumption to the list of assumptions already accumulated
(Section 1.1.3 and Section 1.6).

Assumption 6: Sources are finite and ergodic.

A finite ergodic source is a source that has a finite number of states and for
which the statistical properties of its output converge as the length of the output
approaches infinity. The precise mathematical definition of a finite ergodic source
varies from one probability text to another. Here the term is used to indicate that
the source in question is a Markov chain, that it has a finite number of states, that
it is possible through zero or more steps to move from any state to any other, and
that the greatest common divisor of the lengths of all its cycles is one. The last
restriction is necessary to ensure that the chain does not retain phase information
at time infinity.

1.10.2 Constructing Models from Histories

A difficulty in constructing arbitrary Markov models is the lack of correspon-
dence between states and symbols. Even if the model probabilities are known,
the problem of determining the state of a Markov chain from a long history
string (without ever being given the state of the source) is non-trivial and non-
deterministic. At best, we can only obtain a probability distribution of the model’s
current state.

To date, no one has found a feasible algorithm for constructing arbitrary
Markov models from history strings.#? A particular string can correspond to many
models and it is difficult to arrive at a good model.

These problems can be transcended by considering only models whose state can
easily be determined from the history string. In fact it is desirable to consider only
those models whose state can be determined from a constantly bounded number

of the most recent history instances. We add this assumption to the others.

Assumption 7: The state of a source can be determined by inspecting
the previous m instances that it has emitted.

This assumption forces a direct correspondence between the internal state of
a model and the string that it has produced. It also means that the entire history

need not be stored in order to determine the current state.

42 The Forwards Backwards algorithm comes close but suffers from drawbacks discussed in
Section 1.10.6.3.
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Bell and Moffat, two researchers currently active in this area, have associated
classes of finite state automata with the source models obtained with and without
the above assumption[Bell88]. Without the assumption, the model is a Finite
State Automaton. With the assumption, it is a Finite Context Automaton.
The distinction is important because it allows us to consider the set of all sources

as the set of mappings from strings of length m to predictions:
D: VYde D, d(Sm) — P

The domain of any d € D can be extended to shorter strings by defining
d(S1), VI € Z[0,m — 1] in terms of d’s implicit steady state probabilities. The
set of sources D is called the set of order-m finite-context Markov sources.

In practice, each prediction d(s) (s € Sy,;) in each source d in the set D can be
approximated by a sample x5 (Section 1.8.2). The dual nature of samples suggests
a method for constructing a sample/prediction z from a history string h of length
l. |4 returns the number of times that its argument is true over the specified

domain.
l-m

Vi € Sm, zt(a) = L"j (Pk.. ktm—1=1) A (Rktm = a)
k=1

This method treats the message as a statistical sample. Better still, it allows
the source model to be constructed incrementally from the message string. If
the source string is long enough, the probability of an instance of the symbol a
following the string s € Sy, in a source stream can be estimated as zs(a)/ys. This
sampling technique has good asymptotic properties (im0 zs(a)/ys = d(s)(a))
but does not produce safe predictions. To produce safe predictions, a non-obvious
estimation technique must be used. The problem of finding such a technique is

central to practical data compression and justifies a detailed discussion.

1.10.3 Estimation Techniques

We define the set of all estimation techniques = to be the set of all mappings
from samples to predictions.

VEEE, {(X)— P

Of these estimation techniques, only those that satisfy the following two require-

ments are of any practical interest.
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The first requirement is the estimation technique generate only safe predic-
tions. An estimation technique ¢ is of interest iff

Ve e X, Vac A, ((z)a) >0

This problem of producing safe predictions in the face of zero frequencies is called
the zero frequency problem[Roberts82].

The second requirement is that the estimation technique’s predictions converge
on the samples as the sample size increases. An estimation technique € is of interest
iff

VeeX:y>0, Va€ A, k&n;og(kx)(a) = z(a)/y

where kz denotes the sample z with each frequency multiplied by k.

The assignment of positive probabilities to symbols that have a zero frequency
may appear to be an action motivated entirely by the practical need for safe
predictions. In fact, this assignment is supported by statistical theory as well.
When a sample z of y instances is taken from an infinite population described by
the prediction p, each p(a) has to manifest itself in an z(a) as a member of the
set {8-, %, %, ce %} This leads to problems if a p(a) is less than 1/y. For large y,
the law of large numbers states that on average, each p(a) will manifest itself in
the z(a) value that minimizes |z(a)/y — p(a)|. By inverting this mapping we can,
for a given y, map sample frequencies to probability ranges to the means of the
ranges.

2(a)=0 = p(a) €0, = Bla)=4

0<a(a) <y = pla)e[ZG=L 2@ 50

8
U

r(a) =y = p(a) € [%ng_u, 1] = pla) = i%;_l

The fact that each mean is positive indicates that there is a theoretical basis
for assigning small, positive probabilities to symbols of zero frequency. The
question of what the values should be is one that has baffled philosophers and
statisticians for hundreds of years. It is generally considered that no objective
solution exists|Witten86]. In practice, any “small” positive value will suffice.

Most practitioners seem to find making this arbitrary decision distasteful.

Common estimation techniques form two groups: linear and non-linear.
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1.10.3.1 Linear Estimation

Linear estimation techniques allocate a small piece of probability to all n
symbols and then divide the remaining probability between the symbols of positive
frequency. The following generalized linear formula does this for symbol a € A
and coefficients b, c,d, e € R(0, 00).

bz(a) + ¢
fa)a) ==
In fact, the four coefficients can be reduced to one by noting that the

probabilities of a prediction must sum to one.

_ ba(a) +c _
Y t)@)=1 s > a e =

acA acA

dy+e=wa(a)+c
acA
dy+e—nc

5 Y
dy+e—nc=uyb
Because y is a free variable, we can separate into two constraint equations:

b=d and e =nc

Thus the only form of the first equation that will produce sensible probabilities is

bz(a) + ¢
§(z)(a) = B+ ne
which can be normalized by dividing by b
_z(a)+c/b
£(o)(e) = 2L

b and ¢ can be collapsed into a single parameter A = nc /b. This yields a normalized

linear form

z(a) + A\/n

f(e)(@) = T2

The A € R(0,00) parameter allows the specification of a greater or lesser
period of transition from uniform probabilities (£(z)(a) = 1 /n) to those of the
sample ({(z)(a) = z(a)/y). The smaller the value of ), the greater the trust in
the sample.

It is possible to show that if all possible probability distributions are equally
likely, the optimal estimation formula is linear estimation with \ = 7. Appendix A
contains a derivation by Jones showing this. In practice the optimal )\ seems to
be about 1 (Experiment 2, Section 4.17.5).
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1.10.3.2 Non-Linear Estimation

In non-linear estimation, symbols of zero frequency are treated as a special
case. The available probability is divided into two parts, one part of which is
divided evenly among the symbols of zero frequency and the other part of which is
divided among the remaining symbols in proportion to their frequency. Here,
dividing the probability within each group is easy because there is a natural
solution in each case. The difficulty is splitting the probability between the two
groups. As before, this question has no objective solution and we parameterize in

A using the same argument developed for linear estimation.

E(x)(0) = {w<a> 0 oLl
z(a) >0 — ﬂyﬂg_{y_—x

z € Z[0,n] is the number of symbols of zero frequency in z (2 = Waca z(a) =0).

1.10.3.3 Linear and Non-Linear Moffat Estimation

In the linear and non-linear estimation formulae, the ) parameter acts as an
estimate of the likelihood of the arrival of an instance of a symbol of zero frequency.
The higher the value of ), the more the formula is betting on the occurrence of a

new symbol.

The difficulty with choosing a fixed value for ) is that different values are
appropriate for distributions of different entropy. For flat distributions high values
of A are appropriate; for spiky distributions low values work best.

In 1988, Moffat[Moffat88] described a non-linear technique that sets A to
n — z dynamically.#® By setting A « n — z, the technique effectively counts the
occurrence of novel* symbols. This means that X is regulated in accordance with

the spikiness of the distribution.

Moffat calls this estimation technique “Method C” (after methods A and B in
[Cleary84]). We will refer to it as nonlinear Moffat estimation and generalize
it so that it contains a A value as the other estimation techniques do. Moffat’s

technique corresponds to the special case A = 1.

_ 1_A(n—2)
£()(a) = z(a) =0 — Zy—-i-/\(n—z)
z\a
z(a) >0 — ¥ y+i(n—2)
A similar modification can be made to the linear formula, yielding linear Moffat
estimation.
z(a) + (n — 2)A/n

y+(n—2)\

¢(z)(a) =

43 If n = 2 the value A = 1 is used.
44 The term “novel” is often used to describe symbols of zero frequency.
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1.10.4 Summary of Fixed-Order Markov Methods

Before moving onto variable-order methods, it is worth summarizing the fixed-

order Markov methods outlined in the previous few sections.

The designer chooses an order m € Z[0,00) (usually m < 4). The
order determines the number of instances that are used to predict the next
instance. The order m defines n™ contexts (called conditioning classes in
Rissanen/Langdon[Rissanen81] terminology) which are uniquely identified by
members of the set Sm. The model consists of a group of samples z; € X,
one for each context s € Sy. At the start of transmission, all samples are set to
empty (z4(a) < 0 for all s € Sy, and a € A). Before each instance is read, the
context zs is used to make a safe prediction ¢(zs) where s = h|h|—m+1---|h| (the
most recent m instances in the history) (¢ is chosen by the algorithm designer from
the estimation techniques discussed in Section 1.10.3). After the new instance a

is transmitted, zs(a) is incremented. The process repeats for as long as required.

This technique is called a fixed-order technique because it bases each
prediction on the same number (m) of history instances. Each instance is predicted

based on the instances that occurred in similar contexts of length m in the history.

Example: A zero-order (m = 0) technique uses a single (n0) context that
corresponds to the empty string e. The context records every instance in the

history string (z¢(a) = &Jé:l hi = a).

Example: A first-order (m = 1) technique uses n contexts (n1) that correspond to
the n symbols. Each context stores the frequency of instances of different symbols
following instances of the context’s symbol in the history (zp(a) = H-Ji;% hi.i+1 =
ba (b € S1,a € A)).

Example: A second-order (m = 2) technique uses n? contexts corresponding to
the n2 symbol pairs. Each context stores the frequency of instances of different
symbols occurring after instances of the context’s symbol pair in the history
(25(@) = Wiz hi.ivz = ba (b € Sy,a € 4)).

1.10.5 Variable-Order Techniques

Fixed-order models are simple but suffer from two problems that make them

impractical except for very low m.

Memory Consumption: An order m model requires memory for n™
samples, each of which contains n counters. Using today’s computer

storage technology with n ~ 256, fixed-order methods become impractical
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at m ~ 2. One optimization is to use a sparse representation, storing only
contexts that contain one or more instances. This reduces the memory
requirement to the smaller of n™ and ! contexts, where [ is the length of

the message.

Sample Significance: The second difficulty is the trade-off in speed and
accuracy between higher and lower order models. Consider an order 0
model containing one context and an order 100 model containing rn100
contexts. For a history of length I, the order zero model will have placed
the I instances into its only sample and will make a prediction based on
a sample of [ instances. On the other hand, the order 100 model will
have distributed the / instances amongst its 19 samples and will make
a prediction based on an average sample of [ / n100 instances which for
reasonable length messages (I < n!00), will be of zero size. Thus for
1 < n19 the order 0 model will perform better than the order 100 one. It
is guaranteed, however, that as | — oo, the order 100 model will perform
at least as well as the order zero model. Thus it is better to use lower
order models at the start of a message and switch to higher order models

as samples fill.

Variable order techniques avoid the learning problem by maintaining
models of many orders at the same time. Predictions are based on a combination
of the samples of the different ordered models. Variable order techniques avoid
the memory problem by organizing the contexts of the different orders of model

into a single tree structure that can be pruned to suit the memory requirement.

1.10.6 An Overview of Markov Algorithms

This section contains a survey of the variable-order, finite-context Markov
algorithms that have appeared to date. The term “algorithm” is used here to
describe researchers’ efforts where the word “model” is probably more appropriate.
However, because researchers tend to describe their compressors as algorithms

rather than models, the word “algorithm” is preferred.

Before launching into a discussion of Markov algorithms, a historical note on
nomenclature is in order. As far as the author can tell, each of the algorithms
to be presented was invented independently of the others. This has meant
that each algorithm has been named after the general technique that it uses
(e.g. Variable Order Markov Modelling) rather than the characteristics that

distinguish it from similar techniques. Because any sensible description of Markov
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modelling requires a few long words, the result is names such as “Local Order
Estimating Markovian Analysis”, “Prediction by Partial Matching”, “Dynamic
History Prediction Compression” and “Dynamic Markov Compression” all of
which basically describe the same thing.#® The way that the field has recovered
from this historical mess has been to acronymize all the names and pretend that
the acronyms really stand for names that distinguish one algorithm from another.

This fragile tradition is perpetuated in this thesis.

1.10.6.1 Markov Sources by Shannon

Shannon spotted the relationship between Markov chains and Markov sources
in his founding paper[Shannon48]. Shannon modelled sources as stochastic
processes that generate instances one at a time, and described a series of finite-
context, fixed-order Markov sources of increasing order as an approximation to
English. He did not tackle arbitrary Markov sources.

In a later paper, Shannon[Shannon51] proposed a compression system (involv-
ing prediction based on n-gram frequencies) that embodied many of the concepts
of the modern paradigm (Section 1.8.6). Shannon’s predictions consisted not of
probabilities but of orderings on the set of symbols.

Shannon’s technique was not adopted generally, presumably because at the
time it would have been expensive in memory and processor time.

1.10.6.2 DAFC

The simplest variable-order algorithms maintain a zero order model and a
first order model. These algorithms are best described as fractional-order
algorithms. Whereas zero order models use one context (which collects instances
of all symbols), and first order models use n contexts (each of which collects
instances of a particular symbol), a fractional order model uses k € [2,n — 1]

contexts (each of which collects instances of one or more symbols).

The problem of forming a many-to-one relation between n symbols and %
contexts has n* solutions — less if each context has to correspond to at least one
symbol. The most skewed allocation allocates k — 1 symbols to separate contexts
and the remaining n — &k + 1 symbols to the remaining context. The most uniform

allocation allocates approximately n/k symbols to each context. Both extremes

have been investigated.

45 By this is meant not that the objects that they denote are the same, but that the names
themselves, when viewed in isolation, all describe the characteristics of the class of algorithm to
which the objects all belong.
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The technique of allocating a small number of first-order contexts among
symbols is not a new one (Section 1.4.3). However, earlier techniques were static

(e.g. [Cormack85]), requiring that the designer perform the allocation.

In 1983, Langdon and Rissanen[Langdon83] described a fractional-order
algorithm called DAFC (Double-Adaptive File Compression) that dynamically
allocates symbols to 32 contexts. Initially all symbols are lumped into a single
context (numbered 0). As instances of the symbols arrive, the frequency count
of each symbol increases. The first 31 symbols whose frequency exceeds a
constant threshold (the paper recommends a threshold of 50) are allocated a
context (numbered Z[1,31]). Once a context is allocated, it remains allocated
forever. The motivation for allocating contexts to the most frequent symbols is
to increase the proportion of time in which the model is generating first-order (as
opposed to zero-order) predictions. The technique was augmented with run-length
coding. Coding is performed by decomposition using the simple binary arithmetic
code ([Langdon82], Section 1.9.4). As might be expected, the algorithm yields
compression between that of a zero and first order model and consumes memory

between that of a zero and first order model.

The other extreme has been investigated by Jones[Jones88] who simply
mapped n/k arbitrary (a modulo method was used) symbols to each context.
He then plotted a graph of compression vs & and obtained a fairly smooth increase

of compression performance with increasing k.

Without exception, the variable-order Markov models to be described allocate
one context to each member of a group of privileged symbols and lump the

remaining symbols into a single context.

1.10.6.3 FBA

The Forward-Backward algorithm (FBA), described in Roberts’s Ph.D. the-
sis[Roberts82], is the only algorithm described here that does not make Assump-
tion 7 (Section 1.10.2). The FBA algorithm accepts a Markov model with a priori
transition probabilities. It then scans the message repeatedly, each time modi-
fying the transition probabilities so as to increase the probability of the model
generating the string if left to run generatively in equilibrium.

Roberts reports that a data compression algorithm based on the FBA yielded
4.8 bits/word for “the laser patent text” which is a concatenation of patents

relating to lasers. Although this algorithm is quite powerful, it has some severe
disadvantages.
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e It needs to scan the message repeatedly. In order to use it under the
modern paradigm, it would have to be operated in a block-wise fashion.

e It is expensive in memory and processing time.

o It does not guarantee to find the optimum probabilities; it uses what is

effectively a hill climbing technique.

e It is prone to “overparameterization”, a condition that occurs when a

model adapts itself more to the message than to the source.

These disadvantages make the FBA unsuitable for data compression.

1.10.6.4 LOEMA

The LOEMA (Local Order Estimating Markov Analysis) algorithm by Roberts
[Roberts82] was the earliest use of variable-order, finite-context Markov models for
data compression. The aim of the work was to overcome the two problems with

fixed-order models that were described in Section 1.10.5.

Although it is not explicitly specified, LOEMA appears to organize its contexts
in a backwards tree which is stored in a hash table. Predictions are made
by blending the predictions of matching contexts. The blending weightings are
calculated from the confidence value C; € RJ0, 1] of each prediction (of order 2).
The final prediction p predicts symbol a with probability

p(a) = C'mpm(a) + (1 - Cm—l)(cm—2pm-—2(a) oy (1 - Cm—2)

(Cm — 3pm—3(a) + (1 — Cim_3)(... (po(a))))
where p; is the prediction of the model of order i.

One of Roberts’s aims was to conserve memory. Roberts discusses two ways
of restricting the growth of the Markov tree. The first is to grow leaves and
then prune those that do not perform well. The second is to use a metric of leaf
worthiness to determine where to grow leaves. Roberts used the product of the
entropy advantage of the presence of the parent node in the tree and the entropy
of the parent node’s prediction. The second method was favoured, even though it

yielded less compression, because it used about half as much memory.

Roberts found that the LOEMA algorithm could reliably identify changes in
the authorship of a document.

Roberts’s work addressed many of the fundamental issues in the field of Markov
modelling. However, the LOEMA algorithm requires arbitrary blending between
many orders of model, making it inefficient. The PPM algorithm (Section 1.10.6.6)

uses a simplified form of blending and yields comparable compression.
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1.10.6.5 UMC

One of the most impressive theoretical aspects of the LZ78 algorithm was
its capability to converge on any ergodic source at infinity (universality). In
1983, Rissanen used the same underlying mechanism (of infinite tree growth) to
construct a universal Markov algorithm which we will call UM C*¢, Because Markov
algorithms are more powerful that dictionary algorithms, Rissanen’s algorithm

converges on the source much faster than LZ78.

The UMC algorithm compresses a binary (i.e. n = 2) source. The algorithm
builds a backwards tree that reflects the properties of the source and then predicts
from it. The tree is built as follows.

Each node in the tree has an associated sample. The algorithm starts with
just the root node, whose sample is (1,1). The tree is uniformly 2-furcated. The
tree is updated by adding the new instance to the sample of each matching node
that already contains an instance of the new symbol. Call the deepest such node
T. If T is a leaf, n child nodes are appended to T. Regardless, the child nodes of

T are then incremented.

The algorithm takes an unusual approach to memory management and
prediction. Tree growth stops when the deepest node does not reduce the tree
entropy by a certain amount. At each step, the deepest node that does provide a

sufficient entropy loss is used to make the model’s prediction.

The algorithm can be seen to be universal by observing that at infinity, the
count on a node differs from the number of times that it has occurred by an amount

related only to the string associated with the node, not to the length of the history.

An interesting feature of the algorithm is that it accesses the history through
a permutation mapping. This means that the algorithm can easily be configured
to place different emphasis on instances at various distances.. This makes it easy
to modify for the compression of two dimensional data such as images in which a
pixel ¢ will exhibit greater correlation with pixel # — r (where r is the width of the

image) than with pixel ; — 2.

The algorithm is also unusual because it does not necessarily update to the
greatest depth that it can. In fact the algorithm can be considered to be managing

two tree structures, one for each symbol.

4® In [Rissanen83] the only name given to the algorithm is “context” (p. 659). The author
of this thesis (in his temporary capacity as algorithm trade mark registrar) thinks that the word
“context” is too generic. The acronym “UMC” (for Universal Markov Compression) will be used
instead.
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1.10.6.6 PPM

The PPM (for Prediction by Partial (string) Matching) algorithm by Cleary
and Witten[Cleary84] was the first practical variable-order, finite-context Markov
algorithm. The PPM algorithm maintains m + 1 Markov models of orders Z[0,m].
Samples are created only for contexts whose string appears in the history. These

contexts are stored in a forwards tree structure.

Cleary and Witten do not directly address the problem of memory running
out except to note that “... empty store is becoming a cheap resource. The major
expense associated with memory is the cost of filling it with information and
maintaining and updating that information.”([Cleary84], p. 401) When dealing
with this algorithm, the tradition4” seems to be to assume that infinite memory is
available.

The defining aspects of PPM are its maintenance of models of different order
and its blending of the predictions of the various order models. PPM differs
from most other Markov techniques because it does not base its predictions on the
sample of a single context. Rather, it calculates its prediction by blending samples
from the different order models that it maintains. PPM uses a blending technique
that is more time efficient than LOEMA'’s.

The PPM algorithm starts with a probability of 1 and allocates portions of
the remaining probability until all symbols have been given a positive probability.
Control starts with the highest order (m) model and works down to an order —1
model.#® At each stage, a portion of the remaining probability is allocated to each
symbol that has a positive frequency in the current order model and which has

not already been allocated a probability.

The blending method is most concisely described by a program fragment
(Figure 15). The function accepts an array of samples zs (one sample for the
matching context at each depth) and returns an array of probabilities. During
execution, a pred value of notdone indicates that a symbol’s probability has not
yet been calculated. The array zs contains an element indexed by —1 that has
the value zs(—1)(a) = 1/n, Va € A. This “uniform prediction” is used to “catch”

47 As ascertained from private communication with Witten, Bell and Moffat.

48 An order —1 model never records any instances and always makes the uniform prediction
p(a) =1/n, Ya € A.
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function PPMest (in zs : samples) return prediction:
pavail : real — 1.0;
notdone : constant real «— oo;
pred : array(symbol) of real — (others — notdone);
begin PPMest
for order in reverse —1...m loop
total : integer « 0;
z : sample — zs(order);
for a in A such that pred[s]=notdone and z(a)>0 loop
total—total+z(a);
endfor;
for a in A such that pred[as]=notdone and z(a)>0 loop
pred{a]«—pavail x(z(a)/(total+1));
end for;
pavail—pavail x1/(total+1);
end for;
return pred;
end PPMest

The PPM estimation algorithm works from the tip of the matching branch to the
root, allocating the available probability as it goes. At each stage, the algorithm
uses nonlinear estimation with A = 1 to divide the remaining probability among
the groups of zero and non-zero frequency symbols. At each level, the probability
allocated for symbols with a zero frequency is called the escape probability,
Implicitly there is an order -1 model whose only context contains asingle instance
of each symbol.

Figure 15: The PPM estimation algorithm.

symbols that have a zero frequency at all higher orders (i.e. symbols.that have

never appeared). The prediction result appears in pred.

This description was constructed for the purposes of exposition. Much more
efficient implementations exist. In general, Markov algorithms are considered to
require more resources than other classes of data compression algorithm. The
PPM algorithm appears particularly inefficient because of the way in which it

blends more than one sample together to form predictions.

Moffat[Moffat88] evaluated methods for improving the performance of the
PPM algorithm. Successful modifications were: maintaining pointers to shorter
matching contexts, using a specially optimized estimation scanner for the deepest
context (which involves no exclusion), using a move-to-front list as a representation
for predictions, maintaining a bit array to keep track of exclusions, count scaling,
only updating the deepest matching node, reconstruction when memory runs out,
and dispensing with exclusions. The final program used 512K of memory and

processed about 4K of data per second without much loss of compression (in
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comparison to slower implementations). A highly tuned Ziv and Lempel algorithm
on the same machine ran eight times faster but gave poorer compression.

1.10.6.7 DHPC

The DHPC algorithm is an algorithm developed by the author of this
thesis[Williams88]. DHPC was developed independently from all the other
algorithms and has advantages and disadvantages over the other algorithms.

DHPC is the same as PPM except for a few major changes. Whereas PPM
blends predictions from the whole matching branch, DHPC bases its prediction
upon the sample of the deepest matching node whose sample contains more than
a constant threshold number of instances. Whereas PPM grows each branch of its
tree to the maximum depth whenever a new context appears, DHPC grows its tree
slowly using threshold counts to retard growth. PPM and DHPC also differ in the
method of implementation adopted by their designers. PPM uses a forwards tree.
DHPC uses a backwards tree.

Further discussion of DHPC is deferred until Chapter 2.

1.10.6.8 DMC

The DMC algorithm[Cormack87] represents a totally new approach to the
Markov data compression problem. Instead of explicitly manipulating trees whose
nodes correspond to finite context strings, the DMC algorithm manipulates a finite
state machine whose nodes are not particularly associated with anything! Although
the algorithm works with a symbol set of any size, it is strongly oriented towards
the binary alphabet and will be presented here in binary form.

The DMC finite state machine consists of one or more nodes connected by
arcs labelled 0 or 1. It is an invariant of the machine that each node has exactly
two outward arcs, one labelled 0 and the other labelled 1. Associated with each
arc labelled a is a transition count ng which is the number of times that the arc
has been traversed. At any point of time (i.e. in between instances), there is a
distinguished node called the “current node”.
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L)
The DMC algorithm starts with a single node that points to itself. Each arc is
assigned a transition count of one.

Figure 16: DMC starting configuration.
(Redrawn from figure 3(a) of [Cormack87])

The algorithm starts off with a machine consisting of a single node whose
outward arcs point to itself (Figure 16). Each arc begins with a transition count of
one. The single node is the current node. Before each instance is read, a prediction
of the instance is generated based upon the transition counts of the outward arcs
of the current node. The estimation formula is p(a) = (nq + ¢)/(ng + ny + 2¢)
where c is the usual smoothing constant.®® This is linear estimation with \ = en
(n = 2). After the instance (a) is read, the current node changes to the node at
the end of the arc labelled a.

Thus far, the algorithm is fairly standard (as finite-state machines go). The
unusual aspect of DMC is the way its grows its finite state machine. Each time
that a transition is about to be made, a check is performed to see if the transition
count of the arc about to be traversed exceeds a certain constant threshold ty. If
it does and the transition count of all other inward arcs to the next node exceeds
a similar constant threshold ¢, then a cloning operation takes place. Otherwise
it does not.

The effect of the cloning operation is described by the following five pointer
assignments which must be executed sequentially. The newnode function creates
a new node and returns a pointer to it. newn is a temporary pointer that is used
to point to the new node. curr is a pointer to the current node just before the
cloning takes place. nezt is a pointer to the node that would be the next current
node if the cloning did not take place. The dot notation is used to refer to the two
pointer fields (named 0 and 1) of a node.

newn < newnode;
next «— curr.sym;
CUTT.S8YM — newn;
newn.0 «— nezt.0;

newn.l «— nezxt.1;

4% Cormack and Horspool do not specify the value of ¢ that they used in their experiments.
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As well as adding a new node and connecting the node into the machine
(as described above), the cloning operation apportions some of the counts of the
outward arcs of the next node to the outward arcs of the new node. An example

of the cloning operation (not giving counts) is shown graphically in Figure 17.

Next

Current
node

Cloning occurs in the DMC algorithm just before transitions are about to be
made. In this case the transition was to be from B to C. However, as the
transition counts on arcs AC and BC exceeded specified thresholds, a cloning
operation occurred. A new node C’ was created and arc BO switched to C’. The
effect was to divide the context of C between C and C’, making the contexts
more specific. :

Figure 17: DMC cloning operation.
(Based on figure 2 of [Cormack87])

Although the cloning operation appears simple, its effect can be quite complex
because of aliasing. In Figure 17, all the nodes are distinct. If nodes are aliased,
the operation is qualitatively different. In particular, if curr and nezt turn out to
be the same node, the newly created node winds up pointing to itself (Figure 18).
This is a consequence of the third assignment being executed before the fourth and
fifth assignments (in which the new node copies over the output pointers of the

current node).

To the casual observer it may seem that this algorithm does not make
Assumption 7 (Section 1.10.2) and that it is capable of employing arbitrary state
machine structures to model the source. This conjecture has been proven incorrect
by Bell and Moffat[Bell88] who showed that the only finite state automata that
DMC is capable of generating are also finite context automata. This means
that a finite context string can be associated with each node. Experimental
results confirm that DMC has about the same power as the other Markov
algorithms[Bell89].
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0 1
1
0
Cloning is not so simple if the current node points to itself. This case arises at
the start of the algorithm (shown here) where the first node is always cloned

into two new nodes (with context strings 0 and 1) that point to themselves and
each other.

Figure 18: Cloning a node that points to itself.

So little is known about the DMC algorithm that the main tutorial diagram of
the original paper is at best misleading and at worst incorrect. In DMC, a node
can have heterogeneously labelled inward arcs only if it is the original node and
no cloning has taken place. But in this diagram, node C has heterogeneously
labelled arcs.

Figure 19: Erroneous tutorial example of DMC cloning,

(Redrawn from figure 2 of [Cormack87))

Not much else is known about the behaviour of DMC. In fact, so little is
known that it turns out that the main tutorial diagram that the inventors of the
algorithm use to describe the cloning operation is at best misleading and at worst

incorrect. Figure 2 in section 4.3 of [Cormack87] (redrawn here in Figure 19)
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contains two subwindows ((a) and (b)) which are supposed to illustrate a typical
cloning operation. In (a) the node that is about to be cloned has two inward arcs
labelled 0 and 1. In (b) the node has been cloned. In contrast, the DMC algorithm
ensures that the only time that a node can have heterogeneously labelled inward
arcs is if the node is the initial node and then only if it has not yet been cloned.
This means that all five nodes in (a) must be the same node. This makes nonsense
out of (b). The figure would make sense if both inward arcs in (a) were labelled
0 (as in Figure 17). Bell and Moffat use the same example in their commentary
paper([Bell88] but appear not to have made the same mistake.

Cormack and Horspool could well be forgiven for this error. Once the algorithm
starts running, it is not at all clear what actually happens. DMC is one of those
objects whose workings are extremely simple but whose results are extremely
complicated.5°

1.10.6.9 WORD

The Markov techniques described so far all parse the input into instances.
Although parsing into instances is the best approach in theory (Section 1.8.3), the
practical advantages (such as increased execution speed) of treating the input at
a higher level justify further investigation.

Moffat[Moffat89] investigated the application of Markov models (such as
PPM) at the word level. A “word” is defined to be a maximal sequence of
alphabetic characters. A message is considered to be a sequence of alternating
words and non-words. Moffat’s WORD algorithm parses the message into a stream
of words and a stream of non-words and compresses them separately at the word
level using two separate Markov models. Markov models are also maintained for
the length and character-level characteristics of words and non- -words. Th1s allows

new words to be compressed as they are spelt out.

WORD works well for both text and non-text data. For non-text data,
the scheme degrades gracefully to a character-level Markov model. Moffat
experimented with various depths and found that order-one models out-performed
order-zero models (by about 13%) but that order-two models did not yield a
significant advantage over order-one models.

WORD is one of the best Markov algorithms. Its performance is comparable
to DMC and PPM but it runs faster.

This section ends the review of Markov algorithms. Attention now turns to

their implementation.

B0 Other examples are Rubik’s cube[Singmaster80] and Mandelbrot sets[Barnsley88].
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1.11 Data Structures For Predictions

Predictions are the glue that connects models to coders. Whenever a new
instance is about to arrive, the model generates a prediction and hands it to
the coder (Figure 9). The coder then uses the prediction to code the incoming

instance. The prediction contains a probability for each symbol.

A major problem with handling predictions is their size. Predictions for
the binary alphabet consist of a single probability and can be manipulated very
efficiently. For larger symbol sets, predictions consist of a vector of probabilities
which can be quite large. For n = 256 and probabilities of just one byte, predictions
will consume 256 bytes. This makes them impractical to create, copy (e.g. from

model to coder) or destroy on a per-instance basis.

Given that it is forbidden to construct a new prediction for each instance, the
stream of predictions being passed to the coder must take the form of views to

another data structure already created.

The obvious candidate for the “already created” predictions are the samples
stored in the nodes of the Markov models (z in Section 1.8.2 and Section 1.10.2).
Our present description of z as an array of symbol frequencies is totally oriented
towards the Markov model. By re-organizing the data structure so as to serve the
coder’s needs, the structure can be used to connect the model to the coder without

ever copying predictions.

1.11.1 Prediction Functionality

Before looking for a suitable data structure for predictions, it is worth
specifying exactly what a prediction data structure must do. This section describes

a prediction abstract data type[Guttag80] that serves the needs of both model
and coder.

The Markov model’s requirements of the prediction are very simple. All that
the prediction must do for the model is to maintain a frequency for each symbol.
Some specialized models might require more operations but the basic functionality
is described as follows. p denotes the prediction ob ject.

init(p) — Initializes the prediction’s sample, giving every symbol a
frequency count of zero.

inc(p,a) — Increments the frequency associated with symbol a.
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In contrast, the arithmetic coder’s requirements are quite demanding. In order
to divide the code space (Section 1.9.1) among the symbols, the coder has to define
an ordering® on the symbols. The actual ordering used by the coder does not
matter as long as the decoder can reconstruct the ordering. This ordering is used
to determine the symbols above or below a given symbol when dividing up the
code space. To code an instance of a particular symbol, the coder must find the
sum of the probabilities of the symbols above the target symbol. In practice, the
probabilities are manipulated in the form of frequency counts. The requirements

of the coder and decoder are specified as follows.

symbol torange(p,r,a) — Returns a tuple being the first and last

element in the subrange allocated to symbol a, from the range [1,r].

range-to_symbol(p,r,s) — Returns the symbol corresponding to the
subrange that contains integer s, from the range [1,r].

Thus, one end of the prediction data structure absorbs instances and the other
end generates ranges. Hidden somewhere in the middle is an estimation technique
(Section 1.10.3) which ensures that symbols of frequency zero are never mapped
into an empty range. With a few minor modifications, most of the data structures

to be described can be modified to use any estimation technique.

The requirements above define the prediction data structure. The major
difficulty with finding an efficient representation is the conflict between the model’s
need to modify the count of random®? symbols (inc) and the coder’s need to
access the sum of frequencies of symbols above a random symbol (symbol_to_range,
range-to_symbol). Unfortunately, any explicitly stored information about the sum
of frequencies above a given symbol can be invalidated by a single inc update to

a higher symbol (Figure 20). We cannot expect a constant time solution.

51 1t is usual to use the words “before” and “after” to refer the relation between different symbols
(e.g. “symbol 2 occurs before symbol y in the set of symbols”). Unfortunately the temporal flavour
of this nomenclature invites conf usion between the ordering of the set of symbols and the ordering of
instances in the message. Accordingly, we will use “above® and “below” g“higher” and “lower”) to
refer to the ordering of symbols within the set of symbols and use “before” and “after” (“previous”
and “subsequent”) to refer to the ordering of instances in the message.

52 “Random” here is used in the sense of Random Access Memory; that is, unpredictable and
arbitrarily chosen accesses.
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The conflicting requirements of models and coders mean that an array cannot
be used to store frequencies with temporal efficiency. Because the coder requires
the sum of frequencies above a particular symbol (so that it can map symbols to

ranges), incrementing the frequency of a single symbol requires an O(n) update
of the sum array.

Figure 20: Problem with maintaining frequency sum information.

1.11.2 Linear Representations

We start by considering linear data structures (such as an array (Figure 20)
or a linked list) for which all operations take time linear in the number of
symbols. Although such linear structures are undesirable in a design in which
prediction copying is forbidden, two significant improvements make the data

structure feasible. Both improvements apply to more sophisticated data structures
as well.

e Storage space and search time can be improved by using a sparse data

structure and storing only those symbols whose frequency is positive. In
practice, most samples are sparse.

® Search time can be improved by ordering the list so that the most
frequently used symbols are near the front. Proposed list management

heuristics are frequency order, climb and move-to-front,5

83 In frequency order management, the list is maintained in frequency order. In climb
management, the record for a symbol is moved one position towards the head of the list whenever

the record is accessed. In move-to-front management, the record for a symbol is moved to the head
of the list whenever the record is accessed.
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It is unclear which of the alternatives of the second technique should be used.
However, it should be noted that the climb and move-to-front heuristics can be
performed in constant time whereas frequency ordering can degenerate to time
linear (or if an array and binary searching are used, logarithmic) in the number of
symbols.

Linear data structures (with the given improvements) work well for sparse,
highly skewed distributions. However, data compressors should be designed to
handle white noise gracefully and so it is desirable to look for data structures with

a better worst-case running time.

1.11.3 Sparse Representations

Before turning to tree representations, it is worth investigating the issue of

sparseness in greater detail.

One of the axioms of Markov algorithms is that, in general, a higher order
model can model a source better than a lower order model can. This means
that for a redundant source, we can expect that on average the entropy of deeper
nodes of the Markov tree will be lower than that of shallower nodes. Low entropy
distributions are characterized by “spikiness”. This in turn manifests itself in
sparsity. As an example, in English text, it is common for the samples of deep
nodes to contain only 10 symbols with a positive frequency count. For 256 symbols,
this represents a 95% sparsity.

The greatest danger of using sparse data structures is the lack of any guarantee
of sparsity.’® Because sparse data structures use up more memory per element
than non-sparse data structures, sparse data structures are likely to use more
memory than a non-sparse data structure for non-sparse data. To choose a sparse

representation is to gamble memory on the entropy of the source.

Consider a Markov tree algorithm that has just run out of memory. If a fixed
size representation for samples is being used, the algorithm is guaranteed not to
require any more memory. It can (say) freeze its tree and continue to record
instances. On the other hand, if a sparse representation is being used, more
memory may be needed. The only options are then to destroy part of the Markov

tree, or to recycle the records of infrequent symbols in some samples.

One technique is to switch between sparse and non-sparse data structures

in accordance with the data. This does not solve the problem of what to do

B4 The variable size of coded data is a problem with data compression in general,
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when memory runs out but it does eliminate the spatial disadvantages of sparse
representations, admittedly at the cost of extra processing time.

In practice, data is sparse, and sparse data structures are nearly always
worthwhile.

1.11.4 Tree Representations

Tree structures provide a better solution to the prediction representation
problem, generally solving it in time logarithmic in the number of symbols. Each
symbol is stored in a single node of a binary search tree. Each node is tagged by a
symbol and stores the sum of the frequencies of all the symbols in the node’s subtree
(including the node itself) (Figure 21). For a leaf node, this sum is the same as
its symbol’s frequency. For a non-leaf node it is the sum of its symbol’s frequency
and the sums of its child nodes. The inc operation is performed by traversing
from the root to the node of the target symbol, incrementing the sum of each
node visited. The symbol_to_range and range_to_symbol operations traverse the

tree from the root using the symbol and sum values to extract symbols or ranges.

2| 23 —
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A tree structure representation of samples/predictions satisfies the needs of the
model and coder in O(log n) time. Leaf nodes store the frequency of their symbol
and non-leaf nodes store the sum of their frequency and the numbers in their
child nodes. Unlike the array implementation, incrementing a symbol affects only

the symbol’s node and its ancestors. The coder can obtain ranges by moving
down the tree.

Figure 21: Prediction tree structure containing subtree sums.

The two optimizations used to improve linear representations can be profitably
applied to tree structures. Sparse trees are easily implemented and provide
considerable space savings. The ordering of a list structure corresponds to

minimizing the tree path of the nodes of frequently used symbols. Tree balancing
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is an involved field in its own right and we will only review the most relevant tree
management algorithms.

The simplest tree management is no management; that is nodes are never
moved after they are attached to the tree. The disadvantage here is that a badly
built tree can yield linear performance — as poor as a list. However, so long as
the worst case performance is not fatal to the compression system, the worst case
may not be much of a threat in practice. For an ordinary source, on average, the
earliness of the first occurrence of an instance of a symbol will be proportional to
the symbol’s probability. This means that it is unlikely that a degenerate tree will
be built. A simple one-to-one hash function can be employed to avoid the worst

case occurring for common orderings (such as sorted sequences).

The next class of tree management dynamically manipulates the tree so as
to optimize characteristics such as the tree’s depth. The problem of balancing
trees is old, and many structures exist including height balanced trees, weight
balanced trees, b-trees, optimal search trees, biased search trees and finger search
trees[Sleator85].5% All of these trees have disadvantages. We do not intend to
explore this involved field. Only some of the solutions will be reviewed.

Of the balancing techniques, one of the simplest is height balancing (AVL
balancing)[Wirth76](p. 215) which endeavours to reduce the height of the nodes in
the tree. Height balancing guarantees logarithmic performance but is sub-optimal
for skewed distributions.

It might appear that for skewed distributions dynamic Huffman trees (Sec-
tion 1.4.4) would minimize the average path length. Unfortunately, because Huff-
man codes possess the prefix property, dynamic Huffman trees do not utilize in-

ternal nodes and their search path is about one arc longer than that of other
trees.

The recently developed splay trees by Sleator and Tarjan[Sleator85] provide

an excellent prediction representation. Splay trees are self adjusting binary search
trees that have the following property.

“For an arbitrary but sufficiently long sequence of retrievals, a splay tree is as efficient to
within a constant factor as an optimum static binary search tree expressly constructed to
minimize the total retrieval time for the given sequence.” [Tarjan87](p. 211)

Splay trees enjoy the following advantages over other trees.

e Splay trees are simple.

55 See [Tarjan83] for a review of the current state of tree and graph algorithms.
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e Splay trees do not require storage for balancing information.
e Splay trees adapt very quickly to changing access characteristics.

A recent paper by Jones[Jones88] investigated applications of splay trees to
data compression. The first part of the paper describes an optimized splay tree
algorithm which can be used to construct an efficient adaptive prefix code similar
to dynamic Huffman coding. The optimizations are possible because with a
few additional data structures, the tree need not be ordered lexicographically.
The second part of the paper investigates the use of splay trees for representing
predictions. Jones formalizes the prediction representation problem in much the
same way as we have here, and uses the basic cumulative frequency tree structure

described above. The differences are as follows.

e Only the leaves of the tree are used to represent symbols.

o The cumulative frequencies are used for the coding but have no effect on
the structure of the tree. The splaying algorithm is used to balance the

tree.
e The modified splaying algorithm is used.

The result is a fast algorithm that provides an amortized[Tarjan85] time
complexity that is linear in the length of the code string. This is a fascinating
result because the length of the code string and the processing time are determined

by independent processes (the cumulative frequencies and the splaying) driven by
the same data.

It is unclear why Jones did not utilize the internal nodes in the tree. This

omission may simply have been a carry over from the prefix trees described in the

first part of the paper.

The splay tree solution yields a linear amortized bound. This means that at
any instant, the number of output nats may not correspond to the time taken to

produce them; in practice a buffer would be required to drive a fixed rate channel,
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1.11.5 Heap Representations

Moffat[Moffat88] has provided a prediction data structure that yields the same

linear bound as splay trees, but at the instance level (i.e. not amortized).

The scheme uses four arrays of equal length, the length being the number of
symbols. The first array records the frequency of each symbol in frequency order.
The next two arrays provide mappings between symbols and their corresponding
elements of the frequency array. Because the first array is in frequency order, it can
be considered to be a perfectly balanced heap. The fourth array stores the sums of
frequencies of each element’s subtree in the heap. The inc operation is performed
by swapping the target symbol with the leftmost (high frequency direction of the
frequency array) symbol with the same frequency (logarithmic time using binary
search). The frequency of the target symbol is incremented (constant time) and the
cumulative frequency branch of the heap is incremented (logarithmic time). This

scheme operates in a manner similar to the Dynamic Huffman Coding algorithm
(Section 1.4.4).

In this algorithm the access time and the length of the output string are
controlled directly by the same mechanism — the frequency array. This yields an
instantaneous linear time complexity in the length of the output, removing the
need for an output buffer. This is the only prediction data structure to date with
this property.

One of the problems of using large symbol sets is that wide coder ranges are
required for accurate coding. For example, if there are 256 symbols, each with a
probability that is an integer multiple of 1/1000, the coder range would have to
be at least 256000 x k wide to guarantee an accuracy of one part in k within each
probability division (1/1000). Such large ranges stress coder designs.5¢

An alternative to coding large-alphabet symbols directly is to use a binary
arithmetic code (Section 1.9.4) to transmit binary branching decisions on the path
from the root to the target leaf, using the cumulative frequencies of each pair of
candidate child nodes as probabilities. This technique is called decompositions?
and has been proposed as a technique for coding predictions[Langdon83]. De-

composition allows the use of alphabets of unbounded size without introducing

precision problems.

88 For example, the author’s own coder implementation uses double-precision floating point
numbers.

f" The technique of “decomposition” comes from [Shannon48](section 6, figure 6) who noted that
his definition of information allowed a decision tree of arbitrary furcation to be converted into a
binary decision tree with the same entropy.



Section 1.11: Data Structures For Predictions 99

1.11.6 Stochastic Representations

All the prediction representations discussed so far are oriented towards
increasing the speed of the data structure. In general, speed is of greatest
importance in a prediction data structure. However, because Markov models can

have many thousands of contexts, memory consumption is also important.

A large portion of the memory consumed by a prediction is taken up by
frequency counters.®® The fact that predictions are based only on the relative
frequency of each symbol in a sample suggests that a floating point representation

could be used to reduce the memory consumption of these counters.

An 8-bit counter of the form m x 2¢ with m € Z[0,15] and e € Z[0,15] can
store natural numbers (scattered exponentially) in the range Z[0,15 x 21%]. This
is more than enough to prevent overflow under normal conditions. The major

problem is incrementing a counter with a positive exponent.

One possible implementation of the increment operation is to increment the
mantissa m with probability 27¢. This organization conserves memory at the
expense of accuracy and uncertainty in the value of the count; after a number of
increment operations, the counter’s value will be spread in a binomial distribution
around the ideal value (i.e. the value the counter would have if it was an integer
counter of infinite width).

The technique of stochastic counting presented above was devised by the
author of this thesis in early 1987. A less general form of the same idea was
devised in 1982 by Helman, Langdon, Martin and Todd[Helman82] who proposed
stochastic incrementing as a method for updating skew numbers (Section 1.9.4). A
skew number is essentially a binary exponent (e in the above). Despite the lack of a
mantissa, the scheme is efficient for binary codes because of the accuracy to which
a binary prediction can be approximated by a power of two (Section 1.9.4). The
technique of stochastically incrementing skew factors was successfully incorporated
into the adaptive Q-Coder described in Section 1.11.7.

It should be mentioned that decoding can still take place in a compression
system that utilizes random numbers so long as a deterministic random number
generator is used. Linear congruential generators are the most popular and are
described in [Knuth81] (chapter 3). Recently a minimum standard for random

number generators has been proposed[Park88]. In most compression systems,

58 The pointers of sparse representations also use up a lot of memory.
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speed is likely to be more important than randomness and faster, less sophisticated

techniques may be more effective.

If storage is really at a premium, samples could be represented as a list of the
frequencies of each symbol with each frequency f stored as b = [log f] 0s followed
by a 1 followed by the b bit representation of f. A sample of y instances would

require a minimum and maximum of

Z[n + 2[loga y],n (1 + 2[logg y/n])]

bits depending on the entropy of the sample. By sharing space between counters,
this representation requires space logarithmic in the total number of instances.
However, as prediction data structures are already speed-stressed, this structure

is unlikely to be practical in the immediate future.

1.11.7 The Adaptive Q-Coder

One approach to prediction representations is to roll the coder, prediction
and context together into a single data abstraction that receives instances and
transmits channel symbols. Traces of this approach are present in Moffat’s
presentation of his prediction data structure [Moffat88], although strictly Moffat’s
structure conforms to the prediction data structure specification given earlier
(Section 1.11.1).

The adaptive Q-coder[Langdon88][Mitchell87] combines several ideas together
to form a powerful integrated binary arithmetic coder. At the heart of the method
is an optimized version of the simple binary arithmetic code of [Langdon82]
(Section 1.9.4). The new code is very fast, involving only shift and addition
operations.

Driving the arithmetic code is a stochastically incremented sample that
consumes only six bits. One bit stores the most probable symbol (0 or 1). The
other five bits store a skew number.5® The complete six bits form a prediction.
Whenever the least probable symbol arrives, the skew number is decremented and
the coder register is shifted. Whenever the most probable symbol arrives, a value
determined by the skew number is added to the coder register. If the coder register
has to be shifted, the skew number is incremented. The effect is that the coder

register acts as mantissa to the skew value’s exponent,.

59 In the Q-coder, the relationship between the skew number and the coder is more complicated
than a simple power of two. Here, the description is simplified for the purposes of exposition. For
full details of the Q-coder refer to [Langdon88].



Section 1.11: Data Structures For Predictions 101

The symbiosis of the Q-coder’s skew number and coder register suggests that
the Q-coder could not be modified to operate with more than one context. This is
not so. Although a single-context Q-coder apparently relies on the coder register
as a mantissa, it can do nearly as well with a stream of random numbers. This
enables many contexts to share the same coder register. The result is a single-

coder, multi-context system requiring only six bits per context.

