The ecology of *Melangyna viridiceps* and *Simosyrphus grandicornis* (Diptera: Syrphidae) and their impact on populations of the rose aphid, *Macrosiphum rosae*

By:

Ebrahim Soleyman-Nezhadiyan

M. Sc. The University of Shahid Chamran (Ahwaz)

A thesis submitted for the Degree of Doctor of Philosophy in the Faculty of Agricultural and Natural Resource Science at the University of Adelaide

Department of Crop Protection
The University of Adelaide
July 1996
Table of Contents

Declaration i
Acknowledgement ii
Table of Contents iv
Summary xi
Chapter 1
 Introduction 1
 Overview 2
Chapter 2
 Review of Literature 4
 2. 1 Taxonomy of Syrphidae 4
 2. 1. 1 *Melangyna* (Verall) species 5
 2. 1. 2 Distribution and origin of Australian *Melangyna* (Austrosyrphus) 5
 2. 1. 3 *Simosyrphus* (Bigot); synonymy, origin and distribution 6
 2. 2 Importance of Syrphidae as bio-control agents 6
 2. 3 Biology and ecology of Syrphidae 8
 2. 3. 1 Life cycle 8
 2. 3. 2 Development period 11
 2. 3. 3 Voracity 12
 2. 3. 4 Larval behaviour 13
 2. 3. 5 Fertility, fecundity and longevity 16
 2. 3. 6 Oviposition behaviour 17
 2. 3. 7 Food resource selectivity 21
 2. 3. 8 Diurnal activities of adults 24
 2. 3. 9 Adults and colours 25
 2. 3. 10 Mobility and migration 26
 2. 3. 11 Natural enemies 27
 2. 4 Prospects for increasing syrphid numbers in crops 29
 2. 4. 1 Feeding habits and abundance 29
 2. 4. 2 Plant diversity and abundance 30
 2. 4. 3 Plants attractive to syrphids 32
 2. 5 Techniques for estimating syrphid abundance and activity 34
 2. 5. 1 Standard walk-recording 34
 2. 5. 2 Water traps 35
 2. 5. 3 Suction traps 37
 2. 5. 4 Sampling for immature stages 38
 2. 6 The rose aphid *Macrosiphum rosae* (L.) 39
 2. 6. 1 Taxonomy, origin and distribution 39
Chapter 3

General Materials and Methods

3. 1 Sites of study
 3. 1. 1 The Claremont rose garden planting
 Maintenance of the Claremont rose garden
 3. 1. 2 Other rose gardens

3. 2 Climate of South Australia

3. 3 Culture
 3. 3. 1 Culture of Acyrthosiphum pisum
 3. 3. 2 Culture of syrphids
 3. 3. 3 Oviposition unit
 3. 3. 4 Release cages
 3. 3. 5 Field cages
 3. 3. 6 Rotatable table

3. 4 Optimum elevation of food in cages
 3. 4. 1 Introduction
 3. 4. 2 Materials and methods
 3. 4. 3 Results

Chapter 4

Seasonal occurrence of adult hoverflies

4. 1 Introduction

4. 2 Materials and methods
 4. 2. 1 Seasonal occurrence of adult syrphids
 4. 2. 1. 1 Catches in suction traps
 4. 2. 1. 2 Water traps
 4. 2. 1. 3 Census walk
 4. 2. 2 Capture-recapture method
 4. 2. 2. 1 Preliminary experiments
 Comparison between holding methods
 The effect of the site of marks on the body of M. viridiceps
 4. 2. 2. 2 Estimating populations at Claremont

4. 3 Results
 4. 3. 1 The number of daisy flowers
 4. 3. 2 Suction trap
 4. 3. 2. 1 Comparison between numbers of catches in shade and sun
 4. 3. 2. 2 Relationship between weather variables
and numbers of adults caught in suction traps 67
4. 3. 3 Water traps 68
 4. 3. 3. 1 Numbers caught in summer 68
 4. 3. 3. 2 Numbers caught in other seasons 68
4. 3. 4 Comparison between traps and census walk 71
4. 3. 5 Estimating the population of adult *M. viridiceps* by
the capture-recapture method 71
 4. 3. 5. 1 Preliminary experiments 71
 4. 3. 5. 2 Estimating the number of populations of
M. viridiceps 71
4. 4 Discussion 74
 4. 4. 1 Seasonal changes of *M. viridiceps* and
S. grandicornis 74
 4. 4. 2 Oversummering and overwintering 74
 4. 4. 3 Factors which influence the census-walk method and trap
 catches 75
 4. 4. 3. 1 Census-walk method 75
 4. 4. 3. 2 Suction traps 75
 4. 4. 3. 3 Water traps 76
 4. 4. 4 Capture-recapture method 77

