Object-Oriented Simulation of Chemical and Biochemical Processes

Damien Hocking

Department of Chemical Engineering
University of Adelaide

Thesis submitted for the Degree of
Doctor of Philosophy
in
The University of Adelaide
Faculty of Engineering

February 1997
CONTENTS

Chapter 1: Introduction and literature review

1.1 Simulation Techniques
 1.1.1 Sequential-Modular
 1.1.2 Equation-Oriented
 1.1.3 Parallel-Modular

1.2 Object-Oriented Process Simulation
 1.2.1 Object-Oriented Simulation
 1.2.2 Languages
 1.2.3 Object-Oriented Simulation Environments
 1.2.4 Summary of Object-Oriented Simulation

1.3 Biochemical Process Simulation
 1.3.1 Summary of Biochemical Process Simulation

1.4 Physical Property Calculation

1.5 Numerical Analysis Methods
 1.5.1 Nonlinear Algebraic Equations
 1.5.2 Integration Methods

1.6 Conclusions and Project Scope

Chapter 2: Simulator Development and Data Structure

2.1 Development Language

2.2 Data Structure
 2.2.1 Physical Information
 2.2.2 Simulator Executive
 2.2.3 Mathematical Information

2.3 Functionality and Behaviour
 2.3.1 Structural Analysis
 2.3.2 Equation Evaluation
 2.3.3 Model Evaluation
 2.3.4 Behavioural Changes
 2.3.5 Numerical Methods
 2.3.6 Interchangeable Simulation Techniques
2.4 Chemical Components and Property Calculation
2.5 Summary

Chapter 3: C++ Implementation
3.1 C++ Constructors and Destructors
3.2 Vectors and Matrices
3.3 Process Class Structure
 3.3.1 System Class and Descendants
 3.3.2 Port Class and Descendants
 3.3.3 Stream Class and Descendants
3.4 Mathematical Class Structure
 3.4.1 Variable Class and Descendants
 3.4.2 Equation_Set and Dynamic_Set classes
3.5 Component, General_Component_Mixture
 and Properties Classes
 3.5.1 Component class and Descendants
 3.5.2 General_Component_Mixture Class
 3.5.3 Properties Class and Descendants
3.6 Numerical Method Classes
3.7 Summary

Chapter 4: Modelling and Simulation
4.1 Decomposition Techniques
 4.1.1 Medium and Machine Decomposition
 4.1.2 Primitive Behaviour Decomposition
 4.1.3 Mathematical Decomposition
4.2 Modelling Examples
 4.2.1 Mixing Tank
 4.2.2 Bi-Directional Information Flow
 4.2.3 Connected-System Modelling
 4.2.4 Multiple-Inheritance Modelling
 4.2.5 Modelling with Physical Properties
4.3 Simulation
4.3.1 Instruction Sequence 130
4.3.2 Steady-state example 131
4.4 Summary 135

Chapter 5: Major Test Problems 136
5.1 Cavett Problem 136
5.2 Tennessee Eastman Process 141
 5.2.1 Control Systems 143
 5.2.2 Simulation Results 150
5.3 Recombinant Fermentation Model 157
 5.3.1 Model Description 158
 5.3.2 Control System 161
 5.3.3 Simulation Results 162
5.4 Discussion 165
5.5 Summary 167

Chapter 6: Summary, Conclusions and Recommendations 168
6.1 Summary 168
6.2 Class Description 168
6.3 Modelling 169
6.4 Simulation 170
6.5 Recommendations 171

Bibliography 173

Nomenclature 180

Appendices 182
 Appendix A: General member function descriptions 183
 A.1 System-based classes 183
A.1.1 System Connectivity and Mathematical interface functions 183
A.1.2 System Analysis 185
A.1.3 Convergence_Block class interfaces 185
A.2 Port-based classes 186
 A.2.1 Port, Input_Port and Output_Port class interface functions 186
 A.2.2 Process_Output_Port and Process_Input_Port class interface functions 187
 A.2.3 Signal_Input_Port and Signal_Output_Port class interface functions 189
 A.2.4 Energy_Input_Port and Energy_Output_Port class interface functions 190
A.3 Stream classes 190
 A.3.1 Stream class interface functions 190
A.4 Variable-based classes 190
 A.4.1 Variable class interface functions 190
 A.4.2 Derivative class interface functions 192
 A.4.3 Equation class interface functions 192
 A.4.4 Equation_Set and Dynamic_Set class interface functions 193
A.5 Physical Property Classes 195
 A.5.1 Component class interface functions 195
 A.5.2 User_Component class interface functions 196
 A.5.3 Component_Set class interface functions 196
 A.5.4 General_Component_Mixture class interface functions 197
 A.5.5 Ideal_VLE class interface functions 200
A.6 Mathtool class interface functions 200

Appendix B: Flash Class Member Functions 202
 B.1 Constructor 202
 B.2 Port Setup 205
B.3 Connection Functions 205

Appendix C: Tennessee Eastman Unit Models 207
 C.1 Mixer Model 207
 C.2 Reactor Model 208
 C.3 Separator Model 210
 C.4 Stripper Model 211
 C.5 Nomenclature 212

Appendix D: Tennessee Eastman Flowsheet Definition 214

Appendix E: Fermentation Model Parameters 221