1.11.8 A Comparison of Representations

The multitude of prediction representations begs a comparison. Unfortunately,
nobody has has performed a comparative study. Apart from the theoretical
results, the only practical result seems to be that sophisticated data structures
usually do not perform as well as the simple ones[Moffat89](p. 191). In practice
alphabets are sparse, and worst cases rarely occur. At the end of his paper on
splay trees, Jones[Jones88] compared his splay tree structure with a move-to-
front list structure®® and found that the list ran faster for entropies less than
6.5 bits/instance. 6.5 bits is a very high entropy for ordinary byte data and so it
seems that simple data structures run faster in practice. Moffat came to much the
same conclusion[Moffat89](p. 191). The author’s own experience with splay trees
supports this result.

1.11.9 Summary

Predictions form the glue that connects the model and the coder. This section
has established prediction data structures as an important component of modern
data compression implementations. Prediction data structures are subject to
tight specifications which make them difficult to implement efficiently (i.e. in
constant time). Because prediction abstractions map instances to ranges, they
must embody an estimation technique. Many representations can be used for
predictions, ranging from ordered lists and balanced trees to the sophisticated
splay and heap data structures recently proposed. For practical data compression
using small alphabets, sophisticated data structures may be less effective than
simple data structures. Tree structures allow binary decomposition which can be

used to avoid high precision arithmetic.

80 Jones claims to have used the “move-to-front” C program given in [WittenSZ]. However
the text (p. 536) and program (p. 531) in [Witten87] describe a frequency ordered list. As a

consequence, it is unclear whether Jones was using a move-to-front or a frequency-ordered heuristic.
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1.12 Data Structures for Markov Trees

The previous section discussed the sample/prediction data structure which is
associated with each context in a Markov model. This section zooms out to cover

representations for the Markov tree structure itself.

The constraints on representations for Markov tree structures are much less
stringent than those for the representation for predictions. The tree structure is
fundamentally a one-way mapping from strings to nodes. There seems to be two
ways of representing it. The first is hashing, in which strings are mapped directly
to nodes. The second approach is to use an explicit tree structure. Both forward
and backward trees can be used.

1.12.1 Hashing Representations

A very simple method for storing the nodes of a tree is simply to hash string
values directly onto their corresponding nodes. This method was used in the
LOEMA algorithm[Roberts82](chapter 4, p. 32). To use a hash table, a hashing
algorithm must be found that maps strings of length Z[0,m] onto numbers in the
range Z[0,h — 1] where h is the length of the hash table. Each hash table entry
corresponds to a Markov tree node. Hash tables suffer from the disadvantages
of being of a fixed size®® and of having to store the key value in each entry. In
this case, strings of up to length m must be stored. Although this may seem a
problem, in practice it is not. Experiments show that the optimal m is about 3
(Experiment 5 in Section 4.17.8, [Moffat88]). For n = 256 and m = 3, a maximum
of three bytes would be needed to store each entry.

Hash tables have the advantage of allowing totally random access to any node
in the tree. So long as the maximum node depth is kept low, hash tables will
conserve memory by eliminating pointers. An advantage of hash tables is that

they open up the possibility of storing non-tree structures (e.g. omitting parent
nodes).

1.12.2 Backwards and Forwards Trees

The alternative to using a hash table is to construct an explicit tree structure
(either in an array or in heap). Tree structures can be constructed incrementally
(unlike hash tables which must be completely initialized at the start of the run)

and provide fast (pointer) access between related (parent/child) nodes.

1 However, extendable hash tables have recently been devised.
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The main design decision in representing a tree structure with a tree structure
is the way in which child nodes are connected to their parent node. Most of
the discussion in Section 1.11 applies here as well. The main difference between
furcation trees and prediction trees is that furcation trees need not conform
to the requirements of the arithmetic coder. Further discussion of furcation

implementations can be found in Section 4.6.

The next major design decision is whether to use forward trees or backwards
trees (Section 1.2, Figure 3 (reproduced in Figure 22)). As each kind of tree
is capable of mapping strings to nodes, each is capable of implementing the
required mapping. The author’s DHPC algorithm (Chapter 2) is strongly based
on backwards trees. In contrast, all implementations of PPM and its variants have
used forwards trees ([Cleary84]°2, [Bell89], [Moffat88]).

The choice between backwards and forwards trees is considerably muddied
by proposed improvements involving cross-tree pointers. We start by considering
trees (Figure 22) without such pointers.

A Backwards Tree A Forwards Tree

In backwards and forwards digital search trees each node corresponds to the
string constructed by moving from the root to the node. The root node
corresponds to the empty string. The only difference between backwards and
forwards trees is the direction of their strings. This figure is a duplicate of
Figure 3.

Figure 22: Backwards and forwards digital search trees.

The basic requirement of a tree is that it provide fast access to all nodes whose
strings match the history. In the case of a backwards tree, the set of matching
nodes always form a branch leading out from the root. If the maximum depth of

the tree is m, all matching nodes can be located using m arc traversal operations

62 This first paper did not give many details on the way PPM was implemented. However
verbal descriptions by the authors along with a paper by Moffat[Moffat88] and a book by the
inventors[Bell89] of the algorithm confirm their use of explicitly linked forward trees.
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(hops). In the case of a forwards tree, the matching nodes are scattered through
the tree and must be looked up separately. For a history string “sloth”, the nodes
“h”, “th”, “oth”, “loth” and “sloth” must all be accessed separately. This takes
m(m + 1)/2 hops.

Bell, Cleary and Witten[Bell89] proposed a technique for reducing the m(m +
1)/2 hops. A window buffer of m + 1 pointers is maintained that points to the
currently matching nodes of depth Z[0,m]. Whenever an instance arrives, each
pointer is moved one arc down the tree and the entire buffer is shifted. The pointer
of depth m drops out one end of the buffer and a pointer to the root node is inserted
at the other. This system cuts the per-instance branch access time down to m

hops, which is the same as for backwards trees.

So far backwards trees appear far superior. Backwards trees provide access
to the matching branch of any random history in m hops. Forwards trees require
m(m + 1)/2 hops for a random history but for sequential data, yield m hops with
the aid of an extra data structure. The main advantage of forward trees is that
their furcation data structure can be combined with their prediction data structure

to yield a memory saving for internal nodes.

In practice, once an algorithm has been running for a while, most predictions
are made by the deepest node of the matching branch. This fact led to the
independent discovery of vine pointers ([Bell89]) in forward trees and shortcut
pointers (Section 4.10) in backwards trees. The vine pointer of a node as
(a € A, s € S) in a forwards tree points to node s. Vine pointers eliminate
the need for a window buffer of pointers. For backwards trees a shortcut pointer
is associated with each symbol in each prediction. For symbol a of node s, the
pointer points to node sa. To allow access to the entire matching branch, parent

pointers must be stored as well.

At this stage, the backwards tree seems a little overloaded with data structures;
in fact, for sequential data, the links from parent nodes to their child nodes are

no longer required. If they are removed, the backwards tree turns into a forwards

tree.

The relationship between backwards trees and forwards trees becomes clearer
if each structure is viewed merely as a collection of nodes supporting one or more
node-to-node mappings. Because each node corresponds to a context string, the
mappings are best expressed as mappings between strings. Table 3 lists four
such mappings, their (logical) names and the names given to them by advocates

of backwards and forwards trees. Mappings that require the specification of a
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symbol a are far more expensive (O(logn)) than mappings that don’t (O(1)). The
entry sa—s in the table is currently not used in any algorithm and is included

only for completeness.

Mapping | Name Backwards Name | Forwards Name
s—sas | AddLeft Child pointer =

as—3 StripLeft Parent pointer Vine pointer
s—2ssa AddRight Shortcut pointer | Child pointer
sa—8 StripRight | — Parent pointer

Table 3: Tree mappings and their names.

These mappings provide a simple tool for analysing tree structures. A basic
backwards tree (as in [Williams88]) is described by {AddLeft}. A basic forwards
tree (as in [Cleary84]) is described by {AddRight}. A backwards tree with parent
pointers and shortcuts pointers (as in Chapter 4) is described by {AddLeft,
StripLeft, AddRight}. A forwards tree with vine pointers (as in [Bell89]) is
described by {AddRight, StripLeft}.

Different mappings lend different properties to a tree. The AddLeft mapping
is needed if O(m) random access to contexts is required. The StripLeft mapping
is needed if context blending is to be performed. However, an array of pointers
can be used to avoid it if the AddRight mapping is available. The AddRight
mapping coincides with the prediction data structure. The StripLeft and AddRight
mappings form a very powerful combination because they can very efficiently
convert a history buffer string of the form as into the form sb (s€S,ac Abe A).

The conclusion is that forwards trees are more efficient for flattish trees.

The distinction between backwards and forwards trees becomes less blurry
when we consider the effect of maintaining incomplete trees. So far, we have
assumed that a node is created for each distinct string of length m or less that
appears in the history. Under such conditions, forwards and backwards trees store
identical sets of strings and have an identical effect. If memory is restricted, leaf
nodes must be destroyed (or never created). In such situations, forwards and

backwards trees present different pruning alternatives.

In a forwards tree, the string sloth is stored with the h at the leaf end. In a
backwards tree, the s is at the leaf end. In one case, removal of a leaf will leave
the context slot and in the other loth. Similarly, when choosing where to place

a node, for leaf node lot, a backwards tree will present slot and a forwards tree
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loth. In the end, it may turn out that both kinds of leaf addition operations yield
equivalent compression on average. However, from an organizational standpoint,
the options presented by the backwards tree are more attractive. In general, if a
node is heavily used, it should be divided into nodes that represent more specific
contexts. For a context whose string is s, contexts of the form as should be
created; s defines the context and a refines it. In a backwards tree, specialization
of a context can be performed by adding one or more child nodes to the heavily
used node. In a forwards tree, an entirely new branch must be constructed to
achieve the same effect. Whereas attaching a leaf node to a node s in a backward
tree creates a context as, addition of a leaf node to a node s of a forwards tree
creates a new context sa whose recorded instances will not be a subset of those of
the parent context.

In conclusion, for flattish trees, forwards and backwards trees provide much the
same performance. For sequential data, forwards trees emerge as the most efficient
representation, mainly because they save memory by combining the furcation and

prediction data structures. For randomly accessed contexts, backwards trees are
the best.

For irregular trees, the emphasis moves from efficiency to organization.
Backwards trees present the most coherent tree growing and pruning options
because the tree structure corresponds directly to a refinement of contexts. The

forwards tree structure does not link related contexts as closely.

In this thesis, backwards trees are used exclusively. Chapter 2 describes an
algorithm that uses a backwards {AddLeft} tree. Later on in Chapter 4, a more
sophisticated algorithm that uses a backwards {AddLeft, StripLeft, AddRight}

tree. This is the most powerful structure available.

1.13 Dictionary Methods vs Markov Methods

The field of data compression is currently dominated by the two major
classes of algorithm: dictionary techniques and statistical techniques. Dictionary
techniques are represented by the adaptive Ziv and Lempel compressors, and in

particular LZ78. Statistical techniques are represented by finite-context Markov
models, and in particular PPM.

At present each class of algorithm is holding some ground. Markov algorithms
yield the best compression but dictionary algorithms are much faster and are
invariably chosen in practice. It is worth throwing some light on the relationship

between these two classes of algorithm.
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Langdon[Langdon84] developed the ideas presented in his earlier paper
[Langdon83] (Section 1.7.5) about the statistical equivalent of LZ78. The main
result is that it is always possible to construct a Markov model that emulates a

dictionary technique. The converse is not true.

Consider a dictionary of d strings each of which is assigned a probability p;.
For the sake of simplicity, we assume that a perfectly efficient arithmetic code
1s being used. The message is parsed by the dictionary using greedy parsing. If
the dictionary is represented as a forwards ({AddRight}) tree, the parsing of a
single phrase consists of traversing the tree from root to leaf, one arc per incoming
instance. Associated with each node is a code string. By taking the inverse log
of the code string lengths at the leaves and working backwards down the tree,
probabilities can be assigned to each arc of the tree. Each forward branching then
corresponds to a prediction. The context on which each “prediction” is based
depends on the depth of the node in the tree. Because a parse consists of walking
from the root to a leaf, successive “predictions” are made using successively deeper
orders. When a leaf is reached, control returns to the root and the next prediction
is a zero order one. The result is the generation of predictions with orders that

vary as a saw-tooth function.

This is the fundamental difference between Markov techniques and dictionary
techniques. Markov models apply the same amount of “power” to each instance
whereas dictionary techniques apply power in a saw-tooth function. The effect
is that Markov models yield better compression than dictionary techniques, but

require more processing time.

Langdon quantified all these ideas in his paper by defining three models: M —
a dictionary (parsing) model, M0 — the dictionary model expressed as a Markov
model, and M’ — a full Markov model using the same number of contexts as M.
He then showed that M’ will always perform at least as well as M , with equivalence

occurring when the source structure actually does follow the saw-tooth order curve.

Langdon pointed out that Markov models can approximate a source as closely
as desired as soon as the model order exceeds that of the source. In contrast,
parsing techniques, which are based on the saw-tooth power function, must grow
an infinite number of phrases in order to raise the saw-tooth period to the point
where the inefliciency of the zero order predictions at the start of the saw-tooth
have little impact. Langdon showed that for a universal parsing model, the length

of phrases approaches infinity as the message length approaches infinity. This
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implies that the average order of the implicit Markov models approaches infinity

as well.

Experimental results confirm Langdon’s conclusion. Figure 23 shows the
performance of two LZ78 variants called LZC and LZFG and a PPM variant
called PPMC.®* LZC is the algorithm used in the Unix compress program. LZFG
is the best LZT78 algorithm developed so far (in general LZ78 class algorithm
perform worse than LZ77 class algorithms®). PPMC is the best Markov algorithm
developed to date. The vertical axis plots compression (proportion remaining).
The files (a fiction book, a news file, an object file, a paper and a C program) are
described in Section 4.17.2.

M zc
B ure
PPMC

book1 news obj2 paper1 progc

This histogram compares the compression performance of the best Ziv and
Lempel algorithm (LZFG) with the best Markov algorithm (PPMC) on a number
of files. The LZC algorithm, which is the Unix compress program, is a variant
of LZ78 and is included for comparison. The vertical axis measures compression
(proportion remaining) with a higher bar indicating worse compression than
a lower bar. The horizontal axis gives the names of the test files. These are
described in Section 4.17.2. This graph indicates that the best Markov algorithm
yields better compression than the best dictionary algorithm.

Figure 23: Performance of dictionary and Markov techniques.

In practice, the extra compression obtained by Markov methods is usually
not worth the decrease in speed.®® Fiala and Greene[Fiala89] describe some

sophisticated variants on LZ77 and LZ78 and make a strong case for the practical

%% This graph was generated based on results given in table B-1 of [Bell89]. The author of this
thesis has not implemented any LZ algorithms.

4 See figure 9-10 of [Bell89).

65 Although the slower techniques will always find application where the cost of the channel
is high relative to the cost of processing time. Examples: Modem communication, batch file
compression[Witten88](p. 1140) and space probes.
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advantages of dictionary techniques over Markov techniques. However, the field
is by no means stable and it is possible that faster Markov techniques will
appear (Appendix D). Meanwhile the debate continues ([Langdon83], [Langdon84],
[Hamaker88], [Witten88], [Fiala89]).

In summary, all current text compression techniques operate entirely by
exploiting the correlations between adjacent instances. The power of a technique
is measured by the number of instances used to predict the next instance. Markov
techniques apply roughly the same amount of power to each instance. Dictionary
techniques apply power in a saw-tooth function. Markov models yield the best
compression. The best dictionary techniques yield nearly as good compression
but run much faster.

1.14 Signal Compression

Data comes in two different kinds: text data and signal data. This thesis is
concerned almost exclusively with text data. It is worth distinguishing between

the two kinds of data because completely different techniques are used to compress
them.

Text data consists of a stream of instances of symbols. Examples of text

data are English text and computer programs.

Signal data consists of a stream of numbers (also confusingly called
samples) taken from a real world sampling device such as a digital
microphone or a video camera. Examples of signal data are digital
representations of music and digital images. Each instance in a stream
of signal data is a snapshot of the amplitude of an analogue source at a

particular position or time.

Both text data compressors and signal data compressors compress streams
consisting of instances of a set of n symbols. Each stream can equally well be
thought of as a sequence of numbers in the range [0, n — 1]. The difference between
the two kinds of data is that signal data assumes an ordering® on the symbols
whereas text data does not. If text and signal messages were each fed through a
one-to-one random permutation function f : A — A, the text compressor would
yield identical compression whereas the signal compressor’s performance would be
substantially reduced. Signal compression techniques are based on the assumption

that the instances are the result of a (slowly varying) physical process.

66 The values ordered are usually linearly distributed but are sometimes exponentially distributed
(fixed point vs floating point).
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The techniques used for modelling signal data are completely different from
those used to model symbol data. However, the recent advances in symbol
compression have resulted in an overlap between the fields and it is worth
briefly reviewing the area. There are two interesting classes of signal data: one
dimensional and two dimensional. We will refer to these classes of data as “sounds”

and “images”.

Two classes of technique are used to compress signal data. One method
is to fit a curve to the next few instances to be transmitted and transmit
only the coefficients of the curve. This has been done with Fourier trans-
forms. Turner[Turner75] discusses the use of the Hadamard transformation.
Shapiro[Shapiro80] describes a technique which dynamically selects between a
number of different curves in a library of curves (e.g. linear curves, quadratic

curves, exponential curves).

The second (and most popular) signal compression technique is prediction; in
fact prediction was used in signal compression long before it began to star in text
compression. The technique of adaptive linear prediction[Witten80] uses
a linear function of the previous k instances to predict the next instance. The
arithmetic difference (error) between the predicted symbol and the symbol of the

actual instance, is transmitted using a smaller number of bits.

Markov models are generally ineffective when applied to signal data because
the patterns in the signal data are not exact. A wave can cycle one hundred times
without using the same symbol (e.g. if the symbol set size is n = 65536 as it is
for sound on compact disks). However, Markov models can be applied to black
and white images (which have a binary symbol set (n = 2)) and to predicting the
rough error of a distribution.

One of the earliest predictive techniques for compressing black and white
images is described by Kobayashi and Bahl[Kobayashi74]. Compression takes
places in two stages. Stage one does not effect a compression but simply
changes the statistical properties of the block of bits. Stage two does the actual
compression. In stage one, the image is scanned line by line, pixel by pixel, from
left to right. Before each pixel is scanned, linear prediction is used to predict
whether it will be 0 or 1. The prediction is based upon neighbouring pixels that
have already been scanned. Each pixel bit is then replaced by an error bit being
0 if the prediction was correct and 1 if it was incorrect. The result is a bit matrix
of the same size as the original image, but one that can reasonably be modelled as

the output of a memoryless binary source. This is then encoded using binary run
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length coding[Bahl74] (Section 1.5.1.1). Bahl and Kobayashi discuss a number of
pixel predictors and both fixed and adaptive predictors are examined.

Bahl and Kobayashi’s technique can be considered as a primitive version of a
more modern technique described by Langdon and Rissanen[Langdon81]. Where,
in the second stage, Bahl and Kobayashi employed run length coding, Langdon
and Rissanen employed a binary arithmetic code (Section 1.9.4). Where in the
first stage, Bahl and Kobayashi used an adaptive linear predictor, Langdon and
Rissanen used a Markov predictor. Use of a Markov predictor was possible because
there were only two symbols. 1024 contexts were constructed corresponding to the

1024 different states that 10 pixels near the pixel being predicted could be in.

The other application of modern techniques to signal compression is in

predicting the error of the prediction of an instance.

Traditionally, a signal & bits wide is compressed by predicting it and transmit-
ting the error as a stream of instances e bits wide. If the error is greater than the
maximum transmittable error, the signal becomes distorted (slew rate distortion)
or an escape code is used to introduce a wider error code. A more general technique
is to assume an error distribution and transmit the error according to its proba-
bility as specified by the distribution (using an arithmetic code). Todd, Langdon
and Rissanen[Todd85] describe a technique that goes one step further by using
a Markov model to predict the error yielded by a linear prediction technique. A
first pass divides the error distribution into five zones called buckets, each of which
contains roughly the same number of error instances. To these zones is assigned
an error-symbol alphabet of size 5 that is distinct from the signal alphabet. The
error symbols of the three pixels adjacent to the pixel being predicted are used to
select from one of 125 contexts. The selected context predicts the error symbol
of the predicted pixel. Surprisingly it was found that the actual predictor used
didn’t matter much if the resulting errors were being compressed by this scheme.

There are a number of ad-hoc techniques for compressing image data that do
not use prediction. An image can be represented by a quad tree. Quad trees
recursively divide the image into four parts, stopping when each part is a constant
value. Quad trees rely on the fact that images tend to contain large tracts of the
same colour. Another technique is to transmit a chain of points being the outer

boundaries of a contiguously coloured area[Morrin76].

One of the more interesting uses for prediction in image compression is that of
progressive transmission. Witten and Cleary[Witten86] describe a technique

in which the image is represented by a solid, uniformly 4-furcated (quad) tree with
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the leaves corresponding to the pixels. The image is transmitted layer by layer
from the root to the leaves, using the current layer to predict the next layer. The
technique transmits the image in the same time as a single linear scan but provides
coherent images of increasing resolution after each layer has been transmitted.
Without using one layer to predict the next, layer by layer transmission would

take about 30% longer to transmit than the leaf layer alone.

One important area of image compression is facsimile compression. Facsimile
compression has become specialized because of the highly specific nature of images
transmitted; typically the images are of text documents. This fact is used to
advantage in the “Combined Symbol Matching Facsimile” algorithm described
by Pratt, Capitant, Chen, Hamilton and Wallis[Pratt80]. The algorithm first
scans the image looking for characters and divides the document into two bitmap
overlays, one containing symbols and the other containing the residue. A character
font dictionary is transmitted followed by a compressed form of the symbol portion
of the page. The residue is transmitted using run-length coding. The result is an
algorithm that out-performs run length coding for pages that contain a lot of text
and as well as the best run length coding schemes for pages that consist mainly of

graphics.

1.15 Measures of Compression

Researchers in the field of data compression seem to be uncertain of how to
express the performance of their compression algorithms. If « is used to denote
the length of the message and 8 is used to denote the length of the compressed
message, a measure can be expressed in terms of o and 8. Because each formula
involves a division, the result of the formula is dimensionless and the units of
information of o and 8 do not matter so long as they are the same. An informal
sample of the literature revealed a high entropy in the measures used to present
experimental results (Table 4).

Compiling this table was tedious because most papers do not explicitly define
the measure that they are using. For most papers the measure used could only
be determined by looking in the discussion section and locating a sentence that
compares two results. The problem of identifying the measure was particularly

acute when the compression presented was about 50%.

The measures listed in Table 4 are not exhaustive. There is a/(88) which is

instances per bit and 1 — (3 /o) which is the proportion taken off the input file.
Similar measures can be devised for nats.
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Paper Value Description
Williams88 B/a Compression
Bahl74 a/B Compression
Jakobsson82 | a/f Compression gain
Pratt80 a/B Compression ratio
Teuhola78 alp Compression gain
Turner75 alp Compression ratio
Bentley86 8(8/w) Bits per character
Brent87 8(8/a) Compression ratio
Cleary84 8(8/a) Bits per character
Cormack85 | 8(8/a) Bits per character
Moffat88 8(F/a) Compression
Roberts82 8(8/a) Entropy
Cormack85 100(3/«) Compression ratio
Cormack87 100(8/«) Compression factor
Gottlieb75 100(3/a) Compression ratio
Mcintyre85 | 100(4/a) Not named
Moffat87 100(3/a) Compression ratio
Cooper78 100(1 — 8/a) | Compression
Cooper82 100(1 — 3/a) | Compression
Katajainen86 | 100(1 — 3/a) | Compression gain
Mayne75 100(1 — 3/a) | Space saving
Mccarthy73 | 100(1 — 8/a) | Storage saving
Raita87 100(1 — B/a) | Percentage saving
Reghbati81 100(1 — B/a) | Compression
Severance83 | 100(1 — 8/a) | Compression
Tischer87 100(1 — B/a) | Compression ratio

The method of reporting compression performance varies greatly from researcher
to researcher. This table lists the measures employed in an informal selection
of papers. « is the size of the uncompressed message and 3 is the size of the

compressed message. The description column lists the descriptions used by the
different authors.

Table 4: Compression performance measures.

Perhaps the real problem is that terms such as “compression ratio” are not
descriptive of the formulas they represent8”. At this stage, proposing standardized
meanings to the various terms would be of little use. A better solution is for

researchers to report their results using more precise descriptions (Table 5).

Nearly all of the measures listed in Table 4 express compression in terms
of the ratio of the length of the compressed file to that of a byte stream

representation already chosen by humans (e.g. ASCII). These measures are relative

87 A similar problem with nomenclature arises with Markov algorithms (Section 1.10.6).
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Formula Description

Bla Proportion remaining
1-(8/a) Proportion removed
100(8/a) Percentage remaining
100(1 — B/a) | Percentage removed
8(8/a) Bits per instance
a/(806) Instances per bit
8(In2)(B8/a) | Nats per instance
a/(8(In2)B) | Instances per nat
a/p Compression gain

One method of improving the clarity of compression results is to use more de-
scriptive terms for compression rather than generic terms such as “compression”.
This table lists proposed terminology for various compression measures.

Table 5: Proposed nomenclature for performance measures.

by definition (Section 1.1.1). The ideal measure would specify the absolute amount
of information that a technique requires to represent a given abstract information
object. When compressing bananas, compression could be measured in information
per banana where the information could be measured in digits of a given base
(preferably base €). The measure “bits per instance” is the best measure proposed
to date because it does not assume a representation for instances. The measure
“nats per instance” is even better because, in addition, it forces the user to realize

that information is a continuous quantity.

1.16 Error Correction, Data Compression and Cryptography

Throughout the development of electronic communication systems there has
been a strong link between error correction, data compression and cryptography.
Error correction provides a noiseless channel without which data compression
would be hazardous. Data compression enhances the security of cyphers. Cyphers

form a dual with error correcting codes. This section describes this cycle.

Conventional data compression techniques provide a simple one-to-one map-
ping between messages and code words. If a portion of the coded message 1s
corrupted, the text can usually be recovered manually. In contrast, modern data
compression techniques introduce such a complex of dependencies that the influ-
ence of a single instance can propagate throughout the rest of the coded message.
This makes errors much harder to correct. Data, compression relies on the presence
of a noiseless communication line which can be approximated only with the use

of error correction. Data compression and error correction systems are symmetric
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with respect to redundancy; data compression removes redundancy whereas error

correction introduces it.

The link between data compression and cryptography is nearly as strong. At a
purely practical level, the introduction of data compression into a communications
system provides an extra level of complexity which the cryptanalyst must work
through[Rubin79]. Anyone who has tried to program a finite-context predictive
model driving an arithmetic code will realize how sensitive to detail the whole
system is. It would be difficult to find the exact system being used by an enemy
even if data compression were the only “cypher” being used. Cryptographers place
no weight on this argument, however, as they assume that the cryptanalyst has
access to the cypher algorithm, including protocols and data compression layers.
Cryptanalysts define three levels of attack. If only the cyphertext is known, the
attack is called a cyphertext only attack. If a piece of text and its cyphertext
is known, the attack is a known plaintext attack. If the cryptanalyst has the
capability to inject an unlimited number of messages into the cypher and observe
the resulting cyphertext, it is a chosen plaintext attack. The last threat is the

one most commonly addressed by cryptographers.

Early theoretical work on “Secrecy Systems” was performed by Shannon
[Shannon49] who used his newly founded field of information theory to provide
a solid foundation for cryptography. Shannon modelled a cypher as a mapping
from a set of messages to a set of codewords (Figure 24). The mapping is many
to many. The cypher key (which the cryptanalyst does not know) resolves the
ambiguity. Shannon constructed a measure of the security of a cypher based on
the average number of messages which map into an arbitrary cyphertext. This
enabled him to prove that there is such a thing as an unbreakable cypher, the
existence of which was an open question at the time.

With the increasing need for fast, reliable, secure computer networks, cryptog-
raphy is again in the spotlight. In an excellent paper, Diffie and Hellman[Diffie76]
reviewed the current and future requirements for cryptographic systems, and then
introduced public key cryptography. The paper “caused a basic revolution in the
way people think about cryptographic systems” [Tanenbaum81](section 9.1.4)
because no-one up to that point had considered it possible to form a secure chan-
nel without a prior secret key exchange. Diffie and Hellman also discussed the
relationships between various problems in cryptography and ended with a discus-

sion of complexity theory[Garey79].
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Messages Codewords

Shannon modelled a cypher as an ambiguous many-to-many mapping between
messages and codewords that could only be resolved using the cypher key.
Figure 24: Shannon’s model of cryptography.
(Based on figure 4 and figure 5 of [Shannon49))

In a later paper, Hellman[Hellman77] discussed Shannon’s approach to
cyphers. In particular, Hellman emphasised a point made by Shannon about
the importance of data compression in cryptographic systems. Data compression
techniques map a large space of redundant source messages®® into a smaller space
of less redundant messages. If the message is encrypted after compression, the
ambiguity of the resulting cyphertext is increased because fewer of the possible

decyphered messages are meaningless (Figure 25 and Figure 26).

Messages Codewords

Without data compression, the set of sensible messages is sparse. This means
that for any given codeword, there will be less possible sensible (non-hollow)
messages that it could correspond to. This decreases security. Here, the fourth

code word could only correspond to the fourth message because messages three
and five are non-sensible,

Figure 25: Encryption without data compression.
(Based on figure 4 of [Hellman77])

88 In this case the term “redundant” is used to mean that the space of messages contains many
messages that will never be sent.
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With data compression, the non-sensible messages are eliminated before encryp-
tion takes place. As a result, code word ambiguity increases.

Figure 26: Encryption with data compression.
(Based on figure 3 of [Hellman77])

At the end of his paper, Hellman completes the circle by connecting cryptogra-
phy and error correction in a dual relationship. In the absence of “source coding”
(a common term for data compression among theorists), the best error correction
code is one that provides a random mapping from codewords to messages (so as
to include as many meaningless messages as possible) whereas the best cypher is
one that provides a non-random mapping (so as to include as many meaningful
messages as possible). This view contrasts with Shannon’s view which states that

a random mapping is optimal in both cases.

To summarize, error correction, data compression and cryptography form a
tight triangle. In particular, error correction is necessary for data compression to
be feasible over noisy channels, and data compression is fundamental to providing
cryptographic security.

1.17 Summary

Data compression has been in use for hundreds of years. The introduction
of information theory, computers and communication networks has greatly accel-
erated the field and added urgency to its application. Whereas information is a
continuous quantity, computers can only store a finite set of information sizes, the
smallest size being one bit. This makes the storage of small units of information
inefficient. Huffman coding, the all-time most popular technique, suffers from this
malady. Early attempts to overcome this inefficiency involved mapping blocks of

source symbols to blocks of channel symbols with the aim being to minimize the

difference in information content.
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Following the introduction of Huffman coding, the field stagnated for thirty
years, during which a number of ad hoc techniques were developed. Principal

among these were run length coding and the dictionary techniques.

In the late seventies, the field warmed up again. Dictionary techniques became
adaptive. Arithmetic coding emerged as the solution to the coding inefficiency
problem. Two theorems arose in the early eighties consolidating these ideas.
The first asserted the superiority of single-instance parsing over multiple-instance
parsing. The second asserted the superiority of one-pass adaptive compression
over two pass semi-adaptive compression. These two ideas along with arithmetic
coding formed the modern paradigm of data compression from which finite-context
Markov algorithms arose. Finite-context Markov algorithms predict each instance

based on the previous few instances of the message and on the past behaviour of

the source.

Adaptive dictionary (Ziv and Lempel) techniques are the most practical,

operating at high speed and giving good compression. Markov models operate

more slowly but yield better compression.



CHAPTER 2
THE DHPC ALGORITHM

2.1 Introduction

Chapter 1 contained a review of the development and current status of data
compression. The remainder of the thesis presents the results of the author’s work
in this field.

In this chapter we present a finite-context algorithm called Dynamic History
Predictive Compression (DHPC) that was devised by the author in late 1986
and published in 1988[Williams88]. DHPC is similar to PPM in its basic approach
but differs in all other aspects. The algorithm will be described in detail because

it is
¢ an original contribution.
¢ a concrete example of a Markov algorithm.
e the basis for more sophisticated algorithms.

DHPC is a variable-order finite-context Markov algorithm which conforms with
the modern paradigm. It uses a backwards tree to store its contexts and grows
the tree incrementally as compression proceeds. Each node in the tree contains a
sample which is updated whenever the node matches the history. Predictions are
based solely on the deepest matching node that contains enough instances to be

reliable.

2.2 Tree Growth

DHPC’s tree growth is achieved by adding leaf nodes, one at a time, at a
maximum rate of one node per instance. Growth is ultimately bounded by a
predetermined maximum z € Z[1, o) on the number of nodes and a predetermined
maximum m € Z[0, o) on the depth of a node. Tree growth continues forever only
if m = 0o and z = c0. Once a node is attached to the tree, it is never moved; once
the tree contains z nodes, its structure does not change. It is therefore important
to build the tree in a manner that ensures that its final structure approximates
that of the source.

DHPC controls the rate of growth by preventing growth from nodes whose

samples are not extensible. A node is extensible if its sample contains at least «

119
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instances where a € Z[2,00) is a constant parameter of the algorithm called the
extensibility threshold.

The rules for tree growth are summarized as follows. After each instance has
been transmitted and used to update the matching branch, a new matching leaf
node is attached to the deepest matching node (v — the potential parent node)

in the tree unless one or more of the following conditions hold.

e The tree contains z nodes.
e u is of depth m.
e u is not extensible.

This policy ensures that the rate of growth of each part of the tree is
proportional to its frequency of access. This increases the likelihood that the
eventual structure of the tree will approximate that of the source. The algorithm
attempts to construct a tree that maximizes the average access depth so as
to maximize the average order of finite-context Markov model used to make

predictions.

2.3 Estimation

The DHPC algorithm produces a prediction for each incoming instance. Each
prediction is based solely on the sample of the deepest matching credible node. A
node is credible if its sample contains at least 3 instances where 8 € Z[1,00) is

a constant parameter of the algorithm called the credibility threshold.

DHPC converts the sample of the deepest matching credible node into a
prediction using linear estimation (Section 1.10.3.1) with A = 1. That is

z(a) + 1

E(@)(a) = S

yielding the estimated probability of a symbol a recorded z(a) times in a sample

of y instances (y = ) ,c 4 #(a)). The low value of ) indicates that the algorithm
places a lot of trust in the samples chosen for prediction, those samples having to
contain at least 3 instances.
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2.4 The Algorithm in Detail

The DHPC algorithm manipulates two data structures: a backwards tree and a
sliding-window history buffer. The backwards tree models the source. The sliding

window history buffer stores the m most recent instances of the history.
Four constant parameters control the behaviour of the algorithm.

The depth limit m € Z[0,00) defines the maximum depth of the tree and
hence also the length of the history buffer. The depth limit places a constant
upper bound on the time needed to process each instance and a weak (O(n™))

upper bound on memory consumption.

The node limit z € Z[1,00) defines the maximum number of nodes in the
tree. The tree structure is frozen when it reaches z nodes. The node limit places

an upper bound on memory consumption.

The extensibility threshold a € Z[2,00) defines the minimum number of

instances that a node’s sample must contain before the node can sprout leaf nodes.

The credibility threshold 8 € Z[1,00) defines the minimum number of

instances that a sample must contain for it to be used to make a prediction.

A review of previous definitions may resolve some ambiguities. The depth of
a node is defined to be the number of arcs between the node and the root node.
The root node is defined to be of depth zero. A tree containing only the root node
contains one node. y is an abbreviation for )", 4 (a). A node is extensible if
its sample contains at least « instances. A node is credible if its sample contains

at least ( instances. The terminology of extensibility and credibility applies to

samples as well as nodes.

2.4.1 Main Program

The main program of DHPC is listed in Figure 27. The algorithm is best cast
as a process that reads a stream of instances and writes a stream of predictions.

This enables it to be slotted into the model unit of Figure 9.

In this formulation, the history buffer is represented by an array hist of m
instances with hist[1] containing the most recently received instance. The tree is

stored in some sort of dynamic data structure and is accessed through a “pointer”
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process DHPC(in instancestream; out predictionstream) is
o : constant integer «— <Extensibility threshold parameter>;
B : constant integer + <Credibility threshold parameter>;
m : constant integer — <Depth limit parameter>;
z : constant integer — <Node limit parameter>;
type history is array[l...m] of symbol;
<Procedures predict and update>
begin DHPC
root : node;
hist : history;
new(root); root.z(ay ...an] « O;
hist[l...m] « 7
loop
instance : symbol;
write(predictionstream ,predict(root,hist));
read(instancestream,instance);
update(root,hist,instance);
end loop;
end DHPC;

The DHPC main program implements the model unit of Figure 9, reading
a stream of instances and generating a stream of predictions. The algorithm
generates a prediction for each instance before it reads the instance. The predict
function and update procedure do all the work.

Figure 27: DHPC main program.

called root which points to the root node. Each node u contains a sample z of n

frequency counts u.z(a), Va € A.

The algorithm starts by initializing the tree (which is manipulated through its
root node root) to a single (root) node and filling the history buffer (hist) with
spaces.®® Each instance is processed in two phases: a prediction phase during
which a prediction for the next instance is generated, and an update phase during
which the next instance is used to update the history buffer and the tree. predict is
a function with no side effects. update is a procedure that modifies its parameters
but has no other side effects. The next two sections describe the subprograms

predict and update that implement these phases.

% Because a > 1, history length always exceeds tree depth, making this initialization strictly
unnecessary.
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function predict(in root : node; in hist : history) : prediction is
begin predict
if root.y< B then
return p: p€ PAVa€ A, p(a) = %;
end if;
current : node «— root;
loop
exit if depth(current)=m;
next : node «— current.child[hist[depth(current)+1]];
exit if not exists(next);
exit if next.y< S;
current —mnezxt;
end loop;
return p: p € P AVa € A, p(a) = é(current.z)(a);
end predict;

The DHPC algorithm bases each prediction entirely on the sample of the deepest
matching credible node. If no such node exists, the uniform prediction is
returned.

Figure 28: DHPC prediction function.

2.4.2 Prediction Phase

The prediction phase produces a prediction of the next instance. This phase
is controlled by function predict (Figure 28). The function does not modify its
arguments and has no side effects.

Function predict starts by examining the root node and returning with the
uniform prediction if the root is not credible. It is an invariant that if the root is

not credible, all nodes are not credible.

If the root is credible, predict begins at the root and moves down the matching
branch stopping on the deepest credible node. The node’s sample is then fed
through the estimation function ¢ (Section 2.3) producing the prediction.

2.4.3 Update Phase

Between the prediction and update phases, the main program (Figure 27)
reads in the instance corresponding to the prediction made during the prediction

phase. The update phase uses the new instance (instance) to update the history
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procedure update
(in root : node; in out hist : history; in instance : symbol);
begin update
current : node «— root;
loop
inc current.z[instancel;
exit if isleaf (current);
exit if not exists(current.child[hist[depth(current)+1]]);
current«— current.child[hist[depth(current)+1]];
end loop;
if (depth(current)< m) and (treesize(root)< z) and
(current.y> a) then
newnode : node;
new(newnode); newnode.z[aj ... an] « 0;
current.child[hist[depth(current)+1]] «— newnode;
inc newnode.z[instance];
end if;
for i in reverse 2...m loop hist(i] « hist[: — 1] end loop;
hist[1] « instance;
end update;

After each instance has arrived, the DHPC algorithm adds it to the sample of
each node on the matching branch (first loop), working from root to tip. When
it reaches the end of the branch, it sometimes adds an extra node on the end
(if). The for loop slides the history buffer.

Figure 29: DHPC update procedure.

and the tree. This phase is controlled by procedure update listed in Figure 29.
The procedure modifies its first two parameters but has no other side effects.

Procedure update moves down the matching branch adding the new instance
to the sample of each node visited. It stops on the deepest matching node w. If, at
that point, u is not of maximum depth, and u is extensible, and the tree contains
less than 2 nodes, a matching child node (a leaf) is created and initialized with
an empty sample. The new instance is added to the new node’s sample as if the
new node had been part of the matching branch all along. Once this is done,
the instance is shifted into the history, the oldest instance in the history being
discarded.

Thus a sample receives its first instance upon the creation of its node and
collects one instance each time its node matches the history. Because o > 1, at

most one node is added to the tree for each instance read.

The statement exit if isleaf (current) exists only to prevent an illegal access
of hist[m + 1] on the following line and can be eliminated by declaring hist with

an index range of Z[1,m + 1].



Section 2.5: Ezample Ezecution of DHPC 125

2.5 Example Execution of DHPC

We now present an example execution of DHPC. The example uses a three
symbol alphabet (n = 3) consisting of the symbols a, b and ¢. The maximum
depth of the tree is set to six arcs (m = 6) and the maximum number of nodes
to one hundred (¢ = 100). The extensibility threshold is set to three instances
(o = 3) and the credibility threshold to two instances (8 = 2). These parameters

are summarized in Table 6. The message starts with abcbacbabec.

Parameter | Value

n 3: (a,b,c)
m 6

« 3

Je] 2

z 100

Table 6: Parameters used in the DHPC example.

Execution of the algorithm will be illustrated using a sequence of snapshots
that summarize the state of processing between the arrival of each instance. The
snapshots are taken between the write and the read statements of the main loop
of the main procedure listed in Figure 27. A snapshot labelled “Instances read
: k” was taken at the time when the read statement had been executed exactly k

times,

Each snapshot gives a picture of the tree, the number of instances already
read, the position in the input string, the history buffer, the sample used to make
the next prediction, and the next prediction itself. The tree is drawn with leaves
to the left so as to align it with the history through which instances flow from
right to left in accordance with Western reading conventions. Each node in the
tree is labelled by its sample in the form of a triple followed by the letter ‘C’ if the
node is credible and by the letter ‘E’ if the node is extensible. Instances to the
left of the vertical bar in the input string have already been read. The array hist
is displayed with hist[1] at the rightmost end in order to illustrate the right to left
flow of instances. Full stops take the place of spaces. The sample used to make
the next prediction is displayed as a triple containing the counts for each symbol,
in the order (a, b, c). This sample when fed into ¢ yields the next prediction
which is expressed as a vector of rational probabilities obtained from the form
€(z)(a) = n2(@)+L i form is derived from the form given in Section 2.3 by

ny+n
multiplying the numerator and denominator by n.
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At time 0, no instances have been processed. This snapshot illustrates the
state of the data structures after the initialization but before the first instance has
been read. The tree consists of the root node, whose sample is empty. The history
is filled with spaces. Despite the lack of information, a prediction must be made.
In the absence of a credible node, the uniform sample of (1,1,1) is used, resulting
in a uniform prediction of (4/12,4/12,4/12).

‘ﬁQOD)

Instances read : 0

Input string/posn : "|abcbacbabe”
History buffer t " e . v
Prediction sample : (1,1,1)
Prediction : (4/12,4/12,4/12)

Instance 1, which is a, arrives and is added to the samples of the matching
branch, which consists of the root node. The root node is not extensible so no
growth occurs. The history buffer is shifted. As there is no credible node, the

prediction is based on the uniform sample.

1,0,0

.( )
Instances read 0 1

Input string/posn : "a|bcbacbabe”
History buffer Lo a"
Praediction sample : (1,1,1)
Prediction : (4/12,4/12,4/12)

Instance 2, which is b, arrives and is added to the samples of the matching
branch, which consists of the root node. The root node, which now contains two
instances, is credible but not extensible, so no growth occurs. The history buffer
is shifted. As the root is credible, it so it is used to make the prediction. The root
node’s sample of (1,1,0) results in the prediction (4/9,4/9,1/9). The estimation
function £ ensures that the third symbol (c) is allocated a small probability despite
its zero frequency.
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1,1,00C

.( )
Instances read : 2

Input string/posn : "ab|cbacbabc”
History buffer i "....ab"
Prediction sample : (1,1,0)
Prediction : (4/9,4/9,1/79)

Instance 3, which is c, arrives and is added to the samples of the matching
branch, which consists of the root node. The arrival of this third instance makes
the root extensible (because 3 = ro0t.y > a = 3), allowing it to grow a new
matching child node. The new node is created at depth d = 1 with an arc labelled
b 80 as to match the history hist[d]. The new node’s sample is updated as if it had
been part of the tree all along. This results in a sample of (0,0,1). The history
buffer is shifted. The root is the deepest credible matching node and so its sample
of (1,1,1) is used to make the prediction.

b (1,1,1D)CE
O————0
0,0,1)
Instances read : 3
Input string/posn : "abc|bacbabe”
History buffer : "...abc"
Prediction sample : (1,1,1)
Prediction : (4/12,4/12,4/12)

Instance 4, which is b, arrives and is added to the samples of the matching
branch which consists of the root node. The deepest node in the matching branch
is the root node, which is extensible, and so a new child node is created whose arc
is labelled c. The new node is updated with the new instance (b). The history
buffer is shifted. At this point the deepest matching node is the node on the b
arc, but as it is not credible, the root node’s sample is again used to make the
prediction.
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0,0,
1,2,1)CE
c

0,1,0)
Instances read : 4
Input string/posn : "abcb|acbabe”
History buffer : "..abcb"
Prediction sample : (1,2,1)
Prediction : (4/15,7/15,4/15)

Instance 5, which is a, arrives and is added to the samples of the matching
branch which consists of the root node and node b. This update makes the node b
credible. However node b is not yet extensible and so no new node is added. The
history buffer is shifted. As there is no node a, the root is the deepest credible

matching node and so it is used to make the prediction.

(1,0,10C
b
2,2,1)CE
c
0,1,0)
Instances read : 5
Input string/posn : "abcba|cbabe"”
History buffer : ".abcba"
Prediction sample : (2,2,1)
Prediction : (7/18,7/18,4/18)

Instance 6, which is ¢, arrives and is added to the samples of the matching
branch which consists only of the root node. As the root node is extensible, a new
child node a is created. The history buffer is shifted. As node ¢ is not yet credible,

the root’s sample is used to make the prediction.

0,0,1)
a
b (2,2,2)CE
(1,0,1)C
c
0,1,0)
Instances read : 6
Input string/posn : "abcbac|babc”
History buffer : "abcbac"

Prediction sample : (2,2,2)
Prediction : (7/21,7/21,7/21)
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Instance 7, which is b, arrives and is added to the samples of the matching
branch which consists of the root node and node c¢. Node ¢ is not yet extensible
and so no growth takes place. The history buffer is shifted. The prediction is

based on the sample of node b which became credible when instance 5 arrived.

©0.0,1)
a
b (2,3,2)CE
(1,0,1)C
c
0,2,00C
Instances read 0 7
Input string/posn : "abcbacbk|abe”
History buffer : "becbacb”
Prediction sample : (1,0,1)
Prediction : (4/9,1/9,4/9)

Instance 8, which is a, arrives and is added to the samples of the matching
branch which consists of the root node and node b. This makes the node b
extensible and so a new matching child node cb is created. The new instance
is added to the new node’s sample as if it had been in the tree all along. The
history buffer is shifted. The deepest credible matching node is the root node

because node a is not yet credible.

0,0,1)

c 3,3,2)CE
° (3.,3.2)
(1,0,0)
0,2,00C
Instances read : 8
Input string/posn : "abcbacba|be”
History buffer : "cbacba"
Prediction sample : (3,3,2)
Prediction : (10/27,10/27,7/27)

Figure 30 depicts the state of the algorithm’s data structures after a further
34 instances have been processed. As neither the depth nor the node limit

has been reached, all extensible nodes are non-leaf nodes. The prediction of
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(4/12,7/12,1/12) is derived from the sample (1,2,0) of node ac. Node bac
matches but is not yet credible.
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(1,8,5)CE

(9,1,6)CE

(4,6,0)CE

131

(15,16,11)CE

"abcbacbabcabcababcacaababcbacbbacbababebac |

0,1,0)
0,1,0)
a
b 04,3)CE
b
0,0,1)
b c
©0,0,1) (0,1,2)CE
(1,00 <
a
1
b (1,2,1)CE
0,0,1)
(1,0,0)
a
©0,0,1)
a
b (3,0,5)CE
(1,0,3)CE
c a
(1,0,0) N
(1,0,0)
b
(1,0,0)
c
(1,1,0C
a
b “,1,00CE
(1,0,0)
b (1,2,0)CE
a
0,1,0)
—> o - b
(0,1,0) (1,2,00CE (3.2,00CE
Instances read : 42
Input string/posn :
History buffer : "abcbac"
Prediction sample : (1,2,0)
Prediction (4/12,7/12,1/12)

Figure 30: DHPC tree structure after 42 instances.
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2.6 A Comparison of DHPC with Other Algorithms

DHPC can be considered to be a generalization of the DAFC algorithm
[Langdon83] described in Section 1.10.6.2. The DAFC algorithm constructs a
fractional order model by starting with a single general context (whose string is
the empty string) and then constructing up to 31 first order contexts. A first
order context a is created when v (a constant parameter of DAFC) instances of
the symbol a have been recorded in the general context. For the purposes of
comparison, DAFC’s run-length feature and optimized estimation technique are
ignored.

