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Abstract

Optimisation networks are a family of approximate techniques for the solution of com-

binatorial optimisation problems. Typically an optimisation network comprises a large

number of highly interconnected, simple processors which may be programmed to com-

pute a solution to a variety of combinatorial optimisation problems. When implemented

in hardware, optimisation networks like the Hopfieid network and the mean field an-

nealing algorithm are capable of producing solutions in a matter of milliseconds. The

capability for real-time combinatorial optimisation is unique to optimisation networks.

As optimisation networks are not a mature technique, there remain several open

questions relating to their use. One such issue, which has gone largely unnoticed in

the literature, is that of soiution quality. Previously, various annealing techniques have

been developed to improve the quality of solutions obtained from an optimisation net-

work. Our investigations of these annealing techniques confirm their ability to improve

solution quality, but uncover the tendency to force the network toward invalid states.

Consequently we develop a new, principled approach to annealing ihat improves solution

quality while maintaining a valid network state.

Simple experiments reveal an alarming feature of the performance of optimisation net-

works: as the problem size increases, the quality of the solutions rapidly decreases. Such

deteriorating performance would restrict optimisation networks to the solution of oniy

small problems - a significant erosion of the niche market for optimisation networks. Our

investigations show that the simple heuristics that optimisation networks employ to solve

a combinatorial optimisation problem are ultimately responsible for the poor scaling to

large problems. Furthermore, while alternative heuristics can be shown to far outperform
those used by an optimisation network, many of them are not suitable for embedding

into an optimisation network. However, after recognising that for any heuristic there is

a trade-off between solution quality and computational effort, we developed a family of

higher-order neural networks (HONNs) which embody that trade-off. It is shown that
HONNs offer improved solution quality at the expense of extra complexity in the net-

work. It is concluded that optimisation networks embody a simple heuristic approach to
the solution of combinatorial optimisation problems, and as with any heuristic approach

trade-offs must be made between solution quality and computational effort in order to

meet demands on their performance.

Keywords: combinatorial optimisation, neural networks, Hopfield network, higher-order

neural networks.
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CHnprpn I

Introduction

1.1- Optimisation Networks

Optimisation networks belong to a broad class of systems known as artificial neural net-

works (ANNs), which have been developed to address the shortcomings of conventional

computers. Conventional computers operate in a serial manner by performing a pro-

grammed sequence of instructions. They excel at numerically intensive tasks, but are

significantly less effective at tasks which humans can do routinely, such as recognising

objects and understanding speech. Given that the human brain performs so well on these

complex tasks, there is considerable merit in attempting to develop an artificial neural

network that mimics the computational processes of the brain.
Artificial neural networks (Hecht-Nielsen, 1989; Hertz et a1., I99I; Zwada, 1992) gen-

erally comprise a large number of simple processors which are analogous to biological

neurons. These processors are connected together via a dense network of interconnec-

tions, which perform a simiiar function to the synapses and axons in a human brain.
ANNs exhibit a computational ability which arises not from the complexity of the indi-
vidual processor, but from the high degree of connectivity between the processors. Just

like the human brain, ANNs have been trained to perform a variety of tasks and have the

ability to iearn from experience. This model for computation is in stark contrast with
conventional serial computers and consequently ANNs have been applied to many of the
problems that have proven to be too difficult for conventional computers.

Optimisation networks are a subset of ANNs where the outputs of the individual pro-

cessing units are fed-back, via the network of interconnections, to the inputs of the pro-

cessors. By interconnecting the processors in this manner a nonlinear, dynamic system is

produced, which under certain conditions is ideally suited to the solution of optimisation
problems. Specificaliy, optimisation networks are used to soive combinatorial optimisa-
tion problems; the most famous example of which is the travelling salesman problem
(TSP). The TSP may be simply stated as:

Giuen N cities in a plane, all of which must be uisited only once, fi,nd the order
in which to aisit them, making sure to return to the initial city, so that the total
di,stance traaelled is minimised.

The TSP, as with all combinatorial optimisation problems, is characterised by having a
finite set, as opposed to a continuum, of possible solutions over which the objective func-
tion must be optimised. Rather than making the problem easier, it makes problems like
the travelling salesman notoriously difficult. In fact, combinatorial optimisation prob-
lems are amongst the most difficult problems known to the mathematical community. To

date, there is no known method for efficiently finding the optimal solution to a travelling
salesman problem. This is not surprising when we consider that for a ten city travelling



7.2 Themes and Contributions

salesman problem, there are slightly under two hundred thousand tours to consider; yet

if we increase the size of the problem to just twenty cities, there are approximately sixty
million billion tours to evaluate in order to find the optimal solution.

Notwithstanding the complexity of combinatorial optimisation problems, experiments

have repeatedly shown that optimisation networks can produce reasonably good solutions

to problems like the TSP. The Hopfield network (Hopfield, 1984) is typical of most

optimisation networks. Its ability to solve the TSP was first demonstrated by Hopfield

and Tank (Hopfield and Tank, 1935). However, the initial results from the Hopfield

network were far from convincing. The network regularly converged to states that did
not satisfy the constraints of the problem. Furthermore, even when a valid solution was

obtained, it was quite likely to be of poor quality. Despite these shortcomings, it was

quite obvious that the Hopfreld network was widely applicable and was a significant,

new approach to the solution of combinatorial optimisation problems. Subsequently, a

great deal of research into optimisation networks has seen many of their early limitations
overcome.

One of the most significant factors to commend the use of optimisation networks

is their amenability to implementation in fast, parallel hardware. Such hardware im-
plementations could yield solutions in a matter of milliseconds, making the solution of

real-time combinatorial optimisation problems an attainable goal. Moreover, as com-

binatorial optimisation problems arise in many areas of engineering and science, there

is a significant array of suitable real-time problems: routing traffic in communications

networks (Cooper, 1994), solving graph labelling problems for object recognition (Gee,

1993) and optimisation problems in low-level vision (Mjolsness et al., 1991) are just a

few. Given the potential for optimisation networks to solve real-time problems and the

many applications that would benefit, it appears that further research into optimisation
networks is justified.

I.2 Themes and Contributions

To date, the vast majority of research into optimisation networks has concentrated on

developing methods that improve the reliability with which networks converge to valid
solutions. An additional thrust of the research has been to apply optimisation networks
to more practical problems than the travelling salesman. While there have been some

attempts at developing mechanisms to improve solution quality, there has been virtually
no research investigating the existence of limits on the solution quality achievable with
optimisation networks, or indeed the factors responsible for such limits, shouid they exist.
The one theme that underpins all our investigations in this thesis is that of solution
quality.

The main contributions of this thesis may be summarised as follows:

o We demonstrate the importance of annealing mechanisms, which aim to improve
soiution quality (Section 4.2). Furthermore we investigate the effect that annealing
may have on the ability to obtain valid solutions (Section 4.3).

o As a result of our investigations we find it necessary to develop a new, principled
approach to annealing that improves solution quality while maintaining a valid
network state (Sections 4.4 and 4.5).

o We investigate the ability of optimisation networks to scale to large problem sizes,

and the impact that problem size may have on solution quality (Sections 5.2 and 5.3).

2



1.2 Themes and Contributions

o We establish that optimisation networks utiiise simple heuristic methods for the

solution of combinatorial optimisation problems (Sections 5.2.1 and 6.2)' As with
any heuristic method there is a trade-off between computational effort and solution

quality.

o Following these investigations, \¡r'e develop a family of alternative optimisation net-

works, *hi"h embody the trade-offs that can be made between solution quality and

computational effort (Sections 5'4.2 and 6.3).

o We investigate the impact that the trade-off between computational effort and

solution q.rulity has on the performance of standard optimisation networks (Sec-

tions 7.3 and 7.4).

Throughout the thesis we have avoided large-scale simulations, as the underlying

problems and the methods developed to counter them, are easily demonstrated on simple

ã*u,-pl"r. While detailed mathematics is included where necessary, we have made as

muchuse of simple intuitive arguments as possible. The broad outline of this thesis is

as follows:

Chapter 2 presents an overview of various optimisation networks, including their method

of operation, implementation in hardware and brief discussion of their niche market-

Chapter 3 discusses the process of mapping a problem onto an optimisation network.

A rigorous analysis of the proposed mapping technique shows that a v¿lid solution

to problems such as the TSP can always be obtained from an optimisation network.

Chapter 4 investigates the use of annealing techniques to remove dependence on initial
conditions and improve the quality of solutions. A potential conflict between the

problem mapping and annealing process is first identified and then resolved with

the development of the modifi,ed hysteretic annealing technique.

Chapter 5 demonstrates that optimisation networks employ simple heuristics to solve

combinatorial optimisation problems. Experimental results show that the solution

quality obtained from an optimisation network deteriorates quickly as the problem

size increases. The poor scaling of optimisation networks to large problem sizes is

directly attributable to the simple heuristics used. Various approaches to improving

the scaling of optimisation networks are presented.

Chapter 6 develops a family of optimisation networks called higher-order neural net-

works (HONNs). HONNs make use of stronger heuristics in the soiution of combina-

torial optimisation problems and in many ways they embody the trade-off between

computationai effort and solution quality that may be made with any heuristic

approach to optimisation.

Chapter 7 further investigates the computational effort versus solution quality trade-

off by presenting a theoretical analysis of the performance of higher-order neural

networks.

Chapter 8 presents the main conclusions of the thesis.

Appendices contain derivations and experimental details that are supplementary to the

main text.

3



CH¡.pron II

Optimisation Networks

Optimisation networks are a class of ANNs that may be appiied to the solution of combi-

natorial optimisation problems. An optimisation networks comprises a large number of

highly interconnected processing units. The outputs of the processing units are fed-back

via the network of interconnections to their inputs. In doing so, a non-linear dynamic

system is created that can be used to solve optimisation problems. It should be notecl

that optimisation networks do not attempt to implement any sort of cognitive function or

indeed perform any learning: a fact that sets them apart from more conventional notions

of what comprises an ANN.
In this chapter we present an overview of various optimisation networks and give a

series of simple examples to demonstrate their use. We begin in Section 2.1by briefly

describing how combinatorial optimisation problems may be mapped into a form which is

suitable for optimisation networks. Then in Section 2.2 we introduce the discrete Hopfield

network and discuss its limitations when applied to combinatorial optimisation. The lim-
itations of the discrete Hopfield network naturally lead to the development of simulated

annealing and the mean field annealing algorithms, as detailed in Sections 2.3 arrd 2.4.

To complete our coverage of optimisation networks, Sectiot 2.5 introduces the continu-

ous Hopfield network. All optimisation networks rely on hardware implementations to

be competitive with alternative techniques for combinatorial optimisation. Accordingly,

Section 2.6 presents a brief review of hardware implementations of optimisation networks.

Finally, in Section 2.7 the niche market for optimisation networks is identified by con-

trasting their strengths and weaknesses with the performance of competing techniques

for combinatorial optimisation.

2.L Mapping combinatorial optimisation problems

Typicaliy, combinatorial optimisation problems require the minimisation of an objective
function, subiect to a set of constraints, over a set of 0 - 1 variablesl. In order to solve

such a problem with an optimisation network it is necessary to reformulate the problem.

This process is called mapping the problem onto the network and is the subject of more

detailed comment in Chapter 3. In many cases, the outcome of the problem mapping

is to express the original optimisation problem as the minimisation of a single quadratic
objective function over a set of 0 - 1 variables 'i.e.

minimise E(s) : -|s"Ts - srb (2.1)

where s¿ € {0,1}.

Many of the problems that may be represented by such a mapping belong to the class of

ls¿ is a 0 - 1 variable if s¿ € {0, li. The vector s is a 0 - 1 point if s¿ € {0, 1}Vi.



2.2 Discrete Hopfreld Network

AIP-hañ problems. It is commonly accepted that it is impossible to find an algorithm

that can, for every problem instance, produce the optimal solution to an AIP-hañ prob-

lem in an amount of time bounded by a polynomial function of the problem size (Garey

and Johnson, 1979; Papadimitirou and Steiglitz, 1982). Consequently, most algorithms

abandon the search for an optimal solution, preferring to find a good, though not neces-

sarily optimal soiution in a reasonable amount of time. Such algorithms, maY therefore

be referred to as approrimate solution techniques.
Optimisation networks are a class of approximate solution techniques that attempt

to solve combinatorial optimisation problems by using the problem mapping given in
equation (2.i). As we have previously stated, an optimisation network is a non-linear

dynamic system. The state vector of the system is given by the outputs of the processing

units in the network, and is constrained to lie within the unit hypercube. The network's

dynamics, which determine how the state vector moves through the state space, a e

constructed so as to guide the state vector through a gradient descent on the objective

function E. When the system converges to a stable state, and if measures have been

taken to ensure that that state is a 0 - 1 point, then the stable state may be interpreted

as a solution to the optimisation problem of equation (2.1). Moreover, as the state was

arrived at via a process of gradient descent on the objective function, it is expected that
such stable states should represent good solutions to the optimisation problem. In the

rest of this chapter, various optimisation networks are introduced and their utility at the

solution of combinatorial optimisation problems is discussed.

2.2 Discrete Hopfield Network
The discrete state Hopfield neural network (Hopfleld, 1932) is constructed by intercon-

necting a large number of simple processing units. The ith processing unit, or neltron)

is described by two variables: its internal state u¿ and its output s¿. In the discrete

state network each neuron may either be firing or non-firing, as represented by its output

s¿ : 
=E 

1. The strength of the synaptic connection from the output of neuron j to the

input of neuron i is given by T¿¡. Each neuron also has an external bias ó¿ applied at its
input. The operation of the network depends on the choice of the update rule.

2.2.1 Deterministic IJpdate

The Hopfield network, as it was originally introduced2 (Hopfleld, 1982), operates with a

deterministic update rule

lT¿¡s¡ I b¿ (2.2)

(2.3)
i+i
sign(z¿)

, \ l+t ifz¿)0
wnere stgnlu¿J : 

| _f otherwise.
If the connections are symmetric ¿. 

". 
T;i - T¡i, and t e neurons are updated asyn-

chronously according to equations (2.2) and (2.3), then the network admits a Lyapunov

function of the form (Hopfield, 1982)

5

ui

si

2An equivalent, alternative formulation of the discrete state Hopfield network may use s¿ = {0, 1}



2.2 Discrete Hopfr.eld lVeúwork

Bta"n(s): -: t I T¿¡s¡s¡- Ð å0"n. Q.4)Lij+ii

The existence of a Lyapunov function is significant, as it guarantees that as the neurons

are upd.ated, EIu"n(s) is monotonically non-increasing (Hopfield, 1982). Since ¿tv"r(s) is

also bounded, state changes will continue until s reaches a local minimum of Bta"n(s).

Any such local minimum will be a stable state of the discrete Hopfield network.

Given the quadratic form of the Lyapunov function (2.4), it would at first seem that
the discrete Hopfleld network is well suited to the solution of optimisation problems posed

in the form of equation (2.I). However, the utility of the discrete Hopfield network is

dependent upon the relationship between the Lyapunov function and the state space. To

understand this dependence, consider the schematic representation of the function Efs"p

shown in Figure 2.1(a). As the network state s is updated according to equations (2.2)

and (2.3), each change in state will result in a decrease in the Lyapunov function. Con-

sequently, s moves towards the global minimum s-i' and will eventually converge to it.
Obviously, the discrete Hopfield network is well suited to finding the global minimum of

this function. A contrasting scenario is shown in Figure 2.1(b). As any local minimum
of Eta"p is a stable state, it is apparent that the network's ability to find the global

minimum of this function is much reduced. Only if the initial state of the network lies in
the basin of attraction for the global minimum will it be successful in finding the global

minimum.
When mapping an optimisation problem into the form given by equation (2.1), the

parameters T and b encode both the cost function and the constraints to be satisfied. It
has previously been noted that the mapping process produces a Lyapunov function, or

energy landscape, which is rich in structure with many local minima (Peterson and An-

derson, 19SS). Consequently, as illustrated by the simple example given in Figure 2.1(b),

the discrete Hopfield network performs poorly.

2.2.2 Stochastic Update

Since the discrete Hopfield network, when operating with a deterministic update rule,

is likely to become stuck at a local minimum of the Lyapunov function, it is desirable

to incorporate a mechanism to facilitate escape from such locai minima. To that end, a

stochastic update rule has been suggested (Peretto, 1984),

Pr(s¿: +1) : gB(tu¿) : G#=FÐ Q.5)

where u¿ is defined by equation (2.2) artd B is a parameter that controls the steepness

of the transfer function gB@¿) îear u.i: 0. In the limit þ - *, gB(u¿) becomes a step

function and the stochastic update rule reduces to the deterministic rule of equation (2.3).

As B is decreased, this sharp threshold is softened in a stochastic manner. When the

discrete Hopfield network operates with a stochastic rule it is known as the stochastic
Hopfi.eld network.

What is the meaning of this stochastic behaviour? The effect of the stochastic update
rule may be loosely thought of as the injection of noise into the network, as modelled by
thermal fluctuations. It is convenient to define the pseudo-temperature Tor the network
as, Te : þ. At high pseudo-temperature levels there is a large amount of noise in
the network, and consequently transitions that violate the deterministic rule (2.3) are

quite frequent. As the pseudo-temperature drops the amount of noise also drops, and

6
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Figure 2.1: schematic representation of two Lyapunov functions.

The abitity of the d,iscrete Hopf,etd' networlc to fi,nd' the global minimum of Etu"n

is d,epend,int on the relationship between Eta"p and the state space' These two

LEapunou functions proai,d,e contrasting eramples for the performance of the

d,írir"t" riopfi,etd, ,"irorlr. (a) Conaergence to the global minirnum of this

function is guaranteed,. (b) fhe networlc will conuerge to the global rninirnum

only if the initial state lies within the basin of attraction shown.



2.3 Simulated Annealing

2.3 Simulated Annealing

Simulated annealing (Kirkpatrick et al., 1933) is a general purpose optimisation tech-

nique that performs a discrete, stochastic search of the state space. The stochastic search

process makes use of a pseudo-temperature parameter to determine the probability of

accepting a transition that would result in an increase in the objective function. As the

simulated annealing progresses the temperature is gradually lowered, until at zeto tem-

perature, uphill transitions are no longer accepted. Simulated annealing is a successfui

approach to optimisation, although it is well-renowned to have an unacceptably long

running time. Indeed, in the limit of infinite computation time, simulated annealing is

guaranteed to find the optimal solution (Aarts and Korst, 1989). As previously discussed,

the combination of simulated annealing and a stochastic Hopfield neural network, pro-

duces a stochastic, parallel solution algorithm for combinatorial optimisation, commonly

known as the Boltzmann machine (Ackley et al., 1985).

2.4 Mean Field Annealing

Mean freld annealing (MFA) is a technique, closely related to the Boltzmann machine,

that operates on the auerage statistics of the simulated annealing process. MFA provides

a deterministic approximation to simulated annealing which gives greatly improved exe-

cution speed at the expense of guaranteed solution quality. MFA operates by computing
a solution to the saddle point equa

ui : +(Ðr¿¡,¡+bt\ Q.7),o \7 )

8

updates of the network state adhere more strictly to the deterministic rule. The stochastic

update rule still moves the state vector from corner to corner of the hypercube, but each

move is no ionger guaranteed to decrease Btu"n(s). In fact, any move which violates the

deterministic updale rule of equation (2.3) will result in an increase 'n Btu"n(s). The

injection of noise into the system dynamics has therefore made it possible to kick the

network out of a local minimum of the energy function.
It is easily shown (Hopfield, 1982) that a change As¿ in the state of neuron i produces

a resultant change in the Lyapunov function given by L,fiIu"n : -u¿Lsi. Consider the

situation where si : -1; we wish to evaluate the probability that an update of neuron i
will select s¿ : {1. From equation (2"5)

Pr(s¿:{1) : ',t-,,1 * exP(A Btu"n f 2Tn)' Q'6)

Therefore, from equation (2.6) it can be seen that at high pseudo-temperatures 7p,

the probability of accepting a transition that increases Ets"p is quite significant' Con-

sequently, the system is able to wander over the state space with iittle regard to the

underlying energy function. As the pseudo-temperature is decreased, uphill moves are

iess likely to be accepted and therefore it becomes increasingly difficult for the network to

escape locai minima. Finaliy, as Tp ---+ 0 all local minim aof Eta"p are again stable states.

Operating the stochastic Hopfieid network at progressively lower pseudo-temperatures

is in fact a useful optimisation technique. Networks operating in this manner are usu-

ally referred to as Boltzrnann machines (Ackley et al., 1985; Aarts and Korst, 1989;

Zissimopoulos et al., 1991).
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ui : (2.8)
1 { exp(-z¿)

at progressively lower temperatures. Equations (2.7) and (2.8) have been derived in

Appendix A, where it is shown that a solution (ú, i) to the saddle point equations gives

valuable information about a stochastic Hopfield network operating at the same pseudo-

temperature Tp. In particular, the solution i to the saddle point equations gives the

average value of the state of the stochastic Hopfield network i.e. i: (?). Moreover, at

low temperatures it may be expected that û will closely approximate s^"n, the state that

globatty minimises E(t).
It is shown in Appendix A that a solution (ú, i) to the saddle point equations is a

local minimum of the effectiue energy

ET,\
E'(r, v,To) : "# + u"v - I l" (exp(u¿) + 1)

where E(v) is given by equation (2.1). It is worth*nr" to make several remarks about

the efiective energy. Firstþ, it is important to note that the effective energy E'(u,u,,TP)
is smoother than E(v) due to the presence of the !¿ tn(exp("t.t1) terms. Unfortunately,

at low temperatures the rugged structure of the quadratic $p t"t- will dominate the

smooth logarithmic terms and in addition to the global minimum at (u, V) the effective

energy may have many sub-minima3. Therefore, it is likely that the solution to the saddle

point equations will simply give values for ú and i that correspond to one of the sub-

minima. In contrast, at high temperatures it is much less likely that the solution to the

saddie point equations will correspond to a sub-minimum as the smooth logarithmic terms

will dominate the effective energy. Howevet, at such high temperatures t : (s) does not

correspond to a single configuration of the underlying stochastic Hopfield network, but is

an average over many states. Ultimately, when the temperature has risen to a sufficiently

high level, there is only one minimum of the effective energy.

Therefore, in a manner similar to simulated annealing (Kirkpatrick et al., 1983), the

saddle point equations are first solved at a high temperature. The temperature is then

lowered and a new solution to the saddle point equations is computed. As the process

is repeated at gradually decreasing temperatures, i should evolve from an average over

many good conflgurations to the flnal desired value s-i', while avoiding the sub-minima

of the effective energy. The process of solving the saddle point equations at a series of

progressively lower temperatures is knowî as rnean fi'eld annealing.

The most common method for solving the saddle point equations (2.7) and (2'8) at

each temperature is an iterative repiacement procedure,

uli+r : Tvlrlb (2.e)

(2.10)

I

1

1 f exp(-u ¿lr+tlTr)

The update rules (2.9) and (2.10) define the MFA algorithma. It should be noted that
there is no convergence guarantee for the MFA algorithm just described. In fact E lr:'ay

increase at any iteration. In practice MFA is suitable for many optimisation problems

and exhibits rapid convergence to a solution of the saddle point equations.

sThe term sub-minimumhas been used to describe a local minimumwhich is not the global minimum'
aAlternative algorithms for solving the saddle point equations (2.7) and (2.8) have been proposed

(Peterson and Anderson, 1988).

u¡lt+t
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The operation of the MFA algorithm is illustrated in Figure 2.3. The saddle point

equations (2.7) and (2.8) are solved at a series of progressively lower temperatures until
u¿- e {0, 1}'when Tp --+ 0. Rapid convergence of the update rules (2'9) and (2.10) was

observed at each temperatute Tp. Convergence to the global minimum of this particular

objective function may always be obtained, regardless of the initial conditions, by utilising

a gradual annealing schedule.

2.5 Continuous Hopfield Network

The continuous state Hopfield neural network (Hopfield, 1984) is constructed by inter-

connecting a large number of simple analogue processing units. The ith processing unit

0806o4o2
U1

Figure 2.2: contours of the quadratic objective function.

A contour plot for the function E(v) -- -iþ?+u|)+4utuz-u1-3u2. The glohal

minimurn of this function is E(|0,1]') :-9.5. Note the saddle point marked

with an x at v : [0.8667, 0.4667]" and the eristence of the sub-rninimum

E([1, o]t) : -1.5.

2.4.1 A Simple ExamPle

As a simple example of the operation of the MFA algorithm, we shall use it to minimise

the quadratic function

E(u) : -i*ll^ ;' ] "-"' | å ]
1.: -;("? + r'r) * 4upz - u1- 3u2. (2'11)

A contour piot of E(v) is given in Figure 2.2. In order to use the MFA algorithm to

minimise E(t), we must set

T:i -4 1l-4 1 I
and

b

4.31
-1

I
0s+

I

x

al/a

*atzs
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Figure 2.3: Operation of the MFA algorithm

The plots show the operation of the MFA algoritltm on the objectiue function E

gi,u"n in equation (2.11). As the temperature is lowered frorn 10 úo 0.1, i,n equal

d,""r"*"ri, of 0.I, the saddle point equations are solued foru andv. At each

temperature the solutions were obtained using the MFA update rule, iterating

unüt ll^rll < 0.0001 . The networlc was initialised with v : [0.5, 0.5]r and

conoerg"il to the global minimum at v : [0, l]t as Tp --+ 0. Figures (ø) and

(b) show the aalues of u and v obtained from the saddle point equations at each

i"*p"roture. Figures (c) and (d) giae the trajectories of u and v through the

state space. The dashed lines shown in Figure (c) are contours of the objectiae

function E.
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Figure 2.4: conlinuous Hopfietd network with 3 neulons.