Chapter 5

Diurnal flight activity patterns of the syrphid flies, *M. viridiceps* and *S. grandicornis* 79

5. 1 Introduction 79
5. 2 Materials and methods 79
 5. 2. 1 Winter flight activity 79
 5. 2. 2 Summer flight activity 80
 5. 2. 2. 1 Activity on weeds and the daisy,
 C. frutescens 80
 5. 2. 2. 2 Diurnal activity in sunny and shady areas 81
5. 3 Results 81
 5. 3. 1 Winter flight activity 81
 5. 3. 1. 1 Flight activity between 1200-1400 81
 5. 3. 1. 2 Diurnal activity and temperature threshold 83
 5. 3. 2 Summer flight activity 83
 5. 3. 2. 1 Diurnal activity on marguerite daisy and
 weeds 83
 5. 3. 2. 2 Diurnal activity in sunny and shady areas 87
5. 4 Discussion 88

Chapter 6

Pollen and flower selectivity by *Melangyna viridiceps* and *Simosyrphus grandicornis* 90
6. 1 Introduction

6. 2 Materials and methods
 6. 2. 1 Attractiveness of different colours
 6. 2. 2 Selectivity in the field and pollen determination
 6. 2. 2. 1 Description of Claremont site
 6. 2. 2. 2 Sources of specimens and pollen determinations
 6. 2. 2. 3 Comparison of the quantity and diversity consumed by males and females
 6. 2. 2. 4 Ranking flower availability
 Availability of weed flowers
 Availability on shrubs
 Availability of flowers on Eucalypts and Acacia trees
 6. 2. 2. 5 Preference study using suction traps

6. 2. 3 Preference experiments in the laboratory
 6. 2. 3. 1 Wind-tunnel experiment
 6. 2. 3. 2 Preference experiment in the glasshouse
 Experiment 1: Selection between two species of daisy flowers
 Experiment 2: Selection between African daisy (Asteraceae), Eucalyptus and Acacia flowers
 Experiment 3: Selection between African daisy and two weed flowers

6. 3 Results
 6. 3. 1 Attraction to different colours
 6. 3. 2 Selectivity in the field
 6. 3. 2. 1 Flower availability and usage of pollen by syrphid flies
 6. 3. 2. 2 Availability and usage of daisy flowers
 6. 3. 3 Comparison of pollen quantity and diversity
 6. 3. 4 Laboratory selectivity experiments
 6. 3. 4. 1 Wind tunnel experiments
 6. 3. 4. 2 Selectivity study of African and marguerite daisies
 6. 3. 4. 3 Comparison of the attractiveness of African daisy with Eucalyptus and Acacia flowers
 6. 3. 4. 4 Comparison of the attractiveness of the flowers of African daisy, sowthistle and wild radish

6. 4 Discussion
 6. 4. 1 Attractiveness to colours
 6. 4. 2 Pollen selectivity
Chapter 7
Oviposition of adults and feeding behaviour of larvae

7. 1 Introduction

7. 2 Materials and methods

7. 2. 1 Fertility, fecundity and longevity
7. 2. 2 Oviposition behaviour

7. 2. 2. 1 Cage experiments
The effect of different aphid densities on oviposition
Response to exuviae of aphids

7. 2. 2. 2 Field study

7. 2. 3 Capture efficiency

7. 3 Results

7. 3. 1 Fertility, fecundity and longevity
7. 3. 2 Oviposition behaviour

7. 3. 2. 1 Cage study
7. 3. 2. 2 Field study

7. 3. 3 Capture efficiency

7. 4 Discussion

7. 4. 1 Fertility and fecundity
7. 4. 2 Oviposition behaviour
7. 4. 3 Capture efficiency