The DHPC algorithm with settings m =1, 2 = 32, o = v and 8 = 1 is almost
identical to DAFC. The major difference is that DHPC creates a child node if the
parent node contains more than a certain number of instances, whereas DAFC
creates a child node if the child node contains more than a certain number of
instances. DAFC accomplishes this seemingly impossible feat by recording how
often each child would have been accessed had it existed. It does this without
using extra memory by examining the frequencies in the zero order sample which

happen to be identical to the first order context frequencies.”

Despite their differences, DHPC and DAFC’s similarities betray their identical
design goals of increasing order while conserving memory. Both use instance count
thresholds to determine the rate of growth in the hope of maximizing the average
access depth. Both base their predictions on the sample of a single node. DHPC

is really a recursive DAFC.

The relationship between DHPC and PPM is an interesting one. PPM sets a
depth limit 2, but otherwise does not address the memory problem. PPM creates

a context for every string of length m or less in the history. This is the same as
setting & = 1 in DHPC.™

DHPC and PPM differ significantly in their approach to estimation. DHPC
chooses the deepest matching node that has at least 4 samples, and uses linear
estimation. PPM uses the deepest matching node (u), and uses non-linear
estimation (Section 1.10.3.2), but uses the parent of u’s sample (less instances of
all symbols appearing in u) to divide the probability represented by the A/(y + A)
term among the zero-frequency symbols (Figure 15). This division continues

recursively, terminating at the order —1 sample. Both DHPC and PPM set )\ = 1.

70 It may be possible to extend this technique to many levels but it is not immediately clear how
this could be done.

71 DHPC does not allow this but could easily be modified to allow @ = 1 by moving the if
statement of Figure 29 into the loop above it.
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To summarize, PPM uses the deepest node no matter how few samples it has,
but is careful in allocating the zero frequency probabilities. DHPC is careful to
select a node with a credible number of samples but allocates equal probability to

the zero frequency symbols.

Experimental results indicate that the PPM estimation technique performs
about 7% absolute better than DHPC (Experiment 2 in Section 4.17.5). However,
DHPC does not blend the samples of different levels of the matching branch. This

allows it to use more efficient representations for predictions (Section 1.11).

On the implementation side, PPM is implemented using a forwards tree

whereas DHPC is implemented using a backwards tree.

2.7 An Analysis of Tree Growth

One of the innovations of DHPC is the use of an extensibility threshold to

control the rate of tree growth. This section presents upper and lower bounds for
the rate of tree growth of DHPC.

We assume that unbounded resources are available (m = oo, z = o0) and
consider the amortized constraints on attributes of the growing tree. The concept
of amortized computational complexity has recently been introduced by Tarjan and
Sleator [Tarjan85][Sleator86] as a way of obtaining tighter complexity bounds for
sequences of operations. Traditional complexity measures consider the worst case

for each operation in a sequence; amortized complexity measures consider the
worst sequence.

Theorem 1: For a > 1, m = o0, z = 0o, DHPC grows its tree at a minimum rate

of one node per a—1 instances and a maximum rate of one node per ((a—2)/n)+1

instances.

Proof: We consider a particular tree at a particular time and define two integer
attributes a and e. Attribute a is the maximum number of consecutive instances

that the tree could absorb without causing tree growth. It is defined as
a= Z (a—1)—1iy
(ieNodes)A(i.y<a—1)

Attribute e is the maximum number of consecutive instances that would cause

new tree growth. It is defined as

e= Z n — children(7)
(i€ Nodes)A(i.y>(a—1))
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These definitions assume that each instance has the liberty of “choosing” to arrive
at any node. In fact, the set of nodes that can be chosen is severely constrained
by the previous few instances. This assumption does not weaken the proof but it

does mean that tighter bounds might exist.

For the purposes of the proof, the arrival of an instance is viewed as causing
one of two operations to be performed depending on whether the arrival of the
instance causes a new node to be added to the tree. If a new node is added, the
Add operation is performed. If no new node is added, a Hit operation is performed.

The effect of each of these operations on attributes @ and e is defined as follows.

Add:e>0—[a—a+(a—2); e—e—1]

n
Hit:a>0— |la+—a—1;, e«—e-+

a—2

The guards on these operations protect them from being performed illegally.
For example, by definition, the Add operation cannot be performed if e = 0.

When a node is added, the parent of the new node has one less slot for
expansion and so e is decremented. The newly created node has no child nodes.

This means that it can absorb a — 2 instances without creating a new node. Thus
a is increased by a — 2.

The Hit operation has a counteracting effect. The absorption of an instance
decreases the capacity of the tree to absorb and so a is decremented. On the other
hand, the node that was hit moves just a little closer to becoming extensible, at
which time e will increase by n. This discontinuity is hard to represent within the
amortization framework used here. However, the overall rates at which operations
are performed can be represented correctly by adding n/(a — 2) to e each time
the hit operation is performed. The justification for this is that once created, each

node will absorb o — 2 instances after which n child slots become available.

Now consider a long sequence of A Add and H Hit operations. At the start of
the sequence, the tree consists of just a root node with ¢ = o — 2 and e = 0. At
the end of the sequence a,e > 0. Examination of the effect of the operations yields

the following constraints which give the upper and lower bounds on the ratios of

A to H.
H

oa—2
nH

o—2

(« —2)A—H>0=MinA =

a—2

( n )H—A_>_0=>MaxA=
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Because A corresponds to the number of nodes in the tree and A + H corresponds

to the number of instances processed, the average growth rate is

A
A+H

Rate =

Substituting the minima and maxima of A yields the following bounds.

H nH
Min Rate = 7{& Maxz Rate = nHﬂ_
S +H a3 +H

Multiplying top and bottom by the inverted top yields

1 1
MinRate T+ 2) MazRate = ) 3

Which completes the proof.

Figure 31 shows the minimum and maximum growth rate (in nodes per
instance) plotted against a for n = 256. Both curves are 1/a but the maximum
decreases significantly (to 0.5) only when « approaches n. In contrast, the
minimum drops rapidly. Setting o = 2 guarantees a rate of exactly one new
node per instance. Setting a = 3 guarantees a rate of between about 0.5 and 1
new nodes per instance. Tight bounds are possible for very high values of «, but

such values are inappropriate for practical purposes.
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This graph plots theoretically derived lower and upper bounds for the growth

rate (nodes per instance) of the DHPC algorithm against the extensibility
threshold «.

Figure 31: DHPC minimum and maximum growth rates against a.
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In practice, the position of the node growth between the minima and maxima
curves will be determined by the entropy of the source. For ordinary sources
(e.g. text files) the entropy is relatively low at depths of two or three and the
growth rate is likely to be closer to the minimum than the maximum. In practice,
the depth limit will prevent growth from continuing at the “hot spots” of a tree.

As a result, the effective rate is likely to be quite low.

2.8 Summary

The DHPC algorithm employs a variable-order, finite-context Markov model
with four parameters: a depth limit m, a node limit z, an extensibility threshold «
and a credibility threshold 8. The algorithm starts with a root node and grows a
backwards tree by attaching a new leaf to the tip of the matching branch whenever
a new instance arrives. A node is not attached if the deepest matching node is
of the maximum depth m or if it contains less than o instances. The a threshold
ensures that the local rate of tree growth is proportional to the local rate of access,
resulting in a tree that maximizes the average access depth. Arriving instances
are added to the samples of all matching nodes. Each instance is predicted using
the sample of the deepest matching node that contains at least 3 instances. After
z nodes have been allocated, the tree structure becomes static. At this point the
tree structure should mirror that of the source. DHPC builds its tree more slowly
than the PPM algorithm and bases its predictions on a single node rather than a
blend of the nodes on the matching branch. DHPC is faster than PPM but yields

poorer compression.

DHPC’s parameterization, simplicity of growth, simplicity of estimation and
simplicity of implementation make it an excellent platform from which to explore
the adaptive mechanisms of the class of variable-order, finite-context Markov
algorithms.



CHAPTER 3
A CLASSIFICATION
OF ADAPTIVITY

3.1 Introduction

So far, we have reviewed the field of data compression and presented a new
Markov algorithm called DHPC. In this chapter we investigate adaptivity in
data compression algorithms and describe how various kinds of adaptivity can
be incorporated into DHPC. This yields new insights into what is desirable in an
adaptive algorithm and into mechanisms for implementing adaptive algorithms in
general.

3.2 Previous Definitions of Adaptivity

The term “adaptive” is often used, but poorly defined. The root word “adapt”
is itself messy, having over 20 different forms (Appendix B). In the field of data
compression, the word “adaptive” has been used loosely to describe any algorithm
that varies its compression technique in response to the data.”® Recently, the
definition of the term has been tightened. One of the contributions of this thesis
is to tighten the definition further.

Recent data compression literature (e.g. [Rissanen81], [Cleary84]) has defined
the word “adaptive” as a term descriptive of one-pass algorithms that change the
way that they compress in response to the history. This definition aligns with

Assumption 5 (Section 1.6) and includes algorithms that use alphabet extension

as well as those that do not.

The current definition of the word “adaptive” seems to have arisen from
Rissanen and Langdon’s work on the modern paradigm[Rissanen81].7® Although
Rissanen and Langdon were exponents of adaptive coding, in [Rissanen81] they
were primarily concerned with alphabet extension vs single-instance prediction
rather than semi-static vs adaptive techniques. It was Cleary and Witten[Cleary84]
who proved the superiority of adaptive techniques over semi-adaptive techniques.

However, Langdon and Rissanen considered both adaptive and non-adaptive

72 The word “dynamic” has been used in a similar manner.

73 A brief review of Rissanen and Langdon’s definition of adaptivity appears in section D of
[Langdon81].
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(“static” in Cleary/Witten terminology) techniques and took the time to give
the best definition of adaptivity yet.

Rissanen and Langdon defined adaptivity in terms of their formalization of
models. A model is organized as a collection of contexts defined by a structure
function. The structure function maps the infinite set of possible history strings
onto a finite set of contexts. For example, a set of n contexts (for a first
order model) might correspond to the set of conditions hip) = @, Va € A
Associated with each context is a sample that records the instances generated by
the source under the conditions defined by that context. Rissanen and Langdon
defined an adaptive technique as one that (within a single context) employs a
counting/estimating technique that does not decrease the estimated probability of
a symbol if, within any given substring of the message, instances of the symbol
occur with a higher than estimated frequency. This is a simple constraint on the

way in which a model must react to the message if it is to be called adaptive.

Rissanen and Langdon’s definition of adaptive is (briefly) described and
accepted in two other significant papers[Cleary84][Cormack87]. Chapter 3 of a
book by Bell, Cleary and Witten[Bell89)] is devoted to “Adaptive Models”. In it,
Bell, Cleary and Witten distinguish between static, semi-adaptive and adaptive

models and present the proof in [Cleary84] that shows that adaptive models are
superior to semi-adaptive models.

Recently the term “locally adaptive” has been used to refer to techniques
that base their prediction only on the recent behaviour of the source. An

example of this usage is in the paper title “A Locally Adaptive Data Compression
Technique” [Bentley86].

In this chapter the issue of adaptivity is addressed by:
o classifying forms of adaptivity.

e classifying sources and the ways in which they change.

e investigating the performance of different kinds of adaptivity on different
kinds of sources. \

e discussing how various forms of adaptivity can be implemented.

3.3 A Classification of Adaptivity

In this section, Rissanen and Langdon’s definition of adaptivity is extended to
define four classes of adaptivity. The four classes cover all the data compression
algorithms described to date (Figure 32).
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History
 INENEAEEENEEEEEEEEEEE

Non Adaptive

Initially Adaptive
Locally Adaptive _—
Asymptotically Adaptive

Compression algorithms can be roughly sorted into four categories of adaptivity
depending on which part of the history is used to make predictions.

Figure 32: Use of the history by four kinds of adaptivity.

Non Adaptive: Does not alter its model in response to the history.

Initially Adaptive: Builds its model from a finite number of instances
at the start of the history.

Locally Adaptive: Builds its model from a finite number of instances at
the end of the history.

Asymptotically Adaptive: Uses all of the history to build its model.”4

This refinement of adaptivity focuses not on the estimation technique but on

the location from which a model obtains its information.

The definitions above provide a good rule of thumb but are unsatisfactorily
vague. For example the definitions fail to classify a model that uses all but the
first instance of the history, when obviously such a model should be classified as

asymptotically adaptive. A more precisely stated, fuzzier definition is required.

The issues of adaptivity are greatly simplified by treating only zero-order
Markov models and sources. This can be done without loss of generality by treating
sources and models as collections of contexts organized by a structure function.
Once the zero-order case is taken care of, higher order sources and models can be

constructed from the zero order case using structure functions.

Consider a zero-order source d(.S)) that produces a stream of predictions which
in turn are used to produce a stream of instances. After ! instances have been
produced, the history is » € Sj. A zero order model can be described by a tuple

74 As the history length increases, the performance of an asymptotically adaptive, finite-context,
order-k Markov model should converge asymptotically on the entropy of a finite-context, ergodic,
order-k Markov source.
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(w, &) where £(z) is an estimation function (Section 1.10.3) and w(l, 1) is a weight
function that specifies the emphasis that a model places on the 7’th instance of
a history of length ! (with the first (leftmost) instance being numbered 1). The
function w is normalized for a given /. That is

l
Vie Z{1,00), > w(l,i) =1
i=1
A zero order model estimates the probability of the next instance being a as’™
pla) =&(x)(a)  where ()= D w(l,i)
ith;=a

This view is fairly general. The function w specifies where the sample is

obtained. The £ function specifies how much it is trusted. The classes of adaptivity

can now be defined in terms of constraints on w and £.

In Section 1.10.3, two constraints were placed on ¢: that £ generate safe
predictions, and that £ converge on the naively estimated probabilities (z(a)/y)
at infinity. Here, a variation of Rissanen and Langdon’s definition of adaptivity is
used to place an additional constraint of monotonicity. ¢4 is a sample containing

a single instance of a. The additional constraint is
Ve € X,a € A, {(z + 6a)(a) > &(z)(a)

If € is continuous, this is more simply specified as

Ve e X,a € A, Mzo
O0z(a)

This condition in conjunction with the two of Section 1.10.3 ensures that the
estimation function ¢ will behave itself. The estimation function must generate
safe predictions, must not decrease its estimations with increasing frequency and
must converge on the naive estimations at infinity.

The four classes of adaptivity are defined by constraints on w which will now
be given. For a given [, the mean position of emphasis % is defined as
l

w=>Y w(l,i)i

i=1

For convenience, we also define
a=w and b=Il+1-w

(Figure 33).

75 Here we take the liberty of storing real values in £ which was defined in Section 1.8.2 to be a
vector of integers.
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The function w(l,?) can be used to describe the emphasis that an algorithm
places on the instances at various positions of the history. The area under the
curve is always one. In this diagram, the algorithm is weighting heavily towards
the distant past. W is the mean position and a and b more concisely describe
the relationship between W and the ends of the history.

Figure 33: Example adaptive weighting curve.

The values a and b give the distance of the mean W from the start and end of
the history. The notation ¢ < K is used to indicate that ¢ is bounded from above
by an arbitrary finite constant. Setting a = 0 represents the use of no instances
at all. The four classes of adaptivity can be defined in terms of the behavior of a

and b as | — oo.

Non adaptive a=0 b — oo
Initially adaptive a <K b— oo
Locally adaptive a — 00 b< K

Asymptotically adaptive a — o0 b — oo

This definition is much more robust that the previous one and can classify all

kinds of unusual sampling strategies. For example, a technique that assigns

odd(i) — 2/1

even(i) = 0

w(t,) = {

would be correctly classified as asymptotically adaptive. The classification scheme

does not classify models for which @ and b do not converge at infinity.

The definition contains one major fault. Although it measures where the

information is gathered, it does not measure how much information is gathered.

A model that sets ]
i =[1/2] =1

w(l, i) =

(1) {i;éfl/Z-l—)O

would be classified as asymptotically adaptive even though all intuitive definitions
of that class require that it accumulate an ever increasing number of instances.

An improved definition must include a measure for the information content of a
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model. Shannon’s logarithmic definition works as well here as for predictions. We

define the sampling entropy of a model as

l
I=-— Zlnw(l,i)
i=1

and refine our definitions for classes of adaptivity to (as [ — oo)

Non adaptive I=0
Initially adaptive a< K b—oo00 I< K
Locally adaptive a— 00 b< K I< K

Strangely adaptive a— 00 b—o oo I< K

Asymptotically adaptive a— 00 b—00o I—

'This definition is satisfactory. Static models contain no information gained
from the source. Initially adaptive and locally adaptive models contain a finite
amount of information derived from one end of the history. Asymptotically
adaptive sources contain an increasing amount of information obtained from
the entire history.” Strangely adaptive models are the same as asymptotically

adaptive models except that they contain only a finite amount of information.

3.4 Adaptivity of Previous Algorithms

In this section, the new definition of adaptivity is used to classify some of the

algorithms described in Chapter 1. Algorithms that are not one pass are ignored.

One form of local adaptivity arises so often that it is worth defining a name
for it. A model/algorithm is defined to be windowed locally adaptive if it has

1 <I-K-—=0

1,§) =
w(l, ) {z’>l—K—>1/K

Knuth’s windowed dynamic Huffman coding[Knuth85) and LZ77 both fall into the
category of windowed locally adaptive algorithms.

In contrast, dynamic Huffman coding and LZ78 set w(l,?) = 1/1 and are
asymptotically adaptive.

Variable order Markov algorithms are harder to classify because they employ
different kinds of adaptivity at the context and structural levels. The problem is

best illustrated by DAFC (Section 1.10.6.2), the simplest variable-order Markov
model.

76 The class of asymptotically adaptive sources could be further divided depending on the
behaviour of b/a as | — oo.
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(0,1,0,0,1) (1,0,2,0,1) (1,1,3,1,1)
a ¢ e
(12,5,15,5,17)

The DAFC algorithm illustrates the difficulty in classifying the adaptivity
of variable-order Markov algorithms. DAFC freezes its tree when the last
node has been grown, making it structurally initially adaptive but contextually
asymptotically adaptive.

Figure 34: A snapshot of DAFC in execution.

DAFC allocates first-order contexts to the first 31 symbols whose cumulative
frequency exceeds a fixed threshold. After this point, the tree structure (of
depth one) is frozen but the contexts in the nodes of the tree continue to collect
instances”™ (Figure 34). This means that the structure of the tree is initially
adaptive but the contezts of the tree are asymptotically adaptive. Thus the DAFC
algorithm is asymptotically adaptive to a Markov order of the average update
depth of the tree. Because the root node is always present, the average update

depth is always at least zero.

For finite memory, the same reasoning applies to PPM, DHPC and DMC.
However, if there is enough memory to construct a tree whose structure encloses

the source’s tree, these tree algorithms all become asymptotically adaptive.

Perhaps the most important observation to be made about the relationship
between adaptivity and compression techniques is that it appears that any
technique can be modified to conform to any class of adaptivity. For example,
LZ77 (Section 1.7.3) could be made non-adaptive by using a string buffer with a
constant value. Dynamic Huffman coding (Section 1.4.4) could be made windowed
locally adaptive by using Knuth’s abstraction[Knuth85] to remove instances as well
as add them. The satisfying conclusion is that classes of adaptivity are not bound

to classes of algorithm.

3.5 A Classification of Sources

Traditionally, a source is viewed as a finite ergodic Markov source that
generates an infinite string. If this were the case in practice there would be no

need for anything but asymptotically adaptive models. In contrast, the success

77 We assume that the counters that record the frequencies of instances in each context are of
infinite width.
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of locally adaptive techniques in practice indicates that real sources often change
considerably over time. An understanding of the ways in which sources might

change is necessary to approach this problem.

A changing source™ can be viewed as a point moving in a multi-dimensional
simple-source space.” For sources of a particular order m, simple source space
consists of n™ dimensions,*° each dimension corresponding to a probability d(s)(a)
of a particular symbol a € A in a particular context s € Sy, of the simple source
d € D. Each point in simple-source space defines a finite-context, order-m Markov
source (a simple source). Movement of a source through simple source space

corresponds to a change in its probabilities.

In addition to moving through simple-source space, sources move through
state space. The combination of a source’s position in simple-source space d € D
and state space s € Sy, completely determines the next prediction that the source
will generate. Because, by Assumption 7 (Section 1.10.2), the state of a model can
be determined directly from the history, there are no continuity problems with
the state of the changing source (as there might be for example, if the source
was an arbitrary, changing finite state machine). As a simple-source’s state is a
function of the most recent few instances of the history, it does not determine

source trajectories and will not be considered further.

Section 1.8.4 showed that the problem of data compression is to reconstruct the
source from the history. This is accomplished by using the history to locate the
source in simple-source space. Whereas fixed sources need only be found, moving

sources must be tracked as they move through simple source space.

Implicit in the idea of tracking a source using a history of instances is the
assumption that the history will give some indication of the source’s current
position. This may not be the case. If the source moves to a random position
between the generation of instances tracking becomes impossible and the games
theory[Neumann44] solution of uniform predictions must be adopted. Just as
asymptotically adaptive models are most effective on a source that does not move,

so are tracking models most effective on sources that move slowly.

A fundamental trade-off dominates the design of source tracking models.

Whereas it is advantageous to use as many instances as possible to estimate the

78 It is worth distinguishing between objects that change themselves and objects that are changed
by other objects (Appendix B). Here, both sources and models are viewed as self-modifying objects.

™ The term source space is reserved for the space of all moving sources.

80 Actually, fewer dimensions are needed because the probabilities are constrained to sum to
unity. Here the redundant form is used because it is simpler. All the same concepts apply.
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source’s position, it is disadvantageous to use instances that are so out of date that
they do not reflect the source’s current position (Figure 35). Instances in the
history reflect the position of the source at the time they were generated. Instances
further back in the history are less informative. There is no clean solution to this
problem. Practical algorithms compromise by estimating the speed of the source

and using the estimation to choose a window size.

Actual Too Few Appropriate Too Many
Trajectory Instances Number Of Instances
Instances

A trade-off exists when tracking a moving source. Many instances are required
to determine accurately the position of the source, but only the most recent
instances are representative of its current position. In this example, the leftmost
box contains the actual trajectory of the source in simple source space (ending
at the dot) and the other boxes show the estimated position of the source (in
grey) based on various numbers of previous instances (the black line).

Figure 35: Tracking a moving source through simple source space.

The trade-off is reminiscent of Heisenberg’s uncertainty principle [May-
field72](p. 134) which states that the position and momentum of a particle cannot
both be known at the same time. In data compression the tracking trade-off only
arises for moving sources; all the instances generated by a fixed source are repre-

sentative of the source’s current position.

The effect of the Heisenberg problem is that it is impossible to compress a
source’s output without making some assumptions about the source’s trajectory.
It seems appropriate therefore to categorize the trajectories that are likely to arise,
in the hope of recognising them and forming a strategy to compress them. The
following list of interesting trajectories is arranged from least to greatest entropy.
Each source trajectory is depicted graphically in Figure 36.

Fixed: The source does not move (also called “simple”).
Fuzzy Fixed: The source moves but stays close to a fixed point.

Drifting: The source moves, but never very far between each instance.
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Vagrant: The source jumps to a completely new random position at
irregular intervals.

Multimodal: The source jumps between a finite set of points at irregular

intervals.

White Noise: The source jumps to a random position between the

generation of each instance.

[
=%

Fixed Fuzzy Fixed Drifting
o @
® c’f

Vagrant Multimodal White Noise

This diagram depicts graphically some interesting source trajectories. Each box
represents simple source space. A fixed source does not move. A fuzzy source
hovers around a point. A drifting source wanders aimlessly. A vagrant source
hops randomly but only occasionally. A multimodal source occasionally switches
between a finite set of points (e.g. switches between different file types). Finally,
a white noise source moves to a new random position after each instance (the
same as vagrant but faster).

Figure 36: Some interesting source trajectories.

The list above is only intended as a rough classification and no attempt will
be made to formalize it. The adjective “fuzzy” is used to describe a source that is

imprecise in its residency at a point.

3.6 A Comparison of Kinds of Adaptivity

Having examined classes of adaptivity and classes of sources, we are in a

position to assess the effectiveness of classes of adaptivity in compressing classes
of sources.

A non-adaptive model will perform poorly unless the source is fixed at the

position assumed by the model. If the source is not fixed, the instantaneous
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performance will be inversely related to the “distance” between the model and the

source.

An initially adaptive model relies not on the source being in any particular
position, but on its staying still. Initially adaptive models are likely to perform

poorly on all but fixed sources.

Asymptotically adaptive and locally adaptive models are superior to initially
adaptive models. Asymptotically adaptive models use more information (I — oo)

and locally adaptive models use more recent information (a — 00).

With non-adaptive and initially adaptive models out of the race, we consider

the relative merits of locally adaptive and asymptotically adaptive models.

The advantage of asymptotically adaptive algorithms is their ability to
converge on a fixed source at infinity. To achieve this, they incorporate information
yielded by an ever increasing number of instances. This makes asymptotically
adaptive algorithms less responsive to source movements as the length of the

history increases.

The advantage of locally adaptive algorithms is their ability to track source
movements quickly. They achieve this by basing predictions only on the very recent
behaviour of the source. Because they use only a finite amount of information,

locally adaptive algorithms are incapable of converging on a fixed source.

Thus, the choice between local adaptivity and asymptotic adaptivity should
be made depending on whether convergence or responsiveness is more important.
Because most real sources move around the source space, locally adaptive models
are nearly always the best choice.

This concludes the theoretical part of this chapter. The remainder of this
chapter contains a description of techniques for incorporating asymptotic and local

adaptivity into variable-order finite-context Markov algorithms.

3.7 Mechanisms for Adaptivity

In Section 3.3, adaptivity was defined for a zero-order Markov model. The
same definition can be applied to higher order models by splitting the message
into different instance streams, one for each context and considering each context

as a zero order model. Adaptivity can be separated into a contest component and

a structure component.

The theoretical discussion assumed that the entire history is available and

that there is an unbounded amount of processing power available to process it.
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In contrast, practical models must be feasible and in particular must satisfy the

following requirements.

e The model must use a fixed finite amount of memory.

¢ The model must process each instance in time constant with respect to
the length of the history.

These requirements imply that at most only a fixed, finite portion of the history
can be retained, and that models must be constructed incrementally. The only
concession that we make here is to allow counting registers of infinite width. In

most implementations, 32-bit registers approximate this assumption well.

3.7.1 Context Adaptivity

Context adaptivity refers to the management of instances within a particular
sample. Because samples are constrained to use finite memory, they cannot store
much instance ordering information. Usually they store only a frequency counter

for each symbol.

Construction of an asymptotically adaptive context with w(l,:) = 1/ simply
involves recording the frequency of each symbol and using the frequencies to make
predictions.

A windowed locally adaptive context can be obtained by maintaining a
frequency for each symbol and a buffer of the K most recent instances of the
context history which we define to be the string of instances that have occurred
in a particular context. Upon the arrival of each instance, the frequency of the
new instance’s symbol is incremented and the frequency of the K'th most recent

instance’s symbol is decremented.

An alternative to maintaining a buffer is to set
w(l,i) = ™M

with p set so that Ei‘:l w(l,i) = 1. Because e #¢/e~H#(i+t) i5 a constant for all
positive ¢ and ¢, w can be implemented without a history buffer by multiplying
every frequency counter (after the arrival of each instance) by a constant en0.5/h,
Such an operation is called a decay, with h being the half life of an instance. The

half life is the age (measured in instances), that an instance must be before it is

half as influential as a fresh instance.

Performing n multiplications for each instance may be too expensive for

practical data compression. An alternative is to perform the decay operation
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at regular intervals using a smaller h. This has the disadvantage of making the

number of instances in samples rise and fall as a saw-tooth.

Another way to avoid frequent decay operations is to perform them only when
the frequency of a symbol reaches a certain threshold 7. Although decaying will
occur at irregular intervals, the technique is guaranteed to be locally adaptive
because decay operations must occur at least every rn instances. This method
has the practical advantage of providing an upper bound on the required width of

counter registers.

3.7.2 Structural Adaptivity

The DHPC algorithm described in Chapter 2 is designed to maximize the
depth of nodes used to make predictions. The algorithm does this by growing
each part of the tree at a rate proportional to its use. Once all the available nodes
have been added to the tree, the tree’s structure is frozen. DHPC is structurally

initially adaptive.

To maintain a locally or asymptotically adaptive tree structure, an algorithm
must be capable of altering the structure of its tree once the tree is built. Once
such an ongoing mechanism for re-organization is in place, the heuristics controlling
the initial placement of nodes become much less important. For this reason, the

following discussion addresses only the transformation of fully grown trees.

For the sake of simplicity, the transformations performed upon the tree will
be restricted to one primitive operator called leafmove that moves a single leaf
node from one part of the tree to another. This constraint results in no loss of

generality, as the operator, repeatedly applied, is capable of transforming any tree
structure to any other.

The next problem is deciding how and when leafmove should be applied.
Because the operator transfers an anonymous (contains no information) resource

from one place to another, the problem naturally splits into two separate problems:
that of supply and demand.

Supply problem: Given that a leaf node must be removed from a tree,
decide which leaf should be removed.

Demand problem: Given a spare node is available to add as a leaf to
the tree, decide where it should be added.

Before addressing these problems, it is worth investigating metrics for gauging
the worth of a leaf.
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3.7.3 Metrics on Tree Structures

Many different tree structures can be constructed from a group of nodes. Of
particular interest are structures that maximize the Markov order and structures

that minimize the entropy. It might be that these two groups are the same.

Because trees are to be manipulated using only leafmove, it is important to
be able to measure the worth of a leaf. Consider the worth of a leaf be (of a
backwards tree) where b € A and e € S. Suppose that for a fixed ergodic source
we find that at time infinity the prediction of be is p. (prediction of the child)
and the prediction of e is pp (prediction of the parent). If the probability of be
matching the history is k¢ then the absolute entropy loss o yielded by the child
to the tree is

o(be) = he | — Z pc(a)Inpp(a) — — Z pe(a) In pe(a)

acA a€A

which reduces to

a(be) = he Y _ pe(a) (In pe(a) — In py(a))
acA
Thus the worth of a leaf is the product of the probability of the leaf being used
(he) multiplied by its advantage over its parent in predicting its own context.

Roberts[Roberts82] and Rissanen[Rissanen83] use similar metrics.

The most powerful term in the formula above is h¢; if the node is rarely used, its
entropy loss hardly matters. In the remainder of this thesis we will use frequency

of use as the sole measure of the worthiness of a leaf.

3.7.4 The Supply Problem

Given that a leaf node must be removed from a tree, the supply problem is
that of deciding which leaf to remove. Ideally we wish to remove the leaf with the
lowest o. If we settle on approximating ¢ by the frequency of use of a node, it
would seem that the best node to remove is the node containing the least number
of instances. Unfortunately, the different leaves on the tree are created at different
times making this measure unfair. A better scheme is to remove the leaf with the
lowest usage rate. Newly added leaves could be initialized with a slightly higher

than average rate so that they are not immediately recycled.

The minimum-rate heuristic can be considered to be asymptotically converging

because it will grow more and more sluggish as time goes by. The locally adaptive
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equivalent is to consider the rate of use of each node over a recent time period.
One measure of rate is the mean time between occurrences. A crude but effective
locally-adaptive lowest-rate supply heuristic is to select the least recently used node

— the node with the lowest instantaneous rate.

3.7.5 The Demand Problem

Given that a node is available to add as a leaf to the tree, the demand
problem is that of deciding where the node should be added. Constructing demand
heuristics is difficult because, unlike the supply case, the candidate nodes do not
already exist and the only information available about the potential leaf is in the

potential parent node.

One approach is to find an upper bound on the entropy loss that a candidate
leaf could make. Roberts[Roberts82] achieved good results by using the product of
this bound and the established worth of the parent node as a metric for choosing
new leaf sites.

On the basis that the best leaves are the most frequently used leaves, the
DHPC demand policy of attaching leaves in proportion to the rate of use of their
parent appears sensible. It is unnecessary to maintain a list of rates of usage; if a
leaf is attached to the end of the matching branch with a certain fixed probability,
then on average the leaves will be attached in proportion to the usage rate of each
potential parent node. When an extension is made, the matching leaf is most
likely to be the most likely leaf and so the most frequent child nodes will tend to

be created first, resulting in a recursive effect.

3.7.6 Connecting Supply and Demand

The supply and demand systems can be organized as: independent, supply
driven or demand driven. In an independent organization, the two systems operate
independently. If the supply process operates faster than the demand process, the
tree will soon be stripped bare (to the root) and there will be a large pool of spare
nodes. If the demand system operates faster, it will soon run out of nodes created

by the supply system. These problems can be avoided by placing one system in
control.

In a supply driven system the supply system regularly examines the tree and
remove nodes that are not performing well. These are given to the demand system
which must immediately place them on the tree. In a demand driven system,

the demand system examines the tree and chooses sites for tree growth. It then
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requests a number of nodes from the supply system which must fulfill the order

immediately.

We prefer demand systems because the demand system can easily be controlled

through the flexible tree growth mechanisms.

3.8 Implementing Asymptotic Adaptivity

To be asymptotically adaptive, an algorithm must continually increase the
amount of information that it stores. At the context level, this means that the
frequency counters must be allowed to run to infinity. At the structure level, nodes
must be added until the order of the tree matches the order of the source.

If an infinite amount of memory is available, DHPC with m = oo, z = oo,
a > 1and § = 0 can be made asymptotically adaptive by increasing the credibility
threshold by 1 after in! instances have arrived for each of i € Z[1,00). This
guarantees that predictions will be made from samples whose depth and size

increases to infinity.

For a model that has only finite memory®?, the situation is more complicated.
For a source of order m, a tree containing at most n™ leaves is required. No other
tree structure, not even a larger one, can perform better. If there is insufficient
memory to build such a tree, techniques must be found for converging on a

representative smaller tree.

The problem here is that at any point during compression, an asymptotically
adaptive model must be prepared to move any or all of its nodes in the tree. This
applies even if the source is fixed. No matter how many instances (¢) the model
accumulates, it is possible that they were just a statistical fluke and that at time

1000¢, the history will indicate an entirely different source position.

Unfortunately, the nodes that are being destroyed and created (moved) are
where the samples are stored. When a node is moved, its instances must be
destroyed or added to its parent. When this happens, information is destroyed —
a happening dangerous to supposedly asymptotically adaptive models. The result
is that we are faced with the inenviable task of designing an algorithm that must
accumulate an infinite amount of information but which, at any time, might have

to destroy all the information it currently has!

Two theorems from probability theory suggest that such an algorithm could

be constructed. The first theorem is that a one-dimensional random walk that

81 Although we retain the infinite width registers.
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is bounded from below by zero, will average infinity at time infinity. This is the
same as saying that for a G/G/1/1 queue[Kleinrock75] with A = u (arrival rate
equals service rate), the queue length will average infinite length at time infinity if
the variance of the arrival and service distributions are not both zero. The second

theorem is the law of large numbers.

By associating a random walk with each node in the potential tree®? (with
position k corresponding to there being k instances in the node’s sample), an
algorithm could be designed for which it could be shown that at infinity a given
number of “optimal” nodes average an infinite number of instances. One way that
such an algorithm might be built is to use a probabilistic demand heuristic and a
minimum-rate supply heuristic. As time tends to infinity, the rates of each of the
nodes would become less and less variable, requiring a longer run of randomness

to alter their ranks.

In practice, theoretical results for asymptotic sources are of little use. Real
sources often change rapidly and the extra effort involved in ensuring that an
algorithm converges at infinity is not warranted. Whenever an asymptotic model

1s required in practice, a rough approximation usually serves well.

3.9 Implementing Local Adaptivity

Locally adaptive algorithms are much easier to construct that asymptotically
adaptive algorithms because local models contain only a finite amount of informa-
tion (I < K). We have already seen how a context can be made locally adaptive
by maintaining a history buffer or by decaying. A similar technique can be used
to make a structure locally adaptive.

It is possible to construct a windowed structurally locally adaptive algorithm

with .
1 <I-K—>0

w(l,i) = {z >1-K—1/K
that uses at most K'm nodes of memory. At each step, the next instance is added
to the tree and the K’th most recent instance is discarded from the tree. This
requires only that a history buffer of K +m instances be stored. Adding an instance
involves growing a matching branch of depth m (if the branch is not already
present). Removing an instance involves removing the instance from each node
on the branch that matched the history K instances before, and then removing
the node if the instance removed from it was the node’s last instance. Because at

most K instances are present in the tree, and each instance commands a branch

82 The potential tree contains all possible nodes and is of infinite depth.
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of depth m, at most KXm nodes are required to store the tree. Typical values of
K and m are K = 5000 and m = 4, for which at most 20000 nodes would be
required. For a source with any measure of redundancy, only a fraction of this

number would be used.

If less than K'm nodes are available, a maximal length history buffer of length
K or less could be maintained. Whenever the supply of nodes runs out, instances
from the oldest part of the history buffer could be removed from the tree until

enough nodes are freed up.

The locally adaptive algorithm described above grows a branch of length m
for each new instance (if such a branch does not already exist). If memory is
scarce, building long branches is wasteful because many of the deeper nodes are
unlikely to collect enough instances to become credible. In many cases they will
be destroyed without ever being used to make a single prediction. Reducing m
is undesirable because it penalizes heavily used branches. A better solution is to
use some sort of growth retardation such as DHPC’s extensibility threshold. This
would require the storage of an update depth for each instance in the history buffer
so that the instances could be removed only from the nodes to which they were

originally added.

It should be noted that it is possible to incorporate structural local adaptivity
without directly incorporating context local adaptivity. This can be done by using
an LRU supply system. This scheme yields an effect identical to the variable length
buffer scheme (with an infinite maximum length) except that it only removes
instances when a node is moved. This allows structural and context adaptivity to

be separated.

3.10 Summary

In this chapter, the definition of adaptivity has been refined by constraining
the estimation function ¢ and by using a weight function w to define four classes of
adaptivity: non-adaptive, initially adaptive, locally adaptive and asymptotically
adaptive. This definition of adaptivity focuses on the emphasis that a technique
places on various parts of the history. The variability of real world data is modelled
by considering it to have been generated by a source moving through a Markov
simple-source space. Such moving sources can be compressed by tracking them
through the source space using the instances they generate as a trail. A trade-off
arises because the usefulness of an instance in determining the current position

of the source decreases with the instance’s age. Whether it is better to use an
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asymptotically adaptive model or a locally adaptive model depends on whether
the source is fixed or moving.

Markov models can be modified to be adaptive in any of the four ways by
manipulating the instances within each context (contextual adaptivity) and by
manipulating the structure of the tree (structural adaptivity). Locally adaptive
algorithms are easy to construct because they require only a finite amount of
information. Asymptotically adaptive algorithms present greater difficulties, but
could be constructed (within the constraints of the memory) using probabilistic

techniques. In practice, sources move often enough to render such fine tuning
irrelevant.

The next chapter describes an algorithm that uses the contextual and struc-
tural mechanisms described in this chapter to implement local and asymptotic
adaptivity.



CHAPTER 4
AN EXPERIMENTAL
ADAPTIVE ALGORITHM

4.1 Introduction

In this chapter an algorithm is presented that incorporates many of the
mechanisms for adaptivity described in Chapter 3. The algorithm began as
DHPC and developed incrementally. Originally, the algorithm was to be used
to investigate the performance of variants of DHPC and PPM. However, as
the algorithm developed, it became clear that the algorithm’s flexibility and
integration of diverse, interacting features was of interest in its own right. In
this chapter, the algorithm, called the SAKDC®? algorithm, is discussed in detail
and the results of experiments that explore its parameter space are presented. The
exploration of SAKDC’s parameter space not only lends experimental support to
the theory presented in Chapter 3, but provides guidelines for practitioners working
with Markov algorithms.

It should be stressed from the start that SAKDC is an experimental algorithm
in which flexibility and reliability have taken precedence over efficiency. In
particular, the interaction and in some cases the very existence of parameters
has prevented many optimizations from being made. In a production compressor,
these parameters would be fixed, and many optimizations could be made. For
example, if the depth were fixed at 3, loops could be unrolled.

4.2 Overview of the SAKDC Algorithm

SAKDC is an extension of DHPC and contains DHPC as a special case. Like
DHPC, SAKDC uses a backwards tree, has a depth limit m, a maximum number of
nodes 2, and a credibility threshold 3. DHPC and SAKDC differ in the collection
and disposal of instances and the management of nodes.

SAKDC uses a demand-driven supply/demand system. The demand system
uses an extensibility threshold to determine if a node is fit for growth and
then appends matching leaves with a specified probability. Two sets of growth
parameters are used, one set for trees containing z node and one set for trees with
less than z nodes. The supply system is LRU (Least Recently Used). Instances

83 Swiss Army Knife Data Compression.
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can be added to the entire matching branch or just to some of the nodes on the
branch. Samples are decayed when a sample reaches a threshold. A .windowed
local adaptivity option allows instances to be forgotten after K more instances
have arrived. Shortcut pointers are used to speed up tree traversal, with an aging

technique used to detect pointers that have been invalidated by node movement.

SAKDC'’s strengths lie in its flexibility and its sophisticated adaptivity options
that allow it to run indefinitely without becoming initially adaptive.

The algorithm will be described by listing its parameters and then discussing

specific implementation problems and their solutions.

4.3 Parameters of the SAKDC Algorithm

This section describes SAKDC’s functionality by specifying the parameters
that control its behaviour. In this and following sections, the author has opted
for precision over conciseness in the hope of avoiding the ambiguity present in so

much of the literature.

“Some common structures arise repeatedly in the parameters. A threshold is
a tuple (kind,thresh) that is used to classify all samples as either under or over
the threshold. thresh is a positive integer threshold. kind is an enumerated type
having one of the two values sum or maz. A sample is defined to be over a
threshold ¢ iff ¢.kind=sum and the sample contains at least t.thresh instances or

if t.kind=maz and the frequency of the symbol whose frequency is maximum is
at least t.thresh.

The SAKDC parameters are collected in Table 7 for easy reference. Param-
eters of the form P.active determine whether feature P is turned on or off. If

P.active=false, the remaining parameters of the form P.* are meaningless,

The next few sections describe the parameters of SAKDC, giving an overview
of the effect of each parameter, but deferring to later sections detailed discussion

of the parameter’s implementation and interaction with other parameters.

4.3.1 Tree Growth
Ten parameter groups control the growth of the tree.

maxdepth: Z[0,00). This is the maximum allowable depth of any node in the

tree.®* The mazdepth parameter corresponds to m in DHPC and will often be

referred to as m.

84 Reminder: The root node is at depth zero (Section 1.2).
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Parameter Description
mazdepth Maximum depth of the tree.
maznodes Maximum number of nodes in the tree.

grow.active
grow.threshold
grow.probext
move.aclive
move.threshold
move.probext
Iruparent
phoeniz.active
phoeniz.ashes
decay.active
decay.threshold
decay.factor
decay.rounding
decay.residue
local.active
local.period
deeponly
addback
shortcuts
estim.threshold
estim.merge
estim.method
estim.lambda

Does growth occur in a growing tree?
Extensibility threshold for a growing tree.
Probability of extension for a growing tree.

Does growth occur for a moving tree?
Extensibility threshold for a moving tree.
Probability of extension for a moving tree.

LRYU discipline.

Will tree be destroyed when memory runs out?
Number of past instances used to reconstruct tree.
Will decaying take place?

Threshold above which decaying takes place.
Decaying multiplies frequencies in sample by this.
Are frequencies rounded when decayed?

Does decaying keep positive frequencies positive?
Windowed local adaptivity to be used?

Time after which instances are removed from tree.

Determines how much of matching branch is updated.

Parents inherit instances of doomed child nodes?
Use shortcuts to reduce execution time?

Nodes are credible if their sample is over this.
Determines the method of merging nodes.
Estimation method.

Confidence parameter on estimation technique.

Table 7: Summary of SAKDC parameters.

maxnodes: Z[1, ).

This is the maximum number of nodes allowed in the

tree. If the tree contains less than the maximum number of nodes, it is called a
“growing” tree, otherwise it is called a “moving” tree. If windowed local adaptivity
(Section 4.3.4) is turned on, it is possible that the tree will alternate between

growing and moving. The maznodes parameter corresponds to z in DHPC and

will often be referred to as z.

grow, move: record. The remainder of the tree growth parameters are divided
into two groups of identical structure called move and grow. During execution, the
grow group is used if the tree contains less than maznodes (i.e. z) nodes, otherwise
the move group is used. In a growing tree, the addition of a node requires the

creation of a node. In a moving tree, addition of a node requires the removal of a

different node from the tree.
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grow.active, move.active: boolean. If this parameter is false, no tree growth
occurs. If this parameter is ¢rue, the remainder of the grow or move parameters

determine the conditions under which a node is added to the tree.

Whenever an instance arrives, it is added to some nodes on the matching
branch. Once this is done, one or more nodes can be added to the end of
the matching branch. A node will be added only if regime.active=true and the
candidate-parent node’s sample exceeds an extensibility threshold. If both these
conditions hold, a new matching node is attached with a certain probability (the
probability of extension). If a node is attached, the process repeats with the new

node having to meet the requirements afresh.

grow.threshold, move.threshold: threshold. A node is defined to be extensible
if it exceeds this threshold.

grow.probext, move.probext: R[0,1]. If the potential parent node is extensi-
ble, it then has to pass a probability criterion. The new node is only created with
a certain probability, the probability of extension. A deterministic random

number generator is used to implement this constraint.85

The semantics of the tree growth parameters are summarized by Figure 37.

4.3.2 The Supply System

The parameters described in the previous section determine the conditions
under which a new node will be added to the tree. The new nodes are obtained

from the supply system. The SAKDC supply system is controlled by the following
three parameters.

Iruparent: (youngest,same,oldest). The default supply system in SAKDC is
to remove the least recently used node (set Iruparent—same). Unfortunately,
maintaining this information is computationally expensive (Section 4.7), and it is
worth investigating slightly dirtier methods. The lruparent parameter determines
where in the LRU list to insert nodes whose only child has just been removed. If
youngest, the node is placed at the head of the LRU list (position least likely to be
recycled). If oldest, the node is placed at the tail of the LRU list (position most
likely to be recycled). If same, the node is placed in a position consistent with the
time it was last used (i.e. LRU order is maintained). See Section 4.7 for more on

this parameter.

85 The random number generator must be deterministic so that its behaviour can be reproduced
by the decompressor (Section 1.11.6).
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{current is the tip of the matching branch}
loop
regime : (move, grow);
exit if depth(current)=mazdepth;
if nodes_in_tree=maznodes then
regime — move;
else
regime «— grow;
end if;
exit if not regime.active;
exit if not is_over_threshold(current.z,regime.threshold);
exit if not random(0,1) <regime.probezt;
newnode : node;
new(newnode);
current.child[hist[depth(current)+1]] — newnode;
current «— newnode;
end loop;

Unlike the DHPC algorithm (whose tree grows at most one node per instance),
the SAKDC algorithm can add many matching nodes during a single update.
After the matching branch has been updated, nodes are added iteratively by
the loop until one of the exit conditions becomes true. At the start of each
iteration, one of the two growth regimes (move or grow) is selected depending
on whether there are maznodes in the tree. Then, if all the conditions are met, a
new matching node is added to the end of the branch. The node is then updated
(not shown here) with the new instance, and a new iteration commences starting
from the newly created leaf node.

Figure 37: Summary of growth parameters.

phoenix.active: boolean. If true, the compressor’s tree is completely destroyed
(and its nodes placed in a pool for recycling) whenever the supply of nodes runs
out. In order to prevent the new tree from initially performing poorly, the new
tree is primed with the most recent phoneiz.ashes of the history. The phoeniz
parameter was included so as to allow other authors’ compression algorithms to
be selected (in particular Moffat’s PPMC’ algorithm[Moffat88]). Many authors

advocate destroying and rebuilding data structures when memory runs out.

Phoenix.ashes: Z[0, ). This parameter specifies the number of instances used
to rebuild the tree after its destruction.

4.3.3 Decaying

The next group of parameters determines how the instances within each node

will be decayed. The motivation for decaying is given in Section 3.7.1.
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decay.active: boolean. If this parameter is false, decaying does not take place; if

true, it takes place whenever a sample exceeds decay.threshold.

decay.threshold: threshold. A decay operation takes place whenever a sample
exceeds this threshold.

decay.factor: R[0,1]. A decay operation has the effect of scaling (multiplying)

each frequency in the sample by this parameter.

decay.rounding: boolean. If true, frequencies are rounded after being scaled. If

false, the frequencies are truncated.

decay.residue: boolean. If true, frequencies that were truncated or rounded down

to zero but were previously positive are set to one. If false, no action is taken.