The outputs u¡ of the neurons øre fed-baclc to the i,nputs, where they are

weightei by the connection strengths T¿¡. The summation of wei'ghted out-

puts, erternal bias b¿ anil decay term -r¡u¿ is passed through an integrator to

giae the internal state u¿. The internal state passes through a transfer functi'on

to giue the outPut u¿ : g(u¿).
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is described by two variables: its internal state z¿ and its output u¿. Unlike the binary

outputs of the discrete state Hopfield network (see Section 2'2), the neulon outputs may

assume a value u; € [0,1]. As b"for", the strength of the synaptic connection from the

output of neuron 7 tà the input of neuron i is given by T¿¡' Each neuron also has an

extãrnal bias b¿ applied to the input. A schematic diagram of a continuous Hopfleld

network is given irrFigure 2.4" The network forms a dynamic system described by the

following equations:

du¿

dt 
: T.To¡u¡ - \u¿ * b¿ (2'I2)

J

ui : g@;). (2'13)

Here 4 is a decay parameter. The transfer function g(') it a mo-noto-nically increasing

function that restricts the neuron outputs to the Ïange u¿ € [0'1]' The usual choice is

the shifted hyperbolic tangent (sigmoid) function

g(u¿) --- 1+ exp(-u¿lTn) Q't4)

where Tp is aparameter controlling the slope of the transfer function in the linear region,

and is termed the pseud,o-temperature-

If the interconnections are symmetric i'e' T¡j : T¡;' then the network admits the

Lyapunov function (HoPfield, 1984)

stu"vþt) : --t++r¿¡u¿u¡ -\uouo * r+ 1"",,n-'{r)or' (2'i5)

Un¿er the assumption of symmetric interconnections and monotonically increasing trans-

fer functions,

dEta"P ðEta"p du¿

A", dt
\-Ldt

t
¿

-ÐT¡u,lr¡u¿-b¿ g
du¿

dt
J

(u )

: -\g,(uo)(#)'

Since Eta"p is bounded below and the time derivative of the Lyapunov function is non-

increasing, it is apparenl "that the time euolution of the system is a moti'on in state sp&ce

that seelcs out minima in EtY"p and, comes to a stop at such points" (Hopfield, 1984).

Relation Between Stable States of the Continuous and Discrete Hopfreld Networks

The nature of the relationship that exists between the stabie states of the continuous

and discrete Hopfield networks is primarily determined by the pseudo-temperature Tp.

The following discussion is based on the original work of Hopfield (Hopfield, 1984).

Consider only the first two terms of the Lyapunov function given by equation (2.15)

for the continuous Hopfield network and assume that T¿¿ :0' Then Etuop - E where
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E : -1-Ð t T¿¡u¿u¡ -Dbou,. (2.16)u- 2to i+i i

Obviously, ,E is equal to the Lyapunov function for the discrete Hopfield network, as given

in equation (2.4).Typically, all extremaof E will lie at verticess of the lú-dimensional

hypeìcube Q ( u¿ ( 1. The discrete Hopfield network searches for minimal states at

the vertices of the hypercube i,.e. Ihe network searches for a vertex that is lower in E
than its adjacent vertices. Since -E is a linear function of a single u¿ along any edge of

the hypercube, the extrema of E in the discrete space ui € {0,1} are exactly the same

vertices as the extrema of ,E defined over the continuous space Q 1 u¿ 11.
The integral term in the Lyapunov function of equation (2.15) for the continuous

Hopfi.eld. ,r"t*o.k complicates the relationship somewhat. The integral is zero when

u¿: l12 and is positive otherwise, becoming larger as u¿ approaches the asymptotes at

0 and 1, as indicated in Figure 2.5. In the low pseudo-temperature limit Tp --+ 0, the

integral term becomes negligible and the stable states of the low pseudo-temperature

contlnuous Hopfield network are exactly those of the discrete state Hopfield network.

For small non-zero Te , l]¡e integral term gives a significant positive contribution to

Elaop near all surfaces of the hypercube, while it still contributes negligibly at the centre

of the hypercube. Therefore, the maxima of the energy function remain at the vertices of

the hypercube, but the minima are slightly displaced towards the interior. As the pseudo-

temperature increases, each minimum moves further inward. Gradually the minima

and saddle-points coalesce until, at very high pseudo-temperatures, the integral term in

equation (2.15) dominates and the only minimum is at u¿ : I 12 v i. when the pseudo-

ternperature is suitably low so that there are many minima, each minimum is associated

with a single minimum of the Te - 0 case. Indeed as Tp --+ 0 each minimum moves

toward a particular vertex of the hypercube.

2.5.1 A Simple Example

To demonstrate the operation of the Hopfield network, we shall use it to minimise the

quadratic function given by equation (2.11). For completeness, we restate the objective

function as

t4

E(') 1 T

T-

v-v lål
1 -4 T

2 -4 1

To use the Hopfield network to minimise E, it is necessary to set the interconnection

matrix and external inputs as

1 -4
-4 1

and

b lål
The operation of the Hopfield network is illustrated in Figure 2.6. Annealing has not

been used in this example. In order to equate the full Lyapunov function for the Hopfield

network, as given by equation (2.15), with the objective function E it was necessary to

set the decay parameter \ :0. Consequently, the u variables are unbounded and will

5In the unusual situation that ? is positive or negative definite, it is possible for an extremum to

exist in the interior of the hypercube.
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Figure 2.5: Plots of the transfer function and integral term in EIa"p.

(a) The sigmoidal input-output transfer function u¿ : g(u;) for aarious ualues

ol Tp. As Tp -+ 0 the transfer function approaches the step function used

in the di,screte Hopfield networle. þ) fhe contribution of the integral term

lå.,ug-tv)dv to the Lyapunou function in equation (2.15) for aarious aalues

iffr. 
'¿,i 

f, -> 0 the integral term decreases in magnitude and EIa"p for the

continuous Hopfietd network approaches that of the discrete networlc i'e. equa-

tion (2.1).
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continue to grow in magnitude. This is only practical when simulating the network on a

digital 
"orrrplrt"r. 

For a hardware implementation, 4 is set to a small non-zero value and

thã quadraiic objective function may be approximated by the full Lyaprrnov function

for the network only if very high gain transfer functions are used. In that case the

contribution to the iyuprrrrov functi,on from the integral term in equation (2.15) will be

negligible"
i, tt" Hopfi.eld network operates by performing gradient descent, the stable point at

which it arrives is dependent upon the initial conditions. Although the global minimum

was found in the "*u-pl" 
given in this section, it is apparent that initial conditions

exist that would tead to the sub-minimum at v : [1, 0]t. The process of annealing, as

discussed in Section 2.5.2, is intended to prevent such behaviour and will be the subject

of further discussion in Chapter 4.

2.5.2 Annealing Techniques

An important property of the Lyapunov functi on Etuop is that it is smoother than

the quadr atic E due to the presence of the fi.'u g-t(v)dv terms6' . At low pseudo-

temperatures, when the minima of the Lyapunov function approach the vertices of the

hypårcrrbe, the rugged structure of the quadratic E will dominate the smooth integral

tår.-r, and in additi,on to the global minimum at v the Lyapunov function will have manv

sub-minima. As the operation of the Hopfield network is a motion in state space that

seeks out minima of the Lyapunov function, it is likely that the stable point reached by

the network will be a sub-minimum. However, at sufficiently high pseudo-temperatures

this is less likely, as the smooth integral terms dominate and only the deepest minimum of

E will be evident in the Lyapunov function. Unfortunately, at high pseudo-temperatures

the minima of the Lyapunov function have been displaced from the vertices of the hyper-

cube towards the interior and are no longer interpretable solutions of the combinatorial

problem. In order to avoid the sub-minima of the Lyapunov function whilst also ensuring

that the fi.nal stable point reached by the network is suitably neal a 0 - 1 point, it is

usual to employ some sort o1 annealing mechanism'

Temperature Annealing

Temperature annealing (Hopfield and Tank, 1935) involves gradually increasing the gain

of the transfer fun"tions (dãcreasing the pseudo-temperature 7r) while integrating the

dynamic equation (2.12). Such a computation is analogous to that performed by the

ifnf,A algoriìhm, where a solution to the saddle point equations is computed at a series

of prog.".sive1y lower temperatures. The relationship between MFA and the Hopfieid

n"twof may be further "*plor"d 
by considering an Euler approximation to the Hopfreld

dynamics in equation (2.I2) with time step AÚ,

u(r * at) : u(t) + At (-au(r) + tvlt¡ + b) .

Furthermore, if we choose \ : I and AÍ : 1 the Euler approximation reduces to the MFA

algorithm update rule (2.9) (Peterson and Anderson, 1988; Van den Bout and Miller,

1gt-g0). Althãugh MFA ìs essentially a discrete algorithm it is obviously closeiy aiigned

with the temperature annealed Hopfield network.

6Note that a similar statement has been made about the eflective energy in the MFA algorithm' The

Lyapunov function for the continuous Hopfleld network is in fact closely related to the effective energy

for the MFA algorithm.
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Figure 2.6: Operation of a Hopfield network.

The plots show the operation of a Hopfi,eld networlc on the quadratic functi'on
E in equati,on (2.11). To ensure that Elaop - E, the parameters T :0 and

Te - I are used. Integration of the Hopfield dynarnic equations yi,elds the

traces shown in (a) and (b). Since th,ere is no decay terrn, theu uariables are

unbounded. The gradient descent nature of the Hopfi,eld dynamics is eui'dent in

(c) where the dashed lines are contours of _Etaae. The network is initialised at

v : [0.5, 0.5]r and conaerges to v : [0, 1]r, which is the the global minimum

of th,e Lyapunou functi,on within the uni,t squüre. The Hopfield dynamics, giuen

by equations (2.12) and (2.13), were integrated using the Euler method with a

constant step-size Af : 0.01'
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Hysteretic Annealing

Hysteretic annealing (Eberhardt et al., 1991), matrix graduated non-convexity (Aiyer,

rfiOr; an¿ convex re"laiation (Ogier and Beyer, 1990) are all closely related and we shall

collectively refer to them u,s hysl"r"tic annealing. Hysteretic annealing is an alternative

approach to temperature annealing. when employing hysteretic annealing the pseudo-

temperature parameter Tp is held constant and the decay term 4 is commonly set to

,"ro, inwhich case the Lyapunov function in equation (2'15) reduces to the quadratic E

in equation (2.16). In its most widely applicable formT (Gee, 1993) hysteretic annealing

involves adding a term

Ea,nn - -1.,I @¿ - 0.5)2 (2.t7)
2', 7'

to the Lyapunov function EIa"p of the Hopfield network. The function Eonn is either

convex or concave, depending on the sign of the annealing parameter 7. Initially, 7 is

set to a large negative v.lu", in which case EtYop is convex and v converges to a point

inside the hypercube. subsequently, 7 is gradually increased allowing more of the rugged

structure of E to be evident in the Lyapunov function. Eventually Eta"p becomes concave

and the network will converge to a vãrtex of the hypercube. Hysteretic annealing will

be considered in more detail in Chapter 4. Hysteretic annealing may be implemented by

modifying the dynamic equation (2.12), uiz'

: t T¿juj - \u¿ * b¿ I l(u¿ - 0.5)

J

2.6 Hardware ImPlementation

When compared to alternative methods for the solution of combinatorial optimisation

probiems, the one signifi,cant ad.vantage of optimisation networks is their ability to ap-

proximately soive probl"rn, in milliseconds. Such extremely fast solution times may only

be achieved by a direct implementation in hardware'

An analogue circuit implementation of the continuous Hopfield network is shown in

Figure 2.7. Such an analogue circuit would relax to a stable state within a few time

constants of the circuit components. Summing currents at the input to the operational

amplifiers gives the circuit dynamics as (Hopfield, 1984)

c,#: 
? 

r¿¡u¡ *bn -Y (2.18)

du¿

dt

1
11.. 

-,r, _ 
R|i.î

11_r-
Riî ' Rii

1 1

J

1

eand t +
ri

The sigmoidal transfer function u¿ : g(u¿) is impiemented by the operational amplifiers

shown in Figure 2.7. Inclusion of both inverted and non-inverted outputs from the

operational amplifier allows both inhibitory and excitatory connections to be made in

the network. For an inhibitory interconnection (Tn¡ < 0) the inverted amplifier output

for neuron j is connected to the input of neuron i by a resistor .Ri)' An excitatory

interconne"iio.r (Z¡ > 0) is established by connecting Rii to the non-inverted amplifier

7It will be shown in Chapter 4 that the hysteretic annealing terrn Eo'n given by equation (2.17) is

not particularly well suited to the solution of many problems'
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Figure 2.7: Analogue hardware implementation of a Hopfield network (Gee, 1993)

The operati,onal amplifi,ers in the aboue ci,rcui,t implement the sigrnoidal trans-
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output. By comparison of equations (2.1S) and (2.12), it is apparent that the circuit

has dynamics equivalent to those of a Hopfleld network with \ : Ilr¿" The speed of

operation is governed by the time constant of the circuit, as determined by the values of

the circuit's capacitors and resistors. Annealing may be accomplished by slowly varying

the gain of the amplifiers (Lee and Sheu, 1993; Bang et al., 1995)"

Whilst circuits such as that in Figure 2.7 are a straightforward implementation of the

Hopfield dynamics, they bear little resemblance to practical implementations. When un-

dertaking analogue hardware design, consideration of non-idealities such as propagation

delay (Smith and Portmann, 1989) and process variations (Johnson et al., 1995) heavily

influence the implementation. Moreovet, the programmable resistors required for the

circuit of Figure 2.7 arc difficult to implement in VLSI. Consequently, the operational

amplifier - resistor circuit has been replaced in favour of MOSFET analogue amplifiers

where the interconnection strengths may be stored as voltages (Eberhardt et al., 1992).

Alternatively, analogue neural networks can be implemented using pulse stream VLSI

(Hamilton et al., 1992; Johnson et al., 1995), where the advantages of both analogue and

digital VLSI techniques may be exploited.

2.7 The Niche Market

As there already exists a wide variety of solution methods for combinatorial optimisation

problems, it is important to understand the comparative advantages and disadvantages

of optimisation networks in order to define their niche rnarlcet. The existing algorithms

may be broadly classified as either a construction heuristic, improvement heuristic or an

exact method:

Construction Heuristics provide a one-shot solution algorithm i.e. lhey determine a

solution according to some construction rule, but do not attempt to improve upon

this solution. Typical examples of construction heuristics for the TSP are the nearest

neighbour algorithm, insertion heuristics and heuristics based on spanning trees

(Reinelt, 1994; Johnson, 1990). An average excess over the optimal solution cost,

or alternatively a tightty computed lower bound, of 2l% for the nearest neighbour

algorithm, I4To lor the insertion heuristics and IgTo for the heuristics based on

spanning trees have been reported for various Euclidean TSPs (Reinelt, 1994).

Improvement Heuristics take as their starting point the solution produced by a con-

struction heuristic, and then attempt to improve upon this solution by iterating
some type of basic moves. Examples of improvement heuristics for the TSP are

node and edge insertion, and the k-opt heuristics of Lin and Kernighan (Lin, 1965;

Lin and Kernighan, 1973). An average excess over the optimal solution cost, or al-

ternatively a tightly computed lower bound, of 8.2% for the node and edge insertion

algorithm, 8.470 lor the 2-OPT aigorithm, 3.6% for the 3-OPT heuristic and 1.3%

for the full Lin-Kernighan heuristic have been reported for various Euclidean TSPs

(Reinelt, 1994). More recently, simulated annealing (Kirkpatrick et al., 1983) and

genetic algorithms (Goldberg, 1989; Fogel, 1994) have proved popular for combina-

torial optimisation. While both techniques are indeed capable of producing good

solutions they do require a considerably long running time.

Exact Methods such as the branch and bound algorithm (Lawler and Wood, 1966)

or the more successful branch and cut algorithms (Grotschel and Holland, 1991;

Padberg and Rinaldi, 1991) are capable of finding the exact solution to combinatorial
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optimisation problems such as the TSP. However, this is a time consuming plocess

and. it is often necessary to terminate such algorithms before optimality is reached'

Given the classification of existing techniques into these three broad categories, the trade-

off that is possible between solution quality and computation time is made apparent in

Figure 2.8. obviously the precise execution times and solution qualities ale problem

def,endent, but Figuie 2.5 remains representative of the relative performance of these

solution techniquesl While construction heuristics may produce solutions of only moder-

ate quality, they can execute on mod.ern computer workstations in a matter of seconds'

Improvement heuristics are capable of producing far better solution quality but typically

,"qìir" many minutes of computation time to do so. Exact methods are capable of solv-

satiãn probiems to optimality, but to do so they require very

ice they are often terminated after several hours of execution

essarily attained the optimal solution'

It is apparent from the vast literature avaiiable on the application of optimisation

networks ìhut th"y provide a solution quality that is woIse than most other techniques,

being comparabi" orrly with that of 
"orrstrrrction 

heuristics. Where optimisation networks

hurrJth" ãdg" i, that they are inherently suited for implementation in fast, parallel

hardware. Such hardware implementations give rise to solution times of the order of

milliseconds.
However, optimisation networks have a significant disadvantage in that they are forced

to adopt inefficient problem representations: for example, to solve an ¡ú-city TSP it is
necessary to use u, ,r"ì*ork of I,Ii processols. Consequentiy, on a conventionai digitai com-

puter, the time required for simulation prohibits optimisation networks from application

to a TSP of more than 100 cities. However, as previously explained, the great advantage

of optimisation networks is the quick solution times achieved when implemented in fast,

purull"l hardware and so their performance in simulation is only of secondary importance'

Ùnfortunately, the ineffi.cient problem representations lead to poor space complexity for

hardware implementations.
It would appear from our discussion that the niche marlcet for optimisation networks

is moderate-sized problems of hundreds to tens of thousands of variables, where solu-

tion quality i, nof the overriding concern, but where execution time is of paramount

importance. However, in the course of this thesis we will find it necessary to revise the

definition of the niche market for optimisation networks at the very least, to ac-

knowled.ge some previously unconsidered factors which are relevant to the definition of

the niche market for optimisation networks'
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The Problem MaPPing

In this chapter we demonstrate how combinatorial optimisation problems can be mapped

onto optimisation networks. Given that optimisation networks are well suited to the

minimisation of a quadratic function over a set of 0 - 1 variables, the goal of a successful

mapping is to express the problem in exactly this form' Unfortunately, combinato-

.iui åpti*isation problems are more naturally expressed as a quadratic 0 - 1 program-

ming problem: minimisation of a quadratic objective function, subject to a set of linear

constraints, over a set of 0 - 1 variables. while it is straightforward to associate the

quadratic objective function with the Lyapunov function for an optimisation network,

ii is not readily apparent how to ensure that the constraints are satisfled. The answer

is to recast the constraints as quadratic penalty functions which attain their minimum

value only when the constraints are satisfied' Consequently, problem mapping involves

the formulation of suitable penalty functions'
The mapping process has been the area of most intense research in the freld of op-

timisation networks and so we begin in Section 3.1 by surveying the landmarks in this

research. For the rest of the chapter we take as our starting point the valid subspace

approach, which is the current state-of-the-art mapping technique. As a concrete exam-

pi" .f the mapping process, the travelling salesman probiem will be developed and the

ir"""r.ury problem representation is given in Section 3.2. When developing concepts in

this chapter particular attention is paid to the travelling salesman problem' However,

the concepts presented are widely applicable and may be used in any application of op-

timisation networks. To elucid.ate our preferred mapping technique, the valid subspace

for a simple problem is developed in Section 3.3 and then generaiised to the TSP. In

Section 3-4 we show that once the valid subspace is defined, it is then a simple process

to construct a penalty function which correctly constrains the network state to lie in

the valid subspace. To gain more than just a geometrical insight into the action of the

penalty function, we exarnine the penalty function to determine how the individual con-

straints of the TSP are enforced. In Section 3.5 we undertake a linearised analysis of

the network dynamics to confirm that the chosen penalty function will ensure that the

problem's constraints are satisfred. Finally, in Section 3.6 we show how to map some

common probiems onto an optimisation network.
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As was shown in the previous chapter, the operation of an optimisation network, such

as the continuous Hopfietd n"twork, is to seek out minima in the Lyapunov functionl

Etsop : -lrrtrl, - v"b. (3.1)
2

consequently, the Hopfield network provides a method for minimising functions given

by 
"q.åtion-(8.1), 

*hilrt iimiting the output of the network to remain within the unit

hyp"r"nb". Moreover, as the 0 - 1 points lie at the vertices of the unit hypercube, the

Hopfreld network is weli suited to the minimisation of a quadratic function over a set of

0 - 1 variables.
Combinatorial optimisation problems, such as the travelling salesman problem, are

naturally "*pr"rr"J 
as quadratic 0 - 1 programming problems: where it is required to '

minimise a quadratic objective function EoLi over a set of 0 - 1 variables, subject to a

set of linear constraints. when mapping a combinatorial problem onto an optimisation

network it would seem reasonable to set gtvan - Bobj. However, such a strategy does

not account for the problem's constraints. To do so, the linear constraints are recast as

quadratic penalty functions E"'" which attain their minimum value whenever the con-

straints are satisfied. The problem may then be mapped onto the optimisation network

bY setting 
Etuop - Eobi r E"n',

and then identifying the necessary network parameters T and b' The exact form of the

penalty functions has been the topic of a great deal of empirical research'

An optimisation network is said to have obtained a aalid solution if it converges to

a 0 - 1 point that satisfi,es the problem's constraints and is therefore an interpretable

solution to the combinatorial problem. An inualid solution is obtained if the network

converges to a 0 - 1 point that does not satisfy the problem's constraints. The goal of a

,.r."""rrfrl problem mapping is to ensure that the network state v remains valid (i'e' v

always satisfles the problem's constraints) throughout the operation of the network. As

will be shown in chapter 4, when a successful problem mapping is combined with an

appropriate annealing technique, convelgence to a valid solution can be guaranteed'

One of the earliesi criticisms of optimisation networks was for their inability to reli-

ably produce valid solutions (Wilson and Pawley, 1988; Kamgar-Parsi and Kamgar-Parsi,

1gg"0i. primarily, this was caused by the use of incorrectly formulated penalty functions

(Aiyer, 1gg1). Indeed, it has been shown (Aiyer et al., 1990) that the penalty functions

à-itoy"a in the original mapping of the TSP onto the Hopfield network (Hopfreld and

T.rrk,-tg8tr) have a tendency to force the network towards invalid solutions. To improve

the performance of optimisation networks, a great deal of research concentrated on the

search for a successful problem mapping. The result was a large array of ad åoc formula-

tions for the penalty functions (Brandt et al., 1988; Protzelet al., 1993; Abe, 1993; Abe

and Gee, 1995; Matsuda, 1995), usually employing a separate term for each constraint'

Such ad hoc approaches were empirically motivated and achieved greatly varying levels

of success.

The identifrcation of successful problem mappings was placed on a solid theoretical

foundation with the introduction of the ualid subspace approach. The valid subspace

approach defines a rigorous method for mapping a general combinatorial optimisation

lNote that the decay term 7 has been set to zero.
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problem onto an optimisation network (Gee, 1993; Gee et al., 1993; Gee and Prager,

iOO+; Gee and Pru,g"r, 1995). Critical to the success of this approach, is the observation

that any set of f"rribl" linear constraints defrnes a bounded polyhedron, termed the valid

,obrpu"", in which the network state must lie if it is to be valid" By identifying the valid

,rrbrpr,"", a penalty function can be defined that correctly constrains the network state

to be valid.
One of the primary motivations for developing a valid subspace approach was the belief

that ad hoc approaches suffered from a multiplicity of terms which tended to frustrate

each other, and therefore could not guarantee a valid solution (Gee, 1993). In contrast,

the valid subspace approach defines a single penalty function for the problem mapping'

Such penalty functions, while easily understood from a geometric perspective, gave little

insighì into how individual constraints were enforced. In the course of presenting and

,r"rifying the validity of the valid subspace approach, we will show that the penalty

function so deflned actually consists of several terms, each designed to enforce a single

constraint. In that sense the valid subspace approach is not at all dissimilar to the

previous ad hoc approaches. The main advantage of the valid subspace approach is that

it is a principled, general technique for problem mapping'

9.2 The TYavelling Salesman Problem

As it is a popular benchmark for combinatorial optimisation, we will use the traveiling

salesman problem to demonstrate the mapping process. Restating the problem:

The traaelling salesrnan problem gSP) is to uisit each of N cities once and, only

once, and, return to the initial city hauing trauelled the least possible distance'

This problem is AfP-cornplete (Lawler et al., 1935). To solve this problem with an

optimisation network, an ly' x -f[ array of neurons is used where the output of the neuron

u-,¿ in row r and column i is one if city r is to be visited in the irh position of the tour,

and zero otherwise.
With this problem representation, the TSP may be formulated as the minimisation of

an objective function over a set of 0 - 1 variables, subject to a set of linear constraints.

Denoting the distance between cily r and city y as dro, the TSP is expressed as follows,

mrnlmlse ttobj -
Nt

trY=l
I u,¿d,o (u s,¿ -t I u o,;¡r)

1

,
N

,i=l
(3.2)

(3.3)subject to uri:r Vie {i,...¡tr}

and uti:7 Y r e. {1,." ¡f}

where

Nt
r=l
N

Ð
;--1

vrx € 10

(3.4)

(3.5)

Note that all indices are evaluated modulo Iú. As a solution to the TSP is being cal-

culated, the variables of the optimisation network may take on values in the range

u,¿ € [0,1]. However, for the final state of the optimisation network to be interpreted

as a solution to the combinatorial optimisation problem, it is required that u'¿ € {0' 1}.

For the state of the network to represent a valid solution, the column and row sums of

the array of neurons must equal one, as written in equations (3'3) and (3.a)' Given a
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valid 0 - 1 solution to the TSP, the objective function Eobi evahtates the length of the

tour represented.
The operation of an optimisation network is to seek out minima in the Lyapunov

function. As discussed in Section 3.1, to solve the TSP with an optimisation network

it is essential that minima of the Lyapunov function correspond not only to short tours

but also to valid representations of a tour. To achieve this the Lyapunov function is

constructed as

Eta"p - Eobi I E.n',

where Eobj is the objective function for the TSP (3.2) arrd E"n" is a penalty function that

is minimised when the constraints given in equations (3.3) and (3.a) are satisfied. In the

rest of this chapter we will focus on the valid subspace approach to problem mapping. For

details of other less successfui problem mappings the reader is referred to the literature.

