THE RELATIONSHIP BETWEEN VASCULAR STRUCTURE, CONTRACTILE PROTEINS, VASCULAR REACTIVITY AND BLOOD PRESSURE IN ANIMAL MODELS OF HYPERTENSION

Thesis submitted for the degree of

Doctor of Philosophy

in

The Department of Clinical and Experimental Pharmacology

University of Adelaide

by

Sotiria Bexis, Bsc (Hons)
CHAPTER 1
INTRODUCTION

1.1 Human essential hypertension
 1.1.1 Incidence and definition
 1.1.2 Haemodynamics
 1.1.3 Sympathetic nervous system
 1.1.4 Vascular structure
 1.1.5 Vascular responsiveness
 1.1.6 Antihypertensive treatment

1.2 Genetic rat model of hypertension
 1.2.2 Haemodynamics
 1.2.3 Sympathetic nervous system
 1.2.4 Vascular structure
 1.2.4.1 Intima
 1.2.4.2 Media
 1.2.4.3 Extracellular matrix
 1.2.5 Factors implicated in altering vascular structure
 1.2.6 Rarefaction
 1.2.7 Vascular responsiveness
 1.2.8 Contractile proteins
 1.2.9 Relationship between blood pressure, structure, contractility and contractile proteins

1.3 Features common to hypertension in the SHR and human

1.4 Key unresolved aspects in the pathogenesis of hypertension

1.5 Aim
CHAPTER 2

METHODS

2.1 Animals

2.2 Drug administration

2.3 Indirect blood pressure measurements

2.4 Surgery - uninephrectomy

2.5 Tissue harvest and homogenisation

2.6 In vitro experiments
 2.6.1 Aortic ring preparations
 2.6.2 Perfused mesenteric vascular bed preparations

2.7 In situ perfusion fixation and morphometric analysis

2.8 Biochemical analyses
 2.8.1 3-methylhistidine assay
 2.8.2 DNA assay
 2.8.3 Protein assay
 2.8.4 QC samples

2.9 Calculations and statistical analysis
CHAPTER 3
Vascular Reactivity, Contractile Proteins and Blood Pressure Development in the Hypertensive WKY Rat.

3.1 Introduction 59

3.2 Methods 60
 3.2.1 Animal and drug treatments 60
 3.2.2 Aortic ring preparations 61
 3.2.3 Perfused mesenteric vascular bed 61
 3.2.4 Biochemical analyses 62

3.3 Results 62
 3.3.1 Development of DOCA-salt hypertension 62
 3.3.2 Vascular reactivity 65
 3.3.2.1 Aortic ring preparations 65
 3.3.2.2 Perfused mesenteric vascular bed 65
 3.3.3 Biochemical parameters 74
 3.3.3.1 3-methylhistidine content 74
 3.3.3.2 DNA content 78
 3.3.3.3 Protein content 83

3.4 Discussion 87
 3.4.1 Development of DOCA-salt hypertension 87
 3.4.2 Vascular reactivity 88
 3.4.2.1 Aortic ring preparations 88
 3.4.2.2 Perfused mesenteric vascular bed 90
 3.4.3 Biochemical Parameters 94

3.5 Summary 98
CHAPTER 4

Vascular Reactivity, Contractile Proteins and Blood Pressure Development in the Spontaneously Hypertensive rat.

4.1 Introduction 100

4.2 Methods 102
 4.2.1 Animal and drug treatments 102
 4.2.2 Aortic ring preparations 102
 4.2.3 Perfused mesenteric vascular bed 103
 4.2.4 Biochemical analyses 103

4.3 Results 104
 4.3.1 Blood pressure 104
 4.3.2 Vascular reactivity 104
 4.3.2.1 Aortic ring preparations 108
 4.3.2.2 Perfused mesenteric vascular bed 108
 4.3.3 Biochemical parameters 112
 4.3.3.1 3-methylhistidine content 112
 4.3.3.2 DNA content 122
 4.3.3.3 Protein content 126
 4.3.4 Correlation analysis 126

4.4 Discussion 137
 4.4.1 Blood pressure 137
 4.4.2 Vascular reactivity 138
 4.4.2.1 Aortic ring preparations 138
 4.4.2.2 Perfused mesenteric vascular bed 140
 4.4.3 Biochemical Parameters 144

4.5 Summary 148
CHAPTER 5

Vascular Reactivity, Contractile Proteins and Blood Pressure After the Withdrawal of ACE Inhibitor Therapy in the SHR. Are the \(\alpha_1 \)-adrenoceptors Involved?