Whenever an instance is added to a sample, a check is performed to see if
the sample should be decayed. The semantics of the decay operation are given in
Figure 38.

inc z(newinstance);
if decay.activity then
if over_threshold(z,decay.threshold) then
for a in A loop
oldza — z(a);
if decay.rounding then
z(a) « | z(a) x decay.factor + 0.5 |;
else
z(a) « | z(a) x decay.factor |;
end if;
if decay.residue and oldza> 0 and z(a)= 0 then
z(a)— 1;
end if;
end loop;
end if;
end if;

This code describes the semantics of the decay parameters of the SAKDC
algorithm. Decaying is used to introduce local adaptivity at the context level.
Decaying also places an upper bound on the frequency counts in a sample.
Whenever an instance is added to a sample, the code above is executed. If the
sample exceeds the decay threshold decay.threshold , each frequency in the sample

is multiplied by a decay factor decay.factor. Rounding and residual parameters
take care of details.

Figure 38: Semantics of decaying.
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4.3.4 Windowed Local Adaptivity

The parameters described so far allow local structural adaptivity and local
sample adaptivity. Each of these mechanisms employs a roughly negative
exponential w function (Section 3.3). Another important form of local adaptivity
is windowed local adaptivity (Section 3.4). A windowed locally adaptive model
completely forgets an instance after a fixed interval. The local parameters allow

windowed local adaptivity to be specified.
local.active: boolean. true iff windowed local adaptivity is to be employed.

local.period: Z[1,00). If local.active=true, each instance is removed from the
tree local.period instances after it arrives. If an instance removed from a node was

the only instance in the node, the node is removed from the tree for recycling.®

4.3.5 Instance Management

DHPC adds each new instance to every node in the matching branch. SAKDC

allows more complicated updating.

deeponly: (whole,credible,symbol). This parameter specifies the policy used to
determine which nodes on the matching branch are updated (have the new instance
a added to their sample). If whole, all nodes are updated. If credible, only nodes
at least as deep as the deepest credible node are updated. If symbol, only nodes

at least as deep as the deepest node containing an instance of the symbol of a are
updated. |

addback: boolean. If false, a node’s instances are destroyed when the node is
moved. If true, instances that were not originally added to the parent of the node

about to be moved, are added to the parent of the node about to be moved.

4.3.6 Improving Efficiency

Execution of DHPC involves traversing the matching branch once for each
instance processed. This means that the processing of each instance takes O(m)
time. To avoid this traversal, shortcut pointers (Section 1.12.2) can be associated
with each symbol in each sample in the tree. The pointer associated with symbol
a in node z points to a node that matches za.8” The algorithm endeavors to make

these pointers point to as deep a matching node as possible. When a new instance

86 This can cause the status of the tree to change from moving to growing.

87 This is a variant of the AddRight operator of Section 1.12.2 which mapped a and x onto za
only. Here shortcut pointers can point to any tail string of za.
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arrives, a shortcut pointer is used to jump deep into the next matching branch.

This saves traversal time, especially if deeponly=true.

shortcuts: boolean. If false, the tree is traversed from the root at each step. If
true, shortcut pointers are used to jump deep into the matching branch upon the
arrival of each new instance. This parameter has no effect on the functionality of

the algorithm, only on its efficiency.

4.3.7 Estimation

SAKDC has four estimation parameters. Estimation is oriented around a pivot
node on the matching branch. The pivot node is the deepest credible node on
the matching branch.

estim.threshold: Z[1,00). A node is termed “credible” if its sample is over this
threshold.

estim.merge: (DHPC,LAZY ,PPM). The merge®® parameter determines wheth-
er DHPC, LAZY or PPM node merging is to be used. In DHPC, the sample of the
pivot node is used to make the prediction. In PPM, the samples of the pivot node
and its ancestors are blended together to make the prediction (Section 1.10.6.6
and Figure 18). LAZY is the same as PPM except that it does not perform
“exclusions” (Figure 39).

All three merging techniques use the estimation function €(z) specified by the

remaining estim parameters.

estim.method: (linear, nonlinear, linear_moffat, nonlinear_moffat). This pa-
rameter determines the estimation formula used to estimate the probabilities
of symbols. The formula can be linear (Section 1.10.3.1), non-linear (Sec-
tion 1.10.3.2), linear Moffat or non-linear Moffat (Section 1.10.3.3). In the case
of PPM merging (estim.merge=PPM), the sum of the probabilities allocated to

zero frequency symbols by the estimation technique is used as the escape proba-
bility[Cleary84].

estim.lambda: R(0,c0) is the confidence parameter of the estimation method
chosen (Section 1.10.3).

88 This parameter should probably be called estim.blend after other authors’ nomenclature
(e.g. [Bell89)).
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function LAZYest (zs : samples) return prediction;
pavail : real — 1.0;
notdone : constant real « oo;
pred : array(symbol) of real — (others — notdone);
begin LAZYest
for order in reverse —1...m loop
z : sample — zs(order);
zerosum : real «— 0.0;
for a in A loop
if z(a)=0 then
zerosum «—zerosum—+&(z)(a);
end if;
if pred{a)=notdone and z(a)>0 then
pred[a]—pavailx{(z)(a);
end if;
end for;
pavail —pavail X zerosum;
end for;

return pred;
end LAZYest;

The LAZY estimation algorithm lies half way between the DHPC and PPM
estimation algorithms in computational expense and performance. Starting at
the tip of the matching branch, the LAZY algorithm allocates probability in
the same manner as the PPM algorithm — the available probability is divided
among the symbols of positive frequency leaving a little left over (the “escape”
probability) for the symbols of zero frequency. As in the PPM algorithm,
this escape probability is divided according to the sample of the parent node.
However, the LAZY algorithm does not exclude symbols already seen at higher
levels. The LAZY estimation algorithm can be compared with the PPM
estimation algorithm (Figure 15).

Figure 39: The LAZY estimation algorithm.

4.4 Representation of Predictions

Previous sections describe the parameters and functionality of the SAKDC
algorithm. This and future sections describe the problems that were encountered
during the algorithm’s implementation, and the solutions that were adopted. This
section describes the representation used for predictions. The terms “prediction”

and “sample” will be used interchangeably.

Section 1.11 showed that choosing a data structure for predictions (samples)

is non trivial. In the case of SAKDC, the prediction abstraction was further

complicated by the following requirements.

e There must be a decay operation.
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e A shortcut pointer must be associated with each symbol with a positive

count.

e The addback operation requires that two frequency counts be stored
for each symbol whose count is positive: one for the number of instances
and another for the number of instances also received by the parent node.
An operation to add all the instances of one sample to another sample is

required.

® Because nodes can be destroyed, so can predictions. A destroy routine

is required if a dynamic data structure is used.

e Frequencies must be decremented as well as incremented, so as to allow

the local adaptivity mechanism to remove instances from samples.

¢ The abstraction must be able to quickly provide the number of instances

in a sample and the maximum frequency in the sample.
e Incremental PPM merging must be supported.

Many of these operations can be expensive (O(n)). Luckily, it can be shown
that SAKDC uses the operations in a manner that guarantees a low amortized
cost. Proofs of this can be based upon the fact that at most m + 1 instances are

added to the tree upon the arrival of each instance.

For example, if predictions are represented by a sparse data structure, the
time taken to destroy a prediction is bounded by the number of symbols in the
prediction whose frequency is positive. This in turn is bounded by the number
of instances in the prediction. As at most m + 1 instances are added to the tree
each time a new instance arrives, the amortized cost of all the calls of the destroy
operator in DHPC can be at most m + 1 calls per instance. Another example of

such a proof is given in Section 4.9.

The greatest difficulty is the simultaneous requirement for: an operator to
increment a frequency, an operator to decrement a frequency, and an operator
to return the maximum frequency. A constant time solution seems impossible.
Although a logarithmic solution is possible, our implementation simply stores a
variable for the maximum frequency and updates it by performing an O(n) search

whenever a decrement operation takes place.

The data structure actually used was an unbalanced binary tree. Unbalanced

trees are less likely to become as slow as a list, but still avoid the implementation



Section 4.5: Representation of the History Buffer 166

complexity of balancing. Each frequency counter was four bytes wide, allowing
large files to be compressed with decaying turned off.

The final record structure for each node in the prediction tree consisted of a
symbol name, the cumulative frequency of its subtree, the number of instances of

the symbol received by the parent, a shortcut pointer and left and right pointers.

The final prediction abstraction supported coding (the generation of output
bytes) only for DHPC merging with linear estimation and A = 1. In order to map
the estimated probability of a symbol onto an integer range suitable for use by the
arithmetic code, the numerator and denominator of the linear estimation formula

in Section 1.10.3.1 were multiplied by n yielding the following formula.

nz(a) + 1
{(z)(a) = T
This led to problems with register widths. For n = 256 and files of lengths
approaching 224 symbols, ny + n can grow larger than 32 bits. For smaller files
it can get dangerously close to 24 bits. A six-byte coder solved this problem but
proved inefficient because it had to be implemented using double-precision floating
point arithmetic. Far better implementations are possible (Section 1.11) but were

not pursued, as the main focus of this work is on modelling, not coding.

4.5 Representation of the History Buffer

The history buffer is a data structure that stores the most recent m instances
received from the source. It should not be confused with the “history” which is
the name for the string consisting of all the instances received from the source.
The history buffer consists of m slots each of which contains an instance. The
slots are numbered Z[1,m] with slot 1 holding the most recently received instance

(the youngest) and slot m holding the least recently received instance (the oldest)
(Figure 40).

Oldest 8 Youngest
Instance (m=8) Instance
<] G

8 7 6 5 4 3 2 1
A direct implementation of a history buffer uses an array as shown. Whenever a
new instance arrives, the entire array is shifted. This requires O(m) assignments.

However, if m is small, this may be the most efficient implementation.

Figure 40: Direct implementation of a history buffer.
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When a new instance arrives, it is used in conjunction with the history to
update the Markov tree. This done, the instances in the history buffer are shifted
one slot. The instance in slot ¢ is moved to slot ¢ + 1. The instance in slot m
is discarded and the newly arrived instance is placed in slot 1. History buffers
provide the same functionality as fixed-length queues but also allow random read

access to any of their elements.

A history buffer is most simply implemented as an array, with the shift
operation being performed by a loop (Figure 40). If m is large, the shifting
operation can become expensive, warranting the use of a cyclic bounded buffer
which eliminates the shift at the cost of modulo arithmetic at every access
(Figure 41). In practice, m is usually so small (~ 4) that a cyclic bounded
buffer is less efficient. In a production compressor, for a small fixed m, the
shifting operation of a direct array representation could be hard coded using direct

assignments or move instructions.

Youngest | Oldest
Instance |Instance

5 4 3 21/\8 7

Boundary moves

(m=8)

A cyclic implementation of a history buffer uses an array but does not lock the
ends of the buffer to the ends of the array. Instead, the position of the ends of the
buffer moves through the array. The O(m) shifting operation is eliminated, but
a mod operation is necessary on each access. This representation is appropriate
only for large m.

Figure 41: Cyclic array implementation of a history buffer.

Our implementation of SAKDC used a cyclic bounded buffer. This was a

consequence of having originally written the compressor with larger m in mind.

4.6 Representation of the Tree

The SAKDC algorithm uses a backwards tree supporting the following set of
mappings: {AddLeft, StripLeft, AddRight} (Section 1.12.2).

The StripLeft mapping is implemented by including a parent pointer in each
node. Although parent pointers are strictly unnecessary, they can greatly increase
efficiency. Parent pointers allow a branch to be traversed from leaf to root at the

cost of only one pointer access per arc. This is very much faster than a root to
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leaf traversal which costs (say) one binary tree search per arc. The advantages of
parent pointers are discussed further in Section 4.10.

The AddRight mapping is implemented by associating a pointer with each
symbol in the prediction data structure (Section 4.4).

The AddLeft mapping maps nodes in the backwards tree to their child nodes
(Figure 42). Each node can be required to store up to n pointers to child nodes.
As the tree is likely to be sparsely branched, use of an array of n pointers would
be wasteful.®® Figure 43 shows an array implementation of a tree structure that
wastes most of its array space on null pointers. A sparse data structure is more

profitably employed.
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Figure 42: A branching tree structure.

Choosing a furcation representation is easier than choosing a prediction
representation because the furcation representation does not need to comply with
the needs of the coder. A furcation representation merely has to provide an
efficient sparse mapping from symbols to pointers, allowing insert, delete and

lookup operations. We choose unbalanced binary trees (Figure 44).

89 The wastefulness of the array is bounded by a constant factor n.
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Because most trees are sparse, an array implementation of furcations is wasteful
of space; most pointers point nowhere.

Figure 43: Branching using an array.
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The array can be replaced by a binary tree whose sparsity conserves memory.
However, this also introduces a new heap object.

Figure 44: Branching using an explicit branch tree.

Figure 44 shows that there is a one to one correspondence between the node
in each furcation binary tree and the Markov tree node that it points to. It seems

sensible therefore to incorporate the furcation binary tree into the nodes of the
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main tree structure (Figure 45). Each node in the main tree stores a left and
right pointer as part of its parent node’s child tree and a pointer to a tree of
its own children. This small modification contributes significantly to efficiency
by eliminating a whole class of heap object. It is tempting to try to apply the
same trick to the prediction binary trees whose nodes store symbol frequencies and
shortcut pointers. However, the trick is not applicable because in SAKDC many

shortcut pointers can point to the same node.

c / f d
h

The one to one relationship between the explicit furcation tree of Figure 44
and the nodes it points to means that the furcation tree can be incorporated
into the nodes themselves.

Figure 45: Branching using a branch tree built into the main tree.

4.7 Maintaining LRU Information

SAKDC uses demand driven node migration and the LRU supply system
suggested in Section 3.7.4. The demand system is fairly simple; at the end of each
update phase, zero or more nodes are added to the matching branch (Section 4.3.1).

The supply system is much more complicated because it involves the maintenance
of LRU information.

The LRU supply heuristic described in Section 3.7.4 ranks the leaves according
to their instantaneous frequency, this being inversely proportional to the time since

the leaf was last used. A node is used whenever an instance is added to it during
an update operation.

Unfortunately, the task of keeping track of the oldest leaf is non-trivial.
Usually, LRU algorithms from many areas maintain a, doubly linked list and move
each element to the front of the list whenever the element is accessed. This would
be ideal for this application were it not for the fact that in the SAKDC tree, leaves

regularly change into non-leaves and non-leaves into leaves,
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4.7.1 The Two-Colour LRU Maintenance Problem

The SAKDC LRU maintenance problem can be expressed in abstract terms
as follows. An abstract data type T must maintain the LRU relation of a set
of r distinct things. Each thing is coloured either red or green.?® Theé following

operations are defined on T.

init(T) — Initializes the set of things to the empty set.
insert(T,t) — Places thing ¢ under the control of T.
use(T,t) — Records that the thing ¢ has just been “used”.
paint(T,t) — Changes the colour of thing ¢.

grab(T) — Returns the least recently used green thing.

The above operations are applied one at a time to arbitrary things. The init
and insert operations are included only for completeness and the discussion will
concentrate on the other three operations. The problem at hand is to find an
efficient implementation for this ADT.

The simplest solution is to use a linked list of things, with the thing at the
head of the list being the most recently used thing and the thing at the tail of
the list being the least recently used thing. The use operation moves a thing to
the head of the list. For this representation, use operations can be performed in
constant time as can paint operations. The difficulty arises when a grab operation
must be performed. To obtain the least recently used green thing, a search must
be made from the tail of the list forwards until a green thing is found. This is

expensive in both theory and practice.®?

To avoid these long linear searches, one might consider threading the list with
a list of the green things. This would allow the grab operation to be performed
in constant time. Unfortunately, this has the effect of forcing the paint operation
to perform a linear search whenever a red thing is changed into a green thing.

Similar trade offs arise for a variety of other list organizations.

One interesting organization is to store the time of the most recent use of each

thing (in each thing) and maintain only a list of green things. As before, this

90 Red and green are the colours traditionally used in queueing theory in such situations. In this
case red corresponds to the non-leaves and green to the leaves. Think of it as a redwood tree with
green leaves.

1 If shortcut pointers are used (Section 4.10), all the rarely used non-leaf (red) nodes cluster at

the tail of the list resulting in extremely long searches to find the LRU green node (typically 500
nodes in a 20000 node list).
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yields a constant time use, a constant time grab and a linear paint. The appeal
of this organization is that it strips the problem to its essentials. All that need be
found is a fast way of inserting a just-painted green thing into the correct position
of the green thing list. As there seemed to be no constant time solution to this
problem, a heap structure was adopted. The heap structure is described in detail

in the next section.

It is tempting at this stage to avoid the heap structure by inserting newly
painted green things at the head or tail of the green list rather than at their
correct position. Both these ideas (along with the heap) were implemented as

options of the lruparent parameter.

The policy of inserting newly-painted green nodes at the head of the list
(youngest) means that the minimum time needed to destroy a rarely accessed
branch is increased. Each time the leaf of the branch is removed, the parent will
be placed at the head of the list. This protects it from destruction for at least
another z instances. Thus this policy ensures that it will always take at least zd

instances for a branch of depth d to be destroyed.

Inserting newly-painted green nodes at the tail of the list (oldest) would place
the nodes in immediate danger of being recycled. This would accelerate the
removal of dead wood. It would also mean that rarely used child nodes might
endanger their heavily-used parent nodes when they are recycled. In fact, the
parent node is only placed in danger if its last child node is removed. Because the
demand system tends to grow child nodes from heavily used parent nodes, it is
unlikely that the only child of a heavily used node will be lightly used.

4.7.2 A Heap Implementation

This section describes a heap implementation that yields use and paint

operations logarithmic in the number of leaves and a constant time grab.

A monotonically increasing counter representing the time in instances (e.g. |h|)
is maintained. The counter is incremented each time a use occurs. Each thing has
an “age” which is the time it was last used. A heap of green things is maintained

by age with the oldest thing (lowest age value) at the top of the heap.
Using these structures, the operations are implemented as follows:

use(T,t) — Thing #’s age is updated to the current time. If # is red,

no action is taken. If ¢ is green, t (already in the heap) is sifted into a
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position in the heap consistent with its new age. This operation takes

time logarithmic in |T|.

paint(T,t) — If ¢ is red, it is painted green and inserted into a position in
the heap consistent with its age. If t is green, it is painted red and removed

from the heap. This operation takes time logarithmic in |T|.

grab(T) — The least recently used green thing is always at the top of the
heap and can be located in constant time.

4.7.3 Implementing a Heap using Dynamic Data Structures

Traditionally, heaps are implemented using arrays. However, as arrays cannot
usually be extended incrementally, it was desirable to avoid them in favour of
dynamic data structures. The result was a heap implementation technique that

to the author’s knowledge is original.®?

The heap resides entirely in the dynamic storage area. The heap is structured
as shown in Figure 46 and has the following properties.

//”5 8 ¢9 o 4- Shrink  Grow =

By carefully numbering heap positions, a heap can grow and shrink using
dynamic memory management. The binary representation of the number of
each slot (node) in the heap describes its path from the root to the slot. The
heap always takes the form of a solid binary tree with a partially (left to right)
filled bottom layer. Nodes are added and deleted at the bottom of the heap.

Figure 46: The structure of the heap.

2 This solution was arrived at with the help of Barry Dwyer of the Department of Computer
Science, The University of Adelaide (November 1987).
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¢ Each node in the heap is numbered according to the path taken in getting
from the root node to the node. Starting with a 1, binary digits are
added to the least significant (right) side of the number until the node
is reached. The root node has the number 1. Node 3 has the number
11. This organization means that the nodes in the heap are numbered

consecutively along each level.

¢ A tree of r nodes consists exactly of those nodes numbered Z[1,r]. This
means that the heap is always well balanced. New nodes are added at the
r+1’th position. An old node can be deleted by swapping it with the node

at the r’th position and then removing it.

e The age of each node of the heap is less than or equal to that of its child

nodes.

Insertions and deletions can be implemented as follows.

Insertion: To insert a node into the heap, the node is attached at position

r+ 1 and sifted up until its parent node is as least as old as the new node.

Deletion: To delete a target node, currently numbered k, from a heap of
r nodes, the target node is first swapped with the r’th node in the heap
(to be called the “refugee” node). The target node is then removed from
the heap, leaving r — 1 nodes. Removing the target node is easy because,
having become the r’th node, the target node has no child nodes. Following

this, the refugee node is sifted into a consistent position in the heap.

These operations require that each node store a pointer to its heap parent.
A sift operation takes time logarithmic in |T].9 The advantage of this heap
organization is that it allows indefinite growth using non-contiguous, dynamically
allocated memory.

4.7.4 Boundary Problems
Two small problems remain for the supply system.

The first problem is that of ensuring that the demand system is never supplied
with the node that it is about to build upon (the build node). A simple solution
is for the demand system to “use” the build node before requesting a leaf from
the supply system. This moves the build node to the end of the LRU list which

prevents it from being chosen next (so long as there are at least two leaves).

93 Because the heap is balanced, this is an exact upper bound, not an amortized upper bound.
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The second problem occurs if the build node is the only leaf in the tree. This
can occur if z € Z[1,m], and can be avoided by preventing growth under those

circumstances or by using more than m nodes.

4.8 Deep Updating

The deeponly parameter determines how much of the matching branch is
updated by each arriving instance. When deeponly=whole, each arriving instance
is added to every node in the matching branch. When deeponly=credible, each
arriving instance is added only to the deepest credible node and its matching
descendents. When deeponly=symbol, each arriving instance is added only to the
deepest node that already contains an instance of the arriving instance’s symbol,
and that node’s matching descendants (Figure 47). The whole option is used by
PPM and DHPC. The credible option was invented by the author of this thesis.
The symbol option was invented by Moffat[Moffat88]. In this thesis, the deeponly
parameter is sometimes referred to as being “turned on” (deeponly#whole) or
“turned off” (deeponly=whole). “Deeponly updating” refers to updating with
deeponly#whole.

Under ordinary updating (deeponly=whole, as in DHPC), a non-leaf node
accumulates an instance each time its context occurs, but is used to make
predictions only when none of its child nodes are able to (i.e. when there is no
credible matching child node). This means that each node’s sample is collected over
a superset of the conditions under which it can be required to make a prediction.
The values credible and symbol of the deeponly parameter cause instances to be
added to a node only under the conditions in which the node’s sample could be

used to make a prediction.

The difference between deeponly=whole updating and deeponly=credible up-
dating is shown in Figure 48. For simplicity’s sake, the diagram assumes a
credibility threshold of one.

If deeponly=credible and the extensibility threshold is less than the credibility
threshold, there can be a twilight period for each non-leaf node during which it
accumulates instances in contexts that match its (currently non-credible) child
nodes. When the child node eventually becomes credible, the instances collected
by the parent in the child node’s context during the twilight period will remain
in the parent node, even though the parent can no longer make predictions in the

child’s context. This issue is not addressed as as it is unlikely to be of much effect.
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(Instance 2)

When a new instance arrives, it is added to samples in nodes on the matching
branch. The SAKDC algorithm supports three methods of updating. The whole
method (top) adds the instance to every node on the matching branch. The
credible method (middle) adds it only to the deepest credible node and its
descendants. The symbol method (bottom) adds the instance only to the deepest
node already containing an instance of the new instance’s symbol, and the
node’s descendents. Partial updating allows speed optimizations and improves
compression. Note that the node at depth 2 is not credible. This is possible in
SAKDC if both deeponly updating and windowed local adaptivity are turned
on.

Figure 47: Effect of deeponly updating on the matching branch.

deeponly=symbol updating was included in the SAKDC algorithm so that
Moffat’s PPMC’ updating[Moffat88] could be selected.

In practice, deeponly#whole updating does not improve compression perfor-
mance much (Section 4.17.7). This is to be expected; any context that occurs
frequently will force the growth of a child node. A far more important aspect
is that deeponly updating increases execution speed by reducing the number of
nodes that need be updated by each arriving instance. If a depth limit is set, and
the source is fairly stable, all the nodes in the tree will eventually become cred-
ible (or contain an instance of each frequent symbol) and each arriving instance
need be added only to a single node at the tip of the matching branch. Deeponly
updating can be combined to great effect with shortcut pointers (Section 4.10) to

avoid branch traversals altogether.
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under the policy of updating under the policy of updating
the entire matching branch. only the deepest matching node.

Under whole updating (left), each node collects instances in contexts matching
any of its ancestor nodes. Under credible updating (with a threshold of one),
only the tip of the matching branch is updated. The effect is to partition the
context string space.

Figure 48: Effect of deeponly updating on node zones.

4.9 Saving Instances of Deleted Nodes

When a leaf node is moved, responsibility for making predictions in the leaf’s
context falls upon its parent. This is likely to be an acceptable degradation if the
entire matching branch has received every instance. However if deeponly updating
is turned on, the parent node will have received few of the instances that the leaf
node did and will be poorly adapted to predict in the leaf’s context (Figure 48).

By not updating parent nodes, instances are lost when a leaf node is moved.

A solution to this problem is to record in each node the number of instances
(of each symbol) that the node, but not its parent, has received. Then, when a
node is deleted, those instances can be added to its parents’s sample. This allows
node movement and deep updating without the loss of instances. If a branch is

deleted from leaf to root, the root winds up containing all the instances in the
branch.
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Adding two samples together may appear to be a expensive, but turns out to
have a low amortized cost. If a sparse data structure is used to represent samples,
the cost of adding one sample to another is bounded by the number of symbols
of positive frequency in each sample. This in turn is bounded by the number of
instances in the sample. Under the addback scheme, a particular instance can be
added to a parent node at most m times, after which it resides in the root node
and can go no further. In practice, if deeponly updating is turned on, the rate of
introduction of new instances to the tree will be about one instance per arriving

instance, and the cost will be even lower.

4.10 Shortcut Pointers

Section 4.8 showed that it is unnecessary and undesirable to update the entire
matching branch. Only a few (and in the limit one) node near the tip of the
matching branch need be updated. Although welcome, this optimization is spoiled
somewhat by the fact that the entire matching branch must be traversed to get
to the node to be updated. It would be advantageous to find a method to jump
among the deeper nodes without visiting the shallower nodes. Shortcut pointers
provide such a mechanism.

The key observation motivating shortcut pointers is that each matching branch
tightly constrains the set of possible next matching branches. More specifically,
if a node whose string is € S is in the current matching branch then the string
y € S of each node in the next matching branch must share a tail of k instances
with the string za where a € A is the next arriving instance and k is the length
of the shorter of the strings za and y.

Shortcut pointers provide a mapping consisting of an AddRight mapping
followed by zero or more StripLeft mappings (Section 1.12.2). A shortcut pointer
associated with symbol a of node xyz could point to node xyza, node yza, node
za, node a or node €. The shortcut pointers are stored along with each symbol in
the prediction (AddRight) data structure. Because the depth of the target node is
not guaranteed, each node must store its own depth explicitly. The combination

of the history buffer and the depth of the target node identifies the target node’s
string.

Figure 49 depicts a tree with shortcut pointers on the leaves only. If every
node were credible and deeponly updating were turned on, the algorithm would
make one transition per instance instead of the two (or in the general case m)

required to move from the root to the leaf.
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In a solid tree structure, shortcut pointers (grey) provide instant access to the
tip of the next matching branch. Each node stores n shortcut pointers, one for
each possible next symbol. In this tree, only shortcut pointers emerging from
leaf nodes are shown.

Figure 49: Shortcut pointers in a solid tree structure.

Shortcut pointers turn the tree into a finite state machine, yielding the
one-transition per instance efficiency of the DMC algorithm while retaining the
flexibility and conceptual clarity of the underlying tree structure. The tree

structure remains, but the shortcut pointers eliminate the costly branch traversals.

Shortcut pointers improve efficiency even when the entire branch must be
updated. By providing a direct link to a node deep in the matching branch,
shortcut pointers allow the matching branch to be traversed and updated from
tip to root. As mentioned in Section 4.6, tip to root traversals are more efficient
than root to tip traversals because tip to root traversals can use parent pointers
whereas root to tip traversals require a binary search (or more generally, an n-way

branch) at each level.

The example of Figure 49 shows a solid tree. In practice the tree is more
likely to be non-solid. If the “depth” of a shortcut pointer is defined to be the
depth of the node that it points to, two natural constraints apply to the depth of

a shortcut pointer in a non-solid tree.

® The pointer can be at most one level deeper than the source node.

e The pointer can be no deeper than the depth of the next matching branch.
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Figure 50 shows a non-solid tree in which these restrictions are evident. In
SAKDC, every node contains shortcut pointers (unlike the tree in Figure 49

which contains shortcut pointers only in its leaves).

In a non-solid tree structure, shortcut pointers (grey) are constrained by the
depth of the source node and cannot always point to the tip of the next matching
branch. Instead, they are guaranteed only to point to somewhere on the next
matching branch.

Figure 50: Shortcut pointers in a non-solid tree structure.

The first restriction is evident in the shortcut pointers emerging from the root
node. The root node’s string is the empty string, and knowledge of just one more
instance allows pointers only to a depth of one, even though in the case of the
a arc deeper nodes exist. The second restriction is evident in the b shortcut arc
emerging from node aa. Knowledge that the next instance is b would be sufficient
to point to a node "aab" of depth three. However, as such a node does not exist,

the shortcut arc points to the deepest alternative which is node b.
The addition and deletion of nodes presents two problems for shortcut pointers.

If it is specified that shortcut pointers always point to the deepest node in the
target branch (subject to the two constraints listed above) then a problem arises
when a node is added to the tree. In Figure 49 and Figure 50, all the shortcut
pointers are optimally placed. If a node ab is attached to node b, the shortcut
arcs b from node aa, b from ba and b from node a suddenly become sub-optimal.
To update such arcs in the general case would mean modifying the b shortcut arc
emerging from every node in the tree whose string ended in a.

A better solution is to optimize shortcut pointers incrementally. By removing
the condition of shortcut pointer optimality from the tree’s invariant, the opti-

mization of a shortcut pointer that has been made suboptimal (by the addition of
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a node) can be delayed until the next time the pointer is used (Figure 51). The
invariant for shortcut pointers becomes simply that all shortcut pointers point to
any node on the next matching branch. A tree with all shortcut pointers pointing

to the root would satisfy this invariant.

Tree immediately after Tree a short time afterwards. The
addition of the node ab. ba-b-> shortcut has been optimized.

In a dynamically changing tree, maintaining optimized (as deep as possible)
shortcut pointers is too expensive. A better technique is to update them
incrementally. Here, the addition of a new node (ab) does not immediately
cause the shortcut pointers (a—bv, aa—, ba—) to be updated (left). Instead,
each pointer is optimized when it is next used. The diagram to the right shows
the tree after the ba— pointer has been optimized.

Figure 51: Incremental shortcut pointer optimization.

To ensure that shortcut pointers are usually optimal, shortcut pointers should
be tested for optimality whenever they are used, and updated if found to be
suboptimal. Incremental optimizing is more efficient than eager optimizing
because incremental optimization optimizes only when the information needed to
optimize is readily available. Also, incremental optimization does not produce long
delays (as does an O(z) lumped optimization), a feature important in real-time
systems. SAKDC uses incremental optimization.

A second, more serious problem arises for shortcut pointers when nodes
are moved to a different part of the tree. Whereas the tree structure remains
valid, shortcut pointers to a moved node become invalid and must not be used.
Reconstructing an invalidated shortcut pointer is simply a matter of searching

from the root. The difficult part is determining if a particular shortcut pointer is
valid.

An approach to this problem is based on the fact that tree nodes that are

moved need not be deallocated at the language level. In general, node movement
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requires only the switching of a few pointers. Thus, regardless of the volatility of
the tree, each shortcut pointer is guaranteed at least to point to a valid node in
the tree.® If deallocation never takes place, there can be no danger of a shortcut

pointer ever pointing to an undefined portion of the heap.

Given that all pointers are guaranteed to point to an allocated tree node,
integer incarnation number fields can be added to each node.?® The incarnation
number of each node starts at zero and is incremented whenever the node is moved.
By storing incarnation numbers in shortcut pointers as well, the validity of a
pointer can be determined by comparing the incarnation number of the pointer
with that of the node. If the node was moved since the pointer’s value was set,
the incarnation numbers will differ and the pointer can be detected as invalid
(Figure 52).
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Tree after node b has been detached
and reattached as node aba. Shortcut
Tree before node move. pointers labelled b3 are now invalid.

When a node is moved from one part of the tree to another, shortcut pointers
that were pointing to the node become invalid, and must be detectable as such.
This can be done by storing an incarnation number with each node and with
each pointer. When a node is moved, its number is incremented. A pointer is
then defined to be valid only if its number is the same as that of the node it points
to. In this example, the node b changes to node aba and its number increases
from 3 to 4. This action invalidates four pointers which remain numbered 3.

Figure 52: Incarnation numbers detect invalid shortcut pointers.

8% If local.active=true, on occasions some allocated nodes will be in a node pool rather than in
the tree (Section 4.13). As long as such nodes are not deallocated at the language level, the same
argument applies (and works in practice).

®% To the author’s knowledge, the use of incarnation numbers in pointers is original.
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The main disadvantages with incarnation numbers are the extra memory
they use and the possibility of their overflowing. Small incarnation registers
consume little memory but will overflow frequently, requiring some action. Large
incarnation registers use more space but are unlikely to overflow. One encouraging
fact is that under LRU, a node can be re-cycled at most every z instances.
This means that a lower bound on the overflow time is zk instances where the
incarnation register is [logg k] bits. If 16-bit registers are used, and there are
256 nodes available, it is guaranteed that overflow cannot occur until the 224’th

symbol.

If an incarnation number does overflow, processing could resume after a
cleanup operation during which every incarnation number in the tree is set to
zero and every shortcut pointer in the tree is set to point to the root node. This
would require a full tree traversal and would generate a long delay which would

be unacceptable in a real-time system. Incremental solutions might exist.

4.11 Deletion of Non-Leaf Nodes

After being exposed to a stable source over a long period, the SAKDC
algorithm will settle down and start to operate like a finite state machine; control
will mostly flow through shortcut pointers. Under such conditions, it is tempting
to organize the algorithm so as to remove the rarely used shallow non-leaf nodes

for re-use as high-access leaves.

Unfortunately, abandoning the tree structure means that groups of nodes with
no ancestor path to the root become hard to locate. If a node in such a group is
moved, nodes that previous connected to it using shortcut pointers must find their
way to the moved node’s deepest ancestor. This is difficult if the target ancestor

has no ancestor path to the root.

One method that might work, but which has not been explored in this thesis
is to use hashing to access tree nodes. This would allow instant access to all
nodes and would allow the shortcut pointers to be restored. As a further bonus,
leaf nodes and non-leaf nodes could be mixed freely in an LRU system allowing a
simple LRU list to be used rather than the heap system described in Section 4.7.
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4.12 Credibility Thresholds

The DHPC algorithm uses a credibility threshold 8 to prevent samples with
fewer than § instances from being used to make predictions (Section 2.3). The
SAKDC algorithm uses a credibility threshold as well (estim.threshold.thresh) but
also provides the option (estim.threshold.kind) of basing the threshold upon the
mazimum frequency in the sample rather than the total number of instances in

the sample.

The aim of a credibility test is to distinguish between samples that are
representative of the probability distribution they are modelling and those that
are not. DHPC’s heuristic is based on the assumption that samples containing at
least B instances are likely to be representative. For very large § (e.g. 8 > n2),
this is a good rule of thumb. For the smaller values of 8 required in practice
(e.g. B <K n so as to utilize the samples of higher order nodes as early as possible),

the heuristic is less reliable.

DHPC’s simple threshold scheme assumes that a fixed amount of information
(B instances) will yield approximations of the same precision for distributions
of different entropies. In fact, the higher the entropy of the distribution, the
more information is required to represent it to a given accuracy (Section 1.10.3).
For example, for n = 256, consider the difference in precision of samples of ten

instances from each of the following distributions.

a=b—1

pla) =1/n and p(a) = {a:,éb—>0

This example shows how a total-instance threshold can reject a good approxi-
mation to a low-entropy distribution and accept a bad approximation to a, high-

entropy distribution. What is required is a measure that takes the entropy of the

distribution into account.

Statistical theories of confidence provide metrics for measuring how represen-
tative a sample is. Roberts[Roberts82] has even used these in a data compression
algorithm. However, these metrics are expensive to calculate and maintain. Here,

we are concerned only with replacing DHPC’s simple, fast test with a better sim-
ple, fast test.

A threshold based upon the maximum (maz) frequency of a sample rather than
the total (sum) number of instances in the sample is likely to provide a better
sample filter than sum thresholds because maz thresholds distinguish between

samples based upon a crude measure of their entropy. The lower the entropy
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of a distribution, the faster the maximum frequency of a sample of increasing
size is likely to increase. In the limit, the lowest average rate of increase of the
maximum is 1/n per instance (for a high entropy distribution) and the highest is
1 per instance (for a zero entropy distribution). In contrast, the total number of

instances climbs at the same rate for all entropies.

4.13 Windowed Local Adaptivity

Section 3.9 describes a simple scheme for implementing local adaptivity, in
which the K’th oldest instance is removed from the tree whenever a new instance
arrives. In order to reconstruct the nodes to which an instance was originally
added, the history is required to be extended from K instances to m -+ K instances.

In this section we describe how this simple scheme has been integrated into
SAKDC.

As mentioned in Section 3.9, if less than m K nodes are available, it is possible
that growth caused by incoming instances will result in the removal of nodes from
other parts of the tree and hence the destruction of instances already queued for
destruction. This problem cannot be overcome by simply removing an instance
from whatever nodes are present in a branch, as the end of the branch could
be destroyed and then recreated during a single instance’s journey through the
history buffer. One solution is to reduce the rate of growth, and record the depth
of each update along with each instance in the history buffer. This works for the
problem posed, but does not take into account the other happenings in the more
complicated algorithm (such as deeponly updating). A variable length history
buffer is undesirable because the multimodal algorithm described in Chapter 5
requires a windowed locally adaptive algorithm with a fixed K.

The complete algorithm is complicated by the partial updating of branches
(including deeponly updating), and the creation and destruction of nodes. Under
these conditions, a more robust windowed locally adaptive scheme is required. One
solution is to replace the depth of each update by a list of pointers to the updated
nodes. A cyclic bounded buffer of K, m + 1-pointer arrays is appropriate. Each
pointer contains an incarnation number which is used to prevent instances from
being removed from nodes that have been moved. Figure 53 depicts a simpler
scheme in which each instance stores only a single pointer, being the the deepest
node to which the instance was added.
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m K

A structural and contextual windowed locally adaptive Markov algorithm can
be implemented by storing with each instance in the history buffer pointers to
the nodes that the instance updated. When an instance reaches the end of the
history buffer, it is removed from each node that it was originally added to. If
the last instance of a node is removed, the node is deleted. This diagram depicts
only the deepest pointers.

Figure 53: Mechanism for a windowed local tree.

The only restriction on the scheme is that it cannot be combined with decaying
or addback. The scheme assumes that if a node has not been moved since the
instance (about to be removed) was added to the node, the instance will still be

present in the node’s sample. Decaying and addbacks break this invariant.

As it is possible that the number of nodes in the tree will vary, it is necessary
to maintain a pool of nodes that have been allocated but are not currently required
in the tree. This could happen if the source is going through a low-entropy phase.
It is important that this pool be maintained so that nodes are never deallocated.

This simplifies the management of shortcut pointers (Section 4.10).

Another difficulty is the order in which nodes are recorded. If an instance
causes the creation of a whole branch, then the whole branch may need to be
destroyed when the instance is removed. This implies that the instance must be
removed from the leaf node working backwards towards the root. Unfortunately
instance addition takes place in the opposite order. In our implementation of the
SAKDC algorithm, the m + 1-pointers in each element of the local bounded buffer

are organized as a stack.
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4.14 A Sketch of How an Instance is Processed

This section describes how the SAKDC algorithm combines the mechanisms

of the previous sections into a coherent whole.

The SAKDC algorithm can be implemented as an abstract data type providing
the operations predict and update (as in DHPC). SAKDC maintains a history
buffer, a tree structure and a pointer to the deepest matching node, which we will

call the history node.

The predict operation is performed by starting at the history node and working
backwards until a credible node is found. The resultant node is the pivot node
from which the estimation process is based. The search up the tree for the pivot
and the possible subsequent movements up the tree (in PPM or LAZY estimation)
can be performed quickly using the history node pointer and parent pointers.

The update operation is much messier. Figure 54 depicts the four steps

involved. Each step corresponds to a distinct movement within the tree.

4: Move to new history node and
update the shortcut pointer
taken in step 3.

New History Node e,

e,

3: Take shortcut
to next matching
branch.

Old History Node 1: Update
matching
2: Extend matching branch. branch.

When a new instance arrives, the tree is updated in four steps. Control starts at
the tip of the currently matching branch (the old history node). In Step 1, the
instance is added to (some) nodes on the matching branch. In Step 2, zero or
more new nodes are added to the end of the matching branch and are updated.
In Step 3, the shortcut pointer in the old history node is used to jump somewhere
into the new matching branch. If this is not the tip of the new matching branch,
Step 4 moves to the tip and updates the shorteut pointer in the old history node.
The new tip becomes the new history node.

Figure 54: Steps of an SAKDC Update.
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Step 1: The new instance is added to nodes on the matching branch.
This is done starting from the history node and moving towards the root.
The deeponly parameter determines how far up the branch updating take

place.

Step 2: The matching branch is extended according to the tree growth
parameters (Section 4.3.1). Nodes that are added (if any) are updated as
if they had been part of the branch all the time. No attempt is made to
optimize shortcut pointers that point to the old history node. The new
instance is slid into the history buffer.

Step 3: Steps 3 and 4 are concerned with establishing the (new) history
node corresponding to the modified history buffer. In Step 3, the shortcut
in the old history node is taken. This leads to a node somewhere on the
new matching branch. If the shortcut pointer is invalid (or if shortcuts are
disabled), the node will be the root node.

Step 4: The new matching branch is traversed from the position reached
at the end of Step 3 to the new history node. Along the way, the shortcut
pointer from the old history node is updated if it was suboptimal. This
step yields a new history node which can be used in the next prediction

and update operation.

All of the other mechanisms described in this chapter fit into this update
framework.

The four movements of the four steps of an update can be described in terms of
the string operators of Section 1.12.2 as 1:StripLeft*, 2: AddLeft, 3: AddRight (and
implicitly StripLeft*) and 4:AddLeft* where * denotes zero or more repetitions.
Although the whole process may appear expensive, the process is highly efficient
for a source that has any sort of stability. If deeponly=true, Step 1 will involve
the updating of only one node. Step 2 is performed only if the depth limit has
not been reached. Step 3 is expensive requiring an AddRight operation. Here
a binary tree must be traversed to access the shortcut pointer associated with
the next instance. As this traversal is necessary for coding, there is no loss here
either. Finally, there are zero or more AddLeft operations. Again, this operation
is unlikely to be necessary if the shortcut pointer is optimal.

SAKDC’s complicated updating algorithm allows the use of shortcut pointers

in a dynamically changing tree, and provides other access paths that speed
prediction.
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4.15 Controlling Implementation Complexity

At this stage, it should be clear that the SAKDC algorithm presents a minefield
of potential implementation programming errors. A variety of techniques were used

to control the implementation complexity.
The model was implemented as three packages:

A Prediction Package: This package exports a prediction abstraction.
The abstraction allows the incrementing and decrementing of frequencies,

the storage of shortcut pointers, and provides a clean interface to the coder.

A Node Package: The node package provides a tree abstraction. It is
called the node package because fundamentally, it deals with nodes. A
node can be detached (in which case it is not connected to anything) or
it can be attached as part of a tree. The node package maintains all
the information about a tree (including LRU information) and provides

subprograms with information about a particular node (such as the node’s
depth).

A Compressor Package: The compressor package implements the actual
SAKDC model. The compressor abstraction provides an operation to
create a model (create), an operation to obtain a prediction from a model
(predict) and an operation to give the model an instance (update). The
compressor algorithm contains the main predict/update routines that use

the prediction package and node package.

To increase reliability, assertions were sprinkled throughout each abstraction.
A test package was written for the prediction package and the node package.
Each test package contained a duplicate implementation of the abstraction to be
tested. The duplicate implementation used simpler, but much less efficient data
structures such as arrays. The test packages applied one million operations to a
single instance of the abstraction with the probabilities of particular operations
and data contrived to increase the probability of special cases arising frequently.
For example, only seven symbols were used when testing the prediction package.
Each operation was performed on the actual and simulated abstraction. If the
operation involved the production of information, the information from the two
abstractions was compared and an error generated if the results were different.
Operations sometimes used illegal data so as to test a package’s error detection
behaviour. The test packages also performed consistency checks at random. No

bug was ever detected in a package that had passed its test package’s testing.
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A test package for the compressor could not be constructed in the same manner
as for the other packages as there appeared to be no way of coding the compressor’s
semantics any more simply than they were already coded (even at the cost of
speed). No test package was used. In retrospect, a test suite should have been

used.

4.16 Optimizations by Other Researchers

The author of this thesis has not been the only one involved with improving
finite-context Markov algorithms. Moffat[Moffat88] has investigated ways in
which PPM can be improved. Bell, Cleary and Witten summarized Moffat’s

improvements along with some of their own in chapter 6 of their book[Bellg9].

It is interesting that every researcher who has investigated PPM has used a
forwards tree whereas the author of this thesis alighted upon backwards trees.
Moftat’s optimizations are targetted at forward trees; however, many of them are

applicable to backwards trees as well.

A comparison of past improvements with current work will be made by
reviewing SAKDC’s parameters. Most Markov algorithms have a depth limit
(UMC and DMC being notable exceptions). PPM does not address the memory
issue. PPMC’ destroys the tree and rebuilds when it runs out of memory.
Tree growth in nearly all other algorithms proceeds at full speed while memory
is available (i.e. grow.active=true, grow.threshold.thresh=1, grow.probezt=1.0)
and stops once memory runs out (i.e. grow.active=true, grow.threshold.thresh=1,
grow.probezt=1.0). DAFC and DMC set some kind of grow threshold. No Markov
algorithm uses any kind of LRU node management. Phoenix reconstruction is
used by PPMC’ with phoeniz.ashes=2048.

Moffat used decaying in PPMC’ with decay.active=true, decay.threshold=
(Sum, 300), decay.rounding=true and decay.residue=true. Windowed local
adaptivity has been used in some Huffman algorithms[Knuth85] but not in a
Markov algorithm. deeponly=credible was invented by the author of this thesis.
deeponly=symbol appears in PPMC’. Addbacks are original. Vine pointers
(which are similar to shortcut pointers) have been used in PPM implementations.
However, the suboptimality of shortcut pointers and the incarnation numbers are
original. Credibility thresholds have been used by other researchers whose work
has not been pursued by this author.?® DHPC merging is really a special case of
PPM merging. LAZY merging was proposed by Moffat[Moffat88]. Although none

96 See p. 19 of [Roberts82] for a reference to such work.
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of the estimation techniques in SAKDC is original, the generalization of estimation

techniques is original.
The originality of the SAKDC lies mainly in:

e its mechanisms for various kinds of adaptivity.

e its integration of generalizations of mechanisms introduced in other

algorithms.

This concludes the description of SAKDC. The remainder of this chapter

describes experiments that were performed to explore SAKDC’s parameter space.

4.17 Experiments

This section takes up the rest of the chapter and describes the experiments

performed.

4.17.1 SAKDC Implementation

The SAKDC algorithm was implemented in the Ada[USDOD83]°” program-
ming language on a Digital VAX11/750[Digital79][Digital81] computer running
VMS[Digital78]. Tests were run on a Vax750, a Vax780 and a Vax8530. Because
of the complexity of the SAKDC algorithm, all language-based run-time checks
were left on. A preprocessor called Funnel Web (written by the author of this the-
sis) was used to generate the Ada source code. FunnelWeb, which is similar to
the WEB[Knuth83] preprocessor, allows the programmer to weave program and

documentation together. This improves code readability and reliability.

SAKDC (like DHPC) is best described as a process that reads a stream of
instances and writes a stream of predictions. SAKDC implements the model
unit of Figure 9. Section 2.4.1 explains how such a model can be used in a
compression program. In our implementation, the SAKDC algorithm drives an
arithmetic coder. However, the coder was so slow (partly because of the double
precision floating point — see Section 4.4) that it was turned off for most of the
experiments. Compression was calculated from the sum of the entropies of the
instances processed. In all cases when the coder was turned on, compression was
within a few bytes®® of the theoretically calculated figure.

The SAKDC implementation used in these experiments sets n (the number of
symbols in the set of symbols) to 256 and divides the input file into a stream of

bytes each of which is treated as a separate instance.

7 Ada is a registered trade mark of the US-Government-Ada Joint Program Office.
8 Within six bytes; the coder register was six bytes wide.
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4.17.2 Description of the Test Data

Researchers in data compression at the University of Calgary have prepared
and released a corpus of “standard” files to be used in data compression research.?®
This is an enlightened move, because it allows data compression researchers in
many countries to compare the performance of their data compression algorithms
on a standard set of data. We will call the corpus of files from Calgary the “Calgary

corpus”.

The corpus of files assembled to test SAKDC consisted of the Calgary corpus
with some additional files added to assist in the investigation of adaptivity. These
extra files were necessary because many of the files in the Calgary corpus are fairly

homogenous.