3.3 The Valid Subspace

The valid subspace approach to problem mapping relies on the identification of lhe ualid,

subspace: a bounded region in which the problem's constraints are satisfied. For any set

of feasible linear constraints it is possibie to define a bounded polytope, such that if a

0 - 1 point lies within the polytope then it must be a valid solution (Gee, 1993; Gee and

Prager, 1994). This bounded polytope is in fact the valid subspace. This principle will
b" J"-onrtrated on a simple 3-dimensional example and then generalised to the TSP.

3.3.1 Simple S-dimensional example

Consider a problem with three variables, where for a vector to be valid it must meet the

constraint o

f 'o:1 where u¿ € [0,1]'
i=1

The shaded plane in Figure 3.1 shows lhe aalid subspace, the set of all points that satisfy

the constraints. obviously, theonly valid 0 - l points are {[1,0,0]", [0,1,0]r, [0,0,1]r],
which lie at the vertices of the valid subspace, but there are many other points inside

the unit cube which are valid.
The vector ê: [å,å,å.|" is valid as the sum of its elements is equal to one. Conse-

quently the tip of a liei iti th" valid subspace. It is apparent from Figure 3.1 that any

other valid vector v may be reached from ê by the addition of a component v'",

v:v'"*ê.

As ê already satisfies the constraints, it is essential that the sum of the elements of

v'" equals zero. Therefore, v'" is said to lie in the zerosum subspace. The vector ê is

orthogonal to the zerosum subspace, since v'"'ê:0'

3.3.2 The TSP

To simplify the discussion it is assumed that the output of the 1/ x Iú array of neurons

that is used to solve the TSP has been reshaped into a vector. When dealing with this

vector it is to be understood that the terms row sum and column sum refer to the sums

of elements in the rows and columns of the underlying matrix structure.
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valid subspace

(0,0,1)

(1,1,1)

(0,0,0)

(1,0,0)

Figure 3.1: The valid subspace for a simple 3-D example (Aiyer, 1991).

The shad,eil plane shows the aaliil subspace for the constraint that l!=t u¿ -- I'
The only aaliil 0- l points are {11,0,0]t, [0,1,01", [0,0,1]"], but there any

rn&ny points inside the unit cube which satisfy the constraint. Any point which

Ii,es on the ualiil subspace can be erpressed as v : v"" + è.
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Now, unlike the simple 3-dimensional example, the constraints (3.3) and (3.4) for the

TSP require that all the row and column sums of a valid vector equal one' However, it is
still possible to define a valid subspace for the TSP. Integral to the definition of the valid

,rbrpu.. is the zerosurn subspace, which in the case of the TSP, is the set of all vectors

that have row and. column sums equal to zero. Any vector v, regardless of whether it is
valid or invalid, may be decomposed into three mutualiy orthogonal components (Gee,

1ee3)

v : v"" +.rt + vi" (3.6)

: T'"v * (v . ê)ê * v'n'

where yzs : Tr"v is the component of v that lies in the zerosum subspace, T'" is a

suitablv defrned projection matrix, vl : (v . ê)ê is a component in the direction of

e : # [1,1,. . . ,l]t and vi" is a component in the inualid subspace.

If L-vector v does not satisfy the constraints (3.3) and (3.4), it is invalid and must

therefore have a non-zero component vxnu in the invalid subspace' Conversely, if a vector

is valid, there can be no component in the invalid subspace. Additionally, as any com-

ponent in the zeïosum subspace does not contribute to the row and column sum, it is

,r"""r.u.y for the magnitude of v1 to be such that the column and row sums equal one.

Wiih these consideralions it is apparent that any vector in the valid subspace can be

written as

v : v'"+ê
: T'"v * ê.

Obviously, v1 : ê satisfies the requirement for the row and column sum of a valid vector

to be equal to one, while a component v'" will not alter the row and column sum.

Interestingly, all the vertices of the valid subspace coincide with valid 0 - 1 points (Gee

and Prager, 1994).

3.4 Enforcing ValiditY

Now that the valid subspace for the TSP has been defined, it is a simple matter to

construct an appropriate penalty function. By appealing to simpie qualitative arguments,

we will show in this section that the chosen penalty function does indeed enforce the

problem's constraints.
To ensure that v remains valid, we wish to encourage v to lie in the valid subspace

during the operation of the network. This can be achieved by the use of an appropriate

penalty function (Gee, 1993; Gee and Prager, 1994),

Ecns -'rAV - (T,"r + ê)ll' (3.7)

where c is a positive constant2. When v iies on the valid subspace, E'n" is zero, while

-8"r" grows rapidly as v strays further away from the valid subspace. To map a particular

problem onto the network, the Lyapunov function is set as

EobjEla"P + E'n"

2Note that c is similar to a Lagrange multiplier
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and in the limit of large c, E"n" will dominate over Eobi so that the gradient descent

nature of the network will effectlvely pin v to the valid subspace. Furthermore, as long

as v remains in the valid subspace, the penalty term does not interfere with the objective

function, so that Eta'p - E'òr. This concept is illustrated in Figure 3.2.

The penalty function (3.7) is easily understood from a polyhedral perspective, but it

is less than clear how it enforces the row and column sum to be equai to one. One of

the primary motivations for developing the valid subspace approach was that penalty

functions were previously constructed in an ad' hocmanner' employing one term for each

constraint, and it was suggested that such a multiplicity of terms tended to frustrate

each other (Gee, 1993). Whii" the following analysis will confirm that the valid subspace

approach is indeed "o..""t, 
it wili further show that the penalty function (3'7) is itself

constructed from several terms which individ.ually enforce constraints. The remainder of

this section is devoted to reformulating the penalty function (3.7) to understand how it

enforces the constraints for the TSP.

Expanding equation (3.7) we obtain3

Ecns : -.2u'(T'" -r)'t, -"uTê+:êtê2' \* -,- 2

nN" "!1 c
uouolT"" -Ilo, - - L up i õ'-d ,"-=, t\ Ã 2

Now to evaluate E"n" in terms or ur¿, the output of the nelllon in row ø and column i of

the neuron array, we must make explicit the transformation between the Iú x 1ú array of

neurons and its vector representation,

up:u,i where p:(n-1),nú+i (3'8)

and,
Do:Dyj where o:(A-t),nf +f (3.e)

for r, i,y,j € {1,...¡vr} and p,o e {1,...¡r'?i. with [A],,, denoting the_u,u elementof

a matrix A, the pro¡""tion matrix T'" -uy be defined as (Aiyer, 1991; Gee et al., 1993)

tr,"to": (u,o- #) (r,, - #) (3.10)

and the identity matrix is given bY

lllr' : 6,06¿j

where the relationships between the variables p,o and n,9,i,j are described by equa-

tions (3.8) and (3.9). Making substitutions into the expressionfor E"n'we obtain

Ecns : -;ÐÐ ((r- - #) (o,i - #) - s,o6o¡) l,riuvi - *Eu,o+;

: ;(ii+*ùai. #Ð Du'nu'' - #Ð+u','o') - frÐu'n + ;
3Note that T^ is symmetric and since T" is a projection matrix, TzstTzs = T"" . Also, ê lies in the

nullspace of T", so T'"ê:0, where 0 is the zero vector'



3.4 Enforcing Validity

E"bj Elaop-Bobi¡Bcns

30

Penalty

Function

v v
invalid vatid invalid

Figure 3.2: The valid subspace problem mapping in one dimension (Gee, 1993)'

A simple optimisation problem where i,t i,s required to mi'nimise the function
Eobj ouer ali,mited ro,nge of aali,di,ty. To map the problem onto an optimisation

networlç it is necessary to set EIa"p : frobj I E"t , where E"n" is a suitably

d,efi,ned, penalty function. With the ualid subspace rnapping the penaltg function
is zero oaer the ualid subspace and grows rapidly as v rnol)es o'wa"Y from the

ualid, subspace. Consequently v is encouraged to lie in the aalid subspace'
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where we have used the convention that all summations are from 1 to 1ú unless explicitly

shown otherwise. To make further simplifications it should be noted that

#T(Ð*,-1)' : #?Ðu'nuoo_ +*u"i*r (3 11)

and

#Ð(?'",-')' : #ÐÐ"'u''-i,u'¿*7 (3 12)

utilising equations (3.11) and (3.12), the penalty function' E"n" may be reduced to

(Ð,',-')' +ft;(r "o-')Ecns tc

¡\r2

c
-, D D uriuvi

ts ij

I"\-
t¡4

TX

1
uri- 

ñ
I

cc
, ,

*+(Ð"'-')' + 2N t uri-I Ð', - (3.13)
2N2

with the penalty function E"n" expressed, as in equation (3.13), it is easy to see how

the constraints for in" rSp are enforced. The first two terms are zero when the column

and row sums are equal to one, and positive otherwise. This clearly only penalises

invalid states. These ãxu,ct terms have been used in many mappings of the TSP onto an

optimisationnetwork (Brandt et al., 1988; Protzelet al., 1993; Abe, 1993; Abe and Gee'

1-OOS; ltttsud.a, 1995). In fact, these two terms alone are sufficient to guarantee that v

remains in the valid subspace (Aiyer, 1991). The final term is at first counter-intuitive'

The minus sign indicate. that it favours states where the sum of ail elements is not equal

to lú. It is oniy the factor IlN2 ihat prevents the third term from overpowering the

constraining efiects of the row and column sum termsa. Interestingiy, the third term has

a similar effect to the global terrn in Hopfield's original mapping of the TsP (Hopfield

and Tank, 1985), where parameters wele chosen to favour mole than N neulons being

switched on.

3.5 Eigenvector AnalYsis

So far we have relied on rather simple, but compelling arguments to see that the penalty

functions defined by the valid subspace approach do indeed restrict the network state v

to be valid. In this section \4/e present a rigorous analysis that formalises much of the

preceding intuitive argument.
If an ãptimisation network for the TSP is configured without the objective terms in

the Lyapunov function, so that

Elyop : Ecns
1: -iu'r"""., -'t 

Tb"'" f constant (3'14)

aA deeper analysis, followingthe procedure presented in Appendix C.1, would reveal that the presence

of the third term in E"r" acts to make equai the eigenvalues of the connection matrix in the invalid

subspace and in the direction of ê. In doing so, equal significance has been placed on the action of the

penalty functions in both these directions.
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we could appeal to the gradient descent arguments presented in Section 3'4 to see that

v would be restricted to the valid subspace as desired. However, we wili obtain further

insight into the operation of a su

dynamics of the network. While
of the penalty functions, it will
annealing schemes, as presented in Chapte

l-r"""r.ury to determine the eigenvectors and eigenvalues of the connection matrix T"'"'

To do so, it is fi.rst necessary to determine an expression for the connection matrix

T"'". By substituting equation (3.13) into equation (3.14) the connection matrix and

external bias maY be determined as

lT""'1,;,y¡

bcns

As shown in Appendix c.1, the connection matrix T"'" given by equation (3.15) has the

following eigenvalues :

Àt: -"
The corresponding eigenvector is ê

Àz:0
This is a degenerate eigenvalue with the corresponding eigenspace being the zerosum

subspace.

\_A3 - -<'
This is also a degenerate eigenvalue with the corresponding eigenspace being the

invalid subspace

3.5.1 Analysis of the Dynamics of the Network

To further understand how the penalty functions restrict the network state to lie in the

valid subspace) it is necessary to analyse the iinearised dynamics of the network' The

operation of the network is described by the nonlinear equation

ù:T"'"v+b"'"

where u¿ : g(u¿). In order to perform an eigenvector analysis, we must linearise the

transfer functions g(u¿) about an arbitrary point v(0) - ø(u(o);. Linearised analysis

about the point ',r{õ)'gives suffi.cient information to approximate the network dynamics

at this point. However, as the network dynamics cause v to move away from v(0) th"

linearised analysis will become less accurate. To accurately approximate the network it

then becomes necessary to linearise the dynamics about the current state v. Linearisation

of the transfer functions gives
v:Ku*d

c c^ c
: --h:: - -ò^", 

L 

-
: 

ñ"rt - ¡vta 
r 

¡¡2
(3.15)

(3.16)

where lKl"¡ --

ü: Kù and t

f ,Í')(t - "[o)l.¡ro 
o.- i. and. d,¿- ,Ío) _,r(o)r{o)11 - u[o\¡¡rr. Therefore

\ o i+ j
hè ünearised network dynamics are given by

ü:K(T'"".r+b""").
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Using equation (3.6) to decompose v into its components,

ù : K(Àrvr + Àzv'" + À3vt'" + b""").

Substituting b"'" - cë, ',rt : (r . ê)ê and explicit values for the eigenvalues gives

ü : K{()1(v.ê) +c)ê*Àzv"+)avi""}
: K {(" - c(v.ê))ê - cvi""} .

(3.17)

(3.18)

Obviously, when the network has converged ü : 0, where 0 is the zero vector, and the

linearised dynamics (3.13) for the network may now be examined to determine how the

""H:i,;, il::,|1îäi:iiiï'l,i!,^".,,u subspace is -cKvi',. since K is a diagonar

matrix with non-negative elements, .the component of v in the invalid subspace wili

decrease in magnitude, leading to llv''"ll : 9.

Secondly, the net component of ü in the direction of ê, will be K(c - c(v ' ê))ê'

Therefore, the component in the direction of ê wilt move to a hyperplane where

c-c(v'ê)
v'ê
+vl

asrequiredforvtobevalid.obviously,withvl:êandllvt"'ll:othenetworkstate
ha, 

"onrr".ged 
to the valid subspace. Moreover, in doing so there has been no influence on

the component v'" in the zerosum subspace, which is the component in a valid solution

which determines the particular tour to be travelled in the TSP. Naturally, this should

be expected, since we have considered only the penalty functions in thìs analysis and

therefore do not want to influence the choice of a tour in the TSP. Only the distance

terms in the objective function should influence the component v'".

3.5.2 Analysis of the Lyapunov function

Further to the analysis of the linearised dynamics it is possible to reformulate the Lya-

punov function in terms of the eigenvalues of the connection matrix. In doing so, it is

ll"urly shown how the individual components of the network state v are affected by the

energy minimisation nature of the network. By decomposing v into components as in

"qrrJior, 
(3.6), and omitting the uninteresting constant, the Lyapunov function (3'14)

becomes

Elsop : -å (^rllttll' r À2llv'"112 + Àrll.r¿"ll') - urb'n". (3.19)

Furthermore, explicitly substituting for the eigenvalues and noting from equation (3.16)

that b"'" : cê, gives

Elvop - ilu'll' +;llvt""ll2 - cêrv.

Since.rt : (t.ê)ê where ê is a unit vector, the norm of vl is given by llttll : v'ê'
Therefore 

Etuop -å {¡tr'll - 1)' + llrr,"ll' - 1}.

0

1

e
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As an optimisation network seeks out minima in the Lyapunov function, and since c

is a positive constant, we would expect the network to converge to a state where

llttll :r i'e' vl :ê

and
llt'""11 :0.

In doing so, the network wiil have converged to the valid subspace' Moreover, there has

been no influence on the component v'" in the zerosum subspace, which is to be expected

for the reasons outiined in Section 3'5'1'

3.6 Mapping Some Common Problems

optimisation networks have been used to solve many problems apart from the TSP:

shortest Hamilton path, graph labelling and the assignment problem are among the

more common. t' thi, r""tiã" we show how to map each of these problems onto an

optimisation network. Firstly, it is necessary to give a concise problem statement and

then define a suitable problem representation. To complete the mapping, an appropriate

objective function is defined and the problem constraints are detailed'

Shortest Hamilton Path

The Euclidean, shortest Hamilton path problem (HPP) is simply stated as:

Gi\en N ci,ti,es ,in a plane, att of which must be uisited once only, find' the order

in which to uisit them such that the total distance traaelled is minirnised.

The Hpp is quite similar to the travelling salesman problem: the only difference being

that a Hamilton path does not return to the city at which it started. To solve this

problem with an optimisation network, an 1ú x ¡vr alray of neurons is used, where the

output of the neuron in row r and column i is one if city r is to be visited in the i'À

po.ition of the path, and zero otherwise. Denoting the distance between city t and city

y u" il,o the objective function for the HPP is given by,

rNN
Eobi - å f lu"fl'o(ua,i.-t*uo,;¡r). (3.20)

2 
",g=t l'=l

Note that, unlike the TSP, the indices are not evaluated modulo l/ and so Eobi calculates

the length of an open tottr. For the network state v to be a valid solution to the HPP,

it is required thaf precisely one neuron be on in each row and column of the array.

Accordingly, the constraints are exactly as given for the TsP in equations (3'3) and

(3.4), urrJit " 
appropriate penalty function is given by equation (3.13)'

Graph Labelling

The graph labelling problem is central to several invariant pattern recognition systems

(Mjolrrrår, et al., réOr; C"" et al., 1gg3). The graph labelling problem is simply stated

AS:

Giuen two graphs Gp and, Gq, f,nd the relabelling of the nodes in graph Gp

such that the relabelled graph best n¿atches graph Gq'
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We assume that both graphs have the same number of nodes .f[, and let the edge weight

matrix for Gp be P and that of Gqbe Q. Then the graph labelling problem is to relabel

the nodes in Gp, thereby giving a reordered edge weight matrix P', such that P/ best

matches Q.
Once again to solve this problem with an optimisation network an l/ x I/ array of

neurons is used, where the neuron in row i and column j has output denoted by u;¡. If
uoj : lthen node i in Gp is matched with node j tî Gq,and if u¿j : 0 such a labelling

hås not been made. A quantity which measures the dissimilarity of the relabelled Gp

and the original Gq is (Mjolsness et al', 1991)

nobi 
- 

N
.ú--' : -2 Ð T Q¿,u¿¡P¡ou,o.

i,.i=r x,g=l

For a valid graph labelling, each node in Gp must be matched with a single node in Gq.

Consequently, for v to represent a valid iabelling, only one neuron must be on in each

"olo-r an row of the array. The constraints are therefore the same as the TSP and

a suitable penalty function is given by equation (3.13), with the appropriate change of

indices.

Assignment Problem

The assignment problem has application in certain resource allocation problems (Brandt

et al., iOAa; Eberhardt et al., 1991; Tagliarini et al., 1991; Protzel el al., 1993), where it
is desired. to frnd the least costly one-to-one assignment or match between the elements

of two lists. The lists may be thought of as resources R: {A,8,C,.. '} and consumers

C : {1,2,3...i. W" assume that each list contains a totai of lú elements. A one-to-one

assignment means that each resource in the set 7t has to be assigned to exactly one

"onrrr-", 
in the set C. The cost py¿ for every possible pairing between resource X and

consumer i is given. The objective is to minimise the cost of the assignment of resources

to consumers.
A suitable neural representation is a two dimensional array of neurons where the

neuron in row X and column i has output denoted tty uxo. If. uy;: 1 then resource

Xhasbeenassignedtoconsumeri,andifu¡¿:0theassignmentofresourceXto
consumer i has not been made. A suitable objective function which gives the overall cost

of a valid one-to-one assignment of resources to consumers, is

Eobj - Ë Ë uxipxi.
x-1. i-7

Note that unlike the previous problems that we have mapped onto optimisation networks,

the objectivefunction for the assignment problem is linear: it is an example of linear 0 - 1

programming and can be solved to optimality by many techniques including optimisation

networks. For a valid one-to-one assignment, only one resource may be assigned to each

consumer. Conversely, only one consumer can be assigned each resource. Therefore the

constraints are given by,

N

Ðuto :1 Vie{1,"'¡/}
X=l

¡/
Ð'*o 1 VXe{1,...¡/}
i=L
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These are the same constraints as given for the TSP, and so a suitable penalty function

is given by equation (3.13) (again with the appropriate change of indices).

3.6.1 Are they suitable?

The standard optimisation networks, such as the continuous Hopfield network and the

MFA algorithm, are not suited to the solution of every combinatorial optimisation prob-

lem. It is the aim of this section to highlight some of the factors which preclude a problem

from being efficientiy solved by an optimisation network. More detailed information may

be obtained from the relevant iiterature.
It is interesting to note that the valid subspace is identical for the TSP, the shortest

Hamilton path problem, graph labelling and the assignment problem. For these problems

the valid subspace is in fact an integral polytope (Gee and Prager, 1994), as all the

vertices of the polytope are valid 0 - 1 points. Moreover, it has been shown that when

the valid subspace is an integral polytope, a valid 0 - 1 solution can always be found by

employing the valid subspace mapping in conjunction with an annealing algorithm (Gee,

1993). Given the nature of the descent process that led to the solution, it is reasonable to

expect that the solution will be quite good. Furthermore, as we show in Chapter 4, the

use of an annealing algorithm enhances the expected quality of solution. Consequently,

optimisation networks are well suited to solving these problems.

However, there do exist many problems whose constraints do not define an integral

polytope and as such standard optimisation networks are not well suited to their solution.

One important example is the knapsack problem:

Giaen a knapsaclc of capaci,ty C and a set of N i,tems each wi,th s'ize r¿ and

usefulness y¿, decide which items to put into the knapsaclc so as to ohtain the

marimum usefulness from the load, without oaerfi,lling the lcnapsacle.

The constraints for the knapsack problem define a non-integral polytope (i.e. not every

vertex of the valid subspace is a valid 0 - 1 point) and as such, the valid subspace mapping

cannot guarantee that a valid 0 - 1 solution will be found (Beyer and Ogier, 1991; Gee

and Prager, 1994). Standard optimisation networks are not well suited to these problems.

Modified networks, such as the tabu network (Gee, 1993; Gee and Prager, 1994), which

are capable of searching the vertices of the valid subspace, are better suited to solution

of combinatorial problems over non-integral polytopes.

3.7 Chapter Summary

This chapter presented a comprehensive investigation of problem mapping' While opti-

misation networks are well suited to the minimisation of a quadratic function Etaop over

a set of 0 - 1 variables, most combinatorial optimisation problems are best expressed

as quadratic 0 - 1 programming, where it is required to minimise a quadratic objec-

tive function Eobi, subject to a set of linear constraints. When solving a combinatorìal
problem with an optimisation network, a successful problem mapping ensures that the

solution obtained not only minimises the objective function, but that it also satisfies the

problem's constraints. To do so the problem's constraints are reformulated as quadratic

penalty functions E'"' , which penalise invalid states and attain their minimal value when

the constraints are satisfied. The problem is then mapped onto the optimisation network

by setting the Lyapunov functi on Etv"p : flobi + E"n" .
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It should be noted that many of the discouraging results attributed to optimisation

networks are in fact a consequence of incorrect problem mappings' Only recently has

problem mapping been placed onto a solid foundation with the development of the valid

,obrpu,"" uppt"u"tt (Gel, 1993; Gee et al., 1993). Such an approach recognises that

u,rry ,"t of iåasible lìn"u, constraints defines a bounded poiyhedron, termed the valid

,rr|.pu"", in which v must lie if it is to be valid. Moreover, any vector which lies in the

valid subspace may be written as

y:T'"v*ê.

consequently, an appropriate penalty function is easily deflned as

Ecns - 
t 
aV -(T,".. + ê)ll'.

A process of gradient descent on the penalty function naturally encourages v to lie on the

,ru,lìd ,ubrpace. Much of the motivation for developing the valid subspace approach arose

from the belief that ad hoc approaches, typically employing one term in the penaity func-

tion for each constraint, suffered from a multiplicity of terms which tended to frustrate

each other and could not guarantee a valid solution. However, the analysis presented in

this chapter revealed that 8""" does itself consist of several terms, each designed to en-

force a singl" constraint. In that sense, the valid subspace approach is not at all dissimilar

to the previous ad hoc aPProaches'

To lain a deeper i"right into the mechanics of the valid subspace approach to prob-

l"* m.pping, we undertàok an eigenvector analysis of the linearised network dynamics'

While this unulysis is an original contribution, and interesting in its own right, an ad-

ditional benefit is that it forms the basis for understanding the fundamental problems

with annealing schemes' as presented in Chapter 4'

Finally, it was shown how to map the shortest Hamilton path problem, graph labelling

and the assignment problem onto an optimisation network using the valid subspace map-

ping. The Ãapter concluded with a brief discussion to highlight that optimisation net-

*o.k, are not suitable for the solution of every combinatorial optimisation probiem.

However, optimisation networks are well suited to the solution of combinatorial prob-

lems whose constraints define an integral polytope i.e. aII vertices of the valid subspace

are valid 0 - 1 points. While not all combinatorial problems satisfy this requirement, it
is fortunate that manY do.
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Annealing Techniques

It was shown in the previous chapter that by using a suitable problem mapping an

optimisation network can always obtain a valid solution to a problem such as the TSP.

Fìrthermore, given the nature of the descent process leading to such a solution, it could

even be "*p".t"d 
that the solution will be of an acceptable quality. Unfortunately,

optimisation networks, as proposed in their original form, tend to converge to poor, high

cost solutions. Whiie the vaiidity of the solutions may now be guaranteed by the probiem

mapping, the quality of the solutions remains unsatisfactory'
In this chapter we investig ale hystereti,c annealing which is a technique for improving

the quality of the solutions found by an optimisation network. Hysteretic annealing

s""ks to guide the network state towards good solutions by continuously modifying the

network's Lyapunov function. In doing so, annealing influences not only the number

but also the position of attractors in the state space. While the annealed optimisation

network still operates in the same gradient descent manner as the original network, it
aims to give the network a better chance of converging to the global minimum of the

objective function.
We begin in Section 4.1 by introducing the details of the hysteretic annealing tech-

nique. The ability of annealing to improve solution quality is demonstrated in Section 4.2,

*h"r" hysteretic annealing is employed in a simple optimisation problem in two dimen-

sions. While such a simple, illustrative example does not address the theoreticai foun-

dations of annealing, iL serves to demonstrate the concept of hysteretic annealing and is

suffi.cient for our purposes. In Section 4.3 we present an eigenvector analysis of the effect

that annealing has on the linearised dynamics of an optimisation network' In doing so, it
is shown that hysteretic annealing is not well formulated as it conflicts with the action of

the problem mapping and may well lead to invalid solutions. Consequently, in Section 4.4

we develop a ne\4/, principled approach to hysteretic anneaiing that retains the ability

to improve solution quality whiie ensuring that a valid solution can still be guaranteed.