Chapter 8
Temperature-dependant development in eggs, larvae and pupae of M. viridiceps and S. grandicornis in the laboratory

8. 1 Introduction

8. 2 Materials and methods

8. 2. 1 Voracity
8. 2. 2 Temperature-dependant development and number of generations

8. 3 Results

8. 3. 1 Voracity
8. 3. 2 Temperature-dependant development
8. 3. 3 Numbers of generations per year
S. grandicornis
M. viridiceps

8. 4 Discussion

8. 4. 1 Voracity
8. 4. 2 Temperature-dependant development and number of generations

Chapter 9
Seasonal occurrence of *M. viridiceps* and *S. grandicornis* and their synchronisation with rose aphids

9. 1 Introduction 162
9. 2 Materials and methods 163
 9. 2. 1 Sites of study 164
 9. 2. 2 Sampling aphids and syrphids 164
 9. 2. 3 Identification of the eggs and the first instar larvae 168
 9. 2. 4 Numbers of aphids and syrphids converted to indices 171
9. 3 Results 172
 9. 3. 1 Sampling precision 172
 9. 3. 2 Seasonal occurrence of syrphids and aphids 174
 9. 3. 3 Syrphid-aphid ratios 180
 9. 3. 4 Other predators 186
9. 4 Discussion 186
 The role of *M. viridiceps* 188
 The role of *S. grandicornis* 191

Chapter 10

Natural enemies 196

10. 1 Introduction 196
10. 2 Materials and methods 197
 10. 2. 1 Field study 197
 10. 2. 2 Laboratory experiments 198
 10. 2. 2. 1 Voracity and growth of parasitised larvae 198
 10. 2. 2. 2 Preference for rose buds infested with aphids 198
 10. 2. 2. 3 Attraction of the parasitoid *D. laetatorius* to different species of aphids 199
 10. 2. 4 Attractiveness of infested rose buds with and without syrphid larvae 199
10. 3 Results 200
 10. 3. 1 Field study 200
 10. 3. 2 Laboratory study 202
 10. 3. 2. 1 Voracity and growth of parasitised larvae 202
 10. 3. 2. 2 Attractiveness of infested buds with and without syrphid larvae 204
 10. 3. 2. 3 Other natural enemies 204
10. 4 Discussion 204

Chapter 11

Summary and discussion 207

References 213

Appendices 234
Summary

Some syrphid flies are regarded as important control agents of aphids. Their larvae feed mainly on aphids and other Sternorrhyncha and the adults feed on pollen and nectar of flowers and honeydew of Steynorrhyncha. Some of these species have been utilised to suppress aphids in some cropping systems in Europe and New Zealand by planting attractive flowers near to crops on which aphid pests occur. The work reported in this thesis aims to describe sufficient of the biology of two common species of Australian syrphids, *Melangyna viridiceps* (Macquart) and *Simosyrphus grandicornis* (Macquart) to evaluate their potential as biological agents of aphids in the Mediterranean climate of South Australia. To test the hypothesis that the impact of these syrphids in suppressing aphids could be enhanced by providing supplementary pollen plants, a model system of the two syrphid species and rose aphids, *Macrosiphum rosae* (Linnaeus.) was studied in Adelaide during 1993-1995.

To test the effects of pollen supplementation, rose aphids were used because they are evidently present during nine months of the year in South Australia. The rose flowers are not attractive to syrphid flies so any effects of pollen supplementation by other plants could be easily detected. A number of native and introduced plants were tested as pollen sources for syrphids in one rose garden. Then, the numbers of syrphids and rose aphids at this rose garden were compared with other rose gardens without such plants. *M. viridiceps* and *S. grandicornis* adults laid more eggs on rose aphid colonies near to pollen sources than those not provided with pollen (chapter 9). However, any reduction in rose aphid numbers could not be attributed to providing supplementary pollen.