Table 8 lists the files that were used in the experiments to be described.
To avoid ambiguity, each file has been given a name and a number. The names
given to files in the Calgary corpus are the same as those used by the originators
of the corpus. Files numbered in the range Z[1,18] are members of the Calgary
corpus. The remaining files (Z[101, 104]) were added by the author of this thesis.100
Checksums were calculated according to the following formula, with each file being
treated as a sequence of eight-bit bytes in the range Z[0,255].

|3| =0—- 0
checksum(s) = ls| > 0 — (3 x checksum(sy |s|_1) + 8|5 + 1) mod 216

Further information about files in the Calgary corpus can be found in [Bell89).
The files added to the corpus by the author of this thesis are all files that change
their characteristics in interesting ways. The multi file consists of the output
of three simple, pure Markov sources interleaved at 10000-instance intervals.
The concat file was constructed by concatenating four files together and then
concatenating the result to itself. The four files consisted of PostScript code,
numeric data in text form, a hex dump and a program written in an editor
language. The file inter consists of twenty 10000-instance chunks from four corpus
files and the ASCII numeric file. The objpap file is simply the objI file followed

by the paper! file. A more detailed description of the files multi, concat and inter
can be found in Section 5.7.

9 The author of this thesis received his copy of the corpus from Ian Witten and Tim Bell on
4 February 1988. Corrections to the pic file were received and made on 14 March 1988.

100 Tf any sort of standard arises from all this, the author proposes that all files be given a unique
name and number, that Calgary be allocated the range Z[0,99], and that the author be allocated
the range Z[100, 199].
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Num | Name | Length | Chksum | Text | Description

1 bib 111261 | 57927 Yes | A bibliography

2 book1 768771 | 49516 Yes | A fiction book

3 book?2 610856 | 4041 Yes | A non-fiction book
4 geo 102400 | 44972 No | Geophysical data

5 news 377109 | 5454 Yes | A News batch file

6 obj1 21504 38609 No | A Vax object file

7 0bj2 246814 | 57595 No | A Mac object file

8 paper! | 53161 2278 Yes | A paper

9 paper2 | 82199 10028 Yes | A paper

10 paper§ | 46526 29255 Yes | A paper

11 paper4 | 13286 58710 Yes | A paper

12 paper5 | 11954 27661 Yes | A paper

13 paper6 | 38105 43918 Yes | A paper

14 pic 513216 | 7886 No | A CCITT test image
15 proge 39611 27350 Yes | A C program

16 progl 71646 33011 Yes | A Lisp program

17 progp 49379 47806 Yes | A Pascal program
18 trans 93695 48136 Yes | A terminal session
101 | multi | 90000 | 18527 No | Multimodal (see text)
102 | concat | 185286 | 58496 Yes | Many files (see text)
103 | inter 200000 | 2911 No | Many files (see text)
104 | objpap | 74665 50617 No objl +paperl

This table lists the data files used in experiments in this thesis. Files numbered

Z[1,18] form a corpus of files prepared by researchers at the University of
Calgary. The other files were prepared by the author of this thesis and contain
data generated by a moving source.

Table 8: The corpus of data files used to test SAKDC.

4.17.3 Presentation of Experiments

193

A wide range of experiments were performed to explore SAKDC’s parameter
space. A quick review of the literature revealed that data compression experiments

are usually described in a conversational style. While highly readable, this style
suffers from the following maladies.

o Where there is more than one algorithm, it is not made clear which
algorithm is being described.

e The values of some algorithm parameters used in experiments are

omitted.

® The nature of the data, and in particular the length, is not adequately

specified.
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e Discussion of the experiments drifts from experiment to experiment with
no clear indication of whether the mechanisms tested in one experiment
are being employed in the next.

o The discussion is not amenable to “random access”. That is, a reader
cannot obtain all the details and the conclusion of a particular experiment
without reading the entire text.

To avoid these difficulties, we revert to the classic scientific experimental
writing up style of aim, method, results, conclusions. To the extent that SAKDC
has a large multidimensional parameter space, it can be considered to be a natural

phenomenon worthy of experimental observation.

Unless otherwise specified, the vertical axis of all the graphs in the following ex-
periments measures compression in the form “proportion remaining” (Prop.Rem.).
The measure “proportion remaining” was chosen over “bits/instance” because of
its direct practical applicability in a world of eight-bit bytes. Most people (includ-
ing the author of this thesis) are skilled at quantification in base ten but not in base

eight. Despite this rejection, bits/instance remains the most objective measure of
compression.101

In each experiment, a table of SAKDC base parameters will be given. The
effect of varying one or more of the parameters (the “independent variable”) under
those conditions will then be described. Parameters listed as having a value of
“?” in the base parameter table are the independent variables. The shortcuts
parameter is not listed as it has no effect on compression. Unless otherwise stated,
shortcuts=true. As stated earlier, n = 256 in all runs.

Of the experiments to be described the most important are:

Experiment 2 which evaluates different estimation formulae.
Experiment 5 which evaluates the effect of depth.
Experiment 6 which evaluates the effect of memory.

Experiment 12 which evaluates the effect of structural adaptivity.

101 Fxcept of course for nats/instance!
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4.17.4 Experiment 1: Initial Benchmarks (DHPC, PPMA, PPMC?)
Aim: To determine the performance of some well-known algorithms.

Method: Three methods were chosen for testing: DHPC, PPMA and PPMC’.
PPMA is a variation of PPM; the “A” describes the estimation technique. PPMC’
is a refinement of PPM by Moffat[Moffat88]. PPMC’ is also described in [Bell89)].
The parameters chosen for each method are as close to those specified by their
inventors as could be determined from their papers. The parameters for DHPC
are given in Table 9. The parameters for PPMA are given in Table 10. The
parameters for PPMC’ are given in Table 11. Each method was run over the
entire corpus of files.

Parameter Value Parameter Value
Mazdepth 4 Maznodes 20000
Grow Yes, Sum of 2, Pext=1.0 | Move No
Lruparent Same Phoeniz No
Local No Decay No
Deeponly  Whole Addback No
Estim DHPC, Lin, A =1 Estim.threshold Sum of 3

Table 9: Experiment 1: Benchmark parameters for DHPC.

Parameter Value Parameter Value
Magdepth 4 Maznodes 20000
Grow Yes, Sum of 1, Pext=1.0 | Move No
Lruparent Same Phoeniz No
Local No Decay No
Deeponly  Whole Addback No
Estim PPM, NonLin, A =1 Estim.threshold Sum of 1

Table 10: Experiment 1: Benchmark parameters for PPMA.

Parameter Value Parameter Value

Maxdepth 3 Maznodes 20000

Grow Yes, Sum of 1, Pext=1.0 | Move No

Lruparent Same Phoenixz Yes, Ashes=2048

Local No Decay Yes, Sum of 300, 0.5, Rou, Res
Deeponly  Symbol Addback No

Estim PPM, NonLinMof, A =1 | Estim.threshold Sum of 1

Table 11: Experiment 1: Benchmark parameters for PPMC",
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Num | Name DHPC | PPMA | PPMC’

paperl 0.389 | 0.328 0.311
paper? 0.376 | 0.314 0.307
10 paperd | 0.432 |[0.354 | 0.338
11 paper), 0.487 |[0.406 | 0.366
12 paperd 0.498 | 0.427 0.381
13 paperb 0.402 | 0.343 0.318
14 pic 0.123 | 0.112 | 0.161
15 proge 0.391 |0.345 |0.315
16 progl 0.286 | 0.247 | 0.239
17 progp 0.275 | 0.247 0.235
18 trans 0.257 |[0.225 | 0.223

— average |0.391 | 0.357 | 0.329

1 bib 0.315 |0.268 | 0.264
2 book! |0.337 |0.304 |0.315
3 book? |0.312 |0.289 |0.288
4 geo 0.732 |0.761 |0.671
5 news 0.403 |0.374 |0.350
6 obj1 0.586 | 0.626 |0.497
7 0bj2 0.435 |0.453 |[0.348
8

9

This table lists the compression performance of the algorithms DHPC, PPM and
PPMC’. Compression is expressed as the proportion remaining. Although, the
three algorithms yield similar compression, PPMC’ emerges as the clear winner.

Table 12: Experiment 1: Benchmarks for DHPC, PPMA and PPMC’.

Results: The results are listed in Table 12. DHPC is inferior to PPMA except

for the files geo, 0bj1, 0bj2. PPMA is inferior to PPMC’ except for the files bookl
and pic.

DHPC’s better performance on three files (files that could be expected to
contain changing data) could be because of its slower tree growth. In the geo
run (of 102400 instances), PPMA stopped growing its tree after 10755 instances

whereas DHPC stopped after 20986 instances. It could also be the differences in
estimation scheme.

DHPC ran at about 120 instances per CPU second, PPMA at about 80 per
CPU second and PPMC’ at about 100 instances per CPU second. These figures

are rough as no attempt was made to optimize the program.

Conclusions: The methods DHPC, PPM (PPMA) and PPMC’ yield results that

are within a few percent (absolute) of each other. However, it is safe to say that
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PPMC’ out-performs PPM (by about 3% absolute) and PPM out-performs DHPC
(by about 3% absolute).
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4.17.5 Experiment 2: Estimmation (estim)
Aim: To evaluate the performance of different estimation techniques.

Method and Results: Although it would be desirable to test each SAKDC
parameter independently of the others, some parameters are so closely related that
they must be tested together. This experiment tests the parameter group estim.
The estim.threshold parameter is held constant at 1 so as to expose the estimation
techniques to small samples; because all estimation techniques must converge
as the sample size approaches infinity (Section 1.10.3), differences between the

estimation techniques are likely to be most evident for small sample sizes.

The compressor runs in Experiment 1 took six hours of CPU time on a VAX750
for each run through the corpus. This is about two hours per megabyte. To speed
things up, three small files were selected for further experimentation. These were
0bj1, which contained object code, paperl, which contained English text, and
progc, which contained a C program. This amounted to 112K which could be run
in a total of about 15 minutes of CPU time.

Parameter Value Parameter Value
Mazdepth 4 Maznodes 20000
Grow Yes, Sum of 1, Pext=1.0 | Move No
Lruparent Same Phoeniz No

Local No Decay No
Deeponly  Whole Addback No
Estim 7,7, A= Estim.threshold Sum of 1

Table 13: Experiment 2: Estimation base parameters.

The experiment commenced with a run of eight different estimation techniques
for the file paper! over a wide range of A. The base parameters used for the runs

in this experiment are listed in Table 13. The results of the first “wide angle”
run are shown in Figure 55.

In this and further graphs in this experiment, circles are used for linear
estimation and squares for non-linear estimation. A dotted line indicates that
the Moffat variant was used. Thick lines are used for PPM merging, medium
lines for LAZY merging, and thin lines for DHPC merging. The horizontal axis

measures A and the vertical axis measures compression.

As might be expected, Figure 55 shows that the best values for \ are fairly
small (< 10). Figure 56 shows the more interesting range R[0, 5].
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This graph shows the compression performance (y-axis) of the twelve different
combinations of merging and estimation techniques over a wide range of ) (x-
axis) for the file paper?. This graph shows that small values of X are best. The
best compression is obtained in the shaded region, which is shown in greater
detail in Figure 56.

Figure 55: Experiment 2: Prop.Rem. vs A for paperl (wide angle).
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This graph corresponds to the shaded region of Figure 55 and gives a better
idea of the best estimation techniques. Linear (circles) and non-linear (squares)
estimation techniques perform nearly identically. PPM merging is better than
LAZY merging which is better than DHPC merging. In each case, Moffat’s
modification improves compression considerably.

Figure 56: Experiment 2: Prop.Rem. vs \ for paper! (close up).

It is immediately clear from Figure 56 that the linear (circles) and non-linear
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(squares) techniques perform identically over this range. Indeed they are so close
that only six or so lines appear on the graph even though twelve were plotted.
The squares of the lines of the nonlinear methods (plotted underneath the linear
methods) can be seen at the very right of the graph where the lines diverge slightly.
Figure 55 shows that the linear and non-linear line pairs diverge by up to ™%
at A = 100. Because linear and non-linear methods are so similar in effect, only
linear methods will be used in further runs. When designing a production data
compressor, the choice of linear or non-linear should be determined by ease of
implementation.

Another prominent aspect of Figure 56 is the superiority of PPM merging
over DHPC merging and LAZY merging.
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This graph is very similar to Figure 56 and suggests the same conclusions.

Figure 57: Experiment 2: Prop.Rem. vs A for proge.

To ensure that the results for paper! were not file specific, the same run was
performed on the files proge and objI. The ) range was extended to R[0, 10].
The results for proge (Figure 57) are much the same as for paperl. For objl
(Figure 58) the curves are quite different. The object file has a higher entropy
than the other files and the curves are situated higher. The graph has split into
Moffat and non-Moffat line groups instead of PPM, LAZY and DHPC groups.
Non-Moffat DHPC merging performs better here than non-Moffat PPM merging,.
All the curves have slumped right (relative to Figure 56), and the optimum )
has followed. However, because of the flatness of the slump, low values of A would

still yield near optimal performance.
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This graph shows the performance of various merging and estimation techniques
for a range of A on an object file. In this graph, the line groups split into Moffat
and non-Moffat rather than DHPC, LAZY and PPM groups.

Figure 58: Experiment 2: Prop.Rem. vs A for objI.

The next two runs tested the estimation techniques for few and many instances.
To obtain samples with few instances, the model was run on paper! with the
move parameters set the same as the grow parameters and local.active=true
and local.period=500, meaning that the model would forget all but the last 500
instances (Figure 59). Apart from raising the curves by about 15%, the result is
little different to Figure 56.

To obtain samples with many instances, the compressor was run with
mazdepth=1 on paper! (Figure 60) and obj! (Figure 61). For paperl, the
effect of lowering the depth (and hence increasing the sample size) is to flatten the
curves (observe the y axis labellings). Strangely, the optimal X for the non-Moffat
formulas has increased while that of the Moffat formulas has slightly decreased.

For the object file, the curves have moved up and retained their shape, although
the PPM, LAZY and DHPC pairs have moved closer.

During the above runs, statistics were accumulated, after each prediction was
made, of the sample of the deepest node used to make the prediction. Table 14
shows the average number of instances (AvNumlns), the average maximum
frequency (AvMaxzFrq) and the average number of symbols (AvNumSym) in the
predictions. The table confirms that turning on windowed local adaptivity and

lowering the depth were good ways of manipulating the instance density. The 4.15
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This graph shows the performance of various merging and estimation techniques

where the number of instances in samples has been held low by setting
local.period=500. These results are similar to earlier results.

Figure 59: Experiment 2: Prop.Rem. vs ) for paper! with local.period =500.
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This graph shows the performance of various merging and estimation techniques
where the number of instances in samples has been made artificially high by
setting the maximum depth to one. Again, PPM merging and Moffat estimation
yield the best performance, although the curves have become much closer.

Figure 60: Experiment 2: Prop.Rem. vs \ for paperl with mazdepih=1.

entry was unexpected but can be explained by the decreasing depth of predictions
as the supply of nodes decreases.
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"This graph shows the performance of various merging and estimation techniques
where the number of instances in samples has been made artificially high by

setting the maximum depth to one. For the object file, DHPC yields the best
compression,

Figure 61: Experiment 2: Prop.Rem. vs \ for 0bj! with mazdepth=1.

Run Figure AvNumlns | AvMazFrq | AvNumSym
Few instances Figure 59 | 19 4.5 4.15
Ordinary Figure 56 | 32 14.1 3.75

Many instances | Figure 60 | 1339 289 30

This table lists average statistics of the samples of the deepest nodes used to
make predictions in each run. AvNumlns is the average number of instances
in the samples. AvMazFrq is the average maximum frequency in the samples.
AvNumSym is the average number of symbols with positive frequency in the
samples. These results show that the use of windowed local adaptivity and low
depths were effective at manipulating instance density in these runs.

Table 14: Experiment 2: Symbol and instance densities.

203

Conclusions: The optimum A for all the estimation techniques nearly always
lies in the range 0 to 5. The linear and non-linear forms yield almost identical
performance for 0 < A < 10 but diverge for A > 10 with linear yielding better
performance. The Moffat forms of estimation with A ~ 1 perform significantly
better than the non-Moffat forms. PPM merging performs 5% to 10% better than
DHPC merging unless the entropy of the source is high, in which case DHPC
merging does a few percent better than PPM merging. The performance of the

LAZY merging technique is roughly between that of DHPC and PPM merging.
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The best estimation technique is PPM merging with Moffat estimation with A = 1

(linear or non-linear).
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4.17.6 Experiment 3: Credibility (estim.threshold)
Aim: To determine the effect on compression of credibility thresholds.

Method: In this experiment the compressor was run over the files paper! and
obj1 for a range of values of estim.threshold. All six estimation techniques were
used (linear estimation is used exclusively in the remaining experiments). The

base parameters are listed in Table 15.

Parameter Value Parameter Value
Mazdepth 4 Maznodes 20000
Grow Yes, Sum of 1, Pext=1.0 | Move No
Lruparent Same Phoeniz No
Local No Decay No
Deeponly  Whole Addback No
Estim ?, LinMof, A =1 Estim.threshold ? of ?

Table 15: Experiment 3: Credibility base parameters.

Results: The results for paper! are shown in Figure 62. The graph shows clearly
that use of any sort of credibility threshold is detrimental to compression unless

predictions are based solely on the deepest node (DHPC merging).
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All runs used linear Moffat estimation.
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This graph shows the compression performance (y-axis (proportion remaining))
of three different merging techniques (using linear Moffat estimation with A = 1)
over a range of credibility thresholds (x-axis) for paper!. Dotted lines are used
for maz thresholds and solid lines for sum thresholds. Thresholding improves
compression only for DHPC and then only a little. Generally estimation
thresholding appears to be detrimental to compression,

Figure 62: Experiment 3: Prop.Rem. vs estim.threshold.thresh for paperl .
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Figure 63 leads to the same disappointing conclusion. It appears that it is

better to blend in all the available information rather than to cut it off arbitrarily.

“In theory, theory is the same as practice, but in practice it isn’t.” Fortune Cookie
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"This graph shows the compression performance (y-axis (proportion remaining))
of three different merging techniques (using linear Moffat estimation with A = 1)
over a range of credibility thresholds (x-axis) for objI. Dotted lines are used
for maz thresholds and solid lines for sum thresholds. Thresholding improves
compression only for DHPC and then only a little. Generally estimation
thresholding appears to be detrimental to compression.

Figure 63: Experiment 3: Prop.Rem. vs estim.threshold.thresh for objl.

Conclusions: Credibility thresholds are detrimental to compression and should
not be used (i.e. estim.threshold.thresh should be set to 1). An exception is when
predictions are to be based entirely on the deepest matching node (DHPC merging)

in which case, a maz threshold of 3 will improve compression by a few percent
absolute,
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4.17.7 Experiment 4: Deep Updating (deeponly)
Aim: To evaluate the performance of different updating methods (deeponly).

Method: The compressor was run over the entire corpus for each value of the

deeponly parameter. The base parameter values are listed in Table 16.

Parameter Value Parameter Value
Mazdepth 4 Maznodes 20000
Grow Yes, Sum of 1, Pext=1.0 | Move No
Lruparent Same Phoeniz No
Local No Decay No
Deeponly 7 Addback No
Estim PPM, LinMof, A =1 Estim.threshold Sum of 1

Table 16: Experiment 4: Deep updating base parameters.

Results: The results of the runs are shown in Table 17.

Num | File Whole | Credible | Symbol
1 bib 0.253 | 0.264 0.244
2 book1 0.299 | 0.307 0.296
3 book?2 0.281 | 0.281 0.270
4 geo 0.605 | 0.626 0.586
5 news 0.351 | 0.354 0.337
6 obj1 0.520 | 0.516 0.481
7 obj2 0.424 | 0.408 0.403
8 paperl 0.304 | 0.326 0.296
9 paper?2 | 0.299 | 0.323 0.294
10 paperd | 0.330 | 0.358 0.325
11 papery, 0.372 | 0.406 0.362
12 paperd 0.386 | 0.420 0.375
13 paperb 0.316 | 0.341 0.305
14 pic 0.103 | 0.107 0.103
15 proge 0.314 | 0.334 0.302
16 progl 0.234 | 0.235 0.221
17 progp 0.230 | 0.245 0.221
18 trans 0.211 | 0.215 0.200
— average | 0.324 | 0.337 0.312

This table lists the performance of whole, credible and symbol updating on
the files in the Calgary corpus. The compression performance of the different
methods is similar, but symbol emerges as the clear winner by a few percent.

Table 17: Experiment 4: Deep updating results.
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The table shows that symbol out-performed credible and whole updating
by about 2% absolute. whole out-performed credible for every file except the
object files objl and o0bj2 for which whole performed about 1% absolute worse.
Moffat[Moffat88] found that symbol updating yields a 5% relative improvement
over whole. Here it is 3.7% relative.

Although the compressor program was not much optimized, it is instructive
to review the execution speeds. The speed of these runs (expressed in bytes per
second on a Vax8530 and averaged in the same manner as the compression results
of Table 17) were whole:404, credible:506 and symbol:487. It seems that any
sort of modification that prevents shallow nodes from being updated will increase
execution speed by about 25%.

Conclusions: Assuming PPM estimation, the best updating technique (value for
the deeponly parameter) is symbol. That is, it is best to update only the matching
descendents of the deepest matching node whose sample already contains at least
one instance identical to that about to be added. Symbol yields a compression
improvement of about 1% absolute (4% relative) over whole while speeding the
compressor up by about 25%. Credible (adding the instance only to the deepest

matching node (estim.threshold=1)) yields the same speed increase but loses about

1% absolute in compression.
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Along with memory, the depth of the Markov tree is a most important
determinant of compression performance. Here the compression performance
(proportion remaining) is plotted against tree depth for five files. Although for
small depths compression improves dramatically with increasing depth, there
appears to be no advantage in increasing the depth of the tree beyond depth 4.
A depth of 3 is preferred because of its decreased memory consumption.

Figure 64: Experiment 5: Prop.Rem. vs mazdepth for files.

4.17.8 Experiment 5: Depth of Tree (mazdepth)

Aim: To determine the effect of tree depth on compression.

209

Method: The compressor was run for mazdepth values Z [1,10] over five different

files: geo, 0bjl, paperl, progc and bib. The base parameters for the runs are shown

in Table 18.

Parameter Value Parameter Value
Maxdepth 7 Maznodes 20000
Grow Yes, Sum of 1, Pext=1.0 | Move No
Lruparent Same Phoeniz No
Local No Decay No
Deeponly  Symbol Addback No
Estim PPM, LinMof, A =1 Estim.threshold Sum of 1

Table 18: Experiment 5: Depth base parameters.

Results: The results are shown in Figure 64. The graph shows that increasing

the tree depth helps, but only to an extent. Increases up to order 4 have a
huge effect after which increasing the depth appears to be mildly detrimental to
compression. The graph also shows the different complexities of the different files.
The geo file seems to contain only first-order correlations whereas bib contains at

least fourth-order correlations.
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One explanation for the lack of effect of extra depth after depth 4 is that when
memory runs out, deeper nodes are more profitable employed at shallower levels.
Table 19 lists for each file and depth, the rate of growth in nodes/instance during
the period that the tree was growing. The table shows that each extra level of

depth increases memory consumption considerably.

Table 20 lists, for each run, the number of instances before memory ran
out. To an extent, the figures here correlate with the decrease in performance
at depth 4. However, there is also evidence to suppose that memory is not the
governing factor here. For geo, the runs at depth 1 and 2 did not run out of
memory and yet there is little difference in their performance. Similarly, for ob;1
for depths 2 and 3 and paper! and obj! for depths 3 and 4. From these results
it appears that if memory is available, extra depth will yield minor improvements
but that there is not much to gain after depth 4. Because of the huge difference

in memory consumption between depths 3 and 4, depth 3 is recommended.

Depth | geo obj1 paperl | proge bib
1 0.0025 | 0.0120 | 0.0018 | 0.0023 | 0.0007
2 0.138 | 0.240 | 0.031 0.046 0.015
3 0.78 0.66 0.015 |0.19 0.87
4 1.85 1.30 0.40 0.48 0.38
5 2.86 1.71 1.10 1.36 1.07
Table 19: Experiment 5: Rate of node growth for different depths.

Depth | geo obj1 paperl | progc | bib

1 102400 | 21504 | 53161 | 39611 | 111261
2 102400 | 21504 | 53161 | 39611 | 111261
3 25596 21504 | 53161 | 39611 | 111261
4 10755 | 15344 | 49869 | 39611 | 52425
5 6970 11728 | 18057 | 14750 | 18668

Table 20: Experiment 5: Memory run out times for different depths.

Conclusions: Starting from depth 0, compression improves quickly (typically
yielding an extra 10% absolute per extra level) up to and including depth 3. Above

depth 3, compression can improve by up to 3% but is more likely to degrade. A
depth of 3 is recommended.
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4.17.9 Experiment 6: Memory Size (maznodes)
Aim: To determine the effect on compression of memory size (maznodes).

Method: In this experiment memory is measured in tree nodes rather than
in bytes. This makes the measure portable as well as easy to constrain. The
compressor was run over a range of tree sizes for the files paper!, 0bj2 and trans.
The runs were performed for depths of 3 and 4 so as to confirm the results of

Experiment 5.

Parameter Value Parameter Value
Magzdepth 7 Maznodes ?

Grow Yes, Sum of 1, Pext=1.0 | Move No
Lruparent Same Phoeniz No
Local No Decay No
Deeponly  Symbol Addback No
Estim PPM, LinMof, A =1 Estim.threshold Sum of 1

Table 21: Experiment 6: Memory base parameters.

Results: The results are shown in Figure 65. Triangles mark the depth 3 runs
and squares mark the depth 4 runs.

Starting from just one node, compression improves dramatically as nodes are
added. For the file trans, a tree of 500 nodes yields 20% absolute more compression

than a tree with just one node. Adding another 500 removes another 5% absolute.

Zooming out, Figure 66 shows a wider view. The shaded region contains
Figure 65. As might be expected, the improvement in compression diminishes as
more nodes are added. Here the curve trails off at about 10000 nodes.

It is interesting that a depth of 4 yields slightly better compression (2%
absolute) if there are more than (approximately) 12000 nodes available. This
indicates that depth 4 nodes are a luxury that can be afforded only when nodes
are plentiful. The points at the far right of the graph plot the position of the
curves at 60000 nodes. For the paper! and trans files, compression does not
improve with extra memory beyond about 20000 nodes. For 0bj2, there is a 5%
absolute improvement. This is probably because the 0bj2 file is longer than the
other files. The graph shows that a depth 4 tree does not outperform a depth 3
tree even if memory is tripled. It is likely that a depth 2 tree would outperform a

tree of depth 3 under even more stringent memory constraints.

Conclusions: Starting with one node, huge gains in compression can be made

by increasing the number of nodes in the tree. If one node yields 0.7 (proportion
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Along with tree depth, memory is a most important determinant of compression
performance. Here the compression performance (proportion remaining) is
plotted against maznodes (the maximum number of nodes allowed in the tree)
for three files. Depths of 3 and 4 are used to confirm the results of Experiment 5,
and they do, with depth 3 performing as well or better than depth 4. When
memory is small, compression improves dramatically with increasing memory.
In this case, increasing memory from 1 to 1000 nodes has improved compression
by 30% (relative).

Figure 65: Experiment 6: Prop.Rem. vs maznodes for files (close up).
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This graph gives a wider view of the data given in Figure 65 (enclosed in the
grey region). This graph shows that while great improvements in compression
can be obtained by adding memory when memory is scarce, there is little
advantage in increasing memory above 10000 nodes.

Figure 66: Experiment 6: Prop.Rem. vs maznodes for files (wide angle).
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remaining) then 500 nodes will yield 0.5. At 5000 nodes, compression tapers off
and by 10000 nodes there is little to be gained by increasing memory. These
results confirm the optimal depth as 3. For less than 500 nodes, decreasing the
depth can improve compression. For over 20000 nodes, compression can improve
for a depth of 4 but is unlikely to improve for higher depths. These results are
based on ordinary files of ordinary length.
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4.17.10 Experiment 7: Windowed Local Adaptivity (local)

Aim: To determine the locality of typical data and consequently the best
windowed local adaptivity settings (local).

Method: For this experiment the SAKDC algorithm’s windowed locally adaptive
mechanism was used (local). Unlike the decay mechanism, the windowed locally
adaptive mechanism places a fixed bound on the maximum age of instances in the

tree.

The compressor was run with the parameters listed in Table 22 for a variety
of values of local.period. The compressor was given 50000 nodes so as to lower
the chance of it having to recycle nodes prematurely (for a depth of 3 and 50000
nodes, premature recycling could only happen for local.period >= 16000). Six
files were tested: obj1, 0bj2, paperl, progc, bookl[l... 200000], multi and inter.
By “book1[l...200000]” is meant the first 200000 instances of the file book!;

performing the runs on the whole book would have taken too long.

Parameter Value Parameter Value

Mazdepth 3 Maznodes 50000

Grow Yes, Sum of 1, Pext=1.0 | Move Yes, Sum of 1, Pext=1.0
Lruparent Same Phoenix No

Local Yes, Period=? Decay No

Deeponly  Symbol Addback No

Estim PPM, LinMof, A =1 Estim.threshold Sum of 1

Table 22: Experiment 7: Windowed adaptivity base parameters.

Results: The results of the run are listed in Figure 67. The horizontal axis
plots local.period and the vertical axis plots compression (proportion remaining).
The fuzzy horizontal lines are included solely to provide a visual reference of the
horizonal at interesting points on the graph. The point markers (squares, circles,

triangles) have no significance other than to distinguish the different lines. Dotted
lines were used for non-homogenous files.
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Section 4.13 described how windowed local adaptivity could be implemented
by removing instances from the tree when they are K instances old. Here
compression performance (proportion remained) is plotted against the length
of the window (local.period) for a variety of files. With the exception of the
multimodal files (dotted), compression is improved by increasing the size of the
window. This indicates a poor locality in ordinary data. Because compression
is not much worse for smaller windows, small windows could be used in practice
to simplify implementations.

Figure 67: Experiment 7: Prop.Rem. vs local.period for some files.

Of the homogeneous files (obj1, 0b52, bookI]1... 200000], proge and paperl),
only the object files (0obj! and 0bj2) have a low optimum locality. The rest
all appear to have optimum localities at_infinity. This result contrasts strongly
with the generally held view that data is highly localized (e.g. [Bentley86],
[Abrahamson89]). The difference might be caused by the level at which the data
is parsed (Bentley — words, Abrahamson — bytes), by the order of the model
(Bentley — 0, Abrahamson — 1) or by the differing w (Section 3.3) which in this

experiment is flat but in the other research was strongly biased towards the most

recent instances.

Of great interest is the fact that for most of the files, only 5000 to 10000
instances were required to give good compression. Arithmetic coding becomes
clumsy if frequency counts can grow large (e.g. > 16383 ([Moffat88])). Typically
decaying is used to keep these counts down. However, as only about 10000
instances are needed in a compressor to produce reasonable compression, windowed

local adaptivity could also be used to place an upper bound on the counts.

Of all the files tested, book! appears to be the most homogeneous with a 4%
gap between 10000 and 30000 nodes.
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The results of the multimodal files multi and inter are also surprising. As
expected, the optimum period for multi is about 3000 instances. Any more, and
the advantage gained by keeping extra instances of the current source are lost
at the source boundary. What is surprising is the downwards dip in the curve
at 30000. This figure can be compared to the period of the repetitions of the
three sources in multi which is also 30000. The inter curve shows the same effect

although it is less dramatic.

Conclusions: For byte-level high-order models with flat w, the optimum sized
window is one of infinite length. However, only the most recent 5000 to 10000
instances are needed to achieve near optimal compression. This fact could be
used to keep frequency counts down, simplifying the design of practical arithmetic
coders. The result also means that there is little to lose (say 5%) by making a
compressor locally adaptive. However, if compression is the absolute priority then

asymptotically adaptive models will be best for highly stable sources.
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4.17.11 Experiment 8: Decaying (decay)
Aim: To determine the effect on compression of sample decaying.

Method: The compressor was run with the parameters listed in Table 23 for a
variety of values of decay.threshold. The other decay parameters (decay.factor,
decay.rounding and decay.residual) were set to constant values and were not

explored in this experiment.

Parameter Value Parameter Value

Mazdepth 3 Maznodes 20000

Grow Yes, Sum of 1, Pext=1.0 | Move No

Lruparent Same Phoeniz No

Local No Decay Yes, ? of 7, 0.5, norou,nores
Deeponly  Symbol Addback No

Estim PPM, LinMof, A =1 Estim.threshold Sum of 1

Table 23: Experiment 8: Decay base parameters.

Results: The results of the run are plotted in Figure 68. The horizontal axis
plots decay.threshold.thresh and the vertical axis plots compression. Circles are
used for homogenous files and squares for multimodal files. Solid lines denote
runs for which decay.threshold.kind=sum; dotted lines denote runs for which
decay.threshold.kind=maz. Seven files were tested, making the graph a little

messy.

The graph shows that, in general, decaying is detrimental to compression,
particularly at low thresholds. The graph carries good news, however, for it
shows that if decaying is to be used to keep maximum counts down (so as to
simplify arithmetic coding), quite stringent decaying can be used with little loss of
compression. It seems for example, that a maximum sum of 100 instances could
be imposed with little impact on compression. The danger of imposing a low
threshold is that it places a bound on the ratio between the most frequent and
least frequent symbols in a sample. This bound reduces the compressor’s capacity
to compress low entropy sources efficiently. However, in most designs there will

be little concern for this “best case”.

Another solution is to use a maz threshold which the graph indicates is even
more robust; according to the graph, maz counts can be set as low as 10 with
little impact on compression. In fact, this graph shows that for this data, three
bit (Z[0, 7]) registers could have been used for symbol counts, allowing a 96 byte

(but O(n) access) array prediction representation.
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Decaying of samples can be used to introduce contextual local adaptivity and
to place an upper bound on frequency counts. However, for ordinary data,
decaying has little effect. In this graph, compression (proportion remaining)
is plotted against decay threshold (decay.threshold.thresh) for a variety of files.
Both sum(solid) and maz(dotted) thresholds are used.

Figure 68: Experiment 8: Prop.Rem. vs decay.threshold.thresh (wide angle).

Figure 69 shows a close up view of the interesting zone at Z[1,100]. Most
interesting is that obj2 exhibits a degree of locality on its maz curve with a

minimum at about 10. Multi has sum and maz optimal values at about 20.

Conclusions: In general, decaying has a detrimental effect on ordinary files. Low
thresholds (e.g. < 20 for sum and < 10 for maz) are detrimental to compression.
However, for thresholds above 100 sum and 20 maz, decaying has almost no affect
on compression. For files generated by moving sources, decaying can provide an
advantage (= 4% absolute for these runs). The main benefits of decaying appear
to be the reduction of frequency register widths (which simplifies the design of

arithmetic coders) and the long term insurance that it provides against sources
that move.
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This graph gives a closer view of Figure 68. For low thresholds (e.g. < 20), sum
decaying has a devastating effect on compression, but for higher values appears
harmless. maz decaying can be taken down to 10 without a significant impact.
In an optimized implementation, maz thresholds could be employed to place
very low (e.g. 10) upper bounds on frequencies.

Figure 69: Experiment 8: Prop.Rem. vs decay.threshold.thresh (close up).
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4.17.12 Experiment 9: Threshold Growth (grow)

Aim: To examine the effect on compression of restricting tree growth using
frequency thresholding in a compressor that has an initially adaptive structure

and asymptotically adaptive contexts.

Method: During the design and implementation of the grow and move parame-
ters, it was assumed that high depth values (e.g. 5, 10, 20) would be optimal and
that nodes would have to be carefully allocated. However, Experiment 5 showed
that the optimal depth is 3. This means that for English text files with approxi-
mately 27 heavily used symbols, only about 273 = 19683 nodes are likely ever to
be needed. Because this value (19683) is less than the number of nodes being used
in these experimental runs (20000), the effect of sophisticated tree growth strate-
gies is unlikely to become evident. In this experiment, the memory size is varied
(in addition to the growth threshold) so that the advantage of tree management

becomes apparent.

In this experiment we are concerned only with the grow parameter. The
move parameter is examined in a later experiment. In this experiment the move
parameter is turned off. Of the grow parameter, only grow.threshold.kind and

grow.threshold.thresh are tested; grow.probezt is set to 1.0 in this experiment,

The compressor was run over the files paperl, objl and trans for a variety of

memory sizes and growth parameters. The base parameters are listed in Table 24.

Parameter Value Parameter Value
Mazdepth 3 Maznodes ?

Grow Yes, ? of 7, Pext=1.0 | Move No
Lruparent Same Phoeniz No
Local No Decay No
Deeponly  Symbol Addback No
Estim PPM, LinMof, A =1 | Estim.threshold Sum of 1

Table 24: Experiment 9: Threshold growth base parameters.

Results: The results of the run for the paper! file are shown in Figure 70. The
horizontal axis plots grow.threshold.thresh. The vertical axis plots compression

(proportion remaining). Each line corresponds to a different value of maznodes
and is labelled as such.
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Compressors that never move tree nodes once they has been attached to the tree
must be cautious about where such nodes are placed. This graph plots compres-
sion (proportion remaining) against growth threshold (grow.threshold.thresh) for
a variety of memory sizes (maznodes) for the file paper!. The point on the far
left (grow.threshold.thresh=1) represents the fast growth employed by most al-
gorithms. This is optimal if more than about 2000 nodes are available. For
smaller memory, huge gains in compression can be made by slowing tree growth
(an improvement of 9% absolute for 200 nodes).

Figure 70: Experiment 9: Prop.Rem. vs grow.threshold.thresh(sum), paperl.

This graph shows that if there are less than 1000 nodes, significant gains can
be made by retarding tree growth using an extensibility threshold (grow.thres-
hold.thresh). Taking grow.threshold.thresh=10 as a reasonable production value,
the saving in the case of maznodes=200 is about 9% absolute. For 500 nodes it is
about 7% absolute. Even for 2000 nodes the technique saves about 2% absolute.
For large memory, compression is lost, but by at most 1% absolute.

At very high thresholds (e.g. 1000 — not shown on this graph) nearly all the
curve sloped upwards. A quick check of Figure 64 confirmed that these curves
were converging on first order compression.

Of interest is the bump in the 50 curve. This was probably caused by the
increasing sensitivity of the positioning of nodes as the nodes become scarcer.
Other runs with maznodes < 50 were made and the continuity decreased

dramatically as the number of nodes decreased.

The grow.threshold.kind parameter was tested by re-running the experiment
with grow.threshold.kind=maz. The results are shown in Figure 71 which

duplicates the previous (sum) graph but also includes the maz runs as the dotted
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lines. In general, the maz threshold has little effect, but for low memory it can
take off up to 3% absolute.102
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This graph is the same as Figure 70 except that maz thresholds have been
added as dotted lines. maz thresholds perform marginally better than sum
thresholds at low thresholds.

Figure 71: Experiment 9: Prop.Rem. vs grow.threshold.thresh(maz), paperl.

For generality, the experiment was repeated for the files o0b;! (Figure 72)
and trens (Figure 73). Short files were chosen because of the increased resource

requirements necessitated by the extra dimension (memory).

The 0bj1 curves are much sharper than the paper! curves. Above the threshold
4, there is little compression to be gained. The curves still exhibit the dramatic
drop at the left which shows the usefulness of the threshold. In this case there is
an advantage even when there are 10000 nodes. This could be because Markov
trees resulting from object files are likely to have a higher furcation than those
generated from English text. For 20000 nodes, the cost of using a threshold of 5
(which saves so much for smaller memory) is negligible.

The terminal session transcript (trans) curves are similar to the paper! curves.
The same dramatic drop at the left is evident with up to 15% absolute to be gained,
11% if a sensible value (say 10) is chosen for the threshold.

102 Unfortunately, this fact was missed during the experimental process and subsequent experi-
ments use sum thresholds rather than maz thresholds.
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This graph repeats the experiment summarized in Figure 70 but uses the file
obj1. The object file exhibits the same dramatic improvement in compression
found for paper!, with improvements in compression evident even for 10000
nodes.

Figure 72: Experiment 9: Prop.Rem. vs grow.threshold.thresh for obj1.
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This graph repeats the experiment summarized in Figure 70 but uses the file

trans. Huge improvements in compression are possible here with gains of 10%
absolute for 500 nodes.

Figure 73: Experiment 9: Prop.Rem. vs grow.threshold.thresh for trans.

Conclusions: These conclusions refer to the retarding of tree growth through
the mechanism of a growth threshold (grow.threshold.thresh) in the case of a
Markov algorithm that is asymptotically adaptive at the instance level but only
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initially adaptive structurally and which is compressing a fairly static source. For
ordinary files, growth thresholds are very effective for small memory sizes (< 2000
nodes) but have little effect if memory is plentiful. Sum and mas thresholds are
comparable but maz thresholds can yield better compression at low memory sizes
at low thresholds. For ordinary files a good value appears to be sum of 10. This
yields gains of 5% to 10% absolute for small numbers of nodes while losing at most
1% absolute for large numbers of nodes. If a maz threshold is used, the best value

appears to be about 5.



Section 4.17: Ezperiments 225

4.17.13 Experiment 10: Probabilistic Growth (grow.probezt)

Aim: To examine the effect on compression of restricting tree growth, through the
mechanism of probabilistic growth, in a compressor that is structurally initially

adaptive structure but has asymptotically adaptive contexts.

Method: This experiment is similar to Experiment 9 except that tree growth is
restricted probabilistically (grow.probext) rather than by a threshold (grow.thres-
hold).

The compressor was run over the files paper!, objl and trans for a variety of

memory sizes and probabilities. The base parameters are listed in Table 25.

Parameter Value Parameter Value
Mazxdepth 3 Maznodes ?

Grow Yes, Sum of 1, Pext=? | Move No
Lruparent Same Phoeniz No
Local No Decay No
Deeponly  Symbol Addback No
Estim PPM, LinMof, A =1 Estim.threshold Sum of 1

Table 25: Experiment 10: Probabilistic growth base parameters.

Results: The results of the run for the paper! file are shown in Figure 74. The
horizontal axis plots grow.threshold.probezt. The vertical axis plots compression
(proportion remaining). Each line corresponds to a different value of maznodes
and is labelled as such. In contrast to the threshold graphs, in this graph growth
is slowest (probability of zero) at the left and fastest at the right (probability of

one).

This graph shows the same effects exhibited in Figure 70. The same massive
gains are evident. For a value of grow.probest of 0.35, the saving for 200 nodes is
about 5% absolute. For 500 nodes it is about 4% absolute. For large numbers of
nodes there is a loss of about 1% absolute.

Although probabilistic retardation provides a distinct advantage over rapid
tree growth, compression is 40% relative worse than the compression provided by
threshold retardation. This is a direct result of stochastic fuzz which ensures some
bad growth decisions as well as many good ones. The stochasticity of the method
is also evident in the variability of the stability in the curves ranging from smooth
at 20000 nodes to jagged at 50 nodes.

For generality, the experiment was repeated for the files obj1 (Figure 75)
and trans (Figure 76). Short files were chosen because of the large resource

requirements necessitated by the extra dimension (memory) in this experiment.
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One way of retarding tree growth is to append leaves probabilistically. This
graph plots compression (proportion remaining) against the probability of
appending a leaf on the end of the matching branch during an update
(grow.probext). The tree is frozen once all the nodes are placed. Each line
corresponds to a different amount of memory. Previous techniques are located
at 1.0 at the right of the graph. Probabilistic retardation yields significant gains.
However, threshold retardation (Figure 70) performs much better.

Figure 74: Experiment 10: Prop.Rem. vs grow.probext for paperl.
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This graph repeats the experiment described in Figure 74 using the file obj1.
The same effects are evident.

Figure 75: Experiment 10: Prop.Rem. vs grow.probext for objl.

Again we see losses of about 20% to 50% relative to the non-stochastic
threshold method.
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This graph repeats the experiment described in Figure 74 using the file trans.
The same effects are evident.

Figure 76: Experiment 10: Prop.Rem. vs grow.probest for trans.

Conclusions: Probabilistic growth exhibits all the same properties of threshold
growth but performs about 40% relative worse because of its stochasticity. The
best value for grow.probert appears to be 0.4. This setting yields gains (over a
probability of 1.0) of about 5% absolute for small numbers of nodes and —1%
absolute for large numbers of nodes. The 40% relative degradation over threshold
retardation serves as a reminder of the overhead incurred by using stochastic

techniques. In this case at least, thresholds should always be used in favour of
stochastic growth.
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4.17.14 Experiment 11: Node Movement (move)

Aim: To evaluate the effect on compression of moving leaf nodes within the tree

after the supply of nodes (memory) has run out.

Method: Experiment 10 showed that probabilistic growth is inferior to threshold
growth and that sum thresholds are roughly as good as maz thresholds for the
purpose of tree growth. As a consequence, the only parameter tested here is
move.threshold.thresh. The compressor was run for a variety of memory sizes and
threshold values for the files paper!, obj! and objpap. The base parameters are
listed in Table 26.

Parameter Value Parameter Value

Magzdepth 3 Maznodes ?

Grow Yes, Sum of 1, Pext=1.0 | Move Yes, Sum of ?, Pext=1.0
Lruparent Same Phoeniz No

Local No Decay No

Deeponly  Symbol Addback No

Eastim PPM, LinMof, A =1 Estim.threshold Sum of 1

Table 26: Experiment 11: Node movement base parameters.

Results: Figure 77 shows the results for the file paper!. The horizontal
axis plots move.threshold.thresh. The vertical axis plots compression (proportion
remaining). The lines correspond to different maznodes and are labelled as such.
Solid lines correspond to grow.threshold.thresh=1 and dotted lines correspond to
grow.threshold.thresh=5.

As in the earlier experiments, the adaptive mechanism has little effect when
memory is plentiful. Here the high memory curves are flat. For less memory,
there are significant gains. This graph has the same “look and feel” as the graphs
in Experiment 9 but must be interpreted differently. Although the same rising
of curves for the low threshold values is present, for this graph the “default”
value (i.e. the one used in previous experiments and by other researchers) is
move.threshold.thresh=o0; the rapid drop at the left indicates only that moving
nodes too rapidly is detrimental to compression. Presumably the nodes require
time to build up significant samples. More important is the slow drop from infinity

back to about 20. This indicates that moving nodes is worthwhile.

The results for the objI file are shown in Figure 78. In the light of the
previous results, grow.threshold.thresh=5 was not plotted. The effect of moving
nodes is much more pronounced for this run, with the 500-node and 1000-node

runs yielding an advantage of about 5% absolute.
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This graph plots compression (proportion remaining) against the parameter
move.threshold.thresh for the file paper!. The lines correspond to different
memory sizes. Two different growth rates appear: fast(solid) and slow(dotted).
Previous algorithms (e.g. PPM) are located at infinity on this graph. The file
paperl appears fairly stable and the greatest improvement in compression is
only about 3% absolute.

Figure 77: Experiment 11: Prop.Rem. vs move.threshold.thresh for paper!.
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This graph plots compression (proportion remaining) against the parameter
move.threshold.thresh for the file 0bjI. The lines correspond to different memory
sizes. The parameter grow.threshold.thresh was set to 1. Previous algorithms
(e.g. PPM) are located at infinity on this graph. Node movement yields
enormous improvements in compression here — 5% absolute for the 2000 node
curve. Again, for small memory, movement is highly detrimental.

Figure 78: Experiment 11: Prop.Rem. vs move.threshold.thresh for obj1.
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The graph for objpap is shown in Figure 79. The curves here are smoother,
but the same compression advantage is evident — 5% absolute for a memory of
about 2000 nodes.
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This graph plots compression (proportion remaining) against the parameter
move.threshold.thresh for the file objpap. The lines correspond to different
memory sizes. The parameter grow.threshold.thresh was set to 1. Previous
algorithms (e.g. PPM) are located at infinity on this graph. Node movement
yields significant compression gains here — 5% absolute for the 1000 node curve.
For small memory, movement is highly detrimental.

Figure 79: Experiment 11: Prop.Rem. vs move.threshold.thresh for objpap.

All the graphs indicate that if there are very few nodes (i.e. < 100), it is best
not to move the nodes around. This gives the nodes a chance to settle and build
up a significant sample.

Conclusions: The policy of relocating nodes in the tree after memory runs out
(grow) has a negligible effect on compression for large memory (= 20000 nodes),
a detrimental effect (~ 3%) for small memory (< 100 nodes) but can produce
significant compression gains (~ 7% absolute) in the mid range (Z[100,10000]).
If nodes are being relocated, there is no advantage in retarding the initial tree
growth. Relocation is advised for memory sizes of 100 nodes or greater, for which
the best threshold value seems to be move.threshold.thresh=20.



Section 4.17: Ezperiments 231

4.17.15 Experiment 12: Four Growth Regimes (grow,move)

Aim: To compare the compression performance of four regimes of tree manage-

ment.

Method: Experiment 9 and Experiment 11 explored the effect of different
threshold values for a variety of tree management policies over a variety of files.
In this experiment, the best settings of the four distinct policies are run over the

three files for a variety of memory sizes. The base parameters for the experiment
are listed in Table 27.

Parameter Value Parameter Value

Mazdepth 3 Maznodes ?

Grow Yes, Sum of ?, Pext=1.0 | Move Yes, Sum of ?, Pext=1.0
Lruparent Same Phoeniz No

Local No Decay No

Deeponly  Symbol Addback No

Estim PPM, LinMof, A =1 Estim.threshold Sum of 1

Table 27: Experiment 12: Growth regimes base parameters.