5.1 Introduction

5.2 Methods

5.2.1 Animal and drug treatments
5.2.2 Aortic ring preparations
5.2.3 Perfused mesenteric vascular bed
5.2.4 Biochemical analyses

5.3 Results

5.3.1 Blood pressure
5.3.2 Vascular reactivity
5.3.2.1 Aortic ring preparations
5.3.2.2 Perfused mesenteric vascular bed
5.3.3 Biochemical parameters
5.3.3.1 3-methylhistidine content
5.3.3.2 DNA content
5.3.3.3 Protein content
5.3.4 Correlation analysis

5.4 Discussion

5.4.1 Blood pressure
5.4.2 Vascular reactivity
5.4.2.1 Perfused mesenteric vascular bed
5.4.2.2 Aortic ring preparations
5.4.3 Biochemical Parameters

5.5 Summary
Chapter 6
The Effect of Quinapril Treatment and its Withdrawal on Medial Thickness in the Aorta and Mesenteric Circulation of the SHR.

6.1 Introduction 197

6.2 Methods
 6.2.1 Animal and drug treatment 197
 6.2.2 Morphometry 198

6.3 Results
 6.3.1 Blood pressure 199
 6.3.2 Morphometry 199

6.4 Discussion 203

CHAPTER 7
GENERAL DISCUSSION 206

BIBLIOGRAPHY 216

APPENDIX I 240
APPENDIX II 241
ABSTRACT

The principal aim of the studies presented in this thesis was to examine the relationship between vascular reactivity, contractile proteins and blood pressure development in the spontaneously hypertensive rat (SHR). In addition, the influence of angiotensin II on blood pressure and vascular structure and function was investigated.

In initial experiments hypertension was induced in the normotensive Wistar Kyoto rat (WKY), the most appropriate control for the SHR. Mineralocorticoid therapy (DOCA-salt) produced an increase and sustained elevation in systolic blood pressure in the normotensive WKY rat. The elevated blood pressure was associated with a marked increase in total 3-methylhistidine (a marker for contractile proteins), DNA and protein content. In contrast to the marked increase in contractile proteins, contractile responses of the perfused mesenteric preparation to vasoactive agents were similar in preparations from control WKY and hypertensive WKY rats. Moreover, the elevated blood pressure and increases in the total 3-methylhistidine, DNA and protein content were insensitive to angiotensin converting enzyme inhibitor (quinapril) treatment, α₁-adrenoceptor antagonist (doxazosin) treatment and calcium channel blockade (diltiazem). The data suggest that the elevation in blood pressure in the H-WKY does not mimic the characteristics of hypertension seen in the SHR in which vascular reactivity is augmented and sensitive to pharmacological treatments.

The perfused mesenteric preparations from SHRs demonstrated augmented reactivity to vasoactive agents when compared with preparations from WKY rats. However, the enhanced reactivity was not associated with increased total 3-methylhistidine, DNA and protein content in the mesenteric vasculature. ACE
inhibitor treatment of the SHR from 5 to 18 weeks of age prevented the development of hypertension and normalised contractile responses. Moreover, ACE inhibitor treatment reduced the total content of 3-methylhistidine, DNA and protein in the mesenteric vasculature. Both α_1-antagonist treatment and calcium blockade, although maintaining systolic blood pressure approximately 20 mmHg below that of untreated SHRs, were without influence on contractility and the biochemical parameters.

Cessation of ACE inhibitor therapy after 13 weeks of treatment for a period of 4 weeks resulted in both systolic blood pressure and vascular reactivity increasing but remaining lower than in untreated SHRs. In contrast, 3-methylhistidine, DNA and protein content of the mesenteric vasculature reverted to levels seen in vessels from untreated SHRs. In addition, co-administration of the α_1-adrenoceptor antagonist doxazosin with the ACE inhibitor and continuation of the α-adrenoceptor antagonist after withdrawal of the ACE inhibitor, prevented to a certain degree, the increases in 3-methylhistidine, DNA and protein content in the mesenteric vasculature observed after withdrawal of the ACE inhibitor, without preventing the increase in systolic blood pressure and augmented contractile responses. Although the data raise the possibility that inhibition of angiotensin II may influence growth of the mesenteric vasculature in this model the results also suggest that other process(es) involving angiotensin II, may influence structure and thereby contractility.