A further eigenvector analysis is presented in Section 4.5 to verify the correct operation

of the modified hysteretic annealing approach. Finally, in Section 4.6 the performance

of the standard and modified annealing algorithms are compared on travelling saiesman

problems of varying sizes.

4.L Hysteretic Annealing

As discussed in Section2.5.2, an annealing mechanismis used in an optimisation network

to discourage the network from converging to a local minimum of the Lyapunov function.

Such a local minimum may well represent a poor) high cost solution to the optimisation

problem. By successfully avoiding local minima in the Lyapunov function, annealing

can give remarkable improvements in solution quality. Various annealing mechanisms
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have been proposed: including convex relaxation (Ogier and Beyer, 1990), hysteretic

annealing (^Ebå.hardt et al., 1991) and matrix-graduated non-convexity (Aiyer, 1991).

These techniques are all closely related and we shall collectively refer to them as hysteretic

annealing.
Hysteretic annealing has been introduced in Section 2.5.2, but for completeness we

shall again describe the technique. Hysteretic annealing involves adding the term

Eann - -1tf r, - 0.b)227',

to the Lyapunov function EIa"p of the Hopfield network. It should be noted that when

employing hysteretic annealing, the decay term 4 is commonly set t'o zeto, and so the

Lyapunov function for the network reduces to the quadratic function

E:-1v'Tv-vTb.
2

The funct ion Eonn is either convex or concave, depending on the sign of the annealing

parameter 1. Initially, 7 is set to a large negative value, in which case Etsop : E * Eonn

is convex and v converges to a point inside the hypercube. Subsequently, 7 is gradually

increased, and the deepest minima of the quadratic function E become evident in the

Lyapunov function. As 7 increases further, more minimabecome evident in the Lyapunov

function. Eventually Ets"p becomes concave and v is pushed toward the boundary of the

hypercube, aiding convergence to a 0 - 1 point. While annealing is unable lo free v from

local minima in the Lyapunov function, it is hoped that local minima will be avoided

by the annealing process and that the probability of converging to the globally optimal

solution is increased. The ability of hysteretic annealing to improve solution quality will

be demonstrated in Section 4'2.

Originally, annealing techniques were supported only by their experimentally per-

ceived benefits, but recent theoreticai analysis has done much to validate their use (Ohta

et al., 1g93; Abe and Gee, 1995; Tomikawa and Nakayama, 1995). Further to the ability

to improve solution quality, hysteretic annealing offers important benefits for a hard-

ware implementation. Hysteretic annealing allows explicit control over the dynamics

of the network: in particular, the ability to control the time required to settle into a

solution. Consequently, by using annealing techniques the sensitivity to variations in

time constants of the various processors in the network is reduced. Such sensitivity to

process variations could otherwise result in oscillations that render the network inopera-

tive (Smith and Portmann, 1989). Ilysteretic annealing can easily be incorporated into

hardware realisations of optimisation networks (Lee and sheu, 1993).

4.2 \Mhy Use Annealing?

The abitity of hysteretic annealing to guide v towards good solutions is best understood

with the aid of a simple exampie. consider the following problem:

minimise n : -L (u? +r"') + 4up2 - u1 - 3u2
2 \"1 ' "z) I rvr

subject to u¿ € {0,1}.

A contour plot of E is given in Figure 4.1. Note, that in addition to the global minimum

at v: [0, l]t asub-minimumexists at v: [1,0]t. As optimisationnetworks operateby
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Figure 4.1: contours of the quadratic objective function -8.

Theglobalminin¿umisE([0,1]t):-3'5'Notethesaddlepointatv:
[0.8667, 0.4667f , which has been nùarl{ed with an x, and the eristence of the

sub-minimurn E(17,0]t) : -1.5.

a process of gradient descent, it is clear that if EIv"p - ,Ð then the final solution would

depend. on the initial conditions. Furthermore, if random initiai conditions were used,

there would be a high probability of converging to the sub-minimum at v : [1,0]t.
Hysteretic annealing may be used to overcome this limitation of optimisation networks

by setting Etuop - E + 8"n". The operation of the annealed optimisation network is

shown in Figure 4.2. With 7 set to a large negative value only one minimum exists in

the Lyapunov function and all initial conditions lead to a state inside the unit square'

as shown in Figure a.2(a). As 7 is slowly increased, the deepest minimum of E is the

first to influence the dynamics and consequently v moves towards the giobai minimum

at v : [0, l]t and eventually converges to it. Notice that if 1 were to become sufficiently

positive, thln ail vertices of the unit square would become local minima of Etv"p and the

annealing is then effectively driving v to the nearest vertex. We see that annealing has

influenced both the number and position of attractors in the Lyapunov function, and in

doing so has improved the quaiity of solution obtained from the network.

4.3 Eigenvector Analysis

As demonstrated by the simple example in the previous section, hysteretic annealing

is capable of improving the quality of solutions obtained from an optimisation network.

However, the effect of annealing on the success of the problem mapping remains unknown.

Can an optimisation network running under the valid subspace mapping guarantee that
a valid solution will be found, even when hysteretic annealing is used? When hysteretic

annealing is employed, does the network state remain pinned to the valid subspace?

To answer these questions it is necessary to analyse the linearised dynamics of an

optimisation network. Accordingly, we examine an optimisation network used to solve

the TSP, and arrange for the Lyapunov function to be

Elsop : Ecns+Eann

080604o2
U1
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Figure 4.2: Snapshots of the operation of an annealed optimisation network'

The networle is giuen the initdal condi,tions v : [0.6, 0.2]T and the trajectory of

v is cleo,rlA rne;ked. The contour plots o,re ol the Lgapunou function Etaop -
E I Eonn,-giuen the current ualue of the anneo,ling p&rt,m,eter 1. The L'nneo,ling

is started, with 1: -10 causing v to conuerge to a point inside the hypercube

crs seen in (a). As 1 is gradually increased, v rnoaes toward the global mini'ma

atv : [O,i]î, euentually conuerging to it as seen'in (c). The gradi,ent descent

nature à¡ tt , optimisation networlc and the ability of annealing to rnoue v
toward6-good, solutions is clearly dernonstrated. The network is simulated by

integrating the Hopf,eld dynamics with the Euler rnethod and a constant step-

size Lt: 0.01 . ilr" annealing ytararneter 1 is held, constant znúzl llAvll <
0.0001, at which time 1 is increased' by L1 : I'

-- -i68
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1
uT'¡annu - uT 6ann f constant

Eo'nn - -1¡](r,o - 0.5)'2-'

(4.1)

(4.2)

(4.3)

2

where the penalty term E"n' is given by equation (3.13), and the annealing term is given

by

Jiz

The distance terms Eobj have been omitted to obtain a clearer insight into the me-

chanics of hysteretic annealing. Upon substitution, the Lyapunov function becomes

¡,')'- îtQ,,-Ð'

2

+#Ð(T*'
2

EIaoP 1
c

N t
i

1

By comparing equations (4.1) and (a.3) the connection matrix and external bias may be

determined as

lT"""fa,v¡ -L6¿¡-*u,o+#t16,06¿¡

c

2N2

bann )e

(4.4)

(4.5)

In order to undertake the analysis of the linearised network dynamics it is necessary to

determine the eigenvectors and eigenvalues of the connection matrixTonn. As shown in

Appendix C,2,lhe connection matrix To" has the following eigenvalues:

Àr: -c*?
The corresponding eigenvector is ê

\ -^,
This is a degenerate eigenvalue with the corresponding eigenspace being the zerosum

subspace.

Àe: -c*?
This is also a degenerate eigenvalue with the corresponding eigenspace being the

invalid subspace.

4.3.1 Analysis of the Dynamics of the Netwotk

Now that the eigenvalues and eigenvectors of the connection matrix To"' have been

determined we may proceed with the analysis of the network's dynamics. By analogy with

equation (3.17), the linearised dynamics may be expressed in terms of the eigenvectors

of the connection matrix as

ü : K(ÀrvL I Àzv'" + À3vi"" + bo"").

Substituting for bo"' from equation (4.5), and explicitly substituting the eigenvalues

gives

ù : K {,-"*7)v1 +'yv"" +(-"*'v)uin'+ (" - +) .}
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Since .rt : (t .ê)ê this may be further simplified to

(N -2

43

(4.6)ù:K
2

v.e
*vl

as required for v to be valid. However, as 1 is increased during the annealing process, the

tendency to confine v to the hyperplane where v1 : ê is reduced. The second influence

is the component -Nllè, which will tend to increase the magnitude of the component

vl if 7 is negative, urlã d""tease it for positive 7. The net result is that the component

of v in the direction of ê is not correctly constrained to make v lie on the valid subspace.

We have shown that while annealing has introduced the necessary components into the

dynamics to allow the solution quality to be improved, it has also introduced a conflict

between the penalty functions, which attempt to restrict v to the valid subspace, and

the annealing which is attempting to push v off the valid subspace.

4.3.2 Analysis of the Lyapunov function

Further to the analysis of the dynamics, it is possible to express the Lyapunov function

as given by equation (4.1), in terms of the eigenvalues of the connection matrix. By

decomposing v into components as in equation (3.6), and omitting the uninteresting

'l
(" - r)(t - (v'ê))ê - ê - (" -.1)u'"" * 1v""

The effect of hysteretic annealing can now be easily explained. Firstly, the component

of ü in the invalid subspace is -(c - l)If.,u¿"". Since K is a diagonal matrix with non-

negative elements, vi"" will decrease in magnitude if 'y ( c. As the annealing parameter

7 i, irr"."used, the tendency for llv¿"'ll --+ 0 will be lessened. Indeed, if the annealing

parameter is increased to such a point that 7 ) c, then vi"" wiil increase in magnitude,

tut such a situation can be avoided by properly setting the weight c on the penalty

functions.
The effect of hysteretic annealing in the valid subspace is most easily understood with

reference to Figure 4.3. E"nn is spherically symmetricai about the point (0.5, 0'5, ' . .)

and will therefore push v radially towards or away from the centre of the hypercube,

depending on the sign of 7" With 7 positive, annealing pushes any point on the valid

,rrù.p¿"" radially away from (0.5, 0.5,. . .), as indicated by the vector ü, which may then

be dãcomposed into u, 
"o-porr" 

nt t"" in the zerosum subspace and a component ü1 in

the direction of ê.

In order to improve solution quality, annealing must control the component of v in the

zerosum subspace, as it is exactly this component which determines the particular tour

to be travelled in the TSP and hence determines the solution quality. The component

i"' of the dynamics, which has been introduced by annealing, is necessary to achieve

such control. When considered in conjunction with the objective function E"bi and a

process of gradualiy increasing ?, ü'" will guide v towards good solutions (Ohta et al.,

1993). If 7 is positive, ü'" aids convergence to a 0 - 1 point'
The component of ü in the direction of ê comes under the influence of two forces, as

seen from equation (4.6). Firstly, if I < c the term (c - ?X1 - (v ' ê))ê will move v
towards the hyperplane where

1 - (v.ê) 0

1

e
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(0,0,1)

(0,0,0)

x (0.5,0.5,0.5) ";

(0,1,0)

(1,0,0) valid subspace

Figure 4.3: Effect of hysteretic annealing on the dynamics in the valid subspace.

The simple 7-ilimensional erample giuen in Section 3.3 has been chosen to

illustrati the effect of hysteretic annealing. Eonn is spherically symrnetrical

about the point (0.5, 0.5, . . .) and wi,th 1 > 0 wi'll therefore push v rad'ially away

from the centre of the hypercube, as i,ndicated by i ' i may be decomposed i'nto
"o, 

cornponent i'" in the zerosun'¿ subspace and a component ir in the direction

of è. The component i\ tends to force v off the ualid subspace, in confl,ict with

tie penalty terms which are attempti,ng to confine v to the aalid subspace'

44
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constant the Lyapunov function becomes

EIYoP -å (^r ll''ll' + Àrll""ll' + lr¡¡vi"'ll') - ur6ann '

Substituting for the eigenvalues and using equation (4.5) for bonn,

Etyop : -T{C"+.r) (ll.r'll, + llrro',llr) + rllr,"llr} - (" - T) u,"

Further substituting êrt: llttll and simpiifying, gives

Elgop:={(l|''ll-1),+ll.,o',ll,-'}+ryll''ll-!|u""ll,.Ø.7)
As an optimisation network will seek out minima in the Lyapunov function, it is worth-

while establishing the conditions on the various components of v that correspond to a

minimum of Eta"p. To minimise Elaop it is necessary for,

1. llvi'"ll --+ 0.

2. If 1 ( 0 then llt,"ll + 0, else if I > 0 then llt"ll - oo, although it should be

noted that v'" cannot continue to grow indefinitely as v is restricted to the unit

hypercube.

3. v1 must be set so that ffi :0, i'e.

(,-r)fl,'ll -1) .ry : o

11,,il: t-(!-z)t (4.8)'lr -' 2("_^t)'

Given that v will converge to a local minimum of the Lyapunov function, further
evidence of conflict between the penalty functions and annealing is found by examining

the third condition from above. For v to be valid vl : è i.e. llttll : 1; but an annealed

optimisation network with 1 < 0 will converge to a state where llttll > 1 and v lies

above the valid subspace. Similarly for 7 ) 0, llttll < 1 and v lies beneath the valid

subspace. The magnitude of vl corresponding to a minimum of the Lyapunov function,

as given by equation (4.8), is shown in Figure 4.4 for various values of 7 and I/.
While hysteretic annealing may be used to improve the quality of solutions obtained

by an optimisation network, this section has shown that it also removes v from the

valid subspace. At worst, this could lead to invalid solutions, a situation that has until
now been avoided by careful selection of parameters. It is also apparent that having

pushed v from the valid subspace, the operation of the optimisation network is no longer

principled, as \rye are attempting to minimise Eobi with an invalid representation for v'
Consequently, it is necessary to reappraise our approach to annealing.

4.4 Modified Hysteretic Annealing

Although hysteretic annealing can lead to improved solution quality, the previous section

showed that it invalidates the use of an optimisation network as it forces v off the
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Figure 4.4: The magnitude of vl necessary to minimise Etvop '

When Elaop - g.n" ¡ Eonn , the magnitude of v7 necessary to minimise EIa"p 'is

giuen by equation (4 S) The plots show llvrll for aarious ualues of the problem

,¿r" N and, annealing parameterl. Note that forv to be aalid llttll : l, and

so it i,s obuious that annealing has forced v off the ualid subspace. The weight

on the penalty functions was set so c: N , which is consistent with suggestions

in (Abe and Gee, 1995).
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valid subspace. Consequently, the optimisation network is attempting to minimise Eobi

without a valid representation for v. Therefore, it is necessary to reformulate annealing

so that the ability to guide v toward good solutions is retained, whilst ensuring that v

will remain on the valid subsPace.

With the insight gained in Section 4.3 we can see that a correctly formulated approach

to hysteretic annealing must have three essential features,

1. It should introduc e a rorr-zero eigenvalue in the zerosum subspace that is controlled

by the value of the anneaiing parameter 1. To encourage good solutions, anneaiing

should be able to influence the component v'" of a valid solution v' as it is this

component which decides the particular tour to be travelled in the TSP.

2. As the penalty terms alone correctly constrain v to be valid, annealing should not

interfere with the operation of the penalty terms. Therefore, hysteretic annealing

should not modify ìh" 
"ig"nrrulues 

of the connection matrix associated with the

penalty terms, in the invalid subspace and in the direction of ê.

3. The relative values of. Eta"p when evaluated at valid 0 - 1 points should not be

altered. As the Lyapunov function at a valid 0 - 1 point reflects the cost of the

solution, the relative ordering of these points should be maintained'

As a cand.idate for a correctly formulated approach to annealing, consider the modified

hysteretic annealing function given by

gmod : -Iu""Tyu"" (4.9)

: -lu'T""u

where the substitution yzs : T'"v has been madel. Obviously such a function will allow

annealing to influence the component of v in the zerosum subspace. Additionally, it will

not conflict with the penalty functions, as it has no efiect on the components of v in
the invalid subspace and in the direction of ê. Thirdly, from equation (4.9) it can be

seen that g^od'-- -îllu""llz and since for all valid 0 - 1 points llv'"ll is identical, E^od

maintains the relativ"e ordäring of valid 0 - 1 points. Therefore, the modified hysteretic

annealing function satisfies the criteria for a correctly formulated approach to annealing

and deserves further detailed investigation'
To clearly illustrate the utiiity of the modified annealing function, it is necessary to

obtain an alternative expression for Bmod'. Substituting equation (3.10) for the projection

matrix T'"and exPanding gives

Bmod :

Using equations (3.11) and (3.12) this simplifies to

-*"ÐÐþ*- #) (d,i - !),"ouoo

ï, (*,?, - +Ð ?'uriDri- # ? Ðu,u,* # tÐ"''o')

#+(Ð'"'-1)'Bmod Ð \-r-,-1
2N

^l +

lOnce again, note that T'" is symmetric and since T'" is a projection matrix, tTzsTzs - Tzs
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(4.10)

Doi

#)'
Noting the similarity between the first three terms of the modifled hysteretic annealing

and the penalty functions in equations (3.13) and (3.7), allows E*"d to be written

Bmort : L2tll'- (T'"',, + ê)ll' - i}(,' - #)' (4'11)

The function of the modified annealing term ,. ""* transparent. The flrst term in

equation (4.11) is similar to the penalty tetrr_ E'n", where the weight c has been replaced

by the annealing parameter 7, and serves to restrict v to the valid subspace. The second

term in equation (4.11) is similar to the original hysteretic annealing term, but is now

spherically symmetrical about ê, which lies in the centre of the valid subspace. This is

the only term in E^od which influences the component of v in the zerosum subspace. It
makes sense to have the term which controls v'" centted in the valid subspace, rather

than offset from the valid subspace, as it is in the original formulation of hysteretic

annealing.
For any point v that does not lie on the valid subspace, there is a delicate balance

between the penalty term in E*od, which forces v back to the valid subspace and the

expansive influence of the second tetm, which is attempting to move v further from the

valid subspace. The net effect is that only v'" is influenced by the modifled annealing,

ieaving the components vi" and v1 to be determined by the penalty functions E'n".

4.5 Eigenvector Analysis

When the modifled hysteretic annealing is employed, does the network state remain

pinned to the valid subspace? Does modifred hysteretic annealing incorporate the nec-

essary components into the dynamics to improve solution quality? To answer these

questions we will once again analyse the linearised dynamics of an optimisafion network

used to solve the TSP. Consider an optimisation network with the Lyapunov function

Elaop : Ecns+Ernod
1: -ir'r*"dv - vTb^'d * constant

where the penalty term E"n" is given by equation (3.13), and the annealing term is given

by equation (a.10). upon substitution, the Lyapunov function becomes

(.+r)
2N D D Ðu,o - L

r
,,0-r)' *("{;) Ð

-#(Ð',,-')'-î* 1
ur¿- ñ

ElsoP

2
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By analogy with equations (4.1), (4.3), (4.4) and (4.5) the connection matrix and externai

bias may be determined as

lT*odla,v¡ :
bmod :

*+P*16"06¿¡_(c+?)
¡\r

cê.

6¿j
(c*^l

¡\r
(4.r2)

(4.13)

In order to analyse the linearised dynamics it is necessary to determine the eigenvectors

and eigenvalues of the connection matri xT^od . As shown in Appendix C.3 the connection

matrix T-od has the following eigenvalues:

\_
^'l - -L

The corresponding eigenvector is ê.

This is a degenerate eigenvalue with the corresponding eigenspace being the zerosum

subspace.

\_A3-_L

This is also a degenerate

invalid subspace.

eigenvalue with the corresponding eigenspace being the

By analogy with equation (3.17), the linearised dynamics may be expressed in terms of

the eigenvectors of the connection matrix as

ü : K(Àrvr + À2v"" + À3vi" + b-'d).

Substitutingfor b^od from equation (4.13), and explicitly substituting the eigenvalues

gives
ü : K {-rtt *.1v"" - "uinu 

I cê} .

Further substituting vl : (v'ê)ê gives

ü:K{"(1 -(v.ê))ê -cvin'r1v'"}. (4'r4)

When the network has converged ù : 0, where 0 is the zero vector and the success of the

modifled annealing approach may be determined by examining the linearised dynamics

given by equation (a.la). Firstly, it should be noted that the component of ü in the invalid
grrbrpu"" is -cKví"". Since K is a diagonal matrix with non-negative elements, the

"o-porr"nt 
of v in the invalid subspace will decrease in magnitude, leading to llvi"'ll :_ 9.

sãcondly, the net component of ú in the direction of ê, will be K(c - c(v ê))ê.

Therefore, the component in the direction of ê will move to a hyperplane where

c - c(v' ê)

v.ê : 1

+vl : ê,

as required for v to be valid. Obviously, with v1 : ê and ll.ro"'ll : 0 the network

state has converged to the valid subspace. While annealing now influences v only in

the zerosum subspace, the penalty functions control v only in the invalid subspace and

in the direction of ê. The actions of annealing and the penalty functions have been
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efiectively decoupled into separate subspaces, thereby resolving the apparent conflict

between hysteretic annealing and the penalty functions that was identified in Section 4'3.

The efiect of modifled hysteretic annealing in the valid subspace is iilustrated in Fig-

ure 4.5. With reference to equation (4.10), the penalty-like terms in E*"d are zero on

the valid subspace, whiie the remaining term tn E*od is spherically symmetrical about ê

and will push v radially away or towards ê depending on the sign of 'y' For positive 7

the effecf of E^od on a valid v is shown as ú. Obviously i : i"' as it lies wholly within

the zerosum subspace. The effect of modified annealing is simply to guide v through

the valid subspace by influencing the componenl. v"". Unlike the original hysteretic an-

nealing, there is no iendency to push v from the valid subspace, avoiding any potential

conflict with the penalty functions. As discussed in Section 4.3, the component of the

dynamics ü'" which has been introduced by annealing, when considered in conjunction

with the objective function and a process of gradually increasing 1, will guide v towards

good solutions.
The modified approach to hysteretic annealing proposed in equation (4.11) has all the

essential features of u, "o....tly 
formulated annealing mechanism. It retains the ability

to guide v toward good solutions, by introducing a non-zero eigenvalue in the zerosum

sub-space. It also u""i¿r any conflict with the penalty functions by effectively decoupling

the actions of annealing and the penalty functions into different subspaces. As a result,

v will remain in the valid subspace throughout the annealing process, which is a vital

requirement for any optimisation network to operate correctly.

4.6 Simulations

To evaluate the performance of the standard and modified annealing aigorithms, both

algorithms were simulated on several Euclidean travelling salesman problems. The prob-

lems considered had 10,30 and b0 cities placed randomly using a uniform distribution

over the unit square. The optimised step-size technique as reported in (Abe, 1996) was

used in all experiments. While more detaiied information on the optimised step-size tech-

nique -¿y b" found in Appendix B, it is sufficient to note that such an algorithm holds

the annealing parameter constant at 7s for the first t¿ time steps, and then increments

the annealing pu,rameter by an amount A7 at successive time steps. In all simulations

reported here, the penalty weight c is set so that

c: coN T¡y,d"'I d,"),

as suggested by results in (Abe and Gee, 1995). It should be noted that all simulations

"onrr"-rg"d 
to valid solutions, as a result of setting cs to an appropriately large value. The

initial conditions are given l.y u,¿: llN + 0.01 * rand' where rand is a random value in

the range [-0.5,0.5].
The results for tire standard and modified annealing algorithms are shown in Tables

4.1,4.2 and 4.3 and may be compared to the results from several weil-known heuristics

operating on the same set of problems, as given in Table 4.4. As a measure of the quality

of solutions obtained from the optimisation networks, the mean percentage above the

minimal tour length has been calculated. The minimal iength tour is defined as the

shortest tour found by any of the heuristic methods. Additionally, the number of times

the optimisation networks found the minimal length tour is also recorded' It is apparent

that ãptimisation networks give a similar quality of solution to the nearest neighbour

techniques. This is consistent with the general trade-off between time and quality of
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(0,0,1)

(0,0,0)

V:V""

(0,1,0)

valid subspace
(1,0,0)

Figure 4.5: Action of modified annealing in the valid subspace.

The simple S-D erample giaen in Section 3.3 has been chosen to illustrate

the effeci of the mod,ified, hysteretic annealing in the ualid subspace. With the

annealing parameter 1 ) 0, the modified annealing will push a point in t'he

ualid, subspace rad,ially awag from ê. It should be noted that * Ii'es wholly

within the ualid subspace. consequently, modified hysteretic annealing seraes

only to rnoue v through the ualid subspace and does not confl,ict with the penalty

terms which, are attempting to confine v to the ualid subspace.
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1o

Standard
mean % no. min.

Modified
mean % no. min

-1

-1.5
n

-2.5
-3

o.47
0.39
L.74
1.78

r.49

95

95

82

85

83

o.47
o.21t
1.91

L.64
L.22

95

97

82

83

88

Table 4.1: Simulation results for the lO-city problem'

The table shows the mean percentage aboae the mi,nimal tour length of 2.9933

(as found, by heuristic methods - see Table 4.Ð, and the number of minimal

iength tours for uaTious initial aalues of % (100 tri,als, A? : 0.005, co:2,
ta : 200) . I Corresponds to a n'Lean tour length of 2'9996 '

solution, as faster solution methods generally produce results of worse quality than more

sophisticated techniques'
Several issues must be considered when comparing the standard and modified ap-

proaches to annealing. Firstly, the analysis of the preceding sections has shown that both

annealing algorithms provide the ability to guide v towards good solutions. However,

while modifled .nn"uúng cannot cause invalid solutions, standard hysteretic annealing

may potentially cause the network to converge to invalid solutions by removing v from

ttr" 
"uUa 

subspace. In our simulations, we have avoided this scenario by carefully select-

ing the weight on the penaity functions, thereby allowing the annealing methods to be

compared on the quality of solution alone.