At least several factors may have contributed to the failure of pollen supplementation to reduce aphid numbers: 1) the seasonal cycles of syrphids (especially that of *M. viridiceps*) were not synchronised with those of the rose aphids, and neither syrphid species was most abundant when the aphids were most abundant, 2) both aphid species can utilise prey other than rose aphids and 3) parasitoids of these syrphids may reduce their effectiveness.
Pollen preferences of adults of both syrphid species were measured by comparing species of pollen in dissected adults with the availability of flowers in a 1.5ha study area (chapter 6). Both species use flower resources selectively from the three strata of herbs, shrubs and trees. *M. viridiceps* preferred pollen from herbs to that of the other two strata. Although *S. grandicornis* is highly attracted to wild radish (*Raphanus raphanistrum*), most of the flowers which attracted this species were from trees. *S. grandicornis* appeared to eat mainly nectar and honeydew.

S. grandicornis and *M. viridiceps* differ in their seasonal occurrence; adults of *S. grandicornis* were active during August to May and *M. viridiceps* during April-May to November (with the peak in July-September) in the two years 1993-1995, while rose aphids were numerous during October (spring peak) and April-May (Autumn peak). *S. grandicornis* was the more important predator of rose aphids as the density of its immature stages on rose aphid colonies was greater than that of *M. viridiceps*. However, the number of immature stages of *S. grandicornis* declined prior to the peak of rose aphids in autumn.

In the field, female *S. grandicornis* laid eggs equally on buds with aphid densities above and below the mean number of aphid per infested bud (MNAI) for any particular site and sampling occasion. However, once eggs were found on buds, total number of eggs was significantly higher on these buds which were infested with numbers of aphids higher than the MNAI. In laboratory experiments, females of *S. grandicornis* showed a functional response to increasing rose aphid density up to an optimum of 71-100 aphids per bud. The response to high density of aphids by *S. grandicornis* minimises the risk of starvation for the offspring. The first instar larvae of *M. viridiceps* consumed green plant materials when deprived of aphids.

Parasitization of *S. grandicornis* eggs and larvae by *Diplazon laetatorius* (Fabricius.) (Hymenoptera: Ichneumonidae) may have limited the ability of *S. grandicornis* to prevent the increase in rose aphids numbers in summer and autumn when parasitism increased to
80%. This parasitoid did not appear to affect *M. viridiceps* perhaps because of different seasonal activity. Other natural enemies recorded were not important during the study; the larval parasitoid *Syrphophagus nigricornis* (Girault) (Hymenoptera: Encyrtidae) parasitised 0.65% of larvae and the nematode *Syrophonema* sp. (Syrphonematidae) parasitised 1.9% of adults.

Suction trap catches of adults in winter indicate that *S. grandicornis* probably overwinters as adults, but its main periods of activity are during the warm months of the year. *M. viridiceps* was captured by water trap in summer, indicating that this species oversummers as adult, but the peak activity is during cool months (winter-spring). *M. viridiceps* started activity at 0900-1000 with the estimated flight threshold of 12.8°C and peaked mostly around noon. In spring, when both species occurred together, *M. viridiceps* was active earlier in the day than *S. grandicornis*. During hot days, *M. viridiceps* peaked and left the sunny sites earlier than *S. grandicornis*. Some individuals of both species were then observed in the shade of *Acacia* trees located close to the rose garden. This confirms the importance of shelters for protecting natural enemies. The recapture rate of less than 10% of marked *M. viridiceps* indicated that the adult populations of these syrphids were very mobile with respect to the 1.5ha. study area.

The number of generations of *S. grandicornis* and *M. viridiceps* was estimated as 10 and 11-13 per year, respectively, during this study. The pre-oviposition period of females was 6.8±0.66 SE days for *M. viridiceps* and 5.6±0.64SE for *S. grandicornis* after which an average of 288±34SE and 307.9±23.2SE eggs were laid during the total adult life span of 19.5±1.65 and 13.8±1.3 days respectively. The total duration of the three larval instars at 20°C was 10.8 and 12.3 days for *M. viridiceps* and *S. grandicornis*.

and for the pupa was 8.3 and 7.7 days, respectively.

These results suggest that manipulation of syrphid numbers to control pest aphids in crops may be difficult in habitats similar to those described in this study. Although the results refer specifically to rose aphids, other pest aphids on crops in South Australia occur at similar times to rose aphids.