The four tree management techniques are characterized by their grow and
move thresholds which are listed in Table 28. Each technique has been given a
two part name depending on the rate at which it grows its tree before and after it

has run out of nodes.

Scheme grow.threshold.thresh | move.threshold.thresh
fast/stop 1 00
slow/stop |5 00
fast/slow |1 20
slow/slow |5 20

This table defines the four tree management schemes used in Experiment 12.
grow.threshold.thresh determines the rate of tree growth when nodes are still
being created. move.threshold.thresh determines the rate at which nodes are
moved around the tree once the supply of nodes has run out. The four schemes
are given names of the form <growth speed>/<move speed>. Algorithms by
other authors can be classified as fast/stop.

Table 28: Experiment 12: Four growth regimes.

Results: The results for paper! are shown in Figure 80. The horizontal axis
plots maznodes. The vertical axis plots compression (proportion remaining). Each
line corresponds to one of the four schemes. Scheme slow/slow is not plotted in
any of these results because it performed almost identically to fast/slow. The

x-axis only goes to 5000 nodes after which tree management has little effect.
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This graph plots compression (proportion remaining) against memory (mazn-
odes) for the file paper! for three tree management regimes (Table 28). The
Jast/slow scheme performs best, yielding an absolute improvement of 10% over
fast/stop for 200 nodes.

Figure 80: Experiment 12: Prop.Rem. vs maznodes for paperl (3 regimes).

For paperl, the fast/slow scheme out-performs the conventional fast/stop
scheme by about 4% absolute. For 200 nodes, the difference is about 10% absolute.

The results for objI are shown in Figure 81. Again fast/slow has a 4%
absolute advantage over fast/stop. The maximum difference here is 12% absolute
for 200 nodes. The curves for 0bj! are more jagged than for paperl. In particular,
the o0bjl fast/slow curve dips down sooner for small memory.

The results for objpap are shown in Figure 82. For this file, which changes
from object code to English a quarter of the way through, structural adaptivity
yields great gains across the entire range of the graph. The difference here is
about 14%. For 800 nodes the gain is about 18%. This massive improvement in

compression demonstrates the importance of adaptivity in data compression.

The book, which is the most homogeneous file, yields the least dramatic results

(Figure 83). However the technique still yields an advantage, with 5% absolute
to be gained at 200 nodes.
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‘This graph plots compression (proportion remaining) against memory (mazn-
odes) for the file objl for three tree management regimes (Table 28). The
fast/slow technique produces much better compression that the other techniques,
yielding an improvement of 12% absolute at 200 nodes.

Figure 81: Experiment 12: Prop.Rem. vs maznodes for objl (3 regimes).
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This graph plots compression (proportion remaining) against memory (mazn-
odes) for the file objpap for three tree management regimes (Table 28). The
file objpap consists of 20K of object file followed by 50K of English text. In this
situation the fast/slow scheme yields up to 18% absolute better compression
than fast/stop. By moving nodes around after they are placed in the tree, the

fast/slow algorithm adapts to the change in source from object file to English
text.

233

Figure 82: Experiment 12: Prop.Rem. vs maznodes for objpap (3 regimes).



Section 4.17: Ezperiments 234

2000 3000 4000 5%”

pbaa byl v ey gl v an ba e s bes s be g e by o Vi 1

~JO O W

fast/slow
fast/stop

slow/stop

<T=t=TotoY=t=Y=t=Y-Y-T-T-T-Y-T-T-T-T-)
WWWWWARRRABRRRRDELAWL
SRABBEEBHRLE[EEIASY
e T T
a 2&A

COO0000000000000000

B e R e

. 0

LR D S i B R e L i B e L B B L B L 0 B o |

1000 2000 3000 4000 5000

This graph plots compression (proportion remaining) against memory (mazn-
odes) for the first 100000 instances of the file book! for three tree management
regimes (Table 28). Because the book consists of fairly homogeneous English
text, the fast/slow scheme did not perform as dramatically as it did in Fig-

ure 82. Nevertheless, it still yielded a compression improvement of 5% absolute
for 200 nodes.

Figure 83: Experiment 12: Prop.Rem. vs maznodes for book1 [1..100000].

Conclusions: As in previous experiments, structural adaptivity is ineffective if
memory is plentiful. In this experiment memory was restricted to less than 5000
nodes. The scheme slow/slow performed nearly identically to fast/slow. The three
remaining regimes are ranked from best to worst as follows: fast/slow, slow/stop,
fast/stop. The technique fast/slow is by far the best, beating the other techniques
by up to 20% absolute. slow/stop enjoys a significant advantage over fast/stop.

These results show that adaptivity is important in data compression algorithms
that use less than 5000 nodes.



Section 4.17: Ezperiments 235

4.17.16 Experiment 13: Inheriting Instances (addback)

Aim: To determine the effect on compression of adding the sample of a node

about to be moved to the sample of the node’s parent node.

Method: To test the effect of the addback parameter, the compressor was run
on a variety of files using the fast/slow parameters settings of Experiment 12

(Table 29). To ensure that a lot of node movement occurred, only 2000 nodes

were used.
Parameter Value Parameter Value
Mazdepth 3 Maznodes 2000
Grow Yes, Sum of 1, Pext=1.0 | Move Yes, Sum of 20, Pext=1.0
Lruparent Same Phoeniz No
Local No Decay No
Deeponly  Symbol Addback ?
Estim PPM, LinMof, A =1 Estim.threshold Sum of 1

Table 29: Experiment 13: Inheriting instances base parameters.

Results: The results are shown in Table 30 arranged from best to worst. The

third column indicates the effect of addback in absolute proportion removed units.

File No Addback | Addback | Difference
book1[1...100000] | 0.3627 0.3607 -0.0020
book1 0.3468 0.3466 -0.0002
paperl 0.3257 0.3250 -0.0007
objpap 0.3769 0.3786 +0.0017
obj1 0.4776 0.4796 +0.0020
0bj2 0.3497 0.3555 +0.0058
inter 0.3735 0.3797 +0.0062

When a node is moved to another part of the tree, its instances are normally
lost. This is potentially detrimental to compression. Loss of instances can be
prevented by adding the instances to the parent of the node about to be moved.

Unfortunately, in practice the technique does not improve compression, as this
table shows.

Table 30: Experiment 13: Addback results.

Conclusions: The effect of adding back is at worst detrimental and at best
negligible. It appears to be of no advantage and should not be used.
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4.17.17 Experiment 14: LRU Heap Management (Ilruparent)
Aim: To determine the effect on compression of the lruparent parameter.

Method: This experiment is identical to Experiment 13 except that the indepen-
dent variable is lruparent rather than addback. The parameters for the runs are
listed in Table 31.

Parameter Value Parameter Value

Maxdepth 3 Maznodes 2000

Grow Yes, Sum of 1, Pext=1.0 | Move Yes, Sum of 20, Pext=1.0
Lruparent 7 Phoeniz No

Local No Decay No

Deeponly  Symbol Addback No

Estim PPM, LinMof, A =1 Estim.threshold Sum of 1

Table 31: Experiment 14: Heap management base parameters.

Results: The results are listed in Table 32. The results show that compromising
the LRU system by inserting nodes (whose last child node has just been deleted) at
the head or tail of the LRU list (instead of in order somewhere in the middle of the
list), has negligible impact on compression. This result means that the expensive
heap management used to maintain LRU order (Section 4.7) is totally unnecessary

and can be replaced by a much more efficient (constant time vs logarithmic time)
LRU list.

File Oldest | Same Youngest
paperl 0.3262 | 0.3257 | 0.3254
obj1 0.4770 | 0.4776 | 0.4775
objpap 0.3765 | 0.3769 | 0.3764
book1[1...100000] [ 0.3627 | 0.3627 | 0.3627
book1 0.3468 | 0.3468 | 0.3460
0bj2 0.3498 | 0.3497 | 0.3471
inter 0.3735 | 0.3735 | 0.3705

When the last child of a parent node is removed, the parent becomes a leaf node.
Because inserting the new leaf in its correct place in a leaf LRU list is expensive
(O(#) or at best O(log z)), it is worth investigating other heuristics. This table
shows the effect of inserting new parent nodes at the head (youngest — least
likely to be recycled) or tail (oldest — most likely to be recycled) of the LRU
list as well as the correct (expensive) position (same). The fact that there is
no significant difference in the compression performance of the three heuristics
means that a fast (constant time oldest or youngest heuristic) LRU leaf list could
be used in practice

Table 32: Experiment 14: Heap management results.
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Conclusions: The lruparent parameter has a negligible affect on compression.
This means that the LRU heap structure described in Section 4.7 could be replaced
by a highly efficient linked list structure. For such a list, compression is not affected
by whether new leaf nodes are inserted at the head or tail of the list. However,
the tail (lruparent=oldest) is probably best for the theoretical reasons given in
Section 4.7.1.
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4.17.18 Experiment 15: Tree Reconstruction (phoeniz)

Aim: To evaluate the compression performance of the strategy of rebuilding the

tree when memory runs out (phoeniz).

Method: This experiment is similar to Experiment 12. However, here when
the supply of nodes runs out, the tree is destroyed and rebuilt from the most
recent phoeniz.ashes instances in the history buffer. The base parameters for the

experiment are listed in Table 33.

Parameter Value Parameter Value
Mazdepth 3 Maznodes ?

Grow Yes, Sum of 7, Pext=1.0 | Move No
Lruparent Same Phoeniz ?, Period="?
Local No Decay No
Deeponly  Symbol Addback No

Estim PPM, LinMof, A =1 Estim.threshold Sum of 1

Table 33: Experiment 15: Tree reconstruction base parameters.

The compressor was run with these parameters for a variety of files and
memory sizes. In each case, the phoeniz.ashes parameter was set to one quarter of
maznodes. This is a good, safe, efficient value for a tree of depth three. Rebuilding
the tree with more instances would be likely to result in thrashing. Two values
were used for grow.threshold.thresh, a fast value of 1 and a slow value of 5.

Results: The results for obj! are shown in Figure 84. The horizontal axis
plots maznodes. The vertical axis plots compression (proportion remaining). The
top two curves (labelled with squares) show the performance of the fast and slow
phoenix methods. The lower curve (labelled with circles) is for comparison only

and is taken directly from Experiment 12.

Figure 84 shows that slow growth remains effective in the presence of a
phoenix mechanism. For 200 nodes, slowing tree growth yields a 5% absolute
improvement in compression. However, incremental tree re-arrangement remains
the best technique. For 200 nodes, incremental tree management yields a 10%

absolute improvement in compression over the fast phoenix method.

The results for objpap are shown in Figure 85. Asin previous runs on this file,
massive gains in compression are the reward of careful tree management. For 200
nodes, retarding tree growth yields an 8% absolute improvement in compression.
Full incremental management yields an 18% absolute improvement. Improvements
of 7% absolute can be obtained at 1000 nodes.
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When some Markov data compression techniques run out of memory, they scrap
their tree, construct a new tree from the previous phoeniz.ashes instances and
then continue. This graph plots compression (proportion remaining) against
memory for the file objl for two such phoenix schemes and the continually
adaptive fast/slow scheme described in Experiment 12. The fast/slow technique
yields better compression for small memory sizes.
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This graph repeats the experiment plotted in Figure 84 for the file objpap. For

small memory, the fast/slow technique yields far better compression (18% for
200 nodes) than the fast/phoeniz technique,
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Figure 84: Experiment 15: Prop.Rem. vs maznodes for obj! with phoenix.

Figure 85: Experiment 15: Prop.Rem. vs maznodes for objpap with phoenix.

The same compression improvements are obtained for the book file (Fig-

ure 86). It is interesting to compare Figure 86 with Figure 83.
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This graph repeats the experiment plotted in Figure 84 for the first 100000
instances of book!. These results indicate that discrete (i.e. phoenix) adaptivity
is inferior to continuous adaptivity.

Figure 86: Experiment 15: Prop.Rem. vs maznodes, book! [1..100000](+ph).

Conclusions: If memory is plentiful, the phoenix mechanism will perform nearly
as well as incremental tree management. However, as memory decreases, the
benefits of incremental tree management increase dramatically. Below 2000 nodes,
incremental tree management methods perform between 5% and 20% better than
phoenix methods. Retarding tree growth (grow.threshold.thresh=5) improves the

performance of phoenix methods at these low memory sizes.
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4.17.19 Experiment 16: Shortcut Pointers (shortcuts)
Aim: To evaluate the effectiveness of shortcut pointers (shortcuts).

Method: In previous experiments, shortcut pointers were used to increase
execution speed. This experiment measures the advantage obtained by using

shortcut pointers. The parameters for the experiment are given in Table 34.

Parameter Value Parameter Value

Mazdepth 3 Maznodes i

Grow Yes, Sum of 1, Pext=1.0 | Move Yes, Sum of 20, Pext=1.0
Lruparent Oldest Phoeniz No

Local No Decay No

Deeponly  Symbol Addback No

Estim PPM, LinMof, A =1 Estim.threshold Sum of 1

Table 34: Experiment 16: Shortcut base parameters.

The compressor was run with these parameters for two memory sizes and a
selection of files. Memory sizes of 200 and 20000 were chosen to represent two

extremes of tree volatility.

Results: The use of shortcut pointers had almost no effect on the speed of the
compressor, with the speedup for most files being just a few percent. This is
probably a result of the complexity and overheads of the SAKDC algorithm. A
far better measure of the worth of shortcut pointers is the number of parent to
child (AddLeft) transitions they avoid.

Table 35 lists the results of the run (rounded to two significant digits).
AvUpdate is the average of the depths of the deepest node updated for each
instance. AwvShort is the average depth of shortcut pointers taken during the
run (this is the average number of hops saved per instance). RelocRate is the

average number of nodes added to the tree per instance after memory ran out.

In a 20000 node tree, the shortcut pointers take the algorithm most of the way
down each branch. When there is a lot of memory, most of the nodes required are
in place and node turnover is low. For the 200 node tree, the shortcut pointers
reach just over half way down each branch, saving about one hop. The decreased
effectiveness of shortcut pointers for smaller trees can be attributed to an increase
in node turnover (which increases the rate of invalidation of shortcut pointers) and

to the increased sparseness of the tree.

Table 36 lists some prediction statistics of general interest. The statistics

refer to the samples/predictions in the pivot nodes (Section 4.3.7) during the
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File maznodes | AvUpdate | AvShort | RelocRate
obj1 200 1.80 1.17 0.27
multi 200 3.00 2.99 0.00
inter 200 2.11 1.30 0.32
objpap 200 1.95 1.05 0.33
book1[1...100000] | 200 2.11 0.93 0.41
objl 20000 3.00 1.60 0.000
mults 20000 3.00 2.99 0.000
inter 20000 2.90 2.24 0.082
objpap 20000 2.98 2.10 0.040
book1[1...100000] | 20000 3.00 241 0.000
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Shortcut pointers can be used to avoid most tree traversals as this table shows.
Each line in the table corresponds to a single run. AvUpdate is the average
update depth of the run. AuShort is the average depth of traversed shortcut
pointers. RelocRate is the average number of nodes moved per instance after
memory ran out. For large memory (20000 nodes), shortcut pointers span most
of the matching branch. For smaller memory, they span about half the matching
branch.

Table 35: Experiment 16: Shortcuts results.

run.’®® AvyPredDepth is the average depth of the predictions. AvPredDis is the
average number of symbols in the prediction. AvPredSum is the average number

of instances in the predictions. AvPredMaz is the average maximum frequency in
the predictions.

A comparison of Table 35 and Table 36 shows that the average prediction
depth lags behind the average update depth. This is probably a startup effect as
there is no lag for the multi run.

The extra 19800 nodes roughly double AvPredDepth and halve AvPredDis.

The AvPredMaz field, in comparison with the other fields, gives an idea of the
spikiness of the samples.

Conclusions: Shortcut pointers are effective at avoiding parent to child (AddLeft)
transitions. For large memory (%20000 nodes) they avoid from 70% to 100% of
transitions (typically 80%). For small memory (/200 nodes) in a volatile tree they
avoid over 50% of transitions. Whether shortcut pointers will yield an execution

speed improvement depends on the particular implementation and the entropy of
the source being compressed.

103 The statistics refer to the predictions that would actually be made if estim.merge=DHPC
and estim.threshold.thresh=1.
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File maznodes | AvPredDepth | AvPredDis | AvPredSum | AvPredMaz
obj1 200 1.54 34.5 474 150
multi 200 3.00 4.0 816 370
inter 200 1.79 244 1042 207
objpap | 200 1.62 23.9 502 78
book1 200 1.70 13.1 509 85
obj1 20000 2.34 13.4 265 232
mults 20000 3.00 4.0 816 370
inter 20000 2.74 8.2 256 191
objpap | 20000 2.71 7.9 102 81
book1 20000 2.92 7.8 87 44

This table lists some statistics about the samples of the pivot nodes used for
predictions. AvPredDepth is the average depth of the pivot node. AvPredDis
is the average number of symbols of positive frequency in the pivot node.
AvPredSum is the average number of instances in the pivot node. AvPredMaz
is the average of the maximum frequencies in the pivot nodes. These results
sketch a relationship between memory and tree depth as well as giving an idea
of the reduction of instance density caused by a deeper tree. Note: “bookl” is
used in this table as a shorthand for book1[L...100000].

Table 36: Experiment 16: Prediction statistics.
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4.17.20 Experiment 17: Final Optimized Benchmark

Aim: To evaluate the strength of the combination of best parameters arrived at

in the previous experiments.

Method: In this experiment, the best parameter values of the previous experi-
ments were combined to yield what we call the Opt1 version of SAKDC algorithm
(or SAKDC(Opt1) for short). “Optl” stands for “optimized” version one. In the

future, better settings might be found. These can be named “Opt2” and so on.

The Optl parameter settings are listed in Table 37. The PPMC’ algorithm
was tested for comparison, as it performed best in the benchmark runs of
Experiment 1. The parameters of PPMC’ are listed in Table 38 (a duplicate
of Table 11, for convenience of comparison). PPMC’ uses decaying to provide
context adaptivity and the phoenix mechanism to provide structural adaptivity.
SAKDC(Optl) provides no context adaptivity and uses the move parameter to
provide structural adaptivity.

Despite all the mechanisms tested in these experiments, the final optimal
SAKDC(Optl) algorithm differs from PPMC’ in only two major respects: the
grow parameters and the decay parameters. PPMC’ uses non-linear estimation
and SAKDC(Opt1) uses linear estimation, but this is of little consequence.

Parameter Value Parameter Value

Mazdepth 3 Maznodes ?

Grow Yes, Sum of 1, Pext=1.0 | Move Yes, Sum of 20, Pext=1.0
Lruparent Oldest Phoeniz No

Local No Decay No

Deeponly  Symbol Addback No

Estim PPM, LinMof, A =1 Estim.threshold Sum of 1

Table 37: Experiment 17: SAKDC(Opt1) parameters.

Parameter Value Parameter Value

Maxdepth 3 Maznodes ?

Grow Yes, Sum of 1, Pext=1.0 | Move No

Lruparent Same Phoeniz Yes, Ashes=2048

Local No Decay Yes, Sum of 300, 0.5, Rou, Res
Deeponly  Symbol Addback No

Estim PPM, NonLinMof, A =1 | Estim.threshold Sum of 1

Table 38: Experiment 17: Benchmark parameters for PPMC".
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Both SAKDC(Opt1l) and PPMC’ algorithms were run on the entire corpus of
files for memory sizes of 20000 nodes and 200 nodes. For the PPMC’ 200 node

run, phoeniz.ashes was set to 50.

Results: The results are given in Table 39. The columns labelled “P” are for
PPMC’ and the ones labelled “O” are for SAKDC(Optl). The other heading

numbers are the number of nodes for the run.

Num | Name P200 | O200 | P20000 [ 020000
1 bib 0.755 | 0.435 | 0.264 0.263
2 book1 0.648 | 0.453 | 0.315 0.309
3 book2 0.630 | 0.427 | 0.288 0.283
4 geo 0.700 | 0.621 | 0.671 0.590
5 news 0.680 | 0.490 | 0.350 0.332
6 0bj1 0.603 | 0.501 | 0.497 0.473
7 0bj2 0.575 | 0.423 | 0.348 0.346
8 paperl 0.648 | 0.433 | 0.311 0.309
9 paper? 0.641 | 0.428 | 0.307 0.306
10 papers 0.653 | 0.449 | 0.338 0.336
11 paper4 0.648 | 0.446 | 0.366 0.365
12 papers 0.627 | 0.452 | 0.381 0.378
13 paper6 0.621 | 0.427 | 0.318 0.316
14 pic 0.134 | 0.100 | 0.161 0.102
15 progc 0.603 | 0.413 | 0.315 0.312
16 progl 0.491 | 0.319 | 0.239 0.237
17 pTogp 0.511 | 0.322 | 0.235 0.230
18 trans 0.591 | 0.390 | 0.223 0.221
-- average 0.598 | 0.418 | 0.329 0.317
101 | artsf 0.215 | 0.220 | 0.215 0.220
102 | concat 0.521 | 0.379 | 0.267 0.266
103 | inter 0.555 | 0.425 | 0.368 0.346
104 | objpap 0.635 | 0.463 | 0.374 0.364
— totaverage | 0.577 | 0.410 | 0.325 0.314

The results from all the previous experiments were used to arrive at a tuning for
SAKDC called SAKDC(Opt1). This table shows the result of this algorithm in
competition with the PPMC’ algorithm over the corpus of files for two different
memory sizes. Compression is expressed as a proportion remaining. The new
SAKDC(Opt1) algorithm performs similarly to PPMC’ for large memory (20000

nodes) and performs much better (about 18% absolute) for small memory (200
nodes).

Table 39: Experiment 1: Benchmarks for SAKDC(Optl1) and PPMC".
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These results show that for large memory, many of the mechanisms proposed
and tested have little to offer. However, for small memory, the mechanisms can
produce enormous improvements in compression (& 15%). The lack of context

adaptivity in SAKDC(Opt1) is evident in its poor relative performance on artif.

Conclusions: A compilation of the best parameters from previous experiments
reveals that many of the mechanisms proposed are of little use. However, the move
parameter is worthwhile and can provide huge improvements in compression. In
addition, the information obtained from these experiments will allow more efficient

Markov compressors to be constructed.
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4.17.21 Discussion

The experiments presented above are not intended to be exhaustive or
conclusive, merely extensive and thorough. They are a measure of progress to
date. As well as highlighting the importance of adaptivity in data compression,
they provide a general survey that should serve practitioners well. Although the
survey is lacking in many respects (e.g. the choice of files), in the absence of any
other such survey in the field, the conclusions should rest until challenged by better

or broader data.
A few general lessons arose from the experiments.

First, the greatest effect is always produced by the smallest initial force. For
example, a little extra memory improves compression dramatically but a lot more
improves it only a little. This effect is also evident in other forms such as the need
for a history buffer of only 5000 instances to give good compression and the way

in which decaying does not impact greatly on compression.

Second, incremental techniques perform better than block techniques, not only
because they do not produce sudden, huge delays that are fatal to real time
systems, but because they provide steadier performance; the area under a line will
always be greater than the area under a saw-tooth curve drawn under the line. This
result was evident in the comparison of incremental and phoenix tree management
mechanisms. It was also present in the comparison of Markov techniques and Ziv
and Lempel techniques (Section 1.13).

Third, there is a remarkable variation in the strength of effect of the different
mechanisms. Estimation and blending techniques seem critical whereas instance

management seems to have little effect unless extreme.

Finally, exploring a multi-dimensional compressor parameter space can be

confusing. It is very easy to be wrong about what will work and what won’t.

“In a minute or two the Caterpillar took the hookah out of its mouth, and yawned once
or twice, and shook itself. Then it got down off the mushroom, and crawled away into the
grass, merely remarking as it went, “One side will make you grow taller, and the other
side will make you grow shorter.” “One side of what? The other side of what fhought
Alice to herself.”” Alice in Wonderland by Lewis Carroll
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4.18 Summary

This chapter has introduced a flexible and powerful variable-order Markov
data compression algorithm called SAKDC. The SAKDC algorithm integrates
generalized forms of mechanisms found in other algorithms and forms a superset
of many previous algorithms such as DHPC and PPM. In addition, the SAKDC
algorithm contains a variety of new mechanisms that implement various kinds of
adaptivity. These mechanisms include tree growth control, sample decaying, and

windowed local adaptivity.

The integration of diverse features produced some problems which have been
solved. The problem of maintaining LRU information in a tree has been solved
using a new dynamic heap structure. Although made obsolete by experimental
results, the technique will find application in other areas of computer science.
The problem of maintaining cross-tree links (shortcut pointers) in a dynamically
changing tree was identified and solved by allowing suboptimized pointers and
by using node incarnation numbers. Windowed local adaptivity was incorporated

into all this using a bounded buffer of pointer stacks.

The SAKDC algorithm was implemented and thoroughly tested. Not only did
this confirm its design as feasible, but it provided experimental data general to the
class of variable-order Markov models. This data could be used to tune production

compressors. The conclusions of the experiments are summarized below.

e All the Markov techniques have roughly the same power.

¢ The best estimation technique is PPM with Moffat estimation (linear or
non linear) with A = 1. Credibility thresholds do not improve compression

unless DHPC estimation is being used.
¢ The best updating technique is symbol.

e A depth of 3 is best in practice. Increasing the depth further does not

improve compression.

¢ Adding memory improves compression until about 10000 nodes, after

which extra memory does not improve compression.

® Windowed local adaptivity is generally slightly detrimental to compres-

sion but may be of use in keeping down the size of samples for the sake of
the coder.
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o Decaying is useful for keeping down the size of samples, but otherwise

does not improve compression much.

e Mechanisms that introduce structural adaptivity have little effect if nodes

are plentiful, but greatly improve compression for small memory (< 5000
nodes).

e Stochastic growth has the same properties as threshold growth but suffers

a 40% relative degradation due to its randomness.

e The best growth policy is fast growth while new memory is available,
and slow growth when memory has run out and is being recycled.

e Instance inheritance has at best a negligible effect on compression and

at worst a detrimental effect.

e Strict LRU management is not necessary, allowing the use of constant
time data structures.

e The technique of destroying and rebuilding the tree when memory runs

out is inferior to incremental tree management.

This chapter has confirmed the approach to adaptivity outlined in Chapter 3.
The introduction of structural adaptivity into an algorithm significantly improves

compression when nodes are scarce and the source is moving.



CHAPTER 5
A MULTIMODAL
ALGORITHM

5.1 Introduction

Of the classes of adaptivity presented in Chapter 3, asymptotic and local
adaptivity are of greatest interest. The flexible SAKDC algorithm described
in Chapter 4 incorporates both forms of adaptivity as special cases. In this
chapter, both locally adaptive and asymptotically adaptive instances of SAKDC
are employed in & single algorithm that combines the best aspects of both.

5.2 Combining Models

Many trade-offs are required when designing a data compression model. An
example is the trade-off between convergence (asymptotic adaptivity) and tracking
speed (local adaptivity). One possibility that has not been adequately explored is
that of maintaining many models simultaneously, using only the best-performing
model to make the predictions (Figure 87). At the expense of extra processing
time, the best aspects of a variety of models could be combined without suffering
from any of their disadvantages. For example, locally adaptive models and
asymptotically adaptive models could be run side by side, forming an algorithm
that will converge asymptotically on a fixed source but can also adapt quickly to

source movements.

The most important component of an algorithm that maintains many models
is the mechanism that arbitrates between the models. At each step, the arbitrator
chooses one model and uses the model’s prediction to code the next instance.104
The chosen model is the one whose recent performance (as measured by the entropy
of recent instances in relation to the model’s predictions) is the best.

A trade-off arises in setting the “recency” of the measure. Measurement of the
performance of the models over the entire history would prevent rapid transitions
between models, whereas measurement based only on the most recent instance of

the history would result in chaotic switching.

With the exception of the design of the arbitration unit, the combining of many
different models is extremely simple. The only costs are the extra memory and

extra processing time required, both of which are linear in the number of models.

104 A more general approach is to blend the predictions of the different models. This possibility
is not explored in this thesis.
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Some of the trade-offs involved in model design can be avoided at the expense of
processing time by maintaining many different models simultaneously and using
the currently best performing model to make predictions. The selection unit
uses the predictions from each of the models along with the incoming instances
(centre) to obtain a smoothed performance measure for each model. The entire
system is a model in itself and can be slotted into the model unit of Figure 9.

Figure 87: Combining models.

5.3 Multimodal Sources

A compressor that simultaneously maintains a local and an asymptotic model
is well suited to compressing both fixed and moving sources. Figure 88 (which
for convenience reproduces Figure 36 of Section 3.5) shows a number of source
trajectories. The reader can verify that a compressor that maintains a locally
adaptive model and an asymptotically adaptive model should perform acceptably
for all of them.

Of particular interest is the multimodal source which jumps between a small,
finite number of positions. Multimodal sources are likely to be quite common
in practice. In particular, they can be expected wherever files are concatenated
together, a prime example being the “source” presented to a communications line.

Such a source might alternate between Pascal programs, hex dumps, and object

files.

Multimodal sources are interesting because they combine aspects of both fixed
and moving sources. Their movement ensures that locally adaptive models will
compress them better than asymptotically adaptive models. However, because

the source returns to old modes, a locally adaptive model is also inappropriate. In



Section §.4: Multimodal Models 252

[} @z
Fixed Fuzzy Fixed Drifting
. ...... .
; \.
o o
Vagrant Multimodal White Noise

This diagram duplicates Figure 36. The combination of an asymptotically
adaptive model and a locally adaptive model will perform well for a variety of
source trajectories. The locally adaptive model will home in on local behaviour
(fixed, fuzzy, drifting, vagrant, multimodal) whereas the asymptotically adaptive
model will handle long term trends (better convergence on fixed, fuzzy and white
noise sources, and conservative predictions for sources with other trajectories
that are moving too fast for the local model).

Figure 88: Some interesting source trajectories.

this case, the locally adaptive model’s strength of forgetting is also its weakness.
As the source jumps between modes, a locally adaptive model will adapt to each

mode in turn, forgetting the previous mode.

5.4 Multimodal Models

Better compression could be obtained by maintaining a separate asymptoti-
cally adaptive model for each of the source’s “modes”. Only the model that best
models the mode that the source is in would be updated, allowing each model to

converge asymptotically on a mode without being contaminated by other modes.

We call the class of algorithms that do this multimodally adaptive algorithms
or just multimodal algorithms.°5

108 The “modal” part of the word “multimodal” is derived from the word “mode” rather than
the word “model”. Sources have “modes”; compressors have “models”.
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5.5 Multi-Modal Algorithm Design Issues

Although the idea behind multimodal algorithms is simple, it is by no means
clear how such algorithms could be constructed. Not only must the algorithm
decide when to switch between models, but it must also decide when a new model

should be created. We address these two problems separately.

5.5.1 Model Arbitration

The problem of arbitrating between many models is the same as that of
arbitrating between a local and an asymptotic model (Section 5.2) and the solution

of maintaining a local performance measure is applicable here as well.

The performance measure of a model should be based on the cumulative
entropy of recent instances according to predictions the model made. If D is
the prediction of instance j by model i, and K is a locality parameter, then a

good performance measure H; is

K
Hi == Wnp;—jp1(hjaj-j+1)
=

A disadvantage of this performance measure is that it requires the storage of K
entropy values for each model so that the entropy of the K’th most recent instance
can be subtracted after each new instance arrives. Much the same effect can be
achieved using less memory by abandoning the rectangular weighting in favour of
an exponential decay.’® An exponentially decayed measure can be maintained
using a single number. Upon the arrival of each instance, the number is multiplied
by a decay factor p € R(0,1) and then the entropy of the new instance is added
to it (see also Section 3.7.1).

|h|

Hy ==Y pl"=imp; ;(n;)
i=1

At each step, the model with the lowest performance measure is used to make
the next prediction.

106 Another way of saving memory is to store the sum of the entropies of blocks of b instances.
This would reduce memory usage by a factor of b. The increased ranularity would not matter
much for largish K. However, blocking would have to be synchronize (or smoothed) for all models
so as to avoid saw-tooth effects.
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5.5.2 Model Creation

A new model should be created whenever the source jumps to a “new” place,
where a “new” place is defined to be a place significantly distant from the old
places corresponding to existing models. To detect such new source behaviour,
some method is required for determining how far away the source’s current position
is from the position of each of the models already in existence. A threshold could
then be set, below which an old model is used, and above which a new model is

created.

There are many ways in which models can be compared. All sorts of tree
comparison metrics could be devised. In practice the simplest, most efficient
method is to compare the performance of models. A new model could be created
whenever all of the old models perform poorly. The difficulty here is defining
“poorly”; a new mode might cause a drop in the entropy of all models, hiding the

fact that a new model would cause an even greater drop.

A more effective technique is to compare the performance of old models with
the performance of a model constructed from the recent behaviour of the source
(i.e. a local model). This eliminates the need for subjective interpretations of
entropy performance. Whenever the local model out-performs all of the ordinary
asymptotic models by a certain factor v, a new asymptotic model is created,
commencing as a copy of the local model. The new model is created only when
it seems likely that the new model will outperform all other models under some
circumstances. These heuristics ensure that a new model is created only if it is a

significant distance from the other models. v is the distance measure.

5.5.3 Memory Allocation

If memory is limited, it must somehow be divided among the models. How this
should be done is by no means obvious. It might be advantageous, for example,
to let the current model grow at the expense of less used models.

At worst, the best performance might be obtained by allocating all the memory

to a single model, in which case the multimodal algorithm provides no advantage.

Justification for splitting memory among a number of models comes from the
performance graphs generated in Experiment 6 (Section 4.17.9). Time and time
again, we have seen that the first kilogram of compression comes from the first
gram of algorithm. For a text file, an algorithm that uses just one node in its
Markov tree will remove about 40% of the data. Another 10% absolute can be
obtained with an extra 300 nodes. The next 10% absolute requires another 700
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nodes. The final 10% absolute (taking the compression to a percentage removed
of 70%) requires an additional 9000 nodes (depth 3 paper! in Figure 65 and
Figure 66). Thus, 10,000 nodes can be allocated to a single model having the
power to remove about 70% of the data, or to 5 different models each of which has
the power to remove about 65% of the data (Figure 68). The 5% lost in direct

performance is made up for in the flexibility of having many models.

In this work, we are more concerned with the mechanism of the algorithm
than its resource management. In this study, memory management is simplified
by using a fixed number of model slots each of which is allocated a fixed amount of
memory. This ensures that the issue of the fairness of arbitrating between models

with differing amounts of memory does not arise.

5.6 The MMDC Algorithm

In this section we present the MMDC (Multi-Modal Data Compression)

algorithm, which is based upon the discussion above.

5.6.1 Overview

The multimodal algorithm maintains from 1 to maz_models asymptotically
adaptive models (the ordinary models) and a single locally adaptive model (the
local model). Each model generates a prediction for each arriving instance.
The predictions are used to maintain a performance measure for each model.
The performance measure is the sum of the entropies of the predictions, with
exponential decaying (Section 5.5.1) being used to introduce locality. Because the
measure is a sum of entropies, a low value indicates good performance and a high

value indicates poor performance.

At all times there is an active model and a best model. The active model is
defined to be the ordinary model whose performance measure is lowest. The best
model is defined to be the model (ordinary or local) whose performance measure

is lowest. At each step, the prediction of the best model is used to code the next
instance.

Each arriving instance is used to update only the active model and the local
model. Other models use the instance to update their history buffers but do not
update (alter) their model (i.e. their tree) at all.17

107 However, the optimization of shortcut pointers can take place because it does not alter the
functionality of a model with respect to compression.
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Whenever the local model performs significantly better than the active model
(i.e. better than all the ordinary models), a new model is created. If there are
already maz-models models, the least recently used model is destroyed so as to
free a slot for the new model. The new model starts as a copy of the local model,

but its parameters are set to make it asymptotically adaptive.

Whenever a new model is created, it is put on trial for a fixed period called
the trial period. Ounly one model can be on trial at a time. New models cannot
be created while a model is on trial. If outperformed by an ordinary model, a
trial model is instantly destroyed. If at the end of the trial period the local model
is performing significantly better than the trial model, the trial model is reset to
the local model and commences a new trial period. Otherwise, the trial model is

taken off trial, becoming an undistinguished ordinary model.

5.6.2 Parameters

The parameters of MMDC are mainly to do with timing intervals and

performance measures. They are listed below.

max-models: Z[1,00). This parameter specifies the maximum number of
ordinary models that can be maintained by the algorithm at one time (the number
of “model slots”). As in SAKDC, a demand system is used when the slots run
out. If a new model must be created when all the slots are full, the least recently
used model is destroyed to make room for the new model.

local-model_-memory: Z[1,00). This parameter specifies the memory of the
local model. In this implementation, local_model_memory corresponds to the
local.period parameter of the SAKDC local model.

performance_half life: Z[1,00). This parameter specifies the half-life (in
instances) of the negative exponential decay curve of the performance measure
(Section 5.5.1). It is the time after which the entropy of an instance is weighted
half as heavily as it was when it originally appeared. Because the performance
measure consists of a sum of entropies of instances, low values correspond to high

performance and high values to low performance.

creation_threshold: R(0,1). For a new model to be created, the local model
must perform significantly better than all the ordinary models. The creation
threshold defines “significantly”. If the performance of the local model is I, and
the performance of the best asymptotic model (i.e. the active model) is B, then
a new model is created iff L < Bx creation_threshold. The closer this value is to

1.0, the more “trigger happy” the algorithm will be in creating new models.
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trial_period: Z[1,00). When a model is created, it is in a fairly vulnerable state.
This parameter defines the length (in instances) of a safe period, after a model
has been created, during which no new models can be created.

SAKDC.ocal, SAKDC_asymptotic: record. In addition to the parameters
of the MMDC algorithm itself, locally adaptive and asympototically adaptive

versions of the SAKDC algorithm must be chosen for use as component models.

5.6.3 A Formal Description

The MMDC algorithm is best viewed as a process that reads a stream of
instances and writes a stream of predictions (Figure 89 (similar to Figure 27
for the DHPC algorithm)). The models are stored in an array called model. The
local model occupies the position numbered 0 (hence the constant local) and the
ordinary models occupy the positions numbered Z{1, models] where models is the
number of ordinary models in existence at a given time. The placement of all the
models in a single array allows models to be referenced by index and to be easily

enumerated. The array perf stores the performance measure for each model.

The best and active variables contain the index numbers of the best and active
models. The variable trial_rem is zero if there is no model on trial and positive if
there is a model on trial. If positive, the value is the number of instances until the
end of the trial period. trial is the number of the model on trial and is undefined
if trial_rem=0. The any operator is deterministic, but the actual choice made in

the face of equal values does not matter.

The algorithm starts with a single, ordinary model on trial. Starting the model

on trial allows the model to be reset if the source commences in a volatile state.

Figure 90 shows the interesting part of the algorithm — the part that
performs the model management. This code is executed once per instance. To
start, a test is made to see if the trial model, if any, is the best-performing ordinary
model (i.e. the active model). If it is not the active model, it is immediately
destroyed — if the trial model cannot outperform other active models under the

conditions for which it was created then it is unlikely to ever be of much use.

The second if statement ages the trial period. If a model under trial reaches the
end of the trial period, it must have outperformed all the other ordinary models
during that time. This is strong evidence that the source has moved to a new
mode. If, however, the local model is out-performing the trial model, it is likely
that the trial model was forged during a volatile period of source behaviour and

that a brand new model would be more useful. In this case, the trial model is
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process MMDC(in instancestream; out predictionstream) is
maz-models : constant integer «— <parameter>;
local-model_memory : constant integer «— <parameter>;
performance_half_life : constant integer — <parameter>;
creation_threshold : constant real — <parameter>;
trial_period : constant integer «— <parameter>;
SAKDC.ocal : constant record «— <parameter>;
SAKDC_asymptotic : constant record «— <parameter>;
local : constant integer «— 0;
best : integer 0...mazxmodels — 1;
active : integer 1...mazmodels « 1;
trial : integer 1...mazmodels — 1;
trial_rem : integer 0...trial_period — trial_period;
models : integer 1...mazmodels — 1;
model : array[0...mazmodels] of SAKDC _model;
perf : array[0...mazmodels] of real — 0.0;
begin MMDC
model[local] «— SAKDC local(local_-model-memory);
model[l] «— SAKDC_asymptotic;
loop
write(predictionstream,model[best].prediction);
read(instancestream,instance);
for i in 0...models loop
perf[i]«—perf[i]x decay + (—In model[s].prediction[instance));
end loop;
update(model[local ],instance);
update(model[active],instance);
active «— any i: perf[i|<perf[l...models];
best « any i: perf[i]<perf[0...models];
<Model Management>
end loop;
end MMDC;

The MMDC main program implements the model unit of Figure 9, reading
a stream of instances and generating a stream of predictions. The algorithm
generates a prediction for each instance before it reads the instance. The
algorithm maintains an array of SAKDC models in the variable model. The
array perf holds the cumulative performance measure for each of the models.
Only the local model and the active model are updated by each instance.

Figure 89: MMDC main program.

reset to the local model and the trial period restarted in the hope that the source
will eventually settle.

The third if statement creates a new trial model if there is no trial model and

if the local model is performing significantly better than all the ordinary models.
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<Model Management>=
if trial_rem> 0 and trial # active then
destroy(model[trial]); trial-rem«— 0; dec models;
<Rearrange models to be contiguousin 1...models>
end if;
if trial-rem> 0 then
dec trial_rem;
if trial_rem= 0 then
if perf[local]l<perf[trial] X creation_threshold then
<Start trial period>
end if;
end if;
end if;
if trial_rem= 0 then
if perf(local]<perf|active]x creation_threshold then
if models=maz-models then
trial«—least-recently_active(models);
destroy(model[trial));
else
trial—maz_models+1;
end if;
<Start trial period>
end if;
end if;
This piece of code describes the MMDC model management. The first if destroys
the trial model (if any) if it is not the active model. The second if ages the trial
model (if any) and makes it an ordinary model at the end of the trial period;
however, if at the end of the trial period, the local model is outperforming the
trial model, the trial model is reset to the local model and the trial begins anew.

The third if creates a new trial model if there is no trial model and the local
model is performing significantly better than the active model.

Figure 90: MMDC model management.

 Finally, there are two code scraps (Figure 91) that were separated out so as
to clarify the rest of the code. The first scrap starts a trial period by initializing
a trial model to be an asymptotically adaptive copy of the local model. The
performance measure is copied over too. The second code scrap is a consequence
of the decision to present this code with all models in a contiguous group at the
low end of the array. This decision simplified the code, but made model deletion
messy, because when a model is deleted, the models above it must be moved down
to fill the gap. In addition, the index numbers of the best and active models must
be adjusted.
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< Start trial period>=
model[trial]«—asymptotic(model[local));
perf [trial}—perf[local];
trial_rem«—trial_period;

<Rearrange models to be contiguous in 1...models>=
swap(model[trial],model[models+1));
swap(perf [trial],perf[models+1]);
active — any ¢: perf[i|<perf[l...models];
best — any i: perf[i]<perf[0...models];

Starting a trial period involves making an asymptotically adaptive copy of the
local model and then setting the timer variable trial_rem. The need to rearrange
models is a consequence of the decision to store the models contiguously in the
array at indices Z[1, models].

Figure 91: MMDC code scraps.

A: Trial model is created

if local model significantly
outperforms ordinary
models.

no
model is
on trial

D: At end of trial period, trial
model is taken off trial
if local model is not

significantly
outperforming it.

B: Trial model
destroyed if

outperformed by
ordinary model.

Staft of a model is on trial Sndiof

Trial Period f_ _+ Trial Period

C: At end of trial period, trial model is reset
if local model is significantly outperforming it.

The MMDC algorithm has only two (major) states. These two states correspond
to the existence or non-existence of a trial model. There is a time limit on the
trial model state which is represented here by a long thin rectangle. The trial
model is protected from the local model but vulnerable to ordinary models. At
the end of the trial period, if the trial model is performing well, it becomes an
ordinary model, otherwise it is reset and the trial period starts again,

Figure 92: State diagram for the MMDC algorithm.

The MMDC algorithm’s model management scheme can be summarized by
a simple state diagram (Figure 92). Each transition is identified by a letter;
the letters are not intended to imply an ordering between the transitions. The
algorithm can be in one of two states: “trial model” or “no trial model”
corresponding to the existence or non-existence of a trial model. The trial model
state has a maximum time limit on it (¢rial_period) after which a state transition

must occur.
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The MMDC algorithm’s rather complicated model management scheme arose
as a result of experiments with simpler versions of the algorithm. The first version
had no trial period; it was assumed that the creation threshold would prevent the
local model from significantly out-performing a newly created model, recently its

clone. In practice, the creation threshold mechanism proved inadequate.

Without a trial period, models are created in rapid succession when the source
becomes unstable. This is most evident during transitions from high entropy
sources to low entropy sources. As the local model converges on the new source,
its performance measure decreases and it out-performs any model recently cloned

from itself, resulting in the creation of another model.

The difficulty with transition periods°® highlights the tension created by using
the creation threshold for two purposes. One the one hand, we wish to detect new
modes and create asymptotic models for them as early as possible (i.e. we wish
to make the threshold more sensitive). On the other hand, we do not wish to
maintain models created during periods of volatile source behaviour (i.e. we wish
to make the threshold less sensitive). Use of a trial period prevents models that
were created during transition periods from being retained, while allowing the
early creation of new models. New models must prove not only that they are
better than the other ordinary models, but that they can better the local model

as well.

The MMDC algorithm protects the model on trial from the local model while
exposing it to attack from other ordinary models. The intention is to give the new
model a chance to diverge from the local model while also preparing for the new
model’s destruction in the event that the source’s behaviour isn’t new (i.e. if an
old model performs better). At the end of the trial period, the new model must
have proven useful. If it has not, it is reset in the hope that the source has settled.

1?3 It may seem strange to talk about a “transition period” for a source that we consider to be
switching instantly. The transition period that we refer to is actually an effect of the performance
smoothing and model latency.
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5.7 Experiments

The algorithm was tested by running it on a variety of artificially constructed
multimodal data files. Table 40 lists the parameters that were used for all the
runs. Table 41 and Table 42 list the parameters for the locally adaptive and
asymptotically adaptive component SAKDC models.

Parameter Value

maz-models 8 models
local_model_-memory | 1500 instances
performance_half-life | 500 instances

creation_threshold 0.9

trial_period 3000 instances
SAKDC local see Table 41
SAKDC_ordinary see Table 42

The parameters used in the multimodal experiments were arrived at experimen-
tally by tuning the algorithm for the file multi. These parameters proved effective
in later runs. Early attempts at tuning failed because the local-model-memory,
performancehalfdife and trial_period parameters were set too low. The cre-
ation-threshold is important because it determines the entropy “distance” tol-
erated between models. Here, the creation threshold parameter specifies that a
new model must yield 10% relative better compression to establish itself.

Table 40: Multimodal parameters used in the multimodal experiments.

Parameter Value Parameter Value

Mazdepth 3 Maznodes 2000

Grow Yes, Sum of 1, Pext=1.0 Move Yes, Sum of 1, Pext=0.7
Lruparent Same Phoeniz No

Local Yes, Period=local-model-memory (=1500) | Decay No

Deeponly  Symbol Addback No

Estim PPM, LinMof, A =1 Estim.threshold Sum of 1

The parameters for the local model were easily chosen with the exception of the
move parameter which could become applicable during a high-entropy period
of the source. To allow continued growth, move.probext was set to 0.7. In the
light of Experiment 10, a threshold would have been better, but the results of
Experiment 10 were unavailable at the time these parameters were set.

Table 41: SAKDC parameters used for the local model.
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Parameter Value Parameter Value
Mazdepth 3 Maznodes 2000
Grow Yes, Sum of 2, Pext=1.0 | Move No
Lruparent Same Phoeniz No

Local No Decay No
Deeponly  Symbol Addback No
Estim PPM, LinMof, A =1 Estim.threshold Sum of 1

Ideally, ordinary models would be asymptotic, both contextually and struc-
turally. However, making models structurally adaptive also makes them more
vulnerable to contamination so in these experiments, the ordinary models were
made structurally initially adaptive (move.active=false).

Table 42: SAKDC parameters used for the ordinary models.

The local and asymptotic (ordinary) models are identical except for their
adaptivity settings.’®® Ordinary models build their tree and then fix its structure.
This prevents them from adapting to new sources. To prevent the tree from
freezing too quickly, the grow extensibility thresholds of ordinary models were set
to 2; for a complete branch to be created, it has to receive three instances. In
contrast, the local model grows its tree quickly and then uses probabilistic growth
(0.7) to sustain its strict local adaptivity. Because there are only 2000 nodes
(less than 3 (the depth) x 1500 (the local period)), a perfect locally adaptive tree

cannot be guaranteed.

The parameters listed in Table 40 were arrived at by experimenting with
multi, the first of the three data files to be described. At first there was little
success because many of the parameters were set too low. In particular, the delay
parameters (local-model_memory and performance_half_life) were set too low to
provide reliable performance. The creation_threshold parameter also had to be
reduced before reliable performance was achieved.

