Cell Disruption Mechanics

by

Andrew Royce KLEINIG

Thesis submitted for the degree of

Doctor of Philosophy

in

The University of Adelaide

Faculty of Engineering

April 1997
Summary

High-pressure homogenization is a key unit operation used to break cells containing intracellular bioproducts. Modeling and optimisation of this process has been restrained by a lack of understanding of the fundamental processes that occur to effect cell breakage during homogenization.

This thesis examines the cell-fluid interactions that occur during homogenization, and combines them with an investigation of the mechanical properties of the cell. This results in a truly predictive model for cell-disruption efficiency during high-pressure homogenization.

An experimental investigation confirmed previous assertions that cell disruption occurs in the valve-inlet and impinging-jet regions of a homogenizer valve. However, experimental disruption data alone does not elucidate the physical processes that cause cell breakage.

To determine how cells and fluid within the homogenizer interact, an investigation of homogenizer fluid mechanics was conducted. The calculated fluid velocities and strain rates within the valve assembly were then used to model the passage of a cell through the valve. The dependence of maximum cell-wall tensions on cell diameter and homogenizer pressure were then calculated. This then provided a homogenizer tension distribution function.

The mechanical properties of individual cells were characterised using a micromanipulation technique. The ultimate cell-wall tension was found to be Gaussian within a population of cells and independent of cell diameter.

Combination of the calculated homogenizer tension distribution function with the measured ultimate cell-wall tension distribution was used to predict cell-disruption efficiency, and homogenate cell-size distributions, for two cultures of yeast cells, after one pass through the valve-inlet region of an APV-Gaulin 15M high-pressure homogenizer.
This result is highly significant, as it is the first time that true *a priori* predictions of cell disruption efficiency (that do not rely in any way on the regression of previous disruption data) have been obtained. Further work is required to extend the approach used in this thesis to different microorganism and homogenizer systems.
# Table of Contents

1 Introduction and Aims
   1.1 Releasing Intracellular Products
      1.1.1 Comparison of Microorganisms
      1.1.2 Non-mechanical Methods
      1.1.3 Mechanical Methods
      1.1.4 Combined Methods
      1.1.5 Choice of Method
   1.2 High-Pressure Homogenization
      1.2.1 High-Pressure homogenizers
      1.2.2 Previous Studies and Modeling
      1.2.3 Unresolved Issues in Homogenization
   1.3 Aims and Structure

2 Disruption Study
   2.1 Materials and Methods
      2.1.1 Cell Material
      2.1.2 Homogenization
      2.1.3 Disruption Analysis
   2.2 Results
   2.3 Discussion
   2.4 Summary

3 Homogeniser Fluid Mechanics
   3.1 Introduction
   3.2 Valve Inlet Region
      3.2.1 Previous Studies
      3.2.2 Experimental
      3.2.3 Numerical Simulation
      3.2.4 Theoretical Considerations
      3.2.5 Results and Discussion
   3.3 Impinging Jet Region
      3.3.1 Previous Studies
      3.3.2 Experimental
      3.3.3 Numerical Simulation
      3.3.4 Theoretical Considerations
      3.3.5 Results and Discussion
   3.4 Summary
Appendices

Appendix A1
Redundancy Analysis of the Wall Strength Model

Appendix A2
Homogenizer Dynamics

Appendix A3
Modeling Cell Compression

Appendix A4
Cell-Wall Fatigue

Appendix B
Publications List

Nomenclature

References