Once the potential for invalid solutions is removed, we may compare the annealing

algorithms based solely on their quality of solution. It should be remembered that while

the modified annealing approach does not remove v from the valid subspace, standard

annealing does and so is attempting to minimise Eobi with an invalid representation for

v. While both the standard and modified annealing algorithms achieve similar results,

as given in Tables 4.1,4.2 and 4.3, it is clear that themodifi.ed annealing algorithmhas

a súghtly superior quality of solution. The similarity between the two algorithms is not

,rn"*p""t"d, as both possess the ability to guide v towards good solutions. Additionally,

the distinction between the standard and modified annealing algorithms is biurred by the

action of the objective function Eobr which itself tends to push v from the valid subspace'

The results presented, in this section support modified annealing as being superior

to the standard hysteretic annealing algorithm. Not only does the modified aigorithm

remove the possibility of annealing causing invalid solutions, it has been demonstrated

to produce a better quality of solution'
It should be noted that the results for the optimisation networks may be improved by

employing a more gradual annealing schedule. Alternatively, improvements may be made

by reducing the weight c on the penalty functions (Abe, 1993), possibly at the expense

oi guaranteed convergence to a valid solution. It is also interesting to note the obvious

deterioration in solution quality as the problem size increases. For the 10-city problem

the best results from an optimisation network gave a mean tour length itst' 0.21% above

that found by heuristic methods, while for the 50-city problem the corresponding result

is 19.g9%. While such a degrading quality of solution with increasing problem size is

typical for optimisation networks, it has received littie attention in the literature (Cooper,

1995b) and will therefore be considered in detail in Chapter 5.
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'Yo

Standard
mean % no. min.

Modified
rnean To no. min

-1
.t

-L

-3
-4
-5
-6

13.73

7.98
8.66
9.t4
14.24

14.81

7

16

9

4

L7

27

t2.39
7.e1t
8.75
t2.42
11.14
14.03

11

22

11

2

37

32

Table 4.2: Simulation results for the 3O-city problem'

The table shows the mean percentage aboae the mini'mal tour length of 4.4714

(as found, by heuristi,c methods - see Table l.l, and the number of minim,al

iength tours for uarious initial ualues of % (100 trials, L1 :0.005, co:2.5,
t¿ : 1500). ! Corresponds to o" n¿eún tour length of 4"8251'

1o

Standard
rneatTo

Modified
rnean To

-2
-3

-4
-b

-6

22.65
2r.43
21.89
21.08
23.87

2t.84
20.24
1e.eef
20.L7
22.53

Table 4.3: Simulation results for the 5O-city problem'

Th,e table shows the mean percentage aboue the mini'mal tour length of 5-8286

(as founil by heuristic methods - see Table /r.Ð fo, aarious i'nitial aalues of 1s
'(100 

trials, L1 :0.005, co:4, f¿ :3000). No tours were found with length

equal to the best tour found by heuristic methods. t Corresponds to a mean tour

length o/ 6.9938.

10-city
rnean % mln rnean% mln.

30-city
rnean To

50-city
mln

NN
NI

2-OPT
LK

10.93

0.00

0.00
0.00

2.9933
2.9933

2.9933
2.9933

14.58

3.64

2.01
0.56

4.6694
4.47L4
4.4714
4.47t4

20.5t
7.66

5.16
1.88

6.2793
5.8853

5.9124
5.8286

Table 4.4: Simulation results for various heuristics on 10, 30 and 50-city problems

The table shows simulation results for the nearest neighbour (NN), node in-

sertion (NI), \-OPT and Li,n and Kernighan (LI{) heuri,sti'cs on all problem

sizes. A.ll heuristics are implemented as in (Reinelt, 1994). For each method

and problem, the rnean percentage aboae the minimal tour length (ouer 50 tri-
als) and, the minimum tour length found by that method are giuen. Th'e minirnal

tour length found, by any heuristic method is 2.9933 (1T-ci,ty), 4.4714 (77-city)

and 5.8286 (í}-city).
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This chapter presented an investigation of hysteretic annealing which is a technique used

to improve the quality of solutions obtained from an optimisation network. Without
hysteretic annealing an optimisation network is prone to become stuck in a local minimum
of the objective function. Such a local minimum may represent a poor, high cost solution

to the problem at hand.
Hysteretic annealing seeks to guide the network state towards good solutions by con-

tinuously modifying the network's Lyapunov function. Standard hysteretic annealing

involves the addition of an extra term

Eann - -f,Ð{",;- 0.5)'

to the Lyapunov function for the network. n, ,no*n in this chapter, a linearised analysis

of the network dynamics reveals that while annealing has introduced the necessary com-

ponents into the dynamics to allow solution quality to be improved, it also acts to push

v a\/ay from the valid subspace. Consequently, there is a fundamental conflict between

the penalty functions, which attempt to restrict v to the valid subspace, and standard

annealing which forces v off the valid subspace. At worst this could lead to invalid so-

lutions, a situation that has until now been avoided by careful selection of parameters.

Moreover, by removing v from the valid subspace the operation of the network is inval-

idated as it now seeks to minimise an objective function without a valid representation

for v.
To overcome the limitations of the standard hysteretic annealing algorithm, it was

necessary to develop a ne\ry approach. A correctly formulated approach to hysteretic

annealing must satisfy three requirements:

1. Annealing must introduce a non-zero eigenvalue in the zerosum subspace that is

controlled by the annealing parameter 7. This enables annealing to guide v towards

good solutions.

2. As the penalty terms alone correctly constrain v to be valid, annealing should not

interfere with the operation of the penalty terms.

3. The relative values of Ets"p when evaluated at valid 0 - 1 points should not be

altered.

Consideration of these requirements led to the development of the modified hysteretic

annealing function, which for the TSP is given by

6mod' : r¡tll"- (T""'+ ê)ll' -i*(r,o-#)'
The modified approach to hysteretic annealing has .ll t; essential features of a correctly
formulated annealing mechanism. It retaìns the ability to guide v toward good solutions,
by introducing a non-zero eigenvalue in the zerosum subspace. It also avoids any conflict
with the penalty functions by effectively decoupling the actions of annealing and the
penalty functions into different subspaces. Consequently, v will remain in the valid
subspace throughout the annealing process, which is vital for the correct operation of an

optimisation network.
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Simulations on a range of travelling salesman problems support the modified annealing

approach as being preferable to the standard annealing algorithm. Not only does the

modified. annealing remove the possibility of causing invalid solutions, but ii has been

demonstrated to produce a slightly superior quality of solution.
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The Issue of Scaling

To this point in the thesis we have examined an approach to problem mapping that can

guarantåe that valid solutions will be found for a variety of combinatorial optimisation

f,roblems. In addition, we have developed annealing techniques which help to guide

an optimisation network to good quality solutions, while retaining the ability to ensure

valid solutions. Therefore, it would appear that optimisation networks are ready for

application.
However, we must look more closely at the performance of optimisation networks for

there awaits another challenge. The many empirical studies of optimisation networks

solving combinatorial optimisation probiems to be found in the literature display an

.lu,r-ing feature: as the problem size increases, the quality of the solutions found by the

network rapidly decreases. These empiricai studies lead to the belief that optimisation

networks scale poorly to large probiem sizes. While this fact has been acknowledged

by few researchers, it has serious ramifications for the already tight niche market of

optimisation networks and must therefore be addressed.

In this chapter we uncover the reasons for the poor scaling of optimisation networks

to large problems and, investigate several approaches to overcoming the problem. Of

particular importance to our investigations is the discovery that optimisation networks

ãperate by embed,d,ing a heuristicinlo the dynamics of the network. Moreover, it will be

shown that the heuristics used by optimisation networks are ultimately responsible for

their poor scaling. To improve the performance of optimisation networks it is necessary

to replace or modify the heuristics that they use.

We begin in Section 5.1 by demonstrating the poor scaling properties of optimisa-

tion networks when used to solve the travelling salesman problem. In Section 5.2 we

use the Ising spin problem, which is a simple graph 2-colouring, to show that optimisa-

tion networks use simple heuristics to solve a problem. Furthermore, we show that the

poor performance of optimisation networks on large problems can be attributed to the

tendency of such simple heuristics to encourage the formation of small, locally optimal

segments in the solution. As the key to the poor performance of optimisation networks is

the heuristic that they employ, in Section 5.3 we contrast the performance of two discrete

heuristics for solving the TSP. Whiie these heuristics are more closely aligned with sim-

ulated annealing than optimisation networks, they offer valuable insights into the poor

scaling of optimisation networks to large problem sizes. Finaily, in Section 5'4 we propose

two alternative methods for improving the performance of optimisation networks'

5.1 Scaling u/ith Problem Size

While the optimisation network literature is heaviiy populated with experimental resuits

for combinatorial problems such as the TSP, many of which add weight to the conjecture
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Mean Solution Quality (%)
10-city 2}-ciíy 30-city 40-citY 50-city

-1
n

o-ù

-4
-b
-b

0.00
0.00
0.00
0.00

0.00
0.00

1.26

o.27
0.51

L.4l
r.44
1.44

9.61

6.61

3.97
7.74
10.61

9.t7

t0.72
11.50
71.2t
9.79
9.50
9.92

19.24
15.88
13.61
t3.62
14.66
t5.27

Table 5.1: Performance of the Hopfield network on the travelling salesman problem

For each TSP and i,nitial aalue of the annealing parameter 1s, the Hopf'eld net-

worlc is run 50 times. The mean cost of the tours found by the Hopfi'eld networlc

is erpressed as a percentage aboue the cost of the best tour found by 50 trials of
the Lin-Kernighan heuristic, The Lin-Kernighan heuristic was implemented

as giuen in (Reinelt, 199Ð" Parameters for the Hopfield networlc simulations
tt)€r€ cs : 2, L1 : 0.001, f¿ : 1000(10-city), 1500(20-city), 2000(30-city),

2500(40-city), 3000(50-city) .

that optimisation networks scale poorly 
".g. 

(Abe and Gee, 1995; Abe, 1996), their

purpose has not been to investigate the scaling properties of optimisation networks' To

demonstrate the poor scaling of optimisation networks we have simulated the Hopfield

network on a series of progressively larger Euclidean travelling salesman problems'

The problems considered had 10, 20, 30, 40 and 50 cities piaced randomly using a

uniform distribution over the unit square. Once again, the objective function Eobi for

the travelling salesman problem is given by equation (3.2) and the penalty function 8"""
is given by equation (3.13). For each problem, the weight c on the penalty function is

set so that
c: coN T,ilT@,u I d,"),

as suggested by the most recent results presented in the literature (Abe and Gee, 1995).

By setting cs to an appropriately large value all simulations were made to converge to

valid solutions. The initial conditions are given by u"¿: 0.5 * o * rand where rand is a

random vaiue in the range [-0.5,0.5] and o : 0.0001. Annealing \Mas accomplished with
the modified hysteretic annealing technique described in Section 4.4 and the integration
was performed using the optimised step-size technique. While detailed information on

the optimised step-size technique can be found in Appendix B, it is sufficient to note

that such a technique holds the annealing parameter constant at 7s for the first Ú¿ time
steps and then increments the annealing parameter by an amount A7 at strccessive time
steps.

The results of the experiment are displayed in Table 5.1 and Figure 5.1, where the

performance of the Hopfield network is given relative to the best solution found by the

Lin-Kernighan (LK) heuristic. On the l0-city problem the Hopfield network always

produces the solution found by the LK heuristic. For the 30-city problem the mean

length of the tour found by a Hopfleld network is 3.97% above the best solution from the

LK heuristic and for the 50-city problem this figure has risen to 13.61%. For the results

in this experiment we see that as the problem size increases, the quality of the solutions

found by an optimisation network decreases.

In Section 2.7 a cornparison between optimisation networks and alternative solution
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Figure 5.1: Performance of the Hopfield network on the travelling salesman problem'

The data for this graph is obtai,ned from Table 5.1. For each problem the best

n-ùeûn solution quality obtained by th,e Hopf,eld networlc is plotted. The quality

of the solutions found by the Hopfield networlc quickly deteriorates as the size

o.f the problem increases.
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methods for combinatorial optimisation problems was undertaken in order to establish

the niche market for optimisation networks. It was concluded that even though optimi-

sation networks generally produce solutions of lower quality than other methods, their

great advantage is the very fast solution times achievable when implemented in hard-

*u,r"" In light of the evidence presented in this section it is necessary to consider a further

element in the comparison: problem size. Extensive experimental studies (Reinelt, 1994)

of heuristics such as the nearest neighbour algorithm, 2-OPT, 3-OPT and the full Lin-

Kernighan algorithm show that the quality of solution achieved by these heuristics is

nearly independent of the problem size. In contrast, the results of this section demon-

strate that the problem size is a significant influence on the solution quality obtained

from an optimisation network. While the space complexity of a hardware implementa-

tion already limits optimisation networks to moderate-sized problems, the poor scaling of

optimisation networks is a significant limitation which further restricts the niche market

fár optimisation networks. Ideally, the performance of optimisation networks would be

independent of problem size. In the rest of this chapter we investigate the reasons for the

poor scaling of optimisation networks to large problems and suggest possible remedies.

5.2 Segmentation

The key to understanding the poor scaling of optimisation networks to large problem

sizes was alluded to by Wilson and Pawley when they noted that the Hopfield network

typically produces solutions which are "composed of seueral segments, each of which

is locally a gooil (solution), but which are joined together in such a, uo,A as to make a

bad. (solution) oaerall" (Wilson and Pawley, 1988). In this section we will show that

as the problem size increases, a growing level of segmentation of the solution results

in 
"ver-ã"creasing 

solution quality. As a vehicle for demonstrating the consequences of

segmentation we have chosen the Ising spin problem, which is a simple graph 2-colouring'

Aúhough the Ising spin problem has obvious global minima, it serves to demonstrate the

limitations of the Hopfield network and thereby explain the poor scaling of optimisation

networks.

5.2.1 The Ising Spin Problem

The Ising spin model consists of ly' elements arranged into a rn x n rectangular grid. Each

element must be assigned the state black or white. Any two elements are neighbours

if they share an edge. The problem is to assign a state to every element such that the

number of neighbouring elements with ihe same state is minimised. For the Ising spin

problem, the globai minimum corresponds to a situation where each element has the

opposite state from all of its neighbours, giving a checkerboard pattern of activity across

the grid. Figure 5.2 shows the global minimum and a random state of an 8 x 32 Ising

spin model.

Hopfreld Network Mapping

In order to solve the Ising spin problem with the Hopfield network, each element i in the

Ising model is assigned two neuronsl, with outputs uj') and u¿(o' respectively. The neuron

lThe Ising spin problem is a restricted version of the general graph N-colouring problem, which itself

may be mapped onto the Hopfield network by using N neurons to represent each node in the graph'
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(a) Random state.

(b) Global minimum.

Figure 5.2: States of an Ising spin model.

An 8 x 32 Ising spin model is shown with (a) random element states and (b)

in the global minimum state. The reuerse checkerboard pattern, obtained by

fl,ipping the state of each element is also a global minimum.

outputs are continuous and may vary over the interval [0,1]. If uÍb) : 1 and rÍ:] :0
then element i has been assigned the state black. Similarly, fi uP) : 1 and ,Íb) : 0

then element i has been assigned the state white. With this problem representation' the

Ising spin problem may be expressed as follows:

minimise Eobj -+ËË co¡(u[qr!-) +r[b)r:b) -,\ùu\b) - rla)rf))+Eo (5.1)
q ,o=1 ¡_1,

subject to ,[-) + u[u) :1 V i e {1,.. . N} (5.2)

where C¿¡ is 1 if elements i and j are neighbours, and 0 otherwise. The objective function

for the Ising spin problem is given in equation (5.1) and with the constant term given

by Eo: l(m(n - 1) + n(m- 1)) the optimal checkerboard solution to the Ising spin

problem hãs a cost Eobi : 0. Note that careful consideration of equation (5.1) would

reveal that for every neighbouring pair of elements that share the same state, the cost of

the solution is increased by one.

To map this problem onto an optimisation network we set EIa"p : fiobj I E"n"', where

the penalty function is given by

Ecns-9SfrJ-, +rib) - 
r2

4 nu--\-, ' 
u't, r)- (5'3)

in accordance with the valid subspace problem mapping. The procedure for determìning

E"n' rnay be found in Appendix D. The penalty function E"n" is zero when the constraints

for the Ising spin problem are satisfied and is positive otherwise. With c set to a large

positive constant, the penalty function E'"" will encourage the network state to lie on

the valid subspace.
Once again it is necessary to employ an annealing technique to encourage the forma-

tion of good solutions and aid convergence to a 0 - 1 point. In Appendix D, it is shown
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that an appropriate modified hysteretic annealing function for the Ising spin problem is
given by

E^
N

I (,Í-) -':u))"
i=l

(5"4)

For the purposes of our simulations the anneaiing parameter is given by ^l : (tlr)2 -llo
where r is set to a positive constant and 76 is a small negative constant. Increasing the

absolute values of both r and 7s will improve the solution quality at the expense of longer

running time. Modified hysteretic annealing operates in the usual manner by adding ,Ð-od

to the Lyapunov function for the Hopfield network uiz. Eta"p : fiobi + E"n" + E^od.

Now that the problem representation and Lyapunov function have been determined,

the dynamic equation for the internal state ujù of ,t"rr.on ,j-) 
"un 

be calculated as

0EIa"P

auP)
Ntj=l

coi (uio) - ,:*)) - ;(,y'+ ,Ío) - r) + T þy'- ,Íu)) . (5.5)

A dynamic equation fo, u(b) may be determined in similar fashion. Considering only the

terms arising in equation (5.5) from the objective function, the dynamics of the Hopfield
network may be simply explained: if the neighbours of element i are likely to be assigned

the state black (i.". ufb) , ,lq) then the assignment of state white to element i is

encouraged 6"1-)¡at > 0). Conversely, if the neighbours of element i are likely to be

assigned the state white (i.r. u!b) a rl-)) then the assignment of state white to element

i is discouraged ça"l-) ¡at < 0). Therefore, the combined effect of the dynamics for the

neurons associated with element i is to encourage the formation of a locally optimal
segment encompassing element i and its four immediate neighbours.

The tendency of the Hopfield network to encourage the formation of locally optimal
segments encompassing an element and its four immediate neighbours may be viewed
from an algorithmic standpoint as a rule or heuristic that, has been inserted into the
dynamics of the optimisation network. The success of the Hopfield network approach to
the Ising spin probiem will ultimately depend upon the utility of such a heuristic.

Simulation Results

For all experiments reported below the parameters were set as follows: c : 200, r :
100, 1 : 0 and the gain of the transfer function in the Hopfield network was set to
Tp : l. Initially, the internal states of the neurons were randomly distributed on the
interval [-0.005,0.005]. Integration of the network dynamics given by equation (5.5) was

performed using the function ode15s.n available in MATLAn@. As previously stated, the
quality of solutions may be improved by employing a more gradual annealing schedule,

corresponding to larger absolute values for r and 7. However, while the solution quality
may be improved, the qualitative results reported here will still be evident, but at a
larger problem size.

The operation of a Hopfieid network on an 8 x 16 Ising spin problem is shown in
figure 5.3. As the operation of the network progresses, several regions in the Ising
spin model evolve independently. Each of these regions is a seed-point, which due to
the actions of the heuristic embedded into the network, will reinforce and expand in
diameter. Gradually the eiements of the Ising model converge to states representing

od, 
- -14

du\*) :

1

2

dt
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(a) t = 0.1301

(b) t = 2.8506

(c) t = 3.7106

while

black

(d) t = 5.6474

(e) t = 81'2304'

Figure 5.3: The Hopfield network solving an Ising spin problem.

Time euolution of the state of a Hopf'eld networlc as it solues an 8 x 16 Ising

spin problem. The elernents of the Ising model haae been rendered accordinq to

the d,ifference in outputs of their orroiiot"d, neuron po,ir (i.e. yl'.- ulu-) ¡. fn"

fi,nat i-otution has a cost Eobi - 18. Note the formation of multiple seed-points'
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(a) Mean Cost of Solutions. (b) Number of Optimal Solutions'

Figure 5.4: Performance of the Hopfreld network on the Ising spin problem'

The perforrnance of the Hopfi,etd, network as the problem size n i's increased for
the 8 x n Ising spin proble*. Fo, a giuen problem size n, the Hopfield network

was simulated 100 times.

black or r¡hite. As the heuristic used by the Hopfield network encourages the formation

of only a small, locally optimal region, several seed-points can evolve simultaneously' as

no one seed-point hu,. 
"rro,rgh 

influence to annihilate the others' unfortunately, in this

instance the seed-points corrlspond to opposing checkerboard patterns and the inevitable

result is segmentation of the final soiution as shown in Figure 5.3(e). similar results have

been noted for the traveiiing salesman problem, where disjoint segments of the tour are

seen to evolve from severu,ir""d points, creating the need to introduce a sub-optimal

cïoss-over into the tour (van den Bout and Miiler, 1989).

with a clear understìnding of the heuristic used by the Hopfield network to solve

the Ising spin problem, it is iiteresting to examine the performance of the network on

a variet| oi pråbl"* siåes. Ac.ordingly, we have trialed the network on instances of an

g x n Ising spin problem with increasing horizontal dimension n. The results of the

experimeniu,re.ho*n in Figure5.4, where the poor scaling of the Hopfield network is

ugu,in apparent. For an A x + Ising spìn problem the average cost of the solution is

;;;;"i;.ft¡y E'bi : 1, implying that the average solution had only one segment' In

contrast, for an 8 x 32 probl"mlh" u,r"ru,g" cost of the solution is over E"bi - 24, implying

that the average solution contained four segments'

As has been shown in this section, the optimisation network approach to soiving a

combinatorial optimisation problem is to embed a simple heuristic into the dynamics of

the network. These simple heuristics encourage the formation of locally optimal segments

an¿ are evident u,, ,""d-points in the solution. Moreover, as only small, localiy optimal

regions are encouraged, th"r" arises the possibility for several seed points to coexist' This

is increasingiy true ãs the size of the problem grows and the influence of one seed point on

another lessens. With an increased number of seed-points there will be a corresponding

increase in the segmentation of the final solution. As the problem size increases we see

a greater degree oi ,"g*"ntation, which transiates to a decrease in the soiution quality'
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5.3 A Comparison of Two Heuristics

In the previous section we have seen that optimis edding

a heuristic into the dynamics of the network' Th endent

,roblem. ducted

em indicate that the heuristics employed by

::tîil: tï:' ;Ï J:i, il:iî::"1il
etter than the standard heuristics

used by optimisation networks. One ãt itt" few researchers to address this issue is Lister

(Lister, togo; Lirt"r, 1993; Lister, 1994), who has- investigated the connection between

the heuristic employed in an optimisation argorithm and characteristics of the energy

landscape that may make the search successful'

In his work Lister considers two algorithms for the solution of the travelling salesman

problem. while both algorithms are really instances of simulated annealing and may

not truiy be called optimisation networks, they do offer valuable insight into the poor

scaiing of optimisation networks to large problem sizes. In the rest of this section we

summarise Lister's work on the scalin! ploperties of two difierent approaches to the

traveliing salesman Problem'
The frrst algorithm implements a node i a city from

one position in th" tour tå another, in a sin arts with an

initial randomly chosen tour and at each st y applying a

node insertion move. The choice of which each step of

the algorithm is determined by applying rejection-less simulated annealing (Greene and

Supowit, 1gS4). Such a technique -ät"t a weighted random selection from the set of all

possible nod.e insertion moves, with the bias fãr each move calculated as a function of

the resulting change in the tour length. By favouring node ìnsertion moves that decrease

the tour length, this algorithm can achieve good solutions to the travelling salesman

problem.
To understand the operation of the node insertion algorithm, consider the travelling

salesman problem shown in Figure b.5. The problem consists of sixteen cities arranged

into four clusters of four cities each. The tour shown in Figure 5.5(a) is typical of those

found by optimisation networks, as it exhibits segmentation of a good solution' similar

to that which we have shown to occur for the Ising spin problem and which others have

noticed for the travelling salesman problem (Witson and Pawley, 1988; Van den Bout

and Miller, 1g8g). The four consists of two locally optimal segments which have been

connected by a sub-optimal crossing-over of the segments 81 --+ c1 and D1 + A1' The

operation of the nod" inr"rtion algorithm can be seen in Figure 5'5(b), where city C1 has

been moved between cities A1 and D1. This node insertion move has removed the cross-

over from Figure 5.5(a), but has introduced another closs-oveÏ and actually increased

the length oith" tour. To remove all cross-overs from the tour it is necessary to move

every "ity 
fro- one side of the cross-over to the other. In this instance it would take a

further six moves, and there would be no appreciable decrease in the length of the tour

until the cross-over had been removed'

As shown by the simple example in Figure 5.5(a) and (b), to remove a sub-optimal

cross-over from a tour wilh the node inserti,on heuristic, it takes a number of moves which

is proportional to the number of cities on one side of the cross-over. Moreover, there is

,o- uppr""iable decrease in the length of the tour until the cross-over has finally been

removed. consequently, the 
"rr"rgy 

landscape defined by the node insertion algorithm
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Figure 5.5: Heuristics operating on a travelling salesman problem.