199 Note: At the time of setting the SAKDC parameters for MMDC, only a few of the experiments
of Chapter 4 had been performed. Some of the settings may therefore appear inappropriate.
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5.7.1 Experiment 18: Artificial Data

Aim: To establish the operation of the multimodal algorithm with data perfectly
fitted for it.

Method: Three artificial sources were constructed. Each produced a file of 30000
instances. These three files were then interleaved at 10000 instance intervals
producing the final 90000 instance output file which is called mult: and is numbered

101. This file was fed into the multimodal compressor for this experiment,

Each of the three artificial sources consisted of a solid to depth 3 tree and used
only four symbols.?*® Each leaf distribution was chosen by iteratively dividing
its prediction probability space. A random symbol was allocated a probability
p being a uniformly chosen random number in the range [0,1). The remaining
probability 1 —p was divided recursively among the remaining symbols. To ensure
that the tree’s graph was a strongly connected component, each symbol was given

a positive probability not lower than 0.01.

It should be noted that this experiment was not performed in a vacuum, as
the mults file was used to tune the algorithm’s parameters. For a long time the
algorithm did not work on this (perfectly suited) data and it was many runs
before the copybook graph (Figure 93) was generated. However, once found, the
parameters served the algorithm well in further runs on real data. In retrospect
the main difficulty with tuning the algorithm was that the author had set the
local-model_memory and the performance_half-life far too low.

Results: Figure 93 illustrates the results of the run. The vertical axis measures
compression (proportion remaining). The horizontal axis measures time (in
instances). The fuzzy vertical lines indicate a change of source mode (referred
to here for convenience simply as “sources”). The three sources are named A, B
and C and their zones in the data are labelled.

The jaggy black lines of the graph plot the performance measure of each model.
The graph was plotted at 50 instance intervals. The performance measure has been
scaled to correspond to entropy. The lower the line, the lower the entropy and
the better the compression. The black horizontal line at the bottom of the graph
is the performance measures of the models available, but not yet created; their

performance measure is kept to zero until they are created. When a new model is

110 The fact that a four symbol alphabet was used for these sources had no bearing on the
number of symbols assumed by the multimodal compressor which remained at 256.
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created, its performance measure is copied from that of the local model. Thus the
vertical lines at 10000 and 20000 correspond to model creations.

Each of the models in the multimodal algorithm is numbered. The number
that labels each line of the graph is the number of the model that generated the
line. The local model is labelled L.

The graph reveals most of the workings of the multimodal algorithm. At the
start of the file (at instance one) the source is A and only the local model (model
L) and model 1 exist. Model 1 commences on trial and as the active model.
Before long, both models adapt to source A; this can be seen from the downward
line between 0 and 1500 instances. After about 2000 instances, model 1 diverges
downwards from the local model, which remains roughly level. The local model
remains roughly level because it bases its predictions only on the most recent 1500
instances and so never builds up samples large enough to converge further. Model

1 diverges because it is continuously accumulating instances from a fixed source.

At instance 10000, the source changes from A to B. Immediately the perfor-
mance measure of both models increases dramatically. During this period model 1
is contaminated by the instances of source B. If model 1 were exposed to such
instances for a long period, it would eventually adapt to them. However, after
about 700 more instances, the local model has adapted to source B to the extent
that its performance measure is less than 0.9 (the creation threshold) of model 1’s
(the active model’s) performance measure. The result is the creation of model 2
as indicated by the vertical black line rising at 10700 instances. Model 2 starts off
as a copy of the local model and with a performance measure identical to the local
model. At this point model 2 becomes the active model and model 1 is no longer

updated. This prevents model 1 from being further contaminated by source B.

For the next few thousand instances model 2 and the local model joust for
the best performance. Eventually (at about 14000 instances) model 2 separates
from the local model. This example shows the importance of the trial period;
new models must be given a chance to accumulate enough instances to diverge

significantly from the local model.

At instance 20000, the source changes to source C and another model is created.
The performance of the models in existence rises rapidly and the performance of
the local model then falls, causing a new model to be created. The new model,

model 3, jousts with the local model but eventually diverges.

At instance 30000, the file switches to source A again. The effect is that

the performance measures of all the models rises rapidly. Model 1, however,
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“recognises” source A and its performance measure falls fast enough to prevent the
creation of a new model. Even if a new model were created, it would immediately
be cancelled by model 1 (transition B of Figure 92). After crossing the local
model, model 1 sinks down below the local model and learns some more about
source A. One of the advantages of the multimodal algorithm is that models not
only don’t have to relearn a source but they can pick up more information each
time “their” source occurs; the only overhead is the contamination by other sources

at the boundaries. This contamination will prevent perfect convergence at infinity.

The fuzzy horizontal line helps to show the result of the interleaved learning.
During its first invocation (from 20000 to 30000), model 3 hovers about 2% off the
0.15 mark. During its second invocation (from 50000 to 60000) it hovers a little
above the line. During its final invocation (from 80000 to 90000) it hovers close
to the line and at one point dips below the line.

The rest of the file is processed in a similar manner, with each model becoming
active whenever its source arises. It should be stressed that throughout the run,
only the local model and the active model are updated. The rest merely make
predictions. Graphically, the best model is the model whose line is lowest at any
point of time. The active model is the ordinary model whose line is lowest at a

given point in time.

It should be noted that performance measures lag actual performance. For
example at 40000 instances, model 2’s performance measure takes a long time to
drop to 0.17. However, model 2 becomes the best model at about 40500 instances
and generates predictions of entropy 0.17 from that point.

The algorithm ran at about 200 instances per second on a Vax8530. This was
probably because of the small number of models and the fact that only 4 symbols

were ever used.

The actual compression performance of the multimodal algorithm is given in
Table 43. The performance of four other models is also listed. “Asymptotic”
refers to an ordinary model run by itself for the entire run. “Local” refers to the
local model. “PPMC’2000” is Moffat’s PPMC’ algorithm given the same amount
of memory as each ordinary and local model (2000 nodes). “PPMC’20000” is

Moffat’s PPMC’ algorithm given the same amount of memory as was allocated
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Algorithm Prop. Rem. | Rel. Improv.
Multimodal 0.182 0%
Asymptotic 0.220 17%

Local 0.199 8%
PPMC’2000 0.215 15%
PPMC’20000 | 0.215 15%

This table lists the compression performance (proportion remaining) of various
algorithms on the file multi. Multimodal and PPMC’20000 were given 20000
nodes. The other algorithms were given 2000 nodes. Asymptotic and Local are
identical to the component models of the multimodal algorithm. The relative
performance is given as the percentage reduction achieved by the multimodal

algorithm over each other algorithm.

Table 43: Performance of MMDC on the artificial source (multi).

Active models

Sources

A 111
B 222
C 333

This table lists the models that became active during each appearance of the
three sources A, B and C in the file artif. The MMDC algorithm created a single
model for each source and invoked each model only when its source appeared.

This is a perfect result

Table 44: Mode detection performance for mults.
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to the entire multimodal algorithm (20000 nodes). The percentage improvements

quoted are relative to the performance of the multimodal algorithm.

In this and future experiments, the success of the mechanism of the algorithm
will be measured by listing the models that were active during each of a source’s

activations. For this first run, the results are listed in Table 44. This is a perfect

performance.

Conclusions: The multimodal algorithm operated perfectly on specially created
artificial data. Exactly one model was created for each source mode and each model
became active whenever the corresponding source mode arose. MMDC yielded a

15% relative improvement in compression over PPMC’. This result shows that the
MMDC mechanism is basically sound.
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5.7.2 Experiment 19: Real Files Concatenated
Aim: To test the multimodal compressor on real data files.

Method: The next stage in testing the multimodal compressor was to run it on
real data. Four text files (none in the corpus) were selected for their radically

different properties. The files were:

PostScript: A version of the Apple Macintosh LaserWriter header file
(length 29005 bytes).

Num: Numbers in ASCII separated by spaces (length 10584 bytes).

HexDump: A hex dump of a VMS .EXE file using the VMS dump
command (length 25574 bytes).

Editor: A program written in an editor language (length 27480 bytes).

The resultant concatenated file was concatenated to itself, yielding the test file
concat numbered 102 in the corpus. This was fed into the multimodal compressor.

Results: A graph similar to that of Experiment 18 was produced and is shown in
Figure 94. The tick marks on the horizontal axes indicate the points that were

sampled when labelling the curves.

In this experiment, the sources were real but the data was repeated. This is
evident in the spikiness of the graph and the identical local model performance

curves produced by each appearance of the same file.

The graph starts off with the local model and model 1. However, model 1 does
not diverge and a new model is created by chance when the local model crosses
over at instance 13000. The model is soon destroyed when model 1 out-performs

it. The same cycle occurs again at 17000 instances.

At about 30000 instances, source Num takes over and model 2 is created.
Although model 2 does not diverge from the local model, it must have learned

something because it diverges quite well when source Num is re-invoked at instance
122000.

A close inspection of the graph reveals that the system is not behaving cleanly.
For example, two new models are created during the Editor section. What is
significant, however, is that no new models are created during the repetitions of

the files (except model 6 at instance 185000). Furthermore, during the repetitions,
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Sources Active models
PostScript |11

Num 22

HexDump |33

Editor 4545

This table lists the models that became active during each appearance of the
four sources PostScript, Num, HexDump and Editor in the file concat. The
MMDC algorithm performed perfectly with the exception of the Editor source
for which two models were created.

Table 45: Mode detection performance for concat.

the active model is separated in general by a large gap from the local model
(e.g. during instances 132000 to 157000).

"The success of the algorithm in detecting the sources is evident from Table 45.
Although the Editor text provoked the creation of two models, those two models

were both invoked at similar intervals when the Editor text arose again.

The actual compression performance of the multimodal algorithm is given in
Table 46 in the same format as Table 43. Surprisingly, in this run, PPMC’
performed slightly better than MMDC. One explanation for this is that in this
run, the MMDC algorithm did not use all of the memory available to it. For most
of the run, only six models were active (five ordinary models and the local model).
This meant that at most only 12000 nodes were being used, rather than the 20000
allocated. A more sophisticated version of the algorithm would avoid this problem
by using variable-sized model slots.

Conclusions: The multimodal algorithm performed well on the file of repeated
real data. Each source was correctly identified except the Editor file to which two
models were assigned. This experiment shows that the multimodal mechanism
will operate on real data. However, in this run, PPMC’ yielded slightly better
compression than MMDC.
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Algorithm Prop. Rem. | Rel. Improv.
Multimodal 0.275 0%
Asymptotic 0.377 27%

Local 0.364 24%
PPMC’2000 0.344 20%
PPMC’20000 | 0.267 -3%

This table lists the compression performance (proportion remaining) of various
algorithms on the file concat. Multimodal and PPMC’20000 were given 20000
nodes. The other algorithme were given 2000 nodes. Asymptotic and Local are
identical to the component models of the multimodal algorithm. The relative
performance is given as the percentage reduction achieved by the multimodal
algorithm over each other algorithm. For this file, the multimodal algorithm
performed worse than the PPMC’ algorithm.

Table 46: Performance of MMDC on concatenated files (concat).

272
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5.7.3 Experiment 20: Real Files Interleaved
Aim: To test the multimodal algorithm on real interleaved data.

Method: Experiment 19 tested the multimodal algorithm on highly distinct
repeated text files. In this experiment, five (not so distinct) files were selected
(four from the corpus, and the Num file used in Experiment 19) and merged at
random (using a dice) in 10000 instance blocks with the only constraint on the

randomness being that no file contribute two consecutive blocks.
Results: The results are shown in Figure 95.

The success of the algorithm in picking sources can be judged from Table 47.
Multiple models were created for trans and progl. Otherwise, the sources were
detected reliably.

Sources | Active models

trans 141445
geo 1111
num 22232
progl 3367
book1 5555

'This table lists the models that became active during each appearance of the five
sources {rans, geo, num, progl and booki. The MMDC algorithm had trouble
with the sources trans and progl, but otherwise performed well.

Table 47: Mode detection performance for inter.

The actual compression performance of the multimodal algorithm is given in
Table 48 in the same format as Table 43.

Conclusions: The multimodal algorithm performed well on real multimodal data
(such as might be carried on a network), yielding 4% relative more compression

than PPMC’. This experiment confirms MMDC’s practical applicability.
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Algorithm Prop. Rem. | Rel. Improv.
Multimodal | 0.353 0%
Asymptotic 0.405 12%

Local 0.401 12%
PPMC’2000 | 0.388 9%
PPMC’20000 | 0.368 4%

This table lists the compression performance (proportion remaining) of various
algorithms on the file inter. Multimodal and PPMC’20000 were given 20000
nodes. The other algorithms were given 2000 nodes. Asymptotic and Local are
identical to the component models of the multimodal algorithm. The relative
performance is given as the percentage reduction achieved by the multimodal

algorithm over each other algorithm.

Table 48: Performance of MMDC on real interleaved data (inter).
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5.7.4 Experiment 21: Effect of Memory

Aim: To determine the effect on the compression performance of MMDC of
increasing memory.

Method: Experiment 6 (Section 4.17.9) demonstrated that the returns for using
more and more memory in a compression algorithm are diminishing (Figure 66).
This suggests that the relative improvement of MMDC over PPMC’ would increase
if more memory were allocated to each algorithm. To test this hypothesis, both

algorithms were run on the file inter with triple the memory (60000 nodes).

Results: The results are shown in Table 49. Although the extra memory
improved the performance of both algorithms, MMDC lost ground relative to
PPMC’ (3% relative in comparison to Table 48).

Algorithm Prop. Rem. | Rel. Improv.
Multimodal 0.348 0%
Asymptotic 0.387 10%

Local 0.401 13%
PPMC’6000 0.376 ™%
PPMC’60000 | 0.353 1.4%

This table lists the compression performance (proportion remaining) of various
algorithms on the file inter. Mullimodal and PPMC’60000 were given 60000
nodes. The other algorithms were given 6000 nodes. Asymptotic and Local are
identical to the component models of the multimodal algorithm. The relative

performance is given as the percentage reduction achieved by the multimodal
algorithm over each other algorithm.

Table 49: Performance of MMDC with increased memory.

Conclusions: Increasing memory improved the performance of both MMDC and
PPMC’. However, the performance of PPMC’ relative to MMDC improved. This

is a surprising result.
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5.7.5 Discussion

The results of the four MMDC experiments are summarized in Figure 96.
PPMCSmall is PPMC’ given the same amount of memory as each submodel of
the same MMDC run. PPMCLarge is PPMC’ given the same amount of memory
allocated to MMDC as a whole. “2E4” and “6E4” refer to the total number of

nodes allocated to the each algorithm in each run.

For three out of the four files, MMDC achieved better compression than
PPMC’, the greatest difference being 15% relative for the artificial data. In
general, the difference was small. Nevertheless, MMDC did perform better and
this chapter aims only to establish the multimodal algorithm as a new mechanism

in data compression. Further research will be required to refine the technique.

0.4 -
0.35¢
03¢
0.25 ¢
0.2+
0.15 ¢
0.1+
0.05 ¢

0 -

B PPMCSmall
B PPMCLarge
B mvpc

Artif Concat Inter2E4 Inter6E4

'The experiments in this chapter are summarized by this histogram which
compares the performance of the MMDC algorithm with the PPMC’ algorithm.
PPMCSmall refers to PPMC’ given as much memory as was given to each
component model of MMDC. PPMCLarge refers to PPMC’ given as much
memory as the entire MMDC algorithm. The two inter runs were for a total
memory of 20000 nodes and 60000 nodes.

Figure 96: Performance of MMDC and PPMC’ on the multimodal data.

The results of Section 5.7 raise some interesting questions.

e Why did the multimodal algorithm outperform PPMC’ by such a wide
margin on the artificial data (mulit) but not on the real data (concat,
inter)?

e In Experiment 20 (Section 5.7.3), why did the multimodal algorithm fail

to generate a new model at instance 10000 (Figure 95), a point at which
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a radically different source took over? Why did model 1 subsequently

perform well?

¢ Why did the multimodal algorithm perform worse than PPMC’ on the
repeated files (concat)?

o Why did the multimodal algorithm’s compression relative to PPMC’

decrease when the memory size was increased?

The following explanation has not been experimentally verified but fits all four

phenomena remarkably well.

Consider a Markov tree model that is compressing a file consisting of three
segments generated by three sources X, Y and Z of depth 2. Source X generates
symbols a and b according to its (depth 2) conditional probability distributions.
Source Y generates the same symbols but according to a quite different probability
distribution. Source Z generates the symbols ¢ and d according to yet another

probability distribution.

Now consider the effect of the sources on the multimodal algorithm (Fig-
ure 97). During source X’s segment, model 1 grows six nodes and accumulates
instances in them. By the time source Y arrives, model 1 has accumulated many
instances and is well adapted to source X. The new instances from the radically
different source Y hardly impact on model 1’s samples (which contain many in-
stances) and so model 1 starts performing poorly. The local model performs bet-
ter and model 2 is created. During source Y’s segment, model 1 is not updated.
Model 2 grows a tree identical to model 1’s tree except that its samples are entirely

different, reflecting the different transition probabilities of source Y.

When source Z arrives, the input consists of instances of the symbols ¢ and
d. As no part of model 2’s tree deals with these symbols, six new nodes (a new
subtree in fact) are very quickly grown. Because the new subtree contains no
instances, it adapts as fast as the local model to the new source Z. The result is

that the local model never out-performs model 2 and no new model is created.

Central to this explanation is the concept of tree zones. A source mode’s
zone is a subset of nodes in a tree that the source mode generally “inhabits”.
Two source modes are said to collide if their zones overlap. So long as there are
no collisions between source modes, there is no advantage in using different trees

to model them, as a single tree can contain all the models without the models
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X's zone

g 8 8 B

aa
ba
ab
bb
cc
dc
cd
ad
(a) Tree after (b) Trees after (c) Trees after
source X. sources X and Y. sources X, Y and Z.

This diagram illustrates how the tree zones of different source modes could affect
the operation of the MMDC algorithm. These pictures depict the state of two
models after data from various sources has arrived. In (a), a source X has caused
model 1 to be created. In (b), source Y has appeared. Because it uses the same
zone as source X, it collides with source X causing the creation of a new model.
In (c), source Z has appeared but because its tree zone does not collide with
that of source Y, it is incorporated into model 2 as a distinct zone and no new
model is created.

Figure 97: The tree zone explanation of MMDC’s performance.

interfering with each other. The concepts of zones and collisions provide answers

to the questions posed earlier.

Conjecture: The multimodal algorithm performed significantly better
(relative to PPMC) on the artificial data than on the real data because the
artificial data was generated by sources whose trees were solid to depth 3.

The three artificial sources collided (overlapped) completely.

Conjecture: The multimodal algorithm failed to create a new source
at instance 10000 in Experiment 20 because the two sources (on either

side of 10000) occupied different tree zones. The first source section was
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a terminal transcript (ASCII data) and the second was geological data

(containing many null bytes and low numbered bytes).

If two source modes are similar, a collision can actually improve compression
because the overlapping models will improve each other’s statistics. This is what

happens in an ordinary Markov model.

Conjecture: The multimodal algorithm performed worse than PPMC’ on
the repeated files because the files that were radically different occupied
different tree zones and the sources that were similar fed off each other’s

statistics.

Another factor is memory. In the zone example, model 2 had enough memory
to allow it to create the c, d subtree for mode Z. If it had not had the memory,
the subtree would not have been created, the model’s performance would have
dropped, and a new model would have been created. Thus memory is a factor in

model creation.

Conjecture: The multimodal algorithm’s performance relative to PPMC’
decreased when more memory was added because with more memory, new

modes were more likely to grow in old models.

A closer examination of the results of Experiment 21 revealed that only
five 6000 node models had been created; seven 2000 node models were created
in Experiment 20. The problem of ordinary models adapting too quickly to
new modes was anticipated early in the experimental process. That is why the

grow.active parameter of the ordinary models was set to false.

It may appear from this discussion that the multimodal algorithm can never
yield an improvement, as sources that don’t collide can have no effect on each other
and sources that do collide tend to enhance each other’s performance. However,
in a third case of two sources that collide and have quite different statistics, the
multimodal algorithm will excel, as it did in Experiment 18. In practice, the

situation is likely to be much messier with most sources partially colliding.

5.8 Other Issues

MMDC is a completely new kind of data compression algorithm. Until
now, research has been oriented towards the development of more and more
sophisticated locally adaptive algorithms. MMDC steps sideways by addressing
issues of model management. There is much to discuss.
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5.8.1 MMDC is Really a Meta-Algorithm

Although our present implementation of MMDC uses the SAKDC algorithm
described in Chapter 4, the MMDC algorithm is not strictly bound to it. All that
the MMDC algorithm requires is locally adaptive and asymptotically adaptive
versions of a component model. MMDC is not even bound to the modern paradigm
— there is no need for the input to be processed one instance at a time, nor for
there to be a common, shared coder. All that is required is that it be possible to
measure the performance of each model for arbitration purposes.

In Section 3.4 we saw that most data compression algorithms can be modified
to be non-adaptive, initially adaptive, locally adaptive or asymptotically adaptive.
There is no reason to believe that any algorithm could not be used as a component
model in the MMDC algorithm.

Thus the MMDC algorithm is really a meta-algorithm, an algorithm for

manipulating and choosing other algorithms.!11

An exciting prospect is that of building multimodal algorithms from LZ models
(Section 1.7). LZ models do not compress as well as Markov models, but they run
much faster.?*> A multimodal algorithm using LZ models is likely to yield better
compression than ordinary LZ algorithms, while still remaining fast enough to be
practical.

5.8.2 Efficiency

MMDC maintains many models simultaneously. This can be expensive in CPU
time. Fortunately, only the local model and the active model are actually updated;
the other models must generate predictions but are not updated.11® Generating a

prediction involves shifting the history buffer and taking a shortcut pointer to the
next matching branch.

Maintaining a performance measure for each model is expensive because the
logarithm of the probability of the symbol of each arriving instance has to be
calculated and summed. This operation could be sped up with the help of a
logarithm lookup table. Another solution is to use the new fast arithmetic codes

and simply measure the number of output bits.

111 The word “algorithm” in this section could just as well be replaced by the word “model”.
212 Moffat[Moffat88] reports that a highly optimized LZ algorithm ran about eight times as fast
as a highly optimized version of the PPM algorithm,

113 However, shortcut pointers can be optimized as they do not affect the functionality of a
model, only its speed.
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Maintaining identification of the least recently active model is not the problem
that it was in Chapter 4. Here the “things” are not coloured red and green and
there are fewer of them. A standard doubly linked list can be used.

Copying the local model is another expensive operation. The operation could
be avoided by altering the algorithm so that whenever a trial model is required,
the local model is converted to an asymptotic model (becoming the trial model)
and a new empty local model is created from scratch. Another solution, assuming
the copy operation must take place, is to use only relative pointers in models. This
would allow models to be copied by a single memory copy instruction rather than

by recursive structure traversal.

In this implementation, copies of local models were constructed by feeding the
local model’s history buffer into a newly created model. This was not fast, but it

was simple and reliable.

Multimodal data compression is perfectly suited for parallel execution. The
component models, the arbitration unit and the coder could be placed on
separate processors. Because the models do not communicate with each other,
interprocess communication would be minimal. Although a straightforward
parallel implementation!* would require that the models be synchronized at the

instance level, appropriate buffering would render this unnecessary.

5.8.3 The Use of Non-Adaptive Models

In addition to managing a set of asymptotic models, a multimodal algorithm
could run a group of non-adaptive models tuned to particular commonly occurring
sources. The number and nature of models used is bounded only by the deviousness
and ingenuity of the model constructors. On a highly parallel machine, inclusion
of extra static models would cost nothing in time except the slight increase in the

O(log k) blending time needed to compare the performance of k& models.

5.8.4 Heterogeneous MMDC

Although powerful, Markov models perform poorly on some sources. Signal
data, for example, is better compressed using linear prediction[Witten80]. To cater

for different classes of data, more than one class of model could be manipulated
by the MMDC algorithm.

Each class would have its own local model. However, as in homogeneous

MMDC, only one model from the entire set of models would be updated.

114 Some researchers might argue that this is a contradiction in terms.
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The combination of multiple classes of asymptotically adaptive model along
with a suite of non-adaptive models would result in an extremely versatile
algorithm capable of efficiently compressing messages generated by a variety
of interleaved sources. This flexibility is bought at the cost of an increase in

processing time.

5.8.5 MMDC as Unifier

The field of data compression was launched by Huffman coding and was carried
by ad-hoc techniques for many years. The emergence of the modern paradigm of
data compression provided a much purer view of the field, in which a single model
supplies predictions through a narrow interface to an arithmetic coder. With
the advent of multimodal data compression comes the possibility of combining
many different kinds of model. If processors are cheap, multimodal techniques will
encourage the inclusion of any model that is vaguely orthogonal to the others. We

are likely to find ourselves back where we started: in a maze of ad-hocery.

Whatever happens, we can at least be assured that the ad-hocery will be
contained. An advantage of the modern paradigm and the MMDC algorithm
is that they provide strong frameworks within which models must reside. No
matter how different the models may be on the inside, their interfaces must all be
identical; all must accept instances and produce predictions (or perhaps generate
code). Multimodal data compression integrates nearly all other data compression
techniques by providing a framework within which different models can reside
without interfering with each other.

5.8.6 A Note on Security

Before finishing this chapter, it is worth pointing out a rather surprising
security implication of multimodal algorithms. A multimodal algorithm set up on
a public communications channel will store information about messages produced
by various “sources” that have used the channel in the past. If users of the
channel are able to measure the compression yielded by the channel (for example
by measuring the time that the channel takes to transmit the message), they will be
able to obtain information about messages that have previously been transmitted.
This problem exists with adaptive data compression but is far more severe for
multimodal algorithms which are capable of “recognising” a document that was

transmitted a long time before.

For example, if a multimodal compressor were connected to a user’s terminal

line (so as to reduce the transmission time), an intruder who had gained access
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to a user’s line could tell if the user has been scrolling particular files simply by
scrolling them himself and seeing how fast they appear. More tenuous channels
are apparently already in use in the intelligence world[Wright87).

The problem cannot be alleviated by cryptography, as data compression must
be performed before any cypher layer takes control of the data. The only solutions
seem to be to hide the compression performance or to isolate the compression data

streams of different users.

Hiding compression performance may be possible over a multi-user line by
delaying all messages at the receiving end so as to provide a fixed (worst-case)
transmission speed. From each user’s point of view, the channel has a constant
speed and no data compression is taking place. From the channel’s point of view,
the (multi-modal) data compression is reducing traffic volume, allowing more (fixed

rate) users to use the channel.

Isolation of users’ compression data streams can be accomplished by main-
taining a separate multimodal model for each user or by restarting the data com-
pression system whenever the channel user changes. The former scheme loses the
simplicity of centralization and the later scheme loses some of the advantages of

multimodal models.

5.9 Summary

This chapter introduced the technique of dynamically swapping between
different models (e.g. locally and asymptotically adaptive models) so as to
maximize the benefits and minimize the disadvantages of each. From this grew a
technique for the compression of multimodal sources, in which asymptotic models
are created dynamically, one for each of the source’s modes. New models are
created whenever a locally adaptive model out-performs all the asymptotically
adaptive models. This method was used to construct the MMDC algorithm which
has been described in detail. Experiments showed that the MMDC algorithm
reliably detects source modes, creating a new model only when a new source mode
appears. MMDC is really a meta-algorithm because it can use any component
model so long as the component model exists in locally adaptive and asymptotically
adaptive forms. MMDC is ideally suited for parallel execution because its models
are loosely coupled. Extensions for different classes of models and a library of fixed
models make MMDC an ideal base for the combination of many different data
compression algorithms. Multimodal algorithms introduce new security problems

because of their tendency to store sophisticated models for long periods of time.
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The development of the MMDC algorithm is a good example of how science
builds upon itself. It is hard to imagine the MMDC algorithm arising without
some concept of model or without a clear categorization of adaptivity, but neither
of these concepts were developed with multimodal adaptivity in mind.



CHAPTER 6
APPLICATIONS TO
USER INTERFACES

6.1 Introduction

Data compression techniques are used to reduce the volume of data being
conveyed through a channel. Applications of data compression are distinguished
by the nature of their channel. For data transfer, the channel is a communications
line. For data storage, the channel is a storage medium. Other applications,
such as authorship identification[Roberts82], which rely on fluctuations in data
compression performance, use an imaginary channel. In this chapter we introduce a
new applications area whose channel is the interface between a user and a computer

terminal.

6.2 A New Application

The motivation for the new application is that the behaviour of users can be
predicted just as the behaviour of files can be predicted. By presenting these
predictions to the user in a useful form, they can be used to reduce the amount of

work the user has to perform.

A user prediction system might operate as follows. The user works at the
terminal entering commands and receiving responses on the screen. Inside the
computer there is a special process, independent from the user’s process, that
records everything that the user types (i.e. the user’s input stream). The process
uses the data compression techniques described in this thesis to predict what the
user is going to type next. If the program has confidence in its prediction, it
displays the prediction in a special place on the screen. The prediction consists of
a string of characters.1® This contrasts with our previous view of predictions as
probability distributions. The user observes the prediction, and if it is the same
as what was about to be typed, the user hits a specially reserved key which enters
the predicted string as if the user had typed the string directly.

The effect of all this is to reduce the number of keystrokes that the user needs
to make. At each step, the system programs the special key with the characters
that it thinks the user is likely to type next.

) 115 Up until this point, we have referred to symbols as “symbols”. In the context of user interfaces
in which the user nearly always types ASCII characters, we can take the liberty of referring more
specifically to “characters”.

286



Section 6.8: A Paradigm of User Prediction 287

6.3 A Paradigm of User Prediction

The new application deviates from the modern paradigm of data compression.
Nevertheless, the major components can still be identified. The user is both source

and transmitter. The terminal keyboard is the channel. The model and decoder
exist in software.

Message
instances  Coder SecaEbr Message
(User  (User) Channel instances
intentions Keyboard To user's process
). 1 i (Key ) > ( p ) »
2 t
Predictions Backdoor Predictions
Channel Model
(Screen)
Shannon Transmitter Shannon Receiver
The modern paradigm of data compression can be modified for application to
user interfaces. In the modified paradigm, the receiver generates predictions
which are presented to the user. The user has the option of typing normally or
confirming one or more predictions by pressing special keys. Predictions must
be multi-instance in order to save keystrokes.
Figure 98: The modern paradigm modified for user interfaces.
Message Coder Decoder Message
i Channel i
instances > instances >
Predictions Predictions
Model Model

Shannon Transmitter Shannon Receiver

This figure is a duplicate of Figure 9, placed here for convenient comparison
with Figure 98.

Figure 99: The modern paradigm of data compression.
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Figure 99 shows the modern paradigm of data compression. Figure 98 shows
the modern paradigm modified for user prediction. Predictions are displayed on
the user’s screen at position 2. The user types keys on the keyboard at position
1. The receiver has not much changed but the transmitter differs substantially.
Instead of having a coder and predictor, there is only a coder. Predictions originate

from the receiver.

It is unusual for information to flow backwards in a data compression system.
The aim is usually to reduce the traffic between the sender and the receiver. In
this case, the cost of sending from the receiver to the sender is negligible compared
to that of sending from the sender to the receiver, and so it is possible for all
the predicting to be done by the receiving end. Thus, the receiver presents the

alternatives and the sender selects from them.

6.4 Examples

We now present some practical examples of how a user predictor might be
used. It is not intended that a user predictor produce helpful predictions at all
times. The system would be useful even if it produced predictions that saved the
user just 5% of typing. For some data, the success rate will be much higher.118 A
prediction system would be useful in reducing user frustration even if it were only

required on the occasions where the input required was tiresomely repetitive.

6.4.1 Debugger Sessions

A debugger program is being used to debug a program. At first, the user uses
the debugger only for simple checks. However, as the program grows bigger and
the debugging task grows more complicated, so does the number of “setting up”
commands that need to be executed whenever the debugger is entered.

Example setting up commands might be (VAX/VMS Debugger):

SET MODE DISPLAY

SET LANGUAGE PASCAL
SCROLL/DOWN: 145

SET BREAK/LINE/AFTER:1000
GO

After one or two debug sessions with this setting up sequence, the prediction

system acquires enough information to predict the sequence. The next time the

116 For example if the user were typing the words of the song “The Twelve Days of Christmas”.
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user enters the debugger and types debugMset,11” the prediction system predicts
the rest.

Although the user could have anticipated the repetition and placed the
commands in a command file, in practice the user is more likely not to notice
the build up of commands and type them each time. Eventually the user will
recognise the problem and write a command file. A prediction system could help

create such a file.

6.4.2 Typist

A typist is typing in a document in which the word “indistinguishable” occurs
very often. After the typist has typed it a few times, the prediction system catches
on to the string and starts predicting it after (say) “indi”. Eventually, the typist
types the word as “indi”p, (where b is a single key that enters the prediction

system’s current prediction), thus saving thirteen keystrokes per occurrence.

That sufficient repetition occurs in manuscripts to warrant a prediction system
is indicated in the following discussion of the use of the macro facility in the TEX
typesetting system|[Knuth79][Knuth84]. Knuth has mathematical TgXts in mind
but the quote does illustrate the problems and trade-offs involved in reducing
repetition.

“Of course, you usually won’t be making a definition just to speed up the typing of one

isolated formula; that doesn’t gain anything, because time goes by when you’re deciding

whether or not to make a definition, and when you’re typing the definition itself. The

real payoff comes when some cluster of symbols is used dozens of times throughout a

manuscript. A wise typist will look through a document before typing anything, thereby

getting a feel for what sort of problems will arise and what sort of definitions will be
helpful.” [Knuth84](chapter 20).

As well as helping to replace the simple use of macros, a prediction system can
be helpful at the times when the overheads associated with using other methods

(e.g. definitions) are prohibitive.

6.4.3 Indenting a Program

A programmer is editing a program and needs to indent a procedure by three
characters per line. The programmer starts with “Li U LAM”118 and repeats it.
After a few repetitions, the prediction system catches on and the programmer
uses a single keystroke for each repetition.

117 The notation “letter” will be used to represent a control character. In this example *M is
the ASCIT “RETURN” character (code-13) used to terminate lines of input.

118 <" will be used on occasions to represent the space character.
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6.5 Review of Interactive Environments

The user predictor proposed in earlier sections has the potential to become an
important and useful part of interactive environments. However, a multitude of
user-environment tools have already been developed. Because most of these tools
have been developed for programmers, the field is usually referred to as the field
of Interactive Programming Environments (IPEs for short). The aim of this

section is to position user predictors in this field.

6.5.1 Inner and Outer Environments

Barstow and Shrobe[Barstow84](section 2.4) have suggested that in future
IPEs, programs under development will be tightly bound with the tools that
manipulate them. At present, program and tools can still be distinguished.
We divide environments into two parts: an inner environment and an outer

environment.

The inner environment consists of the object that the user is working on
and the set of primitive operations used to manipulate it. In a programming
environment, the object would be a computer program, and the primitives would
be the commands to edit and run it. The program and the set of primitives can

be considered formally as being an instance of an abstract data type[Guttag80).

The outer environment consists of a set of sophisticated tools whose
purpose is to amplify the user’s actions. These tools are based upon (but are
not necessarily symbiotic with) the tools of the inner environment. Currently,
few environments have an outer environment. Examples of outer environments
are the Programmer’s Assistant[Teitelman’ 2][Teitelman84], the Programmer’s
Apprentice[Rich78][Waters82], DWIM® Spelling Correction[Teitelman72]
[Teitelman72] and Active Help Systems[Fischer84]. Although all these tools can
ultimately be considered to be an extension of the abstract data type of the inner

environment, this may not be a very useful view to take.

19 “DWIM (dwim) noun. A complicated procedure (in the INTERLISP dialect of LISP) that
attemgts to correct your mistakes automatically. For example, if you spell something wrong or
don’t balance your parentheses properly, it tries to figure out what you meant. DWIM stands for
“Do What I Mean”. When this works, it is very impressive. When it doesn’t work, anything can
happen. When a program has become very big and complicated — so complicated that no one can

understand how to use it — it is often suggested in jest that dwim be added to it.” [Steele83](p. 59)
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Outer
Environment

Inner
Environment

Modern environments can be divided into an inner environment and an outer
environment. The inner environment consists of the objects on which the user
is working, along with tools to manipulate the objects. The outer environment
looks in to the inner environment (as the user does) and attempts to aid
the user by providing powerful facilities for issuing commands to the inner
environment. Examples of outer environments are the Programmer’s Assistant,
the Programmer’s Apprentice, DWIM and Active Help Systems.

Figure 100: Inner and outer environments.

The relationship between the user, the outer environment and the inner
environment is confusing because the outer layer can vary its thickness. The best
way to imagine the system is to consider the user to be communicating with the
inner environment with the outer environment intercepting the communication
from time to time (Figure 100). At times, the user directly manipulates the
inner environment, whereas at others all communication is channelled through the
complex mechanisms of the outer environment. The outer environment should not
distract the attention of the user from the inner environment unless it can help in a
significant way. To summarize, the inner environment defines the domain in which
the user is working, and the outer environment provides entities that enhance the
interface to the domain.

Tools in the outer environment exist to serve the user. Unlike objects in the
inner environment, they do not define the domain in which the user is working
but rather “look in”, as the user does, to the inner domain. Commands issued
to the outer environment are likely to be less specific than those to the inner
environment. As a result, outer environments often contain user models which are

used to resolve ambiguity and choose a course of action.

Having established a split-level view of the field of IPEs, we turn our attention

to previous work in interactive systems design and other areas that relate to

automatic prediction.
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Research into IPEs that is relevant to user prediction can be sorted into roughly

the following categories.

e General design of interactive systems.

e Programmer’s helpers.

e The design of command languages.

e Modelling the user at the keystroke level.

e Modelling the user at the command level.

The work in each of these categories will be discussed in turn.

6.5.2 General Design of Interactive Systems

There is no shortage of work on interactive design. Interactive design has
recently become a popular research topic because of the increasing cost of hu-
man resources. This work can be split into two groups. The first group typically
concerns itself with low level terminal interface design (e.g. [Morland83](4.2)).
Schneiderman[Schneiderman82] discusses command languages, response time,
the wording of system messages, help facilities and other issues before getting on
to his main point which is that interactive systems are important and can be made
easy to learn and use by employing the principle of direct manipulation. The prin-
ciple of direct manipulation requires that a model of the world being manipulated
be built, and that it be directly and simply manipulated by the user. The second
group concerns itself with the implementation of such systems and methodologies
for their development[Freeman78] [Zunde81] [Wasserman82](p. 6).

None of this work is particularly relevant to prediction systems as it mainly

deals with the design of conventional environments.

6.5.3 Programmer’s Helpers
Programmer’s helpers are outer environment programming tools.

Researchers on the Programmer’s Apprentice (PA)[Rich78] [Waters82] describe
it as “midway between an improved programming methodology and an automatic
programming system.” Fundamentally it is a high level programming language

cast 1n interactive form.
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The programmer’s apprentice is a good example of an outer environment
component. The following extract gives a very good feel for the PA and the

nature of inner and outer environments.

“The programmer is the active agent in the picture. He issues commands directing
the components in the environment in order to create and modify programs. The
programmer’s apprentice system (PA) is an additional active agent which assists the
programmer with the task of programming. There are three important points about the
way the PA fits into this picture. First, it is not intended to replace the programming
environment, but rather to augment it. It will communicate with the rest of the
environment in terms of code, and commands. Second, the programmer can still
communicate directly with the rest of the environment. This gives him a trap door
so that he is not always required to work through the PA.” [Waters82]

The programmer’s apprentice differs in many ways from a user predictor. It is
much more intelligent than a user predictor and contains more knowledge about

the inner environment.

“The PA will act as a junior partner and critic, keeping track of details and assisting
in the documentation, verification, debugging, and modification of a program while
the programmer does the really hard parts of design and implementation. In order to
cooperate with a programmer, the PA must be able to understand what is going on.”
[Waters82] (Italics by Waters).

The programmer’s apprentice is essentially a reactive entity. It does not
anticipate what it will be asked or expected to do next and is always given a

general outline on which it elaborates. Typical commands to a PA are (from

[Waters82)).

Define a program SQRT with a parameter NUM.
Implement the test as an equality within epsilon.
Share the / in the test and the second / in the approximation.

Automatic programming systems always seem to boil down to simply being

high level programming languages.

“In short, automatic programming always has been a euphemism for programming with a
higher-level language than was then available to the programmer. Research in automatic
programming is simply research in the implementation of higher-level programming
languages.” [Parnas85](p. 438)

The programmer’s apprentice is difficult to identify as a high level program-
ming language because the programmer’s attention is focussed on the ob ject code.
The programmer’s program is not written in “Programmer’s Apprentice”, but
rather in LISP with the help of a clever macro expanding programmer’s appren-
tice. A similar system could be constructed one level down for assembly language
and Pascal[BSI82]. The programmer would work on an assembly language pro-

gram but could type in small portions of Pascal code which would immediately be
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translated into assembly language and inserted into the program. At that point,
the Pascal code (instructions to programmer’s apprentice) would be forgotten and

the programmer would manipulate only the resultant assembly language.

The Programmer’s Assistant[Teitelman72][Teitelman84] is an excellent exam-
ple of an added-on outer environment. All communication from the user to the
inner environment passes through the programmer’s assistant. The programmer’s
assistant provides a variety of aids. These are, the maintenance and access of a
command history list, the capacity to “undo” commands, and DWIM automatic
spelling correction|[Teitelman72] [Teitelman72). The way that the programmer’s
assistant presents itself to the user (usually as completely transparent) is very like

the way that a user predictor presents itself.

User predictors are similar to the programmer’s assistant. However, user
predictors perform a completely new and independent function; there is nothing
in the armory of the programmer’s assistant that predicts the user. Nevertheless,
automatic prediction is a function that would considerably enhance the already
powerful facility that the programmer’s apprentice provides. Thus, prediction
systems can be slotted in as another string to the bow of the programmer’s assistant

whilst being welcomed as a new innovation.

It is interesting to take a cursory look at some recent commercial products that
exploit the programmer’s helper idea. One such product is Turbo Lightning from
Borland International[Borland86]. Turbo Lightning is a background process that
Intercepts the user’s input stream and looks up every word typed (it is presumed
that a word is defined to be a sequence of letters) in a dictionary. If it sees a word
that it doesn’t know, it interrupts the user with a menu showing a list of candidate

corrections. The user can then choose a correction or define a new word.

“So how does it work? Let’s say the word you meant to type was ‘RIGHT’ but you
accidentally typed ‘RIHGT,” which is wrong. What happens then? You immediately
hear a ‘beep,’ so you know there was a boo-boo. You instantly see a window, that doesn’t
list “RIEGT” but it does list ‘RIGHT’ and its sound-alike words.” [Borland86]

This product is significant because it indicates that the demand for environ-
ment assistants is strong enough to make them commercially viable. Many similar
products have appeared since Turbo Lightning.
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6.5.4 Research into Command Languages

Much work has been done on command language design (e.g. [Palme79]
(“User Commands”), [Hardy82] and [Nievergelt82]). Command languages
are important because every user has to face them to accomplish anything.
Researchers in this area are concerned with command abbreviation, menus versus
command lines, the trade-off between power and ease of use and flat versus
hierarchical command structures. These issues are relevant to user predictors
only as far as they describe much of the domain of user/computer discourse that

user predictors will be charged with predicting,.

Of particular interest are command recall facilities, which allow the user to

retrieve and re-enter commands previously given.

6.5.5 Modelling the User at the Keystroke Level

A lot of work has been done in the area of low level modelling, (e.g. [Card80]
(p. 401) and [Roberts83]). Workers in this area construct models of user
behaviour at the level of individual physical actions such as moving a mouse or
pressing a key, and attach timing information to these actions. The result is a
model that predicts the time it will take for users to perform particular sequences
of actions. This information can then be used in the design of text editors and
other interactive systems. The most typical of these papers is [Card80] in which
an elaborate keystroke level model is built that functions as a fairly good timing-
predictive model. Other related work in relation to text editors is [Roberts83].

Most of this work is not relevant to user predictors as it deals with short
sequences of keystrokes and the timing of low level user actions. Although some
writers delve into the correlations between various letters, most describe models

that predict only the time that an action will take, not the action itself.

6.5.6 Modelling the User at the Command Level

As with the research described in the previous section, research in this area is
concerned with performance times (e.g. [Booth81](Esp. “Modelling the Task”),
[Zunde81]). However, the problem has been raised a level. Here the concern is the
performance of users performing higher level tasks for which they may choose their
own commands. The result is a more complex analysis, parts of which are relevant
to user predictors. In [Booth81] for example, the authors describe a modelling
method by which a grammar is constructed to imitate the user’s use of a software

tool.
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Some work is not concerned with performance times but rather with user
customization. In [Rich83](p. 203), the author asserts that computer systems
should behave in different ways for different users. Two approaches for achieving
this are given. First, the user can do the customizing. This can be complicated
and does not cater for new users. Second, the customization can be performed
automatically. The rest of the paper continues on this theme indicating how clues
from the user behaviour can be used to make using the computer easier. This
is relevant to user predictors as such a system uses information gleaned from the

user to make using the computer easier.

In [Fischer84], the authors describe a help facility that models the user and
occasionally jumps out at the user and describes what the user is doing wrong and

how it can be fixed.

6.5.7 Summary of Interactive Environment Work

An increasing emphasis is being placed on increasing the productivity of
the users of computer systems. This has resulted in sophisticated interactive
environments that can be modelled as two-level systems composed of an inner
environment containing the objects that the user is manipulating, and an outer
environment consisting of a collection of tools whose function is to help the user
use the inner environment. Prediction systems can be categorized as tools residing
in outer environments. A lot of work has been done on interactive programming
environments. Much of this is not relevant to user predictors. The studies on outer
environment tools have been helpful. User prediction systems can be regarded as
part of the tool kit of the programmer’s assistant.

6.6 Multi-Character Predictions

As we have seen, user prediction systems operate in a manner similar to
that of data compression systems. As a consequence, all of the models and
methods for predictions discussed in earlier parts of this thesis are applicable. The
major difference between the two systems is the kind of predictions they produce.
Whereas the existence of arithmetic coding allows data compression models to
predict a single character, user predictors must predict whole strings of characters
to be at all useful.

The only useful user predictions are those that would normally take more than
one keystroke to type. The cost of the user reading the prediction to determine if it
is correct sets the threshold of usefulness even higher. Predictions of less than five

characters are probably useless. This means that in order for useful user-prediction
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to take place, the user input must be highly redundant. It must be possible in some
circumstances to predict whole strings of characters with confidence. Predictions
of low entropy (e.g. because there are only four symbols) but uniform probability

are of little use.

String-level redundancy can be measured by identifying all repeated substrings
in a section of user input. Experiment 22 in Appendix C performed such a
measurement. The experiment showed that in the sample of 32948 consecutive
instances taken from a user input stream, at least a third of the instances lay
within a repeated substring of length ten or greater. This result indicates a high
degree of string-level predictability. Experiments using the mechanisms of earlier

chapters have not been performed.

Multi-character predictions can be obtained from a model that only predicts
a single character by invoking the model recursively. In general, a multi-instance
prediction of length k consists of a n-way tree that is solid to depth k, with a
probability on each arc. Such a tree can be generated using a single character
predictor by feeding characters into the predictor and pulling out a hypothetical
prediction. If the current context was beg, the probabilities on the arcs leading
from the node begi could be obtained by temporarily feeding the character i into
the model and then examining the prediction yielded.

In practice, a user predictor would never actually build a prediction tree. Even
if such a tree could be efficiently constructed, it could not be presented to the user,
because the cost of reading the tree would exceed the cost of typing the characters
the tree predicts. At each point of time, only a very few predictions can be
used. These predictions can be found by following branches of high probability,
constructing them on the fly. The difficulty then becomes that of deciding which
predictions from the prediction tree should be chosen for presentation to the user.
The trade-off here is between length and probability. Should the user be presented
with short, reliable predictions or with lengthy long-shots?

The problem can be expressed formally as the need for a goodness function
g(l,p) that can be applied to each node in the tree, where [ is the depth of the
node (length of the prediction in characters) and p is the probability of the node
arising.??® Once this function is specified, the problem becomes that of simple tree
search, About all we know about g is that it must be monotonically increasing
with [ and with p.

120 The method of assigning probabilities here is the same as that used by Rissanen and
Langdon[Rissanen81] in their definition of a source.
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A good first approximation is g(/,p) = p(I — 1) which is the number of
keystrokes saved. If the cost of examining the prediction is taken into account,
the metric can be refined to g(l,p) = p(! — 1) — (i + sl) where i is the cost in the
user’s time of being interrupted to be given the prediction and s is the cost per

character of reading the prediction.

Once a goodness function has been found, an algorithm is required for
finding the tree node with the greatest goodness. A branch and bound algo-
rithm[Winston77] seems appropriate but can only be used if a limit is placed on
the length of predictions. The best way to do this would be to modify ¢ so that

its value increases and then decreases with increasing /.

If more than one prediction is required (say the k best prediction strings), the
branch and bound algorithm could be modified to maintain a list of the best k

predictions with the cutoff point being set at the worst of the k predictions.
The amount that should be predicted is inextricably linked with the structure

of the commands the user is giving. From a psychological standpoint, the best
thing that the prediction system could do is to predict one or more chunks of
user action. For example, a chunk could be a complete command. Luckily, the
boundaries of such commands will tend to correspond with the points where the
user will make a choice about what is to be done next. These branching points
are, in turn, reflected by an uncertainty in what to predict next. Thus, command

boundaries can be detected from high entropy branchings in the prediction tree.

One source of information available in a user prediction system but not in a
data compression system is the timing of the arrival of the characters. There are
many reasons to think that much of the structure of an input could be determined

from the time intervals between the keystrokes.

e The existence of muscle memory means that commonly typed sequences
are likely to be typed in a burst.

e When users type a command terminator, they have to wait until the

computer responds. The time taken by the computer will delay entry of
the next keystroke.

e When users reach the end of a coherent conceptual unit, they pause.

Some of these hypotheses have been tested by writing a program to tokenize
an input stream based only on the time interval between keystrokes. The result
is presented in Experiment 23 in Appendix C. Although no statistical tests have
been performed upon the parsed output, it appears by inspection that the program
has determined much of the structure of the input stream.
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6.7 The Prediction Interface

Given k prediction strings, how can they best be presented to the user? We
divide the interaction with the user into two parts: the part that presents the
prediction to the user and the part that reacts to the user’s response to the

prediction. Each of these can be rated on an aggressiveness scale.

6.7.1 Presenting Predictions

The presentation of predictions involves somehow making the user aware that
a prediction exists so that action can be taken. Here are some approaches rated

from least aggressive to most aggressive.

o The least aggressive thing that a prediction system can do is absolutely

nothing.

e The next least aggressive thing that a prediction system can do is to
present predictions to the user only when the user requests them. There
could be a special key on the keyboard for this purpose. After a while, the
user would gain an intuitive sense for the situations in which a prediction

system is likely to be correct.

¢ The next presentation option is for the prediction system automatically
to present the user with a prediction whenever the system has a prediction

with a high goodness.

e A fourth method of presentation is to continually present the prediction

system’s best prediction. Window systems would be well suited for this.

¢ The most aggressive system would continually present a list of the best

predictions.

6.7.2 Confirming Predictions

When a prediction is presented to the user, the user must respond to it in
some way. One response is to do nothing. Here are some of the ways in which
the user could confirm predictions. They are rated from least aggressive to most
aggressive.

® The least aggressive method for confirming predictions is to provide a
key for confirming a prediction. The user could press the key if he wanted

the prediction executed, or could ignore it and continue.
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® A second and more aggressive option is to set up a key that indicates
that the user does not want a prediction executed. If, after a prediction
is presented, the user does not respond in a prescribed time, the system

executes the command.

e Finally, there is the extremely aggressive option of simply executing the
prediction without confirmation. Extreme as it sounds, this option could
be very useful in situations when the goodness value of a prediction is

extremely high.

Our experience with prediction systems indicates that introverted prediction
systems are the best as they tend to fit in with the concept that the user is in the

driving seat.

Perhaps the best choice amongst these is all of them. The prediction system
could employ a mixture of these and choose any one method depending on how

sure it is of its prediction.

6.8 Tuning Models

If Markov models are to be used to predict the user, they must be tuned. In
this section we note the parameters that we expect would perform well.

The two properties of user data that should be kept in mind are first that
commands that have just been issued are often repeated a short time afterwards,
and second that commands are often quite long. We work on the principle that
in a user prediction system, a high entropy prediction is a completely useless one.

Branches that contain high entropy predictions may as well be pruned.

The maximum depth of the tree should be set much higher than for data
compression. In data compression the optimal depth is about four; deeper trees do
little to reduce the entropy while making the tree too specific. In user prediction,
this specificity is likely to be useful because users often repeat commands soon
after they are given. In a user prediction system, the cost of being wrong (and
being wrong is a much sharper concept in these systems) is much higher than for

data compression.

Tree growth should be set to be very high. Because the user’s most recent
input is likely to be of greatest relevance, the tree growth parameters should
be adjusted to grow each branch to the depth limit upon the arrival of each
character. Windowed local adaptivity should probably be turned off. The
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estimation parameters should be biased strongly against symbols that have not

occurred (i.e. a low value of \).

One of the pleasing aspects of the tree adjustment techniques presented in
Chapter 4 is that they are incremental. Whereas most previous algorithms destroy
the Markov tree and start anew whenever memory runs out, SAKDC can operate
smoothly forever. Use of such incremental tree adjustment means that there are

no discontinuities in the performance of an SAKDC user predictor.

Finally, we note that the user input stream is likely to be multimodal. Different
software tools have different input grammars and are likely to have different
characteristics. As the user switches from one software tool to another, so
should the compressor switch from one model to another. This could be done
automatically without the need for a tight link between the software tools and the

prediction system.

6.9 Human Factors

Interactive systems are extremely prone to instability with respect to user
perception. Such little things as the exact length of response time or the phrasing
of error messages can greatly affect the attitude that the user takes towards the
system. In introducing a system as unusual as a user predictor, it is prudent to
take at least a cursory look at the psychological factors involved.

Perhaps the single biggest difference that a user predicting system could
make to an interactive environment is to make the user no longer feel in control.
Traditionally, human/computer interfaces are set up as master/slave relationships.
The computer waits until the human types in a command and then executes
it. It displays some messages to the user and then waits for another command.
This is a user-driven dialogue. In contrast, some user prediction systems might
actually interrupt the user with suggestions or possible commands to be executed.

Users who are used to the computer “not speaking until spoken to” may find this
behaviour disconcerting.

Humans do not like to be predicted because knowledge of their own predictabil-
ity compromises their self-image as agents of free will[Dennett84]. People hold
the art of prediction in high regard and can feel threatened if successfully predicted.
An experiment has shown that resentment is generated by people whose predictive

powers (of human performance) have been upstaged by a machine[Dawes71].

A similar problem of some user prediction systems is the way in which they

“suggest” a course of action to the user. For example, the user predictor might
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predict that the user is about to edit a program and suggest this action when, for
the first time in twenty compilation iterations, the user actually wants to run the
program. This sort of prediction could be interpreted by the user as bossiness,
making the user feel pressured by the system to perform a particular course of
action. Witten and Cleary[Witten86) touch on a similar point in their paper on

general applications of predictive models.

“The prediction methods suggest continuations that have occurred frequently in the
previous text (or the priming text). It is dangerous to use the predictions as suggestions
of what to type; for the result will lack variety, vigor, and verve. Instead, it is essential
to conceive what is to be entered first, and use the predictions to facilitate its entry.
Otherwise, these techniques will encourage stultification, unimaginative prose, and we
will want to disown them.” [Witten86](emphasis by Witten)

A more positive way of viewing the warning is to realize that the predictor
is probably a very good indication of what not to write. If good writing is the
aim, the user might do well to aim to mazimize the number of keystrokes! In
contrast, many dialogues with computers are structured by the computer software

and creativity is not a factor. In this case, suggestions are likely to be welcome.

It is interesting to note that here the computer is pressuring the human to
conform in the present to the image that the human has projected in the past.
This sort of pressure could have a powerful effect on users as it is the way that
much social interaction occurs. Individuals, in interacting with a group of other
people, develop a social personality that the group feels happy with. Any deviation
from this personality, often even if it is for the better, is met by strong resistance
by the group[Schachter51)]. Self correcting mechanisms and reinforcers of social
images such as nicknames are used to create stability.

To summarize, a prediction system, in suggesting that a particular course of
action is to follow, may be interpreted by the user to be implying much more. In the
extreme case of someone who has never used a computer before, such a prediction
could be interpreted as a demand. It may be possible to counter these effects
by careful wording, explanation and by manipulating the user’s perception of the
capabilities of the prediction system. It is reassuring to see that automatic helpers
are becoming more common in interactive environments, at least for environments

used by experts, as this indicates that in practice these effects are at least not
prohibitive.
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6.10 Work by Witten, Cleary and Darragh

Most of this chapter was written in late 1986. In mid 1988, the author of this
thesis became aware of work performed by Witten, Cleary and Darragh in 1982
1983 in the area of user prediction. Their work, which duplicates many of the
ideas in this chapter, is described in two papers, the first by Witten[Witten82]
and the second by Witten, Cleary and Darragh[Witten83].

In the first paper, Witten[Witten82] described a line-based user-prediction
system implemented under Unix. As the user types each Unix command, the
prediction system displays its prediction of what the user is about to type next.
The prediction is presented in inverse video at the end of the user’s line. If the user
does not agree with the prediction, the user continues typing as if no prediction
had been made. If the user agrees with the prediction, one or more function keys
can be pressed to transmit all or part of the prediction. The system does not

attempt to predict past a newline character.

The predictor operates in one of three modes: character, word or string,
depending on the level at which it tokenizes (forms symbols), and it uses a fixed-
order Markov model of the symbols. If a context contains a single symbol, that
symbol is predicted, otherwise a choice is made. One strategy investigated for
this case was to choose the symbol with the most recently added instance, unless
another symbol had a significantly higher frequency count.

Witten experimented with the granularity of tokens and the order of model,
and found that an order three, character-level model performed best. Performance
decreased slowly from order three to order twenty. This is consistent with the
findings of Experiment 5 of this thesis.121 Witten experimented with a symbol-
level credibility threshold in which a symbol’s frequency was treated as zero if it
was below a certain threshold. This technique reduced the error rate but also

reduced the number of predictions.

In general, Witten’s user predictor worked well, successfully predicting about
one quarter of the user’s input. However, Witten seemed to think that 25% was a

small proportion of the user input to predict.

“This may still be useful for poor typists, with around 25% of characters being predicted
correctly.” [Witten82]

121 However, these results contrast with the author of this thesis’s own estimates of the best
depth (Section 6.8).
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Witten stressed that the system is not likely to be useful to experienced users
and fast typists. He also stated that the system could not be used with programs
that do not echo their input.

In contrast, we feel that such systems will be of great use to experienced
users. For a start, experienced users are used to working with a multitude of
tools and could assimilate a user prediction system into their environment with
little fuss. Beginners often have difficulty understanding that a computer system
contains many different software components and find it even harder to distinguish

between the components.122

Second, the system need not be used for all input. It need be used only when
the input to the system becomes particularly monotonous. This often happens
when a “one-off” task (such as moving one hundred files from one machine to
another) must be performed, and it is not worth writing programs to perform the
task. A prediction system can fill the gap between typing in commands and writing
programs. We might expect the cost structure to look something like Figure 101.

Writing
a program
Cost
per
Repetition :
(logarithmic) Typing
Typing+
prediction system

1 Number of repetitions 100
(logarithmic)

User prediction systems could be used to fill the efficiency gap between issuing
commands directly (e.g. giving Unix commands) and constructing programs to
issue them (e.g. writing and executing a Unix shell script containing a loop). If a
command is to repeated only a few times, it is best typed directly. If a command
is to be executed thousands of times, the overhead of writing a program becomes
negligible compared to the cost of typing the commands. Prediction systems
could fill the gap between these extremes.

Figure 101: Cost of typing and programming vs repetition.

122 Fach year, at the Department of Computer Science at the University of Adelaide, hundreds
of first year students type command Interpreter commands (such as commands to compile) into

the screen editor and then raise their hand for help when nothing happens.
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Third, it is quite possible to use prediction systems in non line-oriented
interfaces. All that is required is that a printable representation be found for
non-printable characters so that predictions can be presented on the screen. In
fact, it is likely that screen-based interfaces will account for most of the use of a
prediction system. It is common, for example, in screen-based editors to wish to

perform a complicated operation repeatedly on a number of lines.223

At the end of his paper, Witten hints at the multimodal nature of user input:

“Further research is needed to assess the benefit of continuing the thread of predict’s

context right through the interactive dialogue, irrespective of the subsystems that the

user enters. It may be preferable to save predict’s state on entry to subsystems and

preserve a context from one invocation of a subsystem to the next.” [Witten82](last

paragraph)

This quote touches on an important aspect of multimodal systems. Although
the algorithm of Chapter 5 is capable of determining the sources just from looking
at the data stream, in practice there are times when source transitions may actually

be known.

Witten’s first paper presented the idea of user prediction and described a
very specified Unix line-based implementation of a predictor. In the second
paper, Witten, Cleary and Darragh[Witten83] presented a more sophisticated and
finely grained predictor that operates using a menu. Whereas the 1982 predictor
presented a single prediction, the later predictor, called “the reactive keyboard”,
presents a number of prediction strings organized into a menu. Whereas in the
earlier predictor, predictions were confirmed in full or in part by pressing a function
key, in the reactive keyboard a prediction is confirmed by clicking part way into
the prediction with a pointing device. That part to the left of the click position
is entered. This means that for a menu with ten-entries of ten characters each,
there are 100 possible selections. Menu items are listed in probability order. These
innovations partly solve the problems presented in Section 6.6 of having to decide

how many predictions to make and how much to predict.

Despite the earlier results which indicated that low orders were the most

effective, the reactive keyboard uses a PPM model of order ten.

Witten, Cleary and Darragh experimented with different sized menus and
produced some graphs showing the costs of various sized menus. Once the menu
size reaches about 20 entries, there is little to gain by increasing it. Finally, they
discussed the other possibilities presented by the technique. These include spelling

checking and other constraints and the ability to present non-text symbols.

123 In early 1986, the author of this thesis constructed a prediction system using what was
essentially a high-order, variable-order Markov model. The system was slow (about 10 characters

per Vax750 CPU second) but predicted editor command sequences as effectively as anything else.
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6.11 Summary

This chapter has introduced user-prediction as a new application of data
compression techniques. The modern paradigm of data compression has been
modified for use in predicting users. Some examples were given of how a user
prediction system could be used. A review of the field of interactive programming
environments revealed that environments can be divided into two parts, an inner
environment and an outer environment. User predictors are outer-environment

entities suitable for incorporation in Teitelman’s programmer’s assistant system.

Arithmetic codes allow data predictors to predict a single character. In
contrast, user prediction systems must predict more than one character. By
recursive invocation, a single-character predictor can generate a multi-character
prediction tree from which the best predictions can be selected using a branch
and bound search algorithm and a goodness function. The best predictions can

be presented to the user in a variety of ways.

User input differs from other data in significant ways, and the requirements
on a user predictor are stringent. First, the system must operate in real-time,
without lengthy delays. Second, the predictor must adapt to the user’s behaviour.
Third, user input is likely to be multimodal. The incremental, adaptive algorithms

described in early chapters are ideally suited to meet these requirements.

Human factors are important in a user prediction system; the user must be
made to feel in control.

Finally, the work of Witten, Cleary and Darragh has been acknowledged. Al-
though their work is slightly pessimistic about the applicability of user prediction,
we have given good reasons for optimism: that experienced users will be comfort-
able with user predictors, that prediction systems are applicable to screen based
programs, and that user predictors fill in a productivity gap between typing com-

mands manually and writing a program to execute them.



CHAPTER 7
CONCLUSIONS

The goal of this research was to investigate the use of adaptivity in data
compression. This goal has been achieved by identifying different kinds of
adaptivity, implementing them and evaluating their performance. This chapter
presents the highlights of this thesis. It does not summarize it. Summaries appear
at the end of each chapter.

7.1 Primary Contributions
Primary contributions of this thesis are listed below.

® A comprehensive literature review of the field of data compression has
been given (Chapter 1).

e The concept of adaptivity in a data compression algorithm has been
refined by focussing on the emphasis that a particular technique places on
different parts of the history, and by constraining the estimation function.
Four different classes of adaptivity have been identified, and mechanisms
for each form of adaptivity given (Chapter 3).

® A general Markov algorithm (the SAKDC algorithm) has been presented
that integrates many diverse features of contemporary Markov algorithms,
and implements local and asymptotic adaptivity at the context and
structure levels (Chapter 4).

* Experiments on the SAKDC algorithm have been conducted. The
results will be useful to practitioners who are tuning a production Markov
compressor (Section 4.17).

 The experiments show that for small memory (less than 5000 nodes,
structural adaptivity (in which nodes are moved within the Markov tree)
can improve compression by up to 20% absolute (Section 4.17.15).

o The techniques of suboptimality and incarnation numbers have been
introduced as a solution to the problem of maintaining shortcut pointers
in a tree whose structure is changing (Section 4.10).

e The class of multimodal sources has been identified. The class is

interesting because it is likely to appear on communication lines. A
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multimodal data compression algorithm (MMDC) has been described
that outperforms ordinary models for these sources, by creating and
maintaining a model for each detected source mode (Chapter 5).

e An application of data compression models to user interfaces has been
proposed. A model of the user’s input stream is developed and used to
predict future input. The incremental, adaptive techniques described in

this thesis are ideally suited for this application (Chapter 6).

7.2 Secondary Contributions
The secondary contributions of this thesis are listed below.

e The distinction between “symbols” and “instances” has been introduced
(Section 1.2).

e The estimation techniques used in previous Markov algorithms have been
generalized and classified into two groups, linear and non-linear, with a A

parameter (Section 1.10.3).

e A generalized form of floating point, stochastically incremented counters
has been introduced (Section 1.11.6).

e The relationship between backwards and forwards trees has been anal-

ysed and the advantages of each enumerated (Section 1.12.2).

o Problems in the literature in reporting compression performance results
have been identified and a nomenclature proposed (Section 1.15).

* A method of retarding Markov tree growth using thresholding has

been given, and upper and lower bounds on the growth rate derived
(Section 2.7).

e The distinction between context adaptivity and structural adaptivity has
been made (Section 3.7).

e The two colour LRU management problem has been identified and solved
in logarithmic time (Section 4.7.1).

® A method for organizing heaps using dynamic memory allocation has
been given (Section 4.7.2).
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e A mechanism for structural and contextual windowed local adaptivity

has been given (Section 3.9 and Section 4.13).

e The concept of source zones has been developed as a possible explanation
to the behaviour of the MMDC algorithm (Section 5.7.5).

e Possible security problems arising from sophisticated data compression
techniques (and in particular Multimodal data compression) have been
identified (Section 5.8.6).

e A study of the word “adapt” has been made (Appendix B).

® An experiment was performed that indicated that user input is highly
redundant (Section C.2).

® An experiment was performed that indicated that there is a strong
relationship between the pauses between keystrokes and the characters
being typed. An input stream was tokenized solely on the basis of timing

information (Section C.3).

e Ideas for further research are given in Appendix D.

7.3 About Communication

Insofar as data compression is a special case of data representation, this
thesis has been about communication. Whereas much communication can be
viewed as a simple process in which information is transmitted using a fixed, well-
defined alphabet having fixed, well-defined meanings, the modern paradigm of
data compression presents a much less stable picture in which the semantics of the
channel alphabet change from moment to moment. The only way to make sense
of such communication is to refer to the predictions that underpin it. Here we
consider predictions as defining the set of events and their semantics as well as

their probabilities.

These predictions, which are so changeable, map channel symbols to semantics,
(which in the case of computer communication consist simply of the set of source
symbols). Without predictions, communication involving representation?* cannot
take place. Communication cannot occur without the two parties somehow setting

up a system of predictions to determine the semantics of the communication.

1?4 All communication at the physical level is rooted in the semantics of reality common to all
objects; no predictions are required. If a tree branch (from a Markov tree of course) falls on me
and kills me, it communicates with me and the semantics are clear.
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In ordinary communication using a simple-alphabet, both sides agree to attach
simple, fixed semantics (fixed prediction) to the channel alphabet. In a data
compression system that uses the modern-paradigm, both sides agree upon a
method for generating predictions from what has passed before. In user prediction
systems the computer explicitly informs the user of the predictions (through a

special backwards channel).125

In summary, the principles underlying this thesis highlight the adaptive nature
of most communication and lead to a view of communication that focuses on the

generation of predictions rather than the generation of instances.

7.4 Towards a More General Theory

Much of the work in data compression has been pre-scientific. This thesis is
no exception. Much of what has been achieved has been driven by pragmatic
concerns backed by intuitive theory. There are two lights on the horizon which

may be worth following in order to arrive at a more systematic approach to the
field.

The first is the tantalizing correspondence between multimodal data compres-
sion and Markov models. Each works with “contexts”, one at the instance level
and one at the ten-thousand instance level. The Markov model concept of a con-
text is that of a short context string. The multimodal concept of a context is that
of a mode of behaviour over a long period. Ideally these two concepts could be
fused into a single compressor that incorporates the concept of context at many
levels, possibly recursively.

Second, many of the estimation and adaptivity techniques discussed in this
thesis have been on the fringe of signal theory. The field of text data compression
may well be at the point where it can profitably employ concepts from this field.
For example, we might think of the mode changes of a multimodal source as
having a frequency spectrum. If a generalized concept of context were to arise,
it is possible that the concept of frequency spectrum of change could be applied

more generally to a source, resulting in a better understanding of the systems
being studied.

125 For this to take place, the computer and the user had to “agree” upon a protocol for
interpreting such information.
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7.5 Thesis Perspective

Much of the author’s candidature has been spent exploring and catching up
with the fields of interactive programming environments and data compression.

The thesis has grown out of this process.

The following table indicates the path that the author has taken to define this
thesis. The first two columns list an idea that the author had and the date at
which the author had the idea. The third column lists the paper that introduced
the idea (or a similar idea) and the date that the author discovered the paper.

Date Idea Previously published by

Feb-85 | Prediction of user input | Witten82 (Jun-88)

Oct-86 | Predict/code paradigm | Rissanen81 (Sep-87)

Oct-86 | Markov-tree modelling | Cleary84 (Sep-87)

Oct-86 | Arithmetic coding Several (1963-1987) (Oct-86)
Nov-87 | Adaptive mechanisms Original

Oct-88 | Multimodal algorithm Original

While ineflicient, rediscovery has resulted in different perspectives. For
example, the author’s first Markov tree algorithm (DHPC) employed an estimation
technique inferior to that previously published but used a more sophisticated tree
management technique. Thus, this thesis has approached old ideas from a different

direction as well as making some original contributions.

7.6 Summary

"This thesis has made a number of contributions to the field of data compression.
The concept of adaptivity has been refined by defining it in terms of constraints
on the estimation function ¢ and the history weighting function w. Four classes
of adaptivity were identified, as were mechanisms for implementing each class.
Some of these mechanisms were incorporated into a general Markov algorithm.
Experiments on the algorithm showed that adaptivity can improve compression
considerably. The class of multimodal sources was identified and an algorithm
described that performs better on such sources than previous algorithms. Finally,

a proposal was given for the application of data compression techniques to user
interfaces.



APPENDIX A
ESTIMATION FORMULA CALCULATION

Although there is no theoretical basis for deciding between different estimation
formulae (Section 1.10.3), it is possible to derive the best formula for a given meta-
distribution (distribution of distributions). The author of this thesis has derived
the best estimation function for the uniformly meta-distributed binary memoryless
source. The solution was linear estimation with \ = 2.

Jones has given a more general derivation (for more than two symbols) which
is reproduced here exactly.??®¢ The solution, which is consistent with the author of
this thesis’s binary analysis, is linear estimation with \ = n.

Consider first a binary source with probability p of one and ¢ of zero. The
probability of a sequence of length n containing r ones is

b(r,n,p) = (7:) p¢" "

where the binomial coefficient (}.) = n!/(n — r) r! Suppose that all possible binary
sources are equally likely, i.e. the (unknown) probability p was chosen randomly
in the range (0,1). The probability of a sequence of length n containing r ones is
then

1
b(r,n,p) = (n) / p"(1—p)* " dp
g 0
The integral has the form of the Beta function[Abramowitz7 2] and
b(r,n,p) = (’:)ﬂ(r +ln—r+1)= (:)1"(1' +1)T(n—r+1)/T(n+2)
Substituting for the Gamma function I'(n + 1) = n!

(Z)r!(n—r)! 1
(n+1) T n41

b (Ta n, P) =
Thus it is equally probable that a sequence of length n contains 0,1,2,...,n ones

and the probability of a particular sequence containing r ones is

1 _rl(n—r)!
(n+1)(7)  (n+1)

This is presented as equation (4) in [Lawrence77]. When a particular sequence
of length n containing r ones has been received, if the next symbol is one there will

126 Private communication (letter) 7 September 1987. Permission to reproduce the derivation
here was granted by telephone on 20 April 1989. Note: Because this proof is reproduced exactly,
the notation is different from that of the rest of the thesis.
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be a sequence of length n + 1 containing r 4 1 ones, so the conditional probability

of one is
(n+1)(7) _(n+DIr+ DY (n—r)!  r+1

(n +2) ('T_‘I% T (42 (=) T n+2

This is the probability estimation function for a binary source. The generalization
to a source with k different symbols proceeds as follows. After n symbols, let the
number of occurrences (> 0) of each symbol be

rn+rat+...+rp=n

The number of distributions satisfying the above equation (see [Feller57]) is

n+k—1
n
and the number of the ways n symbols can be partitioned according to a particular

distribution is
n!

rilrel.. . ry!
By analogy with the binary source, we assume that each distribution is equally

probable. The probability of a particular sequence of n symbols (with a particular
distribution) is therefore

rilrl. .ol (B =Dlrilrg!. . 1!
("Dt (nt k1)

The conditional probability that the n + 1th symbol will be symbol i is then

rifrl (i + D)oo (n4k—1) . or+1
rilrelirl i) - (n+ k)! T on+k

This then is the probability estimation function for a source with % different
symbols.




APPENDIX B
THE WORD “ADAPT”
AND ITS FORMS

During the writing of this thesis, it became clear that the word “adapt” is a
problem word. For a period in the preparation of Chapter 3 chaos reigned with
different forms of the word “adapt” being used interchangeably. Eventually, the
author decided to address the issue explicitly.

The word “adapt” has many forms, many of which are interchangeable.
Table 50 contains a list of all the forms of “adapt” that the author has found. All
the words appear in the Oxford English Dictionary[Murray33] (herewith “the
OED”) except for “adaptably” and “adaptivity”, which are marked with a dagger
(t). The meanings are paraphrases of the OED definition but the examples are by
the author.

To sort out these alternatives, the words were arranged into groups that
compete for grammatical slots (Table 51).

A few notes on the table of competing words are in order. The verb
forms have few variations. The form “adaptate” is rarely used. The words
“adapter” and “adaptor” are merely different spellings of the same word with
“adaptor” listed as rarely used. The OED’s 1972 supplement lists the form
“adaptor” as now commonly used to describe electrical fittings. Of the group
“adaptation”, “adaption” and “adaptment”, the commentaries Fowler’s Modern
English Usage[Fowler65] and Right Words: A Guide to Modern English Usage in
Australis[Murray-Smith87] all indicate that “adaptation” is much more popular
than “adaption”. “adaptment” is rarely used.

The author’s preference in each group is marked with an asterisk (*). Pluses
(+) indicate alternative choices to be explained later.

With so many words competing for the same slots, one might expect semantic
variations between them. However, the OED does not make any clear distinction
between the different forms. In contrast, the author has found that his ear
naturally distinguishes between words that indicate that an object is amenable
to being adapted and words that indicate that an ob ject is capable of adapting of
its own accord. Consider the following two sentences:

“The new professor proved most adaptive.”
“The pocket knife proved most adaptable.”

In the first case, the object modifies itself; in the second, the object is modified
by an external agent. In each case, the word “adapt” is used to indicate a degree
of flexibility. By experimenting with different words in different sentences, the
author arrived at the following rule:
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Ad Hoc Rule: Forms beginning with adapti- indicate that an object is
capable of modifying itself. Forms beginning with adapta- indicate that
an object is capable of being modified.

This rule has been used to mark alternate forms in the table. Words indicating
external modification have been marked with a plus (+). Here is a table of the
alternate forms.

Internal External

Noun adaptivity | adaptability
Adjective | adaptive adaptable
Adverb adaptively | adaptably

It should be emphasized that this distinction is not made in the OED, but is
merely proposed by the author of this thesis. Nevertheless, with so many forms,
the distinction might as well be made.

In this thesis we have attempted to use only the forms of the word “adapt”
marked by * and + in Table 51.
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Word Kind Meaning
adapt verb To alter or modify so as to fit for a new use.

“I had to adapt the spanner to fit the nut.”
adaptability  adjective The quality of being adaptable.

“The adaptability of the robot was extraordinary.”
adaptable adjective Capable of being adapted.

“Principles are adaptable to all ages.”
adaptableness adjective =adaptability.

adaptablyt adverb In an adaptive manner.

“The compressor compressed adaptably.”
adaptate verb =adapt (rare).
adaptation noun Noun of action. The action of adapting something.

“We see this in a later adaptation of the play.”
adaptational adjective Of or pertaining to adaptation.
“Models can be divided into the adaptational and

the static.”
adaptative adjective =adaptive.
adaptativeness noun =adaptiveness.
adapted adjective Modified so as to suit new conditions.

“The sloth is highly adapted to moving slowly.”
adaptedness noun The quality of being adapted or suited.
“The sloth has a greater degree of adaptedness.”

adapter noun One who adapts other objects.
“He was a proficient adapter of plays.”
adapting gerund  Action of rendering suitable for some purpose.
“Adapting to foreign food is a challenge.”
adaption noun =adaptation.
adaptitude noun =adapt+aptitude.
“He lacked adaptitude.”
adaptive adjective Characterized or given to adaptation.
“The compressor is adaptive.”
adaptively adverb In an adaptive manner.
“The compressor compressed adaptively.”
adaptiveness noun The quality of being adaptive.

“The adaptiveness of the compressor was good.”
adaptivityt noun The property of being able to adapt.
“The adaptivity of the compressor was good.”

adaptly adverb In a fit or adapted manner.

“The miner adaptly scurried along the tunnel.”
adaptment noun Adaptation. Fitting condition.

“T'he miner’s adaptment to the tunnel was eerie.”
adaptness noun =adaptedness.
adaptor noun =adapter.
adaptorial noun =adaptive.

Table 50: The various forms of the word “adapt”.
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VERB past adapted * “We have o to our circumstances.”

VERB present adapting * “We are ¢ to our circumstances.”

VERB future adapt * “We will ¢ to our circumstances.”
adaptate

NOUN for adapter * “The algorithm is an efficient ¢.”

modifier adaptor

NOUN for adaptation * “Cutoff is evident in this ¢.”

modifyee adaption
adaptment
NOUN adaptableness “The ¢ of the algorithm is remarkable.”
for adaptativeness
quality adaptiveness
of adaptivity *
being adaptitude
flexible adaptability +

NOUN for adaptedness  “The ¢ of the walrus is unusual.”
quality of
having been

modified

ADJECTIVE adaptable + “An o algorithm compresses well.”
adaptational
adaptative
adaptorial

adaptive *

ADVERB adaptly “The algorithm ¢ compressed the data.”
adaptably +
adaptively *

Table 51: Forms of the word “adapt” arranged in grammatical slots.




APPENDIX C
USER INPUT
EXPERIMENTS

C.1 Introduction

This appendix contains a description of two experiments that were performed
to investigate some characteristics of user input streams. The first experiment
investigated the redundancy of user input streams and the second investigated the
delays between instances in such streams. The first experiment indicated that user
input streams are highly redundant. The second indicated that there is a strong
relationship between the pauses between instances and the instances themselves.
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C.2 Experiment 22: Redundancy of User Input
Aim: To obtain a rough measure of the predictability of typical user input.

Method: A user’s terminal line was tapped and all input from the terminal was
logged in a file. The delay between bytes (in milliseconds) was recorded as well as
the bytes themselves. The number of bytes in the file was 32948. The user, who
was a tutor in the Department of Computer Science at the University of Adelaide,
knew that the line was being tapped. During the period of the tap, the user mailed
mail messages, developed programs, and did many of the other things that users

do.

The set of all repeated substrings of a string can be represented as black bars
hovering over the string. In this experiment, each instance is assigned a number,
being the length of the longest repeated substring of which it is a member.
Histograms of these numbers can then be plotted (elsewhere).

Figure 102: Set of all substrings in a message.

As was pointed out in Section 6.6, short predictions are of little use in user
prediction. It is therefore important to find out how long the strings that can be
predicted are. In this experiment every substring of length 1 or greater that was
repeated in at least two different places in the input was identified (Figure 102).
Each occurrence of each repeated substring was viewed as a black bar placed over
the top of a portion of the input text, with many of the black bars overlapping.
Each instance in the input was then assigned a number being the length of the
longest bar containing the instance.

Results: Figure 103 is a histogram of the set of numbers associated with the
instances. The horizontal axis is substring length and the vertical axis is the
percentage of instances whose maximal-length repeated substring was of that
length. This histogram shows that over 50% of instances fall within substrings
of length ten or greater. Beyond length 30, the histogram is rather flat but still
contains 25% of the input stream. Both these figures indicate a high degree of
predictability.
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'This histogram shows the percentage of instances contained in various maximal
substring lengths (Figure 102) for a user input string of length 32948. Over
fifty percent of instances fall within repeated substrings of length ten or greater.

Figure 103: Experiment 22: Percentage of lengths in raw input.
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This histogram is similar to Figure 103 but gives the results for the user input
string after escape sequences, non printables and runs of identical instances had
been removed. Despite the filtering, over 30% of instances fall within repeated
substrings of length ten or greater.

Figure 104: Experiment 22: Percentage of lengths in filtered input.

It is possible that the above result was caused by special terminal codes or
sequences. To check this, the input was passed through three filters in sequence.
The first filter removed escape sequences. The second filter removed instances
of non printable symbols. The third filter replaced runs of instances of a single
symbol by a single instance of the symbol (e.g. aaaa — a). The filtering process
removed about one third of the input stream leaving 20986 instances. Figure 104
shows the results for the filtered stream.
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The filtered stream has the same characteristics as the raw stream except that
most instances are contained in shorter strings. Nevertheless, the same striking
statistics remain. Over 30% of instances fall within a repeated substring of length
ten or greater.

The level of redundancy in the input stream becomes more obvious when
the previous histograms are compared with a histogram of a random stream.
Figure 105 shows the histogram for a stream of 30000 randomly generated,
uniformly distributed upper-case letters.
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This histogram is similar to Figure 103 but gives results for a string of 30000
randomly generated, uniformly distributed upper-case letters. The proportion
of long repeated substrings is much smaller than for user input.

Figure 105: Experiment 22: Percentage of lengths in random letters.

Conclusions: Although this experiment was not performed on a large sample,
the sample taken was reasonably representative. The results showed that user
input is highly redundant and probably highly predictable. In this sample, at

least one third of the input instances lay within a repeated substring of length ten
or greater.
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C.3 Experiment 23: Timing Between Keystrokes

Aim: To determine if the inter-keystroke timing intervals of a typical user input
stream relate significantly to what is being typed.

Method: Two short extracts were taken from the stream captured in Experi-
ment 22. The extracts were manually chosen but were chosen by content, not by
timing. The first extract was taken from a section of the input in which the user
was typing a mail message. The second extract was taken from a section of the

input in which the user was typing commands in the command language (VMS
DCL).

Results: In order to present the results, some method is required for representing
unprintable characters. The following mapping rules were used to convert all non-
printable characters into printable strings of characters.

e All printables map to themselves except ‘N’ which maps to ‘“\’, space
which maps onto ‘~’, and ‘~’ which maps onto ‘~’,

o Lettered control characters [1,26] map to ‘A< uppercasecontrolchar>’.
e Escape maps to ‘e’

e All other characters map to ““xxx’, where xxx is a decimal number that
is the ASCII number of the character.
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The next two pages list all the timing information for a section of input in
which the user was typing a mail message. Each line corresponds to a single
instance. Each instance appears just before the ‘|’ on each line. The number at
the start of each line is the delay in seconds between the instance corresponding
to the line and the previous instance. The instance appears again to the right of
the ‘|’ displaced to the right in proportion to the delay just described.
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The information on the previous two pages indicates that the user is pausing
between words and syllables. These pauses are so consistent and reliable that it
is possible to write a program to tokenize the input based solely upon the inter-
keystroke timing intervals. Figure 106 lists an algorithm that echoes the input
stream, splitting it across lines at the points where timing information indicates
the end of a token. The algorithm always splits at delays greater than break_time
and never splits at delays less than join_time. For delays in between these limits,
the algorithm bases its decision on the average inter-instance delay since the last
split.

join_time : constant integer «— 66;
break-time : constant integer — 600;
renew-time : constant integer — 300;
sum : integer « renew-time;
count : integer — 1;
loop
{Delay is in milliseconds.}
read(instance,delay);
if (delay>join_time) and
((delay>break_time) or (delay>2*(sum/count))) then
write_newline;
sum—renew-time;
count— 1;
else
sum—sum+delay;
inc count;
end if;
write(instance);
end loop;

When users type input into a computer, the delays between keystrokes are
so closely related to what is being typed that it is possible to tokenize the
input using only the inter-keystroke timing information to determine the breaks
between tokens. The algorithm listed above accomplishes this. The algorithm
has a time (join-time) below which it will not make a break and a time
(break-time) above which it will always make a break. For intermediate time
intervals, breaks are made if the time is greater than twice the average of the
inter-keystroke intervals since the last break.

Figure 106: Experiment 23: Timing tokenizer algorithm.

Here is the output from the tokenizer for the input listed earlier in which the
user was typing a mail message.
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Here is another example. In this extract, the user types a series of DCL
commands interspersed with a few commands to a scroll program. Here is the

start of the timing file.
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Here is what the timing tokenizer program made of the command stream.

"M
8c”callp.mod“M
q ~

ren
callp.mod”ex"M
dir*M

“S

“qQ

ren

*,com”

ex"M
ren“interfile

]
ex"M

ren”
~127°127°127sc”
*.dat"M

sc”

»,.dat"M

q

q

q
ren”

*,dat”
ex"M
dir~“M

~s

“Q

“s

“qQ

BC
P2.out"M

ren”

pP2.
out"ex"M
dir~M
sc”# . mad"M

1.8 LI~ L=

N~



Section C.3: Experiment 23: Timing Between Keystrokes 331
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Conclusions: The timing information in user input is closely linked to the fine
structure of the input. When typing in English text, the user paused at the end of
words and phrases. The same effect was evident for command line input in which
the user paused after commands and between words in the commands. In these
experiments the relationship between the input and the timing information was so

strong that the input could almost be tokenized based on the timing information
alone.



APPENDIX D
FURTHER RESEARCH

This appendix contains ideas for further research that arose as a result of this
research.

D.1 The SAKDC Algorithm

Prediction data structure: Section 1.11 showed how important the predic-
tion/sample data structure is in a Markov compressor. Further improvements to
this structure could be made. For example, time and space performance might
be improved by dynamically selecting a prediction data structure for each sample
depending on the entropy of the sample; high entropy samples could use an array
(e.g. Moffat’s representation), medium entropy samples a binary tree, and low en-
tropy samples a hard-coded linear search. Another alternative is to use a small
hash table with linked list overflow.

Grouped prediction data structure: Langdon and Rissanen’s discovery of
the efficiency of approximating binary predictions by powers of two[Langdon81]
suggests that the same principle could be applied to predictions of more than two
symbols.?3” Predictions could be represented by k ¢ Z[2,~ 10] disjoint sets of
symbols that partition the set of symbols. The probability space (R[0,1]) would
be divided unevenly among the sets. The probability allocated to each set would
be divided evenly among its member symbols. As instances arrive, their symbols
would be moved probabilistically from set to set. The allocation of probability
between the sets could change dynamically as well. It might be possible to prove
a tight upper bound on the inefficiency of such a technique.

Estimation: Experiment 2 (Section 4.17.5) showed that dynamically modifying
A in accordance with the flatness of a sample (Section 1.10.3.3) yields a significant
improvement in compression. This result, combined with the fact of the sensitivity
of compression performance to the estimation formula, indicates that there is scope
for further improvement in estimation formulas (and blending techniques). One
avenue is the use of non-linear functions of n — z. Another is the use of a local
estimate of the rate of arrival of novel instances instead of the asymptotic one
currently used.

Credibility thresholds: Although Experiment 3 (Section 4.17.5) showed that
credibility thresholds are detrimental to PPM blending, it also showed that
credibility thresholds can improve DHPC blending by a few percent. As DHPC
blending is applicable whenever execution speed is important, one research avenue
is to investigate more sophisticated credibility thresholds. It might be possible to
improve DHPC blending by varying the credibility threshold with the depth and
possibly with the entropy of samples.

Decaying: The effect of decaying on compression is a little unclear. Experiment 8
(Section 4.17.11) indicated that there is little benefit in decaying. In contrast,

127 Binary predictions can be applied to sets of more than two symbols using the technique of
decomposition (e.g. a binary tree of Q-Coders). Here a more direct generalization is proposed.
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other researchers have found that it improves compression [Witten87](p. 536)
[Moffat88](table 4) [Abrahamson89](figure 2). Further research could resolve this
discrepancy.

Hashing: Section 4.11 mentioned that if hashing was used to access nodes, it
might be possible to dispense with the explicit tree structure. Instead, there
would be just a collection of nodes, each corresponding to a particular context
string. This would allow non-leaf nodes to be removed without restricting access
to their descendants. This in turn would allow leaf nodes and non-leaf nodes to
be mixed freely in an LRU list.

Longcut pointers: One of the reasons that dictionary techniques are faster than
Markov techniques is that they parse and code whole strings of instances at a time.
In contrast, Markov techniques parse and code each instance separately. One idea
for speeding up Markov algorithms is dynamically to identify sequences of low
entropy transitions in the tree and replace them by longcut pointers. Longcut
pointers would be similar to shortcut pointers but would be labelled by a string
rather than by a single symbol. The idea here is to harness the speed of dictionary
techniques for the phrase structured (“comma dependent” [Langdon84]) parts of
the source, while retaining the instance-level granularity of the Markov techniques
for the non-phrase structured (comma independent) parts. Initial exploration of
this idea indicates that complicated data structures might be required.

Variable-sized history buffer: SAKDC implements windowed local adaptivity
by removing instances from the tree once they are K instances old (Section 4.3.4,
Section 4.13). Because each arriving instance is capable of adding m nodes to the
tree, the supply of nodes can run out if there are less than Km nodes. When
this happens, the SAKDC algorithm switches to a different growth regime and
recycles the least recently used nodes. A better approach is to work forwards from
the oldest part of the history removing instances from the tree until enough nodes
have been freed up to continue. This would result in a variable length history
whose length would be determined by its entropy. This scheme is similar to, but
not identical to, SAKDC’s LRU recycling scheme.

Measuring trends: Chapter 3 showed how a weight function could be used
to characterize the adaptivity of a zero-order Markov model. Each instance was
multiplied by a weight and summed into a sample. Apart from the emphasis that
the weight function placed on each instance, the ordering of the instances was lost.
Such ordering information might turn out to be useful in measuring trends.

By treating each frequency in a sample as a signal source, predictions could
be based upon the rate of change of a sample rather than on its average past
behaviour. The rate of change could be calculated from estimates of the probability
taken from recent and not-so-recent stretches of the history.

Random Supply: Although the heuristic “Least Recently Used” is a good one, it
suffers from a very bad worst case performance. The random replacement heuristic
has a poorer average performance but has no (well organized) worst case. It might

be worth testing this and other heuristics in the supply system of the SAKDC
algorithm.
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An Optimized Compressor: The generality of the SAKDC algorithm precluded
many optimizations. One research avenue is to construct a highly optimized
variant of the SAKDC(Opt1) algorithm (Section 4.17.20). Among the possible
optimizations are: the unrolling of loops, the use of strict local adaptivity (or
decaying) to keep frequency counts down (so as to simplify coding), the use of
four-byte hashing to eliminate the tree links, the use of DHPC or LAZY estimation
to avoid exclusions, and the use of decomposition and binary arithmetic coding.

D.2 The MMDC Algorithm

The multimodal algorithm presented in this thesis resulted from the reasoning
about adaptivity developed in Chapter 3. However, the detailed mechanics of the
algorithm were arrived at through experimentation and there is much scope for
improvement. Some avenues for further research are listed below.

Formal analysis of MMDC: MMDC is an algorithm looking for a theory.
Theoretical analysis could be used to determine the circumstances under which
the algorithm is applicable. It could also be used to determine the best parameters
under a given set of conditions. One approach is to model the transitions between
modes in a multimodal source using a Markov chain. Each state in the chain would
correspond to a simple source. Associated with each state would be a distribution
describing how long the source is likely to stay in that state. There would be a
performance matrix to indicate how well the sources compress each other. Finally,
a negative exponential learning curve could be assumed.

Model Management and Memory: The MMDC algorithm uses a fixed number
of models, each of which receives an equal share of the available memory. This
organization has two disadvantages:

e If the source has more modes than there are slots, the compressor will
thrash.

e If the source has fewer modes than there are slots, some of the
compressor’s memory will be wasted on unused model slots.

These problems could be solved by using a variable number of models and
varying the allocation of memory depending on each model’s performance and
activity. A danger here is that the removal of memory from a model will degrade
its performance, causing a unstable feedback loop.

In the case of a source that has a single mode, a more sophisticated algorithm
should allocate all its memory to a single model.

Creation threshold: The major tension in tuning MMDC is between the desire
to react quickly when the source moves, and the desire to avoid the spurious
creation of models. The trial period serves well here. However, further research
might reveal better techniques.

Multimodal Ziv and Lempel techniques: Although the MMDC algorithm is
based on the modern paradigm of data compression, it does not rely upon it. The
key components of the MMDC algorithm are the maintenance of many models
and the ability to switch between the models on the basis of their performance.
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Neither of these components require specific mechanisms. All that is required of a
submodel is that it come in locally adaptive and asymptotically adaptive forms. A
possible avenue of future research is the construction of a high-speed multimodal
Ziv and Lempel compressor.

Contamination: In the MMDC algorithm only the local and active models are
updated. When a source changes mode, the algorithm responds by switching to
a different model. However, because of the negative exponential smoothing of the
performance measure, there is a delay between the arrival of a new mode and the
change of models. During this period, the previous model is exposed to hundreds
of instances generated by the new source mode. We call this contamination.
Further research might find ways of avoiding contamination. If the exact position
of the source change could be detected (even in retrospect), the instances used to
update the old model could be transferred to the new model.

Time Slicing and Model Compilation: On a sequential computer, the
multimodal algorithm will take longer to execute than a monomodal algorithm.
Two techniques could be used to reduce this cost.

The first technique is time slicing. Rather than obtaining predictions from
every model all the time, models that are not active could take turns to generate
predictions in (say) hundred byte slots. If a model performs particularly well
during its time slot, it could be run in competition with the local and active
model. In the general case, the models could be organized into a performance-
ordered heap, with the active model at the top. Models would percolate up and
down the heap according to their performance. The height of a model would
determine the proportion of time that it is run, with models near the top of the
heap being allocated the most time. One possible time allocation is one CPU
power unit per heap level so that the active model at the top of the heap is run
continually, the two models one level down are run half the time, the next four
one quarter of the time, and so on. This would require time logarithmic in the
number of models.

The second technique is model compilation. Most of the models in &
multimodal algorithm will be inactive most of the time. It might be possible
to speed optimize models that have just become inactive on the assumption that
they will remain static for a while.

Anticipating mode changes: In some situations, a pattern might arise in
the switching between models. By using a Markov model to model the mode
transitions of the source, it might be possible to predict when transitions will occur
and what the next model will be. This could be used to avoid contamination. A
danger with this technique is that it might produce self-fulfilling prophecies.

Zones: Section 5.7.5 introduced the concept of tree zones to explain the
behaviour of the multimodal algorithm. The presence of zoning, overlap and cross
fertilization leads to the notion of a more finely grained multimodal model. One
possibility is to maintain a single Markov tree that not only branches backwards
(to the left) in “two dimensions” but “upwards” as well, the upwards direction
being used for alternative models for the branch. Each of the vertical branchings
could then be given a group number and the group numbers correlated somehow.
This system would allow overlapping and cross fertilization while still allowing
multiple models of some tree zones to be created.
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D.3 User Interfaces

Construction: Chapter 6 of this thesis showed how the data compression
techniques described in this thesis could be used to construct a user prediction
system. The next stage is to build such a system and use it. Further avenues of
research will then become obvious.



APPENDIX E
SUMMARY OF NOTATION

This appendix contains a summary of the mathematical notation used in this
thesis. Only notation that carries meaning across a large part of the thesis is
listed. Local notation is omitted. The reader is cautioned that in some parts of
the thesis, symbols with global meanings are used temporarily as local symbols.

Symbol | Description

Extensibility threshold.

Credibility threshold.

The empty string.

Confidence parameter for estimation functions.

Set of all estimation functions €.

Estimation function, mapping samples to predictions.
The set of n symbols {aj...an}.

An arbitrary symbol.

Set of all sources/compression methods.

Set of all finite-context sources/compression methods.
An arbitrary source.

The entropy of a source.

The history string (hy is oldest element).

An arbitrary constant.

Length of a string (usually the message) in instances.
The set of integers in the range (1...m).

Maximum context length. Maximum depth of a Markov tree.
Number of symbols in the source alphabet.

Set of all predictions.

Set of all states in a Markov chain.

Set of all real numbers.

Set of all finite strings (of instances of symbols).

Set of all finite strings of length 1.

An arbitrary string.

Adaptivity weighting function.

Mean of a given adaptivity weighting curve.

The set of all samples.

A sample of y instances organized as n frequencies.
An abbreviation for 3, 4 z(a).

Set of all integers.

Maximum number of nodes allowed in a tree.
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probability of extension, 159
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programmer’s helpers, 292

adding, 178 progressive transmission, 111
and samples, 91 prop rem (abbreviation), 194
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