An initial tour for a 16-city trauelling salesman problem is shown in (a)' The

tour shown l" it¡ is obtained, from the origi,nal tour in (o) by !!i"g the node

,insert,ion heuriàtíc to rnoae city C1 between citi,es A1 and D1. The tour shown

in (c) is obtained, from the initial tour shown in (a) by reaersing the direction

of traael on the segment Cl'..Dl'

can be seen to have large fl,at spots. These flat spots become larger as the problem

size increases and the number of cities that must be moved to remove a cross-over in

a tour increases. Experimental evidence (Lister, 1990; Lisier, 1993) suggests that for

small problem sizes there is a reasonable probability that a cÏoss-over in the tour can be

eliminated by node insertion, but as the problem size increases and the flat spots in the

energy iandscape become larger, the probability of removing a cross-over from the tour

decreases.
The second algorithm consid.ered by Lister combines the segment reversal heuristic

with rejection-less simulated annealing. The result of the segment reversal heuristic can

be seen in Figure 5.5(c), which shows the tour from Figure 5.5(a) after the direction of

travel on the ."g-"rrt cl. . .Dl has been reversed.. obviously only one segment reversal

is need.ed to remove the sub-optimal cross-over from the tour. Simulations performed by

Lister (Lister, 1gg3) show thai the segment reversal heuristic gives much better solutions

to the TSp than túe node insertion heuristic. A typical run of both algorithms on a 200

city TSP is shown in Figure 5.6 (Lister, 1993). While both aigorithms maintain a random

,olrtion at a high tempãrature, as the temperature in the annealing process is decreased,

the solution for the segment reversal heuristic exhibits good coarse structure. In contrast,

the solution for the ,rod" irrr"rtion heuristic contains many long-range connections which

are retained in the final solution. This example ciearly demonstrates that even when

operating on large problems, solutions found by the segment reversal heuristic do not

exhibit any segmentation. Lister concludes that the segment reversal heuristic scales well

to iarge problem size (Lister, 1993).

Why does segment reversal scale to large problem sizes better than node insertion?

Considering that any node insertion move can be emulated by two operations of segment

reversal, whereas an arbitrary segment reversal can take up to Iú/2 node insertion moves

to accomplish - can we attribute the supremacy of segment reversal to it being in some

sense u 
"írong", 

heuri,stic? Lister has suggested that the explanation is not this simple'

Rather, he argues that segment reversal deflnes an energy landscape that is "quasi-

fractal" and that simulateJ annealing is well suited to finding the global minimum of a
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Figure 5.6: operation of the two heuristics on a 200 city TSP (Lister, 1993)'

Three interrned.iate solutions únd the fi.nal solution from a run ol sirnulated

o,nnea,ling usi.ng the segment reuersal heuristic (top) and the node 'insertion

heuristii (bottim). At high ternperatures both algori,thms haue maintained' ran-

d,om solutions. Howeuer, as the ternperature falls the segment reuersal heuristic

quickly d,euelops û good col,rse structure for the fi,nal solution. In contrast, the

Àod,e inserti,on heuristic continues to conto,in n'tany long-range connections.

The final solution prod,uced by the node insertion heuristic ethibits the same

poor structure that wL,s noticed for opti,misati,on networlcs by Wilson and Paw-

tey (Witson and PawleY, 1988).
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Figure 5.7: A fuliy-fractal landscape (Lister, 1993)'

A fully-fractal energy lanilscape erhibits self-similar structure. It has been

shown that simulated, annealing is weII suited to fi'nding the minimum' of a

fully-fractal landscape (Sorki'n, 1990).

quasi-fractal landscape (Lister, 1993; Lister,1994; Lister, 1995). The utility of simulated

annealing when operating on a fully-fractal enetgy landscape can be understood with

,"fer"rrc" to Figure 5.7. At very high temperatures, simulated annealing allows the state

to wander freely over the entire state space. As the temperature decreases, the transition

A--+B--+C is substantially more probable than the reverse transition, causing the solution

to be effectively conflned to the region between C and C'. Srt'ch ergodicity brealcing

effectively locks in the coarse structure of the final solution, in a sense implementing

a d,iuid,e and, conquer approach to optimisation. Obviously, as the temperature drops

further simulated annealing will readily converge to the global minimum. While segment

reversal does not define a fully-fractal landscape there is quantitative support for the

conjecture that the landscape is quasi-fractal (Kirkpatrick and Toulouse, 1985). Lister

.rg,r". that the failure of node insertion to scale to large problems is a consequence of

its landscape not being quasi-fractal.
Finally, it must be asked if the performance of discrete heuristics such as node in-

sertion and segment reversal is relevant to analog optimisation networks? The answer

lies in the rule that has been embedded into the dynamics o{ an optimisation network

approach to the TSP. In Chapter 6 it witt be shown that the node insertion heuristic

discussed here is in fact a close discrete-state analogy to the ruie embedded in an ana-

logue optimisation network and as such, if flat spots in the energy landscape for the node

insertion heuristic prevent the heuristic from working weii on large problems, then it
can be expected that similar problems will be encountered by the anaiogue optimisation

network. However, while segment reversal overcomes the problems associated with the

node insertion heuristic Lister read.ily admits that segment revetsal is "incompatible with

the grailient ilescent cornponent" (Lister, 1994) of optimisation networks and therefore

cannot be implemented as an analogue optimisation network.

5.4 Overcoming Segmentation

So far in this chapter we have established that optimisation networks work by embedding

simple heuristics into the dynamics of the network. Moreover, it was shown that these

B
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heuristics are responsible for the poor performance of optimisation networks on large

problems. Naturally we must ask if the performance of optimisation networks can be

improrr"d, by simply choosing a discrete heuristic that performs well and embedding it
intà the dynamics of the optimisation network? Unfortunateiy this is not always possibie,

as the heuristic we choose must be compatible with the gradient descent nature of an

optimisation network. As we noted in the previous section, while segment reversal is

indeed a good heuristic for the travelling salesman problem it is not possible to embed

segment reversal into the dynamics of an optimisation network.

In this section we will investigate two different approaches that attempt to improve

the performance of optimisation networks by modifying the heuristics used. Of particular

concern is their appiicability to a wide variety of problems'

5.4.1 Multi-scale Networl<s

To improve the performance of optimisation networks, it is necessary to somehow pre-

vent the network from converging to solutions exhibiting locally optimal segments which

have been poorly connected, together. Perhaps the most obvious way to eliminate the

segmentatiån problem is to implement a multi-scale approach by incorporating several

luy"r. into an optimisation network. The basic structure of a multi-scale network is

shown in Figure 5.8. The lowest layer of a multi-scale network is similar to a standard

optimisation network and represents the optimisation problem at the finest scale or res-

olution. At successively higher layers the optimisation problem is represented at coarser

scales, requiring fewer nellrons in each layer. Top-down connections between the layers

would ensure that information about the state of the coarser scale layers flows down to

the finer scaie layers. At the same time, bottorn-up connections ensure an information

flow from the finer to the coarser scale layers. Such a multi-scale optimisation network

implement s a d,|uid,e and conquer approach to optimisation. Lister (Lister, 1993; Lister,

tOé+; Lister, 1g95) suggests that when an optimisation network implements a divide and

conquer strategy, it will have an energy landscape that scales well to large problems.

In his work on simulated annealing, Lister (Lister, 1994) has proposed a discrete multi-

scale heuristic for solving the Ising spin problem. The multi-scale heuristic constructs a

hierarchy of layers, as shown in Figure 5.9, with each layer in the hierarchy representing

the Ising spin problem at a different scale. In this case, the lowest level is, in isolation,

a normal 4 x 16 Ising spin model. At level two there is a 2 x 8 network of elements,

with each element being associated with several contiguous elements in level one. Levels

three and four are constructed in a similar manner. When an element in level two or

higher changes state, all of its associated level one elements change state. The change in

".ràrgy 
for such a transition is given by the energy change at level one of the hierarchy.

It should be noted that elements in level two and higher can adopt more than two states.

The exact number of states equals the number of possible state configurations that their

corresponding level one elements can adopt. For the hierarchy shown in Figure 5.9,

level two elements have 2a states. When used in conjunction with simulated annealing,

the multi-scale heuristic is a powerful mechanism for solving the Ising spin problem,

which significantiy outperforms simulated annealing operating directly on the Ising spin

problem (i.e. directly on level one). While the multi-scale heuristic is not developed as

an optimisation network, the structure of an analogous multi-scale network for solving

the Ising spin problem is immediately obvious when comparing Figures 5.8 and 5'9.

This is not the first time that the concept of multi-scale networks has been proposed'

Indeed, multi-scaie optimisation networks have been developed and applied to graph
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Layer 3

Layer 2

Layer 1

Figure 5'8: A multi-scale optimisation network'

A rnulti-scale optimisati,on networlc consists of seaeral layers. Layer 1 repre-

sents the optirnisation problem at its f,nest scale. At successiuely higher layers

the problem representation becomes coa'rser' requiring fewer neurons in each

laye-r. For claiity the interconnect'ions between layers haae not been erplicitly

,iorn. Instead, we haue indicated the typi,cal ertent of connections between

Iayer 1 and, a single neuron in layer 2 by shading. Both top-down and bottom-

up interconnections erist. Similarly the connecti'ons between layer 2 and a

neuron in layer 3 haue been i'nd,icated by shading'

Level a Q x2)

Level3(1xa)

Level 2(2x8)

Leveli(4x16)

Figure 5.g: Multi-scale discrete heuristic for the Ising spin problem (Lister, 1994).

The d,iscrete multi-scale heuristic for the Ising spin problem makes use of a

hierarchy of layers. In isolation, leuel 1is a normal S x 16 Ising spin problem.

Leael 2 i,s constructed by associating each element with seueral contiguous el-

ements fromlayer 1. Layers 3 and /¡ are constructed in a similar manner. If
an element in leuel 2 or higher changes state then all of its associated leuel 1

units also change state'
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labelling (Mjolsness et al., 1991), selected problems in low-level vision (Mjolsness et al.,

19g1; Tsioutsias and Mjolsness, 1996) and signal decomposition (Truyen and Cornelis,

1gg5). In the majority of these cases, the motivation for using a multi-scale optimisation

network has been to speed up the rate of convergence by using smaller, approximate

versions of the problem at coarser scales (Mjolsness et al., 1991). The emphasis has not

been on the improvements in soiution quality that a multi-scale approach to optimisation

can offer.
To implement a multi-scale network, it is first necessary to identify a suitable partition-

i,ng functTon which will allow the optimisation problem to be represented at progressively

coarser scales. This is clearly exhibited by the multi-scale heuristic for the Ising spin

problem in Figure 5.9. In this case the partitioning function groups several contiguous

elements at the lower level and represents them by a single element in the next highest

level. Our knowledge of how segmentation occurs in the Ising spin problem naturally

suggests this partitioning function. To understand why, consider the lowest level of the

hiÃrchy for the multi-scale heuristic. As shown by the simulations in Section 5.2.1 it
is common for the state of this level to be given by two locally optimal segments, each

belonging to opposing checkerboard solutions to the Ising spin problem. With the parti-

tioning function used in the multi-scale heuristic, one of these locally optimal segments

"un 
b" changed into the opposing checkerboard solution by coordinated switching of sev-

eral elements in the higher levels. In doing so, the globally optimal solution to the Ising

spin problem has been obtained by removing the segmentation from the lowest level in

the hierarchy.
In much the same way as we have done for the Ising spin problem, all applications

of multi-scale networks to date, have exploited some knowledge about how segmenta-

tion effects the problem at hand. This knowledge is then used to construct a suitable

partitioning function. Moreover, this knowledge is available prior to simulation of the

multi-scale network and so can be built into the structure of the network. Unfortunately

this is not true for all problems. Take for example a random travelling salesman prob-

lem. It is not immediately clear where in the final solution of the TSP segmentation will

become evident. Of course, a suitable partitioning function may well be learnt through

experience in repeatedly running the multi-scale network and optimising the partitioning

function. However, such a process will be exceptionaliy time costly and will erode the one

great advantage of optimisation networks - speed. It seems that even though multi-scale

networks can significantly improve the performance of optimisation networks, they are

limited to problems such as the Ising spin problem where a suitable partitioning function

does not have to be learnt.

5.4.2 Extended Neighbourhood

In Section 5.2 it was shown that segmentation of solutions found by optimisation networks

arises as a consequence of the dynamics encouraging the formation of small, locally

optimal segments. As this is true for all applications of optimisation networks, a widely

applicable approach to improving their performance is to extend the neighbourhood in

which the network encourages the formation of locally optimal segments. This concept

will be demonstrated on the familiar Ising spin problem.

Using the problem representation for the Ising spin problem given in Section 5.2.7,

we will construct a dynamic equation for the internal ,t.ì" ,f-) of ,r",r.on ,i-), thut *ill
encourage the formation of larger locaiiy optimal segments. To that end, consider the
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second-order dynamics2 3

d,u\*)

dt- C ¿¡C ¡n(rja)r1-l - rj-)rtal¡

7T

(5.6)

An equivaient dynamic equation fo. ,(b) may be constructed. The second-order dynamics

are easily interpreted; if the neighbours of element i are likely to be assigned the state

black, and the neighbours of the neighbouring elements of i are likely to be i:,:igi"d t\"
state white, then the assignment of state white to element i is encouraged (du\*' ldt > 0)"

Conversely, if the neighbãurs of element i are likely to be assigned the state white, and

the neighúours of the neighbouring elements of i are likely to be assigned the state

btack, then the assignment of state white to element i is ãiscouraged (a"[*) ¡at < 0).

The combined effect of the second-order dynamics for neulons associated with element

i is to encourage the formation of a locally optimal segment encompassing element i, its
four immediate neighbours and their immediate neighbours. The second-order dynamics

represent a much ,lrorg", heuristic approach to solving the Ising spin probiem than that

which is implemented by the Hopfield network.

The concept of enlarging the neighbourhood in which locally optimal segments are en-

couraged -uy b" further extended by including even higher-order terms in the dynamics

e.g. Iirre third-order dynamicsl 2

+: ËËË c¿¡c¡rcnt(,lo),ÍPuÍo) -u@),Q),Í-)). (5.7)
e,L ,=r 

l=f|,,=,

Simulation ResuJús

To demonstrate the benefit that can be obtained from extending the neighbourhood

in which locally optimal segments are encouraged, we have simulated the higher-order

dynamics given in equations (5.6) and (5.7) and compared the results with those obtained

for the Hopfield network in Section 5.2.1. The simulation method and parameters were

as given in Section 5.2.1'
Á typical solution to the third-order dynamics of equation (5.7), when simulated on an

8 x 16 Ising spin problem, is shown in Figure 5.10. These results may be contrasted with

the results obtained by a Hopfield network in Figure 5.3. Once again, the final solution

is seen to evolve from seed-points which were formed in the early stages of convergence'

However, as can be seen in Figures 5.10(b) and (c), the extended neighbourhood of the

third-order dynamics allows only a single seed-point to form. Under the action of the

dynamics, the seed-point reinforces and expands in diameter, with the elements of the

Ising spin model converging to states representing black or white. In this run of the

thirá-order dynamics one of the globally optimal checkerboard patterns \ryas obtained.

Our motivation for developing the higher-order dynamics was to extend the neigh-

bourhood in which locally optimal segments are encouraged and in doing so to overcome

2For the sake of clarity, annealing and penalty terms have not been shown but must be included as

in equation (5.5).
3The existence of a Lyapunov function for these dynamics is not guaranteed by the results of Chapter 6

as the necessary symmetry conditions are not satisfied. However, convergence has been attained in all

experiments reported herein.

JVNtt
j=t lc=l

k+i
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(a) r = 0.0962.

(b) t = 0.3398

(c) t = 0.4971

white

black

(d) t = 0.7917

(e) t = 2.5494.

Figure 5.10: Solution of an Ising spin problem using third-order dynamics'

Time euolution of the third-order dynarnics (equati,on (5.7)) used to solue an

8 x 16 Ising spin problem. The elernents of the Ising morlel haae been rendered

accordi,ng to the d,i,fference in outputs of thåir asrociàted, ne'.'t'ron pair (i'"' uP) -
,[o)). The fi,nat solution i,s the global minimum with cost E"bi :0. Note the

formation of only a single seed-point'
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the problem of segmentation. If the higher-order dynamics have been successful in tack-

ling the problem of segmentation, then they should also improve upon the scaling of the

Hopfield network to large problem sizes. To investigate this claim, we have simulated

the higher-order dynamics on instances of an 8 x n Ising spin problem, and compared

the results to those obtained with the Hopfield network in Section 5.2.I. The results

of the experiment are shown in Figure 5.11. By obtaining more optimal solutions and

achieving a lower mean cost over 100 trials at each problem size, it is quite obvious that

the higher-order dynamics have improved upon the Hopfield network.

The superior performance of the higher-order dynamics may be attributed to the

empirical observation that the basin of attraction for the globally optimal solution is

enlarged as the order of the dynamics is increased. However, this observation must

be tempered by the realisation that if a near-optimal solution is desired then as the

problem size increases, it is necessary to introduce even higher-order dynamics so as to

encourage the formation of even larger localiy optimal segments. The need to introduce

even higher-order dynamics exemplifies the trade-off between between computational

effort and solution quality, that can be made with many heuristics.

In Chapter 6 we will further develop the use of higher-order dynamics in optimisa-

tion networks by formalising the concept of higher-order neural networks (HONNs) for

optimisation. In addition, it wiit be shown how to map the travelling salesman problem

onto a HONN.

5.5 Chapter Summary

At the beginning of this chapter we used the travelling salesman problem to demonstrate

that as the problem size increases, the quality of solutions found by an optimisation

network rapidly decreases. Such poor scaling further restricts the already iight niche

market for optimisation networks. The purpose of this chapter was to understand the

causes for poor scaling, and if possible to suggest remedies'

It was revealed that optimisation networks operate by embedding simple heuristics

into the dynamics of the network. Typically, these heuristics encourage the formation of

small, locally optimal segments and their effect can be seen most clearly when used to

solve the Ising spin problem, which is a simple graph 2-colouring problem. The heuristics

used in the Ising spin problem allow several seed-points to evolve independently. As

a result, the final solution exhibits several locally optimal segments which have been

joined together so as to produce a poor solution. Moreover, as the problem size increases,

even more locally optimal segments develop independently and consequently the solution

quality deteriorates.
To improve the performance of optimisation networks it is necessary to replace or

modify the heuristics used in their dynamics. An investigation into the node insertion

and segment reversal heuristics for the travelling salesman problem suggested that the

energy landscape of standard optimisation network approaches contained large flat spots'

Moreover, the size of such flat spots increased with the problem size and made it increas-

ingly difficult to find good solutions to the travelling salesman problem. In contrast, the

segment reversal heuristic was shown to scale well to large problem sizes, but unfortu-

nately it was not amenable to implementation as a heuristic to be used in optimisation
networks.
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Figure 5.11: Perfoïmance of higher-order dynamics on the Ising spin problem.

The perforrnt,nce of the higher-order dynamics is contrasted to that of the Hop-

fi,eld network (1ú order dynarnics) on the 8 x n Ising spin problem, wi'th in-

creasing horizontal dimension n. For a giaen problem size n, each network

was simulated 100 times. As shown in (a) the mean cost of the solutions found
decreases as the order of the dynamics used increases, and (b) the number of
opti,mal solutions found increases as the order of the dynamics increases. Note

thøt in (b) the direction of increasing magnitude has been reaersed on some

a,res a,s compared to (a).
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Although there d.o exist heuristics which outperform those used by optimisation net-

works, we cannot simply select one and th:n embed it into the dynamics of the opti-

misation network. Inri"ud, we have proposed two new optimisation networks' The first

is a multi-scale optimisation network, *tti"tt incorporates several layers into an optimi-

sation network. Each layer treats the problem at a different scale and so the whole

multi-scale network implåments a divide and conquer strategy to optimisation' Unfor-

tunately, implementatiån of a multi-scale network relies on detailed apriori knowledge of

how segmentation will be exhibited in the solution o

tion network. rWhile such knowiedge is available for

problem, it is not readily available r problem

We have shown that the poor sca - rtimisatio

of the heuristics to encourage small locally optimal s

this fact, the second approach to improving the per

extends the neighbourhood in which the network e

optimal segments by including higher-order terms in the network dynamics' The resulting

network is more .ä-pl"*, U"t ttti. can be seen as embodying the trade-off between

computational effort and solution quality that can be made with most heuristics' using

higher-order dynamics greatiy improved the performance of optimisation networks on

the Ising spin problem.
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Higher-Order Neural Networks

We have now established that the Hopfield network does not scale well to large prob-

lem sizes due to its tendency to form solutions which consist of small, locally optimal

segments. Moreover, the Hápfield network's dynamics embed simple heuristics which

u,.ã ,"rporsible for this behaviour" We showed in Chapter 5 that to improve the perfor-

mance of optimisation networks we can use higher-order terms in the network dynamics

to extend the neighbourhood in which locally optimal segments are encouraged. In this

chapter we will formalise this concept as that of higher-order neural networks (HONNs)

for ãptimisation. HONNs are a ne\/ class of optimisation networks that may be applied

to almost any combinatorial optimisation problem to which the Hopfield network has

been applicd. In this chapt", *" will show how to apply HoNNs to the soiution of the

travelling salesman Problem.
We bãgin in Sectìon 6.1 by describing the model we have used for HONNs. As with

other optimisation networks, HONNs operate by a process of gradient descent and are

therefore suited to the solution of optimisation problems. A simple example is given in

Section 6.1.1 where we show how a HONN may be used for minimising a cubic objective

function. While our approach of using HONNs for the solution of combinatorial optimi-

sation problems i, ,ro.rå1, it is not the flrst application of higher-order recurrent neural

networks that has been documented. Consequently, in Section 6.l.2we present a brief

survey of other applications of higher-order recurrent networks that may be found in the

iiterature.
A major goal for this chapter is to demonstrate how to use a HONN for the solution

of difficult combinatorial optimisation problems like the travelling salesman. However,

before we apply HONNs to the solution of the TSP it is necessary to understand the ap-

proach rr.J ùy the Hopfieid network for solving the TSP. Consequently, in Section 6.2 we

ã*u,-irr" the dynamics of the Hopfield network to extract the heuristic used when solving

the TSp. We then proceed to formulate a HONN approach to the TSP by extending the

heuristic to encourage the formation of larger locally optìmal segments' Thìs process is

described in section 6.3. An experimental comparison of the Hopfield network and the

HONN approach to the TSP is given in Section 6.4. Finally, in Section 6.5 we present a

summary of the chapter.

6.1 The HONN model

In many ways a HONN may be viewed as an extension of the Hopfield network where

the feedback vector is no longer restricted to be linear, but is allowed to be a polynomial

function of the network output v. As with the continuous state Hopfield network, the

i¿À processing unit is described by two variables: its internal state u¿ and its output

,o a [0,1]. il ord.er to produce a feedback vector which is a polynomial function of the
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neuron outputs, a HONN uses multiplication units to form the products of outputs from

various subsets of neurons, which are then fed-back to the input of the network. The

HONN forms a dynamic system described by the following equations:

du¿

dt Drx
L

Ie-l'i€T¡

L

*o(k)
Ui I uTi(xl -

ieTr
\u¿ (6.1)

ni : g@¿) (6 2)

where 4 is a decay parameter ,I : {It,Tz,. . .T¡,} is a collection of tr unordered subsets of

the indices {7,,2,...¡r}, T¡ is the synaptic weight applied to the product of the outputs

of neurons in the ,rrrord"r"d subset In and' *¡(k) is the power to which the output of

neuron j is raised when calculating the product of neuron outputs in subset Z¡,. The

transfer function g(.) ir a monotonicaliy increasing function that restricts the neuron

outputs to the .ungà u¿ e 10,1]. As for the continuous Hopfield network, the usual choice

is the shifted hyperbolic tangent function

g(u¿) :- 1+ exP(-u¿lTn)

where Tp is aparameter controlling the slope of the transfer function in the linear region,

and is termed the pseudo-temperature. A cursory examination of the HONN dynamics

given by equatio" lo.r¡ ,"rr"ul, that the feedback vector is now a polynomial function

of the neuron orrtpìt .r. fn" continuous Hopfield network is a restricted version of the

HONN where the subsets I¡, ate given by ali indices and ali unordered pairs of indices

from {1,2, . . .¡ú}. In which .u,s., if the rn¡(k) functions are suitably chosen the dynamic

"qrrutàr, 
(6.1) \4,ill red.uce to the Hopfreld dynamics given by equation (2.12).

A HONN admits the Lyapunov function (Dembo et al., 1991; Poteryaiko, 1991)

L

Btu,n(u): -t rnfluryj&) +.r,t 1""'rn-'{v)av. (6.3)

Ic=l ieto i

It is easily shown that under the action of the network dynamics the Lyapunov function

for the network is non-increasing, at'z

dEta"P t }EIY"P du¿

Aa dtdt

t
; lc=l,i€Tx

t n uT¡(x) * qu¿

)eLk

-Ð s'("0)

2
du¿

dt

Since Elvop is bounded below and the time derivative of Eta"' is non-increasing, the

HONN will seek out minima in the Lyapunov function and come to a stop at such points.

Obviously HONNs operate in much the same manner as continuous Hopfield networks,

with only the form of the Lyapunov function being different. While a HONN does

necessitate the use of multiplication units and an increase in the number of connections

in the network, it also allows more flexibility than is available with a Hopfield network.



0.879t--

0.6+-

o.342+--

- '0.0739

l-o'fw,t

19vf0.

78
6.1 The IION I model

N

o.2 0.4 0.6 0.8

U1

Figure 6.1: contours of the 2-dimensional cubic objective function'

A contour plot for the function E : u?', - ul + ul' The global minimum of

this function is E(17, 01") - -7'

6.1.1 Simple ExamPle

To demonstrate the operation of a HONN, we shall use a HONN to minimise the 2-

dimensional cubic function given by

E : u?uz - u3, + u|. (6.4)

A contour plot of the functi on E is shown in Figure 6.1' In order to minimise this

function with a HONN it is necessary to equate theLyapunov function of equation (6'3)

with the function E given in equation (6.a). To achieve this we set ry : 0, and choose

the unordered sets u" t -- {Tr,Ir,I"} : {(i,2), (1), (2)i' Other parameters are set as

follows:

T't''Tu : -t
ry1 112 I

Tfl,1 : (2, 3, 0)

n't2 : (1, 0, 3).

By substituting these parameters into equation (6.3), it is easily verifi'ed that EIa"p -- E'

Further substitution of th" parameters into equation (6.1) gives the network dynamics

AS

'ù1 : -2u1u2 -f3ul
'ír2 : -ul-Zul.

Note that these dynamics are a second-order system and so the entire network is referred

to as a second-ord"r HONNI. Operation of the HONN is shown in Figure 6.2' The

1A second-order HONN will have a third-order Lyapunov function. Throughout this thesis we have

used the convention of naming a system according to the order of its dynamics and not the order of its

Lyapunov function.
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network is initialised at the centre of the unit square and converges to the global minimum

of the Lyapunov function at v : [1, 0]". Obviousiy the network is performing gradient

descent upon the Lyapunov function.

6.1.2 Applications of -EIO.fül{s

The concept of HONNs is not new. Indeed, recurrent networks that utilise higher-

order connections have been applied to a variety of problems, usually in response to the

shortcomings of first-order networks such as the Hopfi.eld network. In this section we

briefly present the appiications of HONNs that have appeared in the literature.

Associative Memories

One of the earliest uses of the Hopfield network was as a form of associative or content

add,ressable memory (cAM) (Hopfleld, 1982; Hopfield, 1984). 'When a set of patterns

have been stored into memory, a CAM will retrieve one of these patterns based upon

the similarity of the stored patterns to the pattern which is presented at the input'

When a corrupted version of one of the patterns is presented at the input, the CAM

will retrieve the stored pattern which best matches the input. To utilise the Hopfield

network as a CAM, the connection weights and external biases must be programmed so

that the minima of the network's Lyapunov function correspond to the desired stored

patterns. rffhen operating as a CAM, the state of the Hopfield network is initialised with

a corrupted pattern and the network dynamics will guide the network state to the nearest

local minimum of the Lyapunov function. In doing so, it is expected that the network will

have corrected the errors in the corrupted pattern. While it is now generally accepted

that the Hopfield network has a low storage capacity, HONNs have been proposed as a

means to improve the number of patterns that may be stored. Uniike the continuous

state HONNs which were introduced in Section 6.1, most studies of HONNs as content

addressable memories have used discrete state units (Lee et al., 1986; Chen et al., 1986;

Psaltis and Park, 1986; Gardner, 1987; Abbott and Arian, 1987; Personnaz et al., 1987;

Baldi and Venkatesh, 1987; Baldi, 1988; Baidi and Venkatesh, 1993; Karlholm, 1993;

Chao et al., 1993).

Grammatical Inference

Grammatical inference is the task of learning to recognise temporal sequences (strings)

generated by a set of rules known as a grammar (Hopcroft and Ullman, 1979). The

language of a grammar is the set of all strings that can be generated by the grammar.

To infer the grammar from a set of positive and negative example strings (i. e. strings that

do or do not belong to the language) an inference engine is used to determine which rules

belong to the grammar. A rule is of the form: {input , current state} --+ next state.
There has been considerable interest in the use of recurrent neural networks as infer-

ence engines for the task of grammatical inference. Recurrent neural networks seem to

be well suited to implementing grammars as their dynamics make use of internal state

information and naturally implement the state transitions that correspond to the rules of

a grammar. By using suitable algorithms to learn the weights on the connections in the

network, a recurrent neural network can infer the grammar based on a set of positive and

negative example strings. While the recurrent networks used for grammatical inference

are not exactly as described in Section 6.1, it is interesting to note that both theoreti-

cal and experimental comparisons show that second-order recurrent networks are better
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Figure 6.2: Operation of a HONN.

The plots show the operation of a HONN on the cubic function E giuen in

equation (6.Ð. To ensure that EIa"p : E, the parameters ? :0 andTp :1
or" u""d,. Integration of the HONN dynamic equations yields the traces shown

in (a) and (b). Since there is no decay term, the u uariables are unbounded-

The grad,ient'd,escent nature of the HONN dynamics i's eaident in (c) where the

d,ashed,l,ines are contours of EIu"n. The network is initialised at v : [0.5, 0.5]"

and, conuerges to v: [1, 0]7, which is the the global minimum of the Lyapunou

functi,on wi,thin the unit squa,re. The HONN d,ynamics were integrated usi'ng

the Euler method and a constant step-size Aú : 0.01.
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suited to the task of grammatical inference than first-order networks (Goudreau et al.,

19g4; Miller and Giles, 1993). These studies suggest that second-order dynamics offer a

more direct implementation of the rules of a grammar. Consequently, most approaches

to grammatical inference with recurrent networks now advocate the use of higher-order

coÃections (Giles et al., 1992; Watrous and Kuhn, 1992; Zeng et al., 1993; Horne and

Giles, 1995; Gites and Omlin, 1993; Giles and Omlin, 1994)'

Optimisation

Higher-order neural networks have been used for the solution of optimisation problems

*h"." the objective function could not be expressed as a quadratic function. For example

the problems of line labelling (Salem and Young, 1991), block design (Bofill, 1993) and

relational structure mapping (Miller and Zunde, 1992) require cubic or quartic objective

functions and so must be solved with a HONN.
A very difierent standpoint on the use of HONNs for optimisation was suggested in

Chapter 5 and underlies the rest of this thesis and various other published works (Cooper,

1995a; Cooper, 1995b). As optimisation networks operate by embedding simple heuristics

into the network's dynamics, higher-order networks potentially have the ability to embed

more sophisticated heuristics into the dynamics. While we are not compelled to use the

higher-order connections in order to soive the problem, \4¡e do so in order to gain an

improvement in the solution quality at the expense of extra network complexity.

Another approach to the use of higher-order neural networks was proposed by Xu and

Tsai (Xu and Tsai, 1991). They propose a first-order network for the solution of the TSP

and proceed to run that network many times. For each trial run, if the network converged

to a poor solution, then higher-order terms were added to the network dynamics in order

to prevent this solution from being obtained again. In essence, they are sculpting the

Lyapunov function, using higher-order terms to add "bumps" in locations which help to

prevent poor solutions from being obtained in the next trial.

Pattern Recognition

Although we are primarily interested in the applications of recurrent networks that utilise

higher-order connections, it is worthwhile noting that there have been many applications

of higher-order feed-forward networks. Specifically, feed-forward networks have been

used lo implement translation, rotation and scale invariant pattern recognition (Maxweil

et al., 1986; Giles and Maxwell, 1987; Giles et al., 1988; Perantonis and Lisboa,1992)'

6.2 The Hopfield approach to the TSP

In Chapter 5 it was shown that a practical approach to improving the performance of

optimisation networks was to extend the neighbourhood in which locally optimal solu-

tions were encouraged by using higher-order terms in the network dynamics. Moreover,

while this approach was demonstrated only on the relatively simple Ising spin problem

we stated that increasing the order of the network dynamics was a widely applicable

approach to improving solution quality. To justify this assertion we shall demonstrate

how to apply HONNs to the solution of the travelling salesman problem.

However, before \¡/e can apply higher-order networks to the TSP it is necessary to

ascertain the approach that the Hopfield network has employed in solving the TSP. In
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order to do this we must proceed, as we did with the Ising spin problem, by analysing the

dynamics of the Hopfreld network to determine the heuristic that has been embedded.

It is appropriate at this time to recapitulate the problem representation for the TSP

as it was presented in Section 3.2. To solve a N city TSP, a lú x 1ú array of neurons

is used where the output ur¿ of the neuron in row r and column i is one if city r is to

be visited in the irå position of the tour and zero otherwise. To map the TSP onto the

Hopfield network, we set the Lyapunov function to be

EIa"p-E.bi+6cns¡fmod

where the objective function is given by equation (3.2), ui,z.

Eobi : lf f u,¿d,,0(uy,r-,f ur,;ar)
2'.- :i' I'

: t t dx)!uriua,i+j,.

,*lo '

Here we have once again made use of the convention that ail summations are from 1

to 1ú unless explicitly shown otherwise. Furthermore, the penalty function is given by

equation (3.13), uiz.
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and the modified hysteretic annealing function is given by equation (4.10), aiz.
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6.2.1 Extracting the heuristic from the Hopfreld networl<

The first step in extracting the heuristic used by the Hopfield network for solving the TSP

is to establish the dynamics of the network. The network dynamics are easily determined

as follows:

0 Eta"P

ôr'¿

(c+?) ("+r)
¡ú

\-u-r - 1
N2 Ð'ot

ai

dur¿

dt

(?',,- 1 + ¡r
J

- Ð d,o(uy,t+t¡uo,;-r)
v

v#,

(6.5)

Our analysis of the valid subspace mapping in Chapter 3 showed that the terms in the

dynamic equation arising from the penalty function E"n" act only to restrict the network

state v to lie on the valid subspace. Additionally, the analysis of the modified annealing

technique presented in Chapter 4 showed that the terms arising in the dynamic equation

+"r
1

ur¿- ñ
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frorn E*"d help only to guide v through the valid subspace. In no way do these terms

represent a heuristic for minimising the distance travelled in the TSP, and so for the

p,rrpor" of extracting a heuristic we may simply express the network dynamics as

du'¿

dt
penalty and

annealing terms
a

- t d"o(uo,;¡t¡uo¡-t) (6.6)

a*,

Although it is not explicitly stated in the problem representation, there is considerable

merit in interpr"ting uy,;1r as the probability that city gr will occupy position i + 1 of the

tour. Indeed., our undårstanding of the network dynamics is greatly assisted by making

such an interpretation of the network outputs. Consider the situation where it is probable

that city y witl occnr in position i * 1 of the tour i.e. uo,;¡t is much larger than all other

neuron outputs in column i * 1 of the array. We can see from equation (6'6) that in

such a situation u,¿ wili be decreased by an amount which is proportional to the distance

between cities ø and gr. Moreover, a decrease in the internal state u'¿ also results in a

decrease in the neuron output Dxi : g(u,¡) and so the probability that city r occupies

position i of the tour is decreased. However, it must be remembered that all neurons in

column i of the array will have their internal state decreased by an amount proportional

to the distance between city y and the city that they represent. Consequently, if the

distance between cities r and y is small compared to the distance between city y and any

other city, then the probability of c\ty r occurring in position i of the tour is comparatiuely

encouraged. A similar argument may be presented for the interaction between a neuron

us,;-r and the neurons in column i of the array.

Lister (Lister, 1993) suggests that equation (6.6) embeds an analogue version of the

node insertion heuristic for the TSP where "portions of citi'es are moued around" in the

tour. However, the preceding discussion of the network dynamics suggests an alternative

interpretation: as equation (6.6) is acting to encourage the inclusion into the tour of

segments which connect two nearby cities, we suggest that the network dynamics emb¡ed

un urru,logrre version of the nearest neighbour heuristic for the TSP (Reinelt, 1994). In its

discrete for-, the nearest neighbour heuristic builds a tour for the travelling salesman

by starting at any city and then including the segment which visits the ciosest city

which has not yet been included into the tour. The analogue version of the nearest

neighbour heuristic embedded into equation (6.6) constructs a tour by using "portions"

of ,"g-"nts between two cities. Interpretation of the network dynamics as an analogue

,r"urÃt neighbour heuristic is further supported by the formation of seed-points as the

network computes a solution to the TSP (Van den Bout and Miller, 1989). When the

seed point first forms, it represents a small path that wili be found in the flnal tour' As

the sãed point expands, the path is extended by adding a further segment to the end of

the existing path. Obviously this is closely related to the manner in which the discrete

nearest neighbour heuristic works" The difference between the two interpretations of the

network dynamics is only of interest when we consider how to extend the heuristic for

use in HONNs.

6.3 The HONN approach to the TSP

As was shown in Section 6.2 the Hopfield network approach to the TSP is an analogue

nearest neighbour heuristic, whereby a tour is constructed by encouraging the formation

of locally optimal segments between two cities. In this section we will show that a HONN
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may be used to extend the neighbourhood of these locally optimal segments to include

not just two cities, but three or more cities.
As an objective function for the TSP when mapped onto a second-order HONN,

consider
Eobi- t Ð@*ldo")u,¿ur,i,+tùz,i+2. (6.7)

tYz x

,*a*"

\{hen equation (6.7) is evaluated at a valid 0 - 1 point it equates to twice the length of the

tour represented by that point. In that respect, equation (6.7) is similar to the objective

function used for the Hopfield network mapping of the TSP. However, it is important
to note that equation (6.?) differs from the objective function for the Hopfield network

at points inside the hypercube and consequently the basins of attraction for valid 0 - 1

points have been altered. This observation will be the subject of more detailed comment

in Chapter 7.

With the objective function given by equation (6.7), the Lyapunov function for the

second-order HONN to solve the TSP is given by

EIa"p _ E.bi + E"n" + gmod,

Here the penalty function E'n" arrð. the modified hysteretic annealing function E^od are

as given in Section 6.2. The network dynamics are determined as follows:

ôEts"P

ðu'¿

G+ t)

84

du"¿

dt

¡r

G+ t)
N2

("+r)
¡/uv'; - L t urj -1

l

+ Ðuo¡ - N +.1
YJ

D @"o j dr")uy,;¡tl)z,ir2 - Ð @0, ¡ d,")uo,;-7't)z,ir7
az az

a*"*, a#r*,

D @n" ¡ d"")uy,'i-2uz,i-r. (6.8)

olj+"

Once again, we note that the terms arising in the dynamic equation from the penalty
function E"n" act only to restrict v to lie on the valid subspace. Additionally, any term
arising in equation (6.8) from the modified annealing function E^od helps only to guide v
through the valid subspace. As none of these terms act to minimise the distance travelled
in the TSP, they should not be considered as part of the heuristic embedded into the
dynamic equation of the HONN. Consequently, for the purpose of analysing the heuristic
used by a HONN, we may simply express equation (6.8) as

du,¡ / penalty anr¡ \-T : ( ""iä;;å ;;-" J - Ð @"' ¡ do")us';+7'Dz'i+2

a#"#t

Ð (¿r" ¡ d,,)uy,;-t1)z,ir7 - Ð @0" ¡ d,,)u.y,;-2't)z,i-7. (6.9)

o/i+, o!í+,

In developing the heuristic which is embedded into the network dynamics of equa-

tion (6.9), we shali again interpret úy,ilt às the probability that cily y will occur in
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position i -f 1 of the tour. Consider the situation where it is probable that cit'y y will oc-

lupy position i*1 of the tour and city z will occupy position i+2 ofthe tour (i.e' uo,t¡tis

-rrãlttrrg"r than all other neuron outputs in column i t 1 of the array and u",;¡2 is much

larger thãn all other neuron outputs in column ii2 of the array). In such a situation,

the effect of the first summation in equation (6.9) is to decrease u,¿bV an a'mount which

is proportional to the length of the path connecting r -+ u --+ z" Moreover. a decrease in

the internal state u"¿ also results in a decrease in the neuron output u,¿ : 9(u,;) and so

the probability that city r occupies position i of the tour is decreased. However, it must

be remembered that all neurons in column i of the array will have their internal state

decreased by an amount which is proportional to the iength of the path which connects

the city they represent to city y and then to cily z. consequently, if the length of the

path r --+ A --+ z is small compared to the length of the path connecting any other city

io city g .na then to city z, then the probability of city r occuring in position i of the

tour is comparatiuely encouraged.

A similar argument may be presented to explain the operation of the second and third

summations in equation (6.9). These summation terms will encourage city r to occupy

positioniofthetourifcityrcorrespondstoshortpathsy'--+fr---+zatdy---+z--+r
respectively.

The preceding analysis of the dynamics for a second-order HONN suggests that the

network encourages the formation of locally optimal paths which connect three cities in

the tour. In contrast, it was shown in Section 6.2 that the Hopfield network encouraged

the formation of locally optimal paths (or segments) which connect only two cities in the

tour. By extending the neighbourhood. in which locally optimai segments are encouraged,

the second-ord.er ttOtl$ embeds a much stronger heuristic approach to the solution

of the TSp than that which is used in the Hopfield network. In view of the results

presented in Chapter 5 for the Ising spin problem, we expect that HONNs will give similar

i-prorr"*ents in the solution quality for the TSP. Section 6.4 presents an experimental

evaluation of the performance of the HONN approach to the solution of the TSP.

The concept of enlarging the neighbourhood in which locally optimal segments are

encouraged may be further extended by considering even higher-order networks e.g' a

third-order HONN with the objective function

Eobi - t Ð(d,o+d!"+d,-)u,¿uo,;¡lt)2,i,+2Dtu,'il:3 (6'10)

'il#+- 
I'

will act to encourage the formation of locally optimai paths which connect four cities in

the tour. A (¡ú - t¡l"n order network would encourage the formation of locally optimal

paths which'connect all lú cities in the tour. However, calculation of the Lyapunov

iunction for a (Iú - l)tn order network would explicitly calculate the cost of every possible

tour. In that case, calculating the Lyapunov function involves the same computational

effort as an enumeration technique which calculates the iength of every possible tour and

chooses the shortest. It is well known that as the number of possible tours for the TSP

rises exponentially with the problem size, such enumeration techniques are impractical for

all but the smallest problems. Consequently, a (¡ú - 1)'n order HONN is also impractical

for all but the smallest probiems.
As the order of the HONN increases, the heuristic which is embedded into the network

dynamics offers a progressively stronger approach to the solution of the TSP. In that

sense, we may view HONNs as a family of heuristic approaches to the solution of the

TSP where \ /e may trad.e increased computational effort for improved solution quality

by simply increasing the order of the network. Unlike most other herrristics for the

85
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TSP, an increase in the computational effort required by a HONN does not mean a

longer running time, but rather it results in an increased number of connections in the

network. This is quite obvious when we consider that the number of interconnections

necessary to implement a Hopfield network for the TSP is O(¡út), while for a second-order

HONN that number has increased to O(lúa) and for a third-order HONN the number of

interconnections is O(,n/5 ). As the order of the HONN increases, the limits of what may be

feasibly impiemented in hardware will very quickly be approached. Consequently, when

considering a HONN approach to the TSP, one must have in mind a clear understanding

of their p".for*unce. While ïr/e may be willing to trade complexity for improved solution

quality, this can only be done up to a certain level, beyond which the complexity of

th","qrrir"d networkprohibits it from being implemented. It should be noted that such

limitations are not unique to optimisation networks. Most other heuristics involve a

trade-off between run time and solution quality, where as the demands on the solution

quality increase the necessary run time will approach the impractical run times needed

for a direct enumeration approach to the TSP.

6.3.1 An alternative aPqroach

The HONN approach to the solution of the TSP that we have described was first pro-

posed by CoopLt (Cooper, 1995a). An alternative approach to the solution of the TSP

ilt6 . Ligh"r-o.der recurrent network rúras recently proposed by Matsui (Matsui and

Nakabayashi, 1995). While the higher-order recurrent network they use does not have a

Lyu,prrnty function, it is similar to our approach in that Eobi is a cubic function of the

network staïe v, a'i'2.

Eobi : t Ð@,u I d,r,)u,;(uy,it1* uy,.i-1)(u",¿¡t * u",¿-t)' (6'11)

-io"i" i

Equation (6.11) may be compared to the objective function which we have proposed for a

seãond-order HONN, as given in equation (6.7). There are several significant differences

between our HONN approach to the TSP and that suggested by Matsui and Nakabayashi.

o Firstly, it is not apparent that minimising the objective function given by equa-

tion (6.tt) will lead to short tours. Although equation (6.11) does equate to four

times the tour length at a valid 0 - 1 point, its meaning at points inside the hyper-

cube is not clear. Consider the term

(dro * drr)u,¿u,y,i+!l) z,irl

which appears in the objective function of equation (6.11). This term measures the

distance between a city r occuring in position i of the tour and two cities y and

z occuring in position i * 1 of the tour; but as we know, for the network state to

represent a valid tour only one city can occupy each position in the tour. There is

no sound basis for including this and other similar terms into the objective function

for the TSP.

In contrast, the only term in the objective function given by equation (6.7) for

our approach to the TSP measures the length of a path visiting cities t, y and

z in consecutive positions on the tour. Quite obviously, minimising ihe objective

function that we have proposed will lead to short tours for the travelling salesman.
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o The objective function given by equation (6.11) does not correspond to a Lya-

punov function for the higher-order network that has been proposed in (Matsui and

Nakabayashi, 1995). Consequently, the value of the objective function may increase

at any iteration of their algorithm.

o Finally, the results of their simulations are questionable. They report that a Hopfield

network solving a twenty city TSP obtained solutions which were in the vicinity of
g0% longer than the optimal solution. This should be compared to the simulations

presenteà in Section 5.1 where on a similar twenty city problem we showed the

Hopfield network obtained solutions which were only 0.27% longer than the optimal.

While this massive performance difference may well be attributable to the rigorous

problem mapping and principled annealing mechanisms that we have used, it also

casts doubt on any conclusions drawn from a comparison between their higher-order

recurrent network and the Hopfield network when operating in such an environment.

6.4 Simulations

In this section we present an experimental comparison of the Hopfield network and HONN

approaches to the TSP. For the purposes of this comparison we have solved 1000 instances

of a 1g-city Euclidean TSP, where, for each instance, the cities have been placed randomly

inside the unit square and the optimal tour has been found by exhaustive searchz. Each

instance of the TSP was solved with a Hopfleld network, a second-order HONN and a

third-order HONN.
The network dynamics are given by equation (6.5) for the Hopfield network and equa-

tion (6.8) for the second-order HONN. The network dynamics for a third-order HONN,

where the objective function is given by equation (6.10), can be determined by setting

the Lyapunov functio n to Eta"p : Eobi + E'n" t E*oa and evaluating the partial derivative

\Btuan f 0u,,. In all cases integration of the network dynamics was performed using the

function ode15s.rn available in MATLAB@.

For each of the optimisation networks used in this experiment we have employed

modified hysteretic annealing. The annealing parameter was given by ''l : (tlr)2 *lo
where r is a positive constant and 1o is a small negative constant. Increasing the absolute

values of both r and 7s wili improve the solution quality at the expense of longer running

time. For the experiments reported in this section, we set the network parameters as

follows: r : 100, ls : -1 and the gain of the transfer function was set to Tp: 1. For

each instance of the TSP the weight c on the penalty function E"n" was set so that

c: coNúT;î,:(d,o + d,,)

whereco:1and
for the Hopfield network
for the second-order HONN
for the third-order HONN.

This method of setting the weight on the penalty function E"'" is consistent with results

recently presented in the literature (Abe and Gee, 1995). For each simulation the initial
conditions were given by u,o: llN + 0.01 * rand. where rand is a random value in the

range [-0.5, 0.5].

2The problem database used for these simulations was developed and made available by A. H. Gee

of the University of Cambridge, England.

,:{å
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Order Mean % error Number of Optimal tours

1(Hopfreld )
2

3

1.9983
1.8013
r.6497

477

523
525

Table 6.1: Simulation results for HONNs soiving the TSP'

The perforn'ì,o,nce of the Hopfi,etd networlc and second anil third-order HONNs

on 1000 instances of a 7}-city TSP is shown. For each order of network, the

rne&n percentage error and the number of optirnal solutions found is reported.

The percentage emor i,s giuen by (L¡"una - L"rr)lL"et xl00To where L¡ouna is

the length of the tour found by the optirnisation network and Lorl is the length

of the opti,mal tour which has been found for each TSP by erhaustiue search.

The results of these experiments can be seen in Table 6.1. \Mhile the performance

of the three networks is quite similar, Table 6.1 shows that the mean percentage error

decreases and the number of optimal solutions found increases as the order of the network

is increased. While the advantages of increasing the order of the network are evident in

these results, the difference between the Hopfi.eld network and HONNs is not astounding.

This should be expected as we know that the Hopfield network performs satisfactorily

on problems as small as these 10-city TSPs. We would also expect that HONNs will
significantly outperform the Hopfield network on larger problems, but we have not verified

thls by simulation as the ability of HONNs to scale to large problem sizes was adequately

demonstrated on the Ising spin problem in Chapter 5. The main aim of this chapter,

which we have quite clearly accomplished, was to demonstrate how to apply HONNs to

the solution of difficult combinatorial optimisation problems like the travelling salesman.

6.5 Chapter SummarY

Our investigations in previous chapters have suggested that higher-order terms in the

dynamics of an optimisation network may be used to improve solution quality. Such

higher-order terms allow more sophisticated heuristics to be embedded into the dynamics

of an optimisation network. In this chapter we have formally introduced higher-order

neural networks (HONNs) for optimisation. HONNs are a new class of optimisation

techniques that may be applied to a wide variety of combinatorial optimisation problems.

HONNs are basically an extension of the Hopfield network where the feedback vector

is no longer restricted to be linear, but is allowed to be a polynomial function of the

network output v. A HONN forms a dynamic system described by

du¿

dt t il u*¡(n) _ 
Tu¿

L

k--t,ieTu jerL

ui : g(u¿).

Here 4 is a decay parameter,T : {Ir,Iz,...I7} is a collection of ,L unordered subsets of

the indices {1,,2,.. . ¡tr}, ?¡ is the synaptic weight applied to the product of the outputs

of neurons in the unordered subset T¡" and rnj(k) is the power to which the output of

neuron j is raised when calculating the product of neuron outputs in subset Z¡. The

transfer function g(') ir a monotonically increasing function that restricts the neuron
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outputs to the range u¿ € [0,1]. A HONN admits a Lyapunov function

L
stu"n (u): - É rr lI uri@) + ? t lr"'u n-' {v)av.

Ie=7 i€Tr i u

As with the Hopfield network, HONNs operate by a process of gradient descent on the

Lyapunov function. White the work reported in this thesis is amongst the first applica-

tions of HONNs to optimisation, HONNs have been applied as associative memories and

have also been used to solve the task of grammatical inference.

The major goal of this chapter was to demonstrate the application of HONNs to

difficult combinatorial optimisation problems like the TSP. In order to achieve this it
was flrst necessary to ascertain the approach that the Hopfield network has employed

in solving the TSP. When using the Hopfield network to solve the TSP, the objective

function is given by
E"bi - Dt d,ralr,i'uy,i+t.

:i' ?'

Our analysis revealed that an analogue version of the nearest neighbour heuristic is

embedded into the dynamics of the Hopfield network. The Hopfield network effectively

constructs a tour by encouraging the formation of locally optimal segments which join

two cities. The HONN approach to the TSP was then formulated by extending the

neighbourhood in which locally optimal segments are encouraged. For a second-order

HONN approach to the TSP we suggested the objective function

t¡obi - \- Ð@"0I da")u,¡us,i!Luz,i!2'Lfux
'#s*'

Analysis of the dynamics for the second-order HONN suggests that the network con-

structs a tour by encouraging the formation of locally optimal paths which connect three

cities.
The concept of enlarging the neighbourhood in which localiy optimal segments are

encouraged may be further extended by considering even higher-order networks. As the

order of the HONN increases, the heuristic which is embedded into the dynamics be-

comes a progressively stronger approach to the solution of the TSP. However, as the

order of the network increases the number of connections necessary to implement the

network increases exponentially. Consequently, we may view HONNs as a family of

heuristic approaches to combinatorial optimisation where \4/e may trade increased com-

putational effort for improved solution quality. The trade-off between solution quality

and computational effort is the subject of more detailed discussion in Chapter 7.
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Investigating the QualitY Versus
Computational Effort Trade-off

To this point in the thesis we have highlighted the need for improved heuristics for opti-

misation networks and subsequently developed the higher-order neural network approach

to combinatorial optimisation. We have applied HONNs to the solution of the Ising spin

and travelling salesman problems. Whiie experimentai evidence has supported our mo-

tivation for using HONÑs, in this chapter we will develop a deeper understanding of

HONNs by investigating the trade-off that can be made between network complexity

and solution quatity. An important outcome of this investigation is a clear explanation

of the shortcomings of the Hopfield network approach to combinatorial optimisation.

We begin in Section 7.1 by considerìng the operation of an optimisation network as a

dynamic system whose stabie attractors can be interpreted as solutions to an optimisa-

ti,on probiem. We d,iscuss how the location and number of attractors in the system affects

both the validity and quality of solutions found by an optimisation network. We proceed

in Section 7.2 by establishing the conditions under which, for the TSP, a vertex of the

valid subspace is a stable attractor for both the Hopfreld network and HONNs. When

the optimal solution to the TSP satisfies these conditions for a given network, we can ob-

tain a measure of the expected solution quality by determining the number of competing

attractors in that network. In Section 7.3 we present a numerical comparison of the num-

ber of stable attractors in various networks when operating on two example TSPs' The

results of these comparisons support our assertion that HONNs are a family of solution

techniques that embody a trade-off between solution quality and computational effort.

In Section 7 .4 we discuss the implications of our results for the performance of HONNs

and show that they clearly explain the inadequacies of the Hopfield network approach to

combinatorial optimisation. The impact of annealing on our quantitative results is aiso

considered, along with a discussion of further work which may be undertaken. Finally in

Section 7.5 we present a summary of the chapter.

7.L Attractors and Basins of Attraction

Throughout this thesis we have considered optimisation networks simply as an algorithm

for minimising a quadratic function of the network state. While such an algorithmic

treatment of optimisation networks has afiorded great insights into their operation and

allowed us to formulate an approach to combinatorial optimisation, it is interesting to

shift our emphasis stightly by considering the operation of an optimisation network as

that of a dynamic system. Viewing an optimisation network as a dynamic system does

not invalidate any of our previous analysis, for the network is unchanged, but it will

motivate the analysis that we present in this chapter.



\_

7.1 Attractors and Basins of Atttaction 91

Attfactor

State

Space

Basin of
Attraction

Figure 7.1: Optimisation networks are dynamic systems with stable attractors.

The Lyapunou function for an opti,misation network def,nes an energy land-

sco,pe áai, th" entire state space. The mini,ma of the Lyapunoa function are

attiactors for the networlc d,ynamics. Each attractor has an associated basin

of attraction which corresponds to a "ualley" i,n the Lyapunou function for the

networlc.

euite clearly, an optimisation network is a dynamic system where the network output

v moves about the state space under the action of the network equations. Moreover, our

analysis of the Lyapunov function for the Hopfi.eld network, as presented in Section2.5,

and for HoNNs, u,s pre."nted in section 6.1, shows that v will converge to a stable

attractor. Each attractor in the system corresponds to a minimum in the network's

Lyapunov function and is therefore located at the bottom of a "valley" in the Lyapunov

function. As the system dynamics perform a gradient descent on the Lyapunov function,

the basin of attraction for each attractor is defined by the corresponding "vailey" in

the Lyapunov function. When utilising an optimisation network for the solution of a

combinatorial optimisation problem the system is given some initial condition v6 for

the state vector v. The systLm dynamics will then move the state vector v toward the

attractor at the bottom of the basin of attraction in which vs is situated. When v has

converged to that attractor it is interpreted as the solution to the combinatoriai problem.

A schematic representation of an optimisation network as a dynamic system is shown in

Figure 7.1, where \¡/e can see that the entire state space is partitioned into various basins

of attraction.
As the attractors of the dynamic system are interpreted as solutions to the optimi-

sation problem, both the problem mapping and annealing techniques that we have used

must impact upon the attractors in an optimisation network' In order to understand

the nature of the impact of annealing and problem mapping, we begin by making several

remarks with regard to how the location and number of attractors of the dynamic system

afect the validity and quality of the solutions found by the network:

Location of attractors - Firstly, as the attractors of the system are interpreted as

soiutions to the optimisation probiem, we can guarantee that no invalid solutions

are found by ensuring that all attractors for the system lie in the valid subspace.

Secondly, the attractors must be situated sufficiently close to a 0 - 1 point so as to

be interpretable solutions to the combinatorial problem'

Number of attractors - As the number of attractors increases, the valid subspace

is partitioned into more basins of attraction. With more attractors in the valid
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subspace, the likelihood of placing the initial state vs into the basin of attraction

of the optimal solution is decreased. Consequently, we can expect fewer optimal

solutions to be found.

Size of the basin of attraction - To obtain a good solution quality from the optimi-

sation network it is desirable for good solutions to the problem to have large basins

of attraction. Id.eally we would like the optimal solution to the optimisation problem

to be the only attractor in the valid subspace with a basin of attraction encompass-

ing the entire state space. However, numerical results presented in Section 7.3 wili

show that this is impracticai.

From the above discussion, we see that to guarantee valid soiutions we must ensure

that all attractors lie in the valid subspace. It should be remembered that the problem

mapping discussed in Chapter 3 guaranteed that the network state would always remain

,rulid by d"fining suitable penalty functions E'n" to be included in the network's Lyapunov

function. Therefore, \rye can infer that the penalty functions E"n" gtatantee valid solutions

by ensuring that all attractors for the system lie in the valid subspace'

The impact of annealing on the location and number of attractors in an optimisation

network is somewhat more complicated but our understanding is aided by considering the

simple example of annealing presented in Section 4.2. With reference to that example,

when the annealing parameter 7 is set to a sufficiently large negative value there will be

only one attractor in the valid subspace and the network state v will move towards it (see

Figure a.2@)). As the annealing parameter is gradually increased more attractors appear

in the system and consequently the valid subspace is further partitioned into separate

basins of attraction (see Figure a.2(c)). Furthermore, we know that as the annealing

parameter is increased still further, annealing encourages convergence to a 0 - 1 point.

This is achieved by forcing the attractors to the vertices of the valid subspace. The key to

the success of annealing in improving the solution quality is to ensure that the attractor

which corresponds to the optimal solution is among the first attractors to be included

into the system. Obviousiy, the more attractors that have been included into the system

before the optimal solution becomes an attractor, the less likely it is that v will converge

to the optimal solution.

7.2 Stability criteria for valid 0 - 1 points

In this section we will establish the conditions under which an arbitrary solution to a

TSP is an attractor for both the Hopfield network and the HONN.

The first step towards our goal is to establish the criteria under which a 0 - 1 point

is an attractor for the system dynamics. We begin by noting that when the annealing

techniques described in Chapter 4 are used to improve solution quality, it is common

practice to set the decay parameter q equal lo zero. Consequently, if a 0 - 1 point is
to be an attractor the internal state u of the network will grow without bound at that

point. Evidence of this is shown in the simple examples of the Hopfield network and the

HONN presented in Sections 2.5.1and 6.1.11. We will consider a 0 - 1 point v to be

an attractor if that point is an asymptoticaliy stable equilibrium point of the network

lNote that in these simple examples annealing was not employed. However, to ensure that EIv"p -
Eobj the decay parameter 4 was set to zero and we saw thaü in each case u grows without bound at the

0 - 1 point to which the network converged.
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dynamics, i.e

y-0 V r,i€{1,...¡/} (7 1)

Furthermore,as uri € [0,1] werequire that ff --+0fromabove fiu"¿:1, and # t0
from below iïu,¿ - 0. Note that since D'¿ : 9(u';) we have

du,¿ dg du'¿
(7"2)
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dt du,¿ dt

Here ffi is the slope of the sigmoid function, which, although it is always positive, does

upproääï zero as usi + oo or uti + -oo. Therefore, from equations (7.1) and (7.2) we

can deduce that a 0 - 1 point v will be asymptotically stable if

du,. (7.3)
; ,0 for uri: I

and
(7.4)

Examination of equations (7.3) and (7.4) shows that when v is an asymptotically stable

0 - 1 point u will grow without bound.

!#t .o for Dxi: o

- t d,o(uy,;¡t 1ur,;-r).

v*r

*t 1
ur¿- ñ

(7.5)

Here c is the weight on the penalty function, 7 is the annealing parameter and d,o is the

distance between cities r and Y '

From the analysis presented in Chapter 3 we know that the penalty functions -8"""

will correctly constrain v to lie on the valid subspace. Furthermore, \rye have established

that annealing will force v to a vertex of the valid subspace, which in the case of the

TSP will be a valid 0 - 1 point (Gee and Prager, 1994). Consequently, we will confine

our stabilitv analysis to consider only the valid 0 - 1 points. When v lies on the valid
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subspace the first three terms in equation (7.5) will equate to zero, in which case the

dynamic equation reduces to

+: t (r'n- #) - Ð 
d'"'(uv,;+ta u,,,-r)' (7'6)

s#t

Now for a valid 0 - 1 point to be an asymptotically stable equilibrium point, equa-

tion (7.3) or equatio" 12.+; must be satisfied for each neuron uci. In order for equa-

tion (Z.ej to be satisfieà for each neuron in the network where 1)ti : 1, we can deduce

from equation (7'6) that

¡ú

¡\f -l w,rzetour(v)
(do, + d,,). (7.7)

Here the notation Tî,8 € tour(v) indicates that the segments yr and rZ occu in the

tour described by rr.rt"x v of the valid subspace (alternatively y,r and z are consecutive

cities in the tour described by v). similarly, for equation (7.+) to be satisfied for each

neuron in the network where u,i :0¡ we can' deduce from equation (7'6) that

(7.8)

It is apparent from equations (7.7) and (7.8) that the annealing parameter 7 determines

the staùility of a ,r".["" of the valid subspace. When 7 ( 0, equation (7.7) cannot be

satisfied and. therefore no vertex of the valid. subspace is stable. However, we should

remember that during the course of the annealing process the annealing parameter is

gradually increased., u-nd *h"n "y > 0 equation (7.8) is satisfied for all valid v and the

stability of a vertex of the valid subspaãe i, then determined solely by equation (7'7)'

Mor"orr"r, \Me see from equaiion (7.7) that the stability of a vertex of the valid subspace

is determined not bv the length of the tour it describes but by the maximum length of

a segment joining three consecutive cities in that tour'

Às the annealing parameter 1 is increased, there will be a critical value 1 -- '1" where

the first vertex of thã valid subspace becomes stable. It is important to realise that the

tour d.escribed by that vertex of the valid subspace is by no means guaranteed to be

the optimal tour (i.e. the minimal length tour). Indeed, it is likely that the annealing

parameter must be increased. to a level .yopt ) 7" before the vertex of the valid subspace

which describes the optimal tour is stable. Moreover, when 'l : lopt it is most likely

that there will be -urry other vertices of the valid subspace which wiil also be stable,

each of which 
"or."rponds 

to a sub-optimal tour. Each of these stable vertices of the

valid subspace wiil h.rr" u, basin of attraction and consequently the valid subspace will

be partitioned into many different basins of attraction. If we \/ere to place the network

output v at a random position in the valid subspace then it is quite iikely that the

network will converge to a vertex of the valid subspace which corresponds to a sub-

optimal tour. ObviÃsly the method by which the Hopfield network attempts to solve

the TSP does not prorriã" the necessary discrimination between optimal and sub-optimal

tours to guarantee that the network will reliably converge to the optimai solution.

7.2.2 -EIO-l{lüs

We will now consider the HONN approach to the TSP and establish the criteria under

which a valid 0 - 1 point is an asymptotically stable equilibrium point for the HONN.

d,camrn
Í#s7>-Iú
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Once again, to map the TSP onto an HONN we set the Lyapunov function to be

Elaop - Eobi + Ecns + Erlod

where E.n" isthe penalty function defined by the valid subspace problem mappin 8, E*od

is the modifred hysteretic annealing function and Eobi is the objective function for the

TSp. In this section we will consider a second-order HONN for the solution of the TSP

and so the objective function is given by

Eobi - t D@,o I do")u'¿uo¡+tuz,i+2.

'ÏI?" 
x

while complete details of the problem mapping may be found in section 6.3, we will

take as our starting point the dynamic equation for the network which is given by equa-

tion (6.8) and which for completeness we restate as

dur¿

dt

("+r)
luo; - | Ð',¡ - |

a

') 
*'(D'o¡

ai

J

+

'l

1u,¿-ñ

D @'o j do")uy,;¡(t)z,i+2 - D @u" ¡ d,,)uo,t-tuz,i*r
yz

a*"*"

D @0, ¡ d"")ur,.i-2uz,i-L

a*"*,

a*r#"
(7.e)

Here c is the weight on the penalty function, 7 is the annealing parameter and d,o is the

distance between cities r and Y -

Once again we will confine our analysis to an examination of the stability of ver-

tices of the valid subspace. When v lies on the valid subspace the first three terms in

equation (7.9) will equate to zeto, in which case the dynamic equation reduces to

duri
dt D @"0 ¡ do")uy,,i¡t'üz,i+2

az
a*r*,

Ð @0, ¡ d,,")uy,.i-tuz,i¡r - Ð @o" ¡ d",)uo,;-2'uz,i_r' (7'10)

o/Í+, otí+'

Notethatavertexvofthevalidsubspaceisavalid0-lpointandthereforeifvisto
be an asymptotically stable equilibrium point equation (7.3) or equation (7.4) must be

satisfied for each neuron u,¿. In order for equation (7.3) to be satisfled for each neuron

in the network where Dci:1, we can deduce from equation (7'10) that

¡/
I - ¡/ - 1 ûû,úî,tú,!Ee tour(v)

(d,- * 2d-, lzd,a + d!,) (7.1 1)

Here the notation bu)ÍDr)W,W € tour(v) indicates that the segments uu)urity and yz

occur in the tour d,escribed by vertex v of the valid subspace (alternatively u)'u)rr)y and

z are consecutive cities in the tour described by v). Similarly, for equation (7.a) to be
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satisfi.ed for each neuron in the network where u*i : 0,, we can deduce from equation (7'10)

that
7 > -1/ * . r",-1fftr{ Ç to'r(v) 

(d'o + do") ' (7 '12)

It is apparent from equations (7.11) and (7.12) that the stability of a vertex of the valid

subspace is once again determined by the annealing parameter 1. Note that when 7 < 0

equation (7.11) cannot be satisfied and therefore no vettex of the valid subspace can be

stable. However, during the course of the annealìng process the annealing parameter will
be increased and when 7 > 0 equation (7.I2) is satisfled and the stability of any vertex

of the valid subspace is then determined solely by equation (7.11). Furthermore, it is

interesting to note from equation (7.11) that the stability of a vertex of the valid subspace

is not determined by the length of the tour it describes, but instead is determined by

a function of the intercity distances on a segment of the tour which passes through five

consecutive cities. This is in clear contrast with the Hopfield network, where the stability
of a vertex of the valid subspace was determined by the maximum length of a segment

joining three consecutive cities in the tour.
Despite the seemingly stricter stability criteria for a vertex of the valid subspace in a

second-order HONN as compared to a Hopfield network, it is still possible that the first

vertex of the valid subspace to become stable as the annealing parameter is increased

will not correspond to the optimal solution to the TSP. Indeed, when the annealing

parameter has been increased to a level 1 --'yopt where equation (7.11) is satisfied for

the vertex of the valid subspace which corresponds to the optimal tour, it is likely that
many other vertices of the valid subspace will also be stable. However, we suggest that
the number of vertices of the valid subspace which are stable when 1 : 'lopt will be

greatly reduced in the second-order HONN as compared to the Hopfleld network. Such

a reduction in the number of stable vertices of the valid subspace is a consequence of the

stricter stability criteria of equation (7.11) for the HONN as compared to equation (7.7)

for the Hopfield network. Consequently, the valid subspace will be partitioned into fewer

basins of attraction than was the case with the Hopfield network, and so we can expect

the second-order HONN, when given a random starting point in the valid subspace, to
be more iikely to find the optimal tour.

As was shown in Section 6.3, third or even higher-order objective functions may be

used in a HONN to solve the TSP. For each network, analogous conditions to those

given in equations (7.11) and (7.12) may be derived for the asymptotic stability of a

vertex of the valid subspace. In much the same way as we have suggested for the second-

order HONN, we would expect that the stability criteria for even higher-order networks

would provide a signiflcantly greater level of discrimination between optimal and sub-

optimal tours. Consequently, as the order of the network is increased there should be

a reduction in the number of vertices of the valid subspace which are stable when the

annealing parameter is set so that the vertex which corresponds to the optimal tour
is only just stable. Furthermore, such a reduction in the number of stable vertices of
the valid subspace results in the valid subspace being partitioned into fewer basins of
attraction. With fewer basins of attraction in the valid subspace, the likelihood of the

network converging from a random starting point to the optimal solution will increase.

7.3 Numerical comparison of the number of stable points

In the previous section we asserted that the number of vertices of the valid subspace

which are stable when the optimal tour is only just stable will decrease as the order of
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the network is increased. In this section, we aim to justify that assertion by presenting a

numerical comparison of the number of stable vertices of the valid subspace for HONNs

of increasing order when operating on two example problems.

7.3.1 Procedure

To undertake a numerical comparison of the number of stable points for HONNs of

increasing order, we must first find the optimal tour for each of our chosen problems. In
turn, this will allow us to calcuiate the value of the annealing parameter lopt at which

the optimal tour is only just stable. We stress that knowledge of the optimai tour is only

necessary to facilitate a numerical comparison of the number of stable points for HONNs

of increasing order. If we were to actually simulate the operation of these networks

then we would use an annealing mechanism to encourage good solutions, in which case

it is not necessary to calculaile Jopt as the annealing process initially sets 7 to a large

negative value and gradually increases it without referenceio 1oo¡. The first of our chosen

problems is a lO-city Euclidean TSP where the cities have been placed randomly in the

unit square according to a uniform distribution. In this case the optimal tour is easily

found by exhaustive search. The final problem we have considered is bayg29, a 29 city
Euclidean TSP which may be found in the widely available TSPLIB (Reinelt, 1991)

database. The optimal solution for bayg29 has been found by an exact solution method
and is also found in the TSPLIB database.

Given the optimal solution to our chosen problems we must then determine, for each

order of HONN that we wish to examine, the value of the annealing parameter lopt at'

which the optimal solution to the TSP is oniy just stabie. For the Hopfield network '/opt

is calculated by evaluating the stability condition given in equation (7.7) for the vertex
v of the valid subspace which represents the optimal solution. Similarly, jopt lor the
second-order HONN is calculated by evaluating equation (7.11) with v corresponding to
the optimal tour. For higher-order networks it is a simple matter to determine analogous

stability conditions to those given in equations (7.7) and (7.11). To determine the value

of.lopt for a HONN of a particular order the appropriate stability condition is evaluated

for the vertex of the valid subspace which represents the optimal tour.
For the lO-city problem we want to examine the stability of every vertex of the valid

subspace for HONNs of order I (i.e. a Hopfield network) through to 10. To accomplish

this we proceed by selecting a particular HONN and then setting the annealing parameter

at the appropriate value of lopt such that the optimal solution is only just stable. We then
enumerate all possible tours, testing each tour to determine if it satisfies the stability
condition for the current network (the stability condition is given by the analogy to
equations (7.7) and (7.1i) which is appropriate for the current HONN). This procedure

is performed for each HONN that we wish to examine. The results for this experiment
are given in Section 7.3.3.

The numerical comparison is performed in a simiiar fashion for the bayg29 problem.
The only significant difference is that we do not enumerate all possible tours as the

number of tours makes it prohibitive to do so. Instead, we have generated a set of one

hundred thousand near-optimal tours to examine. Starting from the optimal tour, the
near-optimal tours were generated by performing a series of segment reversal and node

insertion moves. To ensure that the tours generated \ryere near-optimal, the maximum
number of such moves performed in succession was forty, after which the sequence rryas

repeated starting once again from the optimal solution. For the bayg29 problem we

examined HONNs of order 1 through to 16. The results for this experiment are presented
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in Section 7"3.3

7.3.2 Quality Factors

Until now we have only been interested in the number of vertices of the valid subspace

which are stable when the annealing parameter is set so that the vertex corresponding to

the optimal tour is stable. While this witl give some indication of the relative performance

of HONNs of different orders, it is also interesting to investigate the quality of the stable

points which correspond to sub-optimal tours. Consequently we define a measure of

quality Q1 which is simply the normalised mean iength of all stable tours

Ðves(pI ¿(')
Q'@) --

lls(p)llI(v,pr)

Here 5(p) is the set of vertices of the valid subspace which are stable for a HONN of

order p ,th"n the annealing parameter is set so that the optimal tour is only just stable,

llS(p)il is the number of vertices in the set 5(p), I(v) is the length of the tour described

Ëy vertex v of the valid subspace and L(v'rr) is the length of the optimal tour'

By weighting the length of each tour equally, the quality measure Q1 implicitly as-

sumes that each stable vertex of the valid subspace is equally likely to be found by the

network. However, with a random starting point in the valid subspace, the probability

of converging to a particular stable vertex is directly related to the size of its basin of at-

traction. Therefore, an improved measure of quaiity is given by the normalised weighted

mean length of all stable tours, where the weighting factor is a measure of the size of the

appropriaìe basin of attraction. Unfortunately, it is an exceptionally difficult problem to

exa.tþ determine the size of a basin of attraction in a dynamic system. Instead we will
weight each stable vertex by the factor

where | 
. I denotes the absolute value. Note that M(u) is a measure of the total derivative

of the internal state u at an asymptotically stable vertex v. When a vertex v is only just

stable the corresponding basin of attraction is small. Moreover, as the stability conditions

given in equations (7.3) and (7.a) have oniy just been satisfied, the totai derivative of

the internal state u will also be small. As the annealing parameter is increased, the

total derivative of the internal state u will also increase. We would also expect that as

the annealing parameter is increased, the basin of attraction for vertex v will expand.

Therefore, while M(u) is by no means an exact measure of the size of the basin of

attraction for vertex v, we do expect that it is somehow related. With the weighting for

each stable vertex given by M(v), we define the measure of qualiÏy Q2 as

Q'@): " f"sf I ¡ 
L(u') M-'(u)

I I 
S(p) ll L(v 

"rt) 
M (v 

"p,)'

7.3.3 Resu/ús

In this section we present results for both the lO-city and bayg29 experiments'

o The results for the 10-city experiment are shown in Table 7.1, where we see quite

clearly that the number of tours which are stable when the optimal tour is only just

M )v t
ri
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stable decreases as the order of the network is increased. Note that the figures given

in Table 7.1 refer to the number of stable touts, each of which will correspond to

2ly' vertices of the valid subspace due to the inherent degeneracy in representing a

tour with a 1ú x 1ú arraY of neurons.

o Furthermore, the measure of quality given by It indicates that as the order of the

network is increased, the mean length of the tours that remain stable is becoming

smaller. This suggests that the quality of solution will improve as the order of the

network increases.

o We also note that for each order of HONN Q2 is greater than Ç1, which suggests that

longer tours have been weighted more heavily than shorter tours. As the weighting

factor M(u) is related to the size of the the basin of attraction for a stable vertex v of

the valid subspace, we suggest that the longer tours have larger basins of attraction.

The results for the bayg29 problem are shown in Figure 7.2. Once again we see that

the number of stable vertices decreases as the order of the network increases' While there

are approximately 8000 stable tours for a HONN of order 1, there are only two stable

tours (including the optimal tour) for a HONN of order 16. In addition, the quality

measures Ç1 and Q2 both suggest that the quality of solution will improve as the order

of the network increases.

The results presented in this section support our assertion that the number of vertices

of the valid subspace which are stable when the optimal tour is only just stable will
d.ecrease as the order of the network is increased. But what is the relevance of this fact

to the operation of an optimisation network? By determining the number of vertices

of the valid subspace which are stable, we have effectively measured the probability of

finding the optimal tour when starting from a random point in the valid subspace. While

this observation does give great insight into the operation of these networks, it is a valid

observation only if the network is run with the annealing parameter held at a constant

value of Jopt. For a general problem we will not know the value of Jopt and moteover,

by holding ,y constant we have discarded the benefits that may be gained by properly

utilising annealing. This will be the subject of further comment in Section 7.4.

A further factor which is worthy of comment is that extremely high-order networks

are required to ensure that the only stable vertices of the valid subspace correspond to

the optimal tour. For example in the bayg29 problem even a HONN of order sixteen has

two stable tours. We know that the space complexity of a HONN increases exponentially

with the order of the network and so it is certainly not feasible to build a HONN of order

16. However, the necessity for such extremely high-order networks in order to guarantee

the optimal solution is consistent with the trade-ofi between computational effort (in this

case space complexity of the HONN) and solution quality, that we have developed as a

major theme for this thesis. While it is infeasible to build a HONN of extremely high-

order to guarantee the optimal solution, the numerical comparisons we have performed

do reveal the extent to which the Hopfield network has accepted a trade-off resulting in
a simple network that will produce solutions of poor quality'
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Order
Number of
stable tours Q, Q,

)1 d(Hopfrel
2

3

4

b

6

I

8

I
10

233
11

2

2

1

1

1

1

1

i

1.2844
1.1028

1.0341

t.0292
1.0000

1.0000
1.0000

1.0000
1.0000
1.0000

r.5455
1.1909

1.0623
1.0532
1.0000
1.0000
1.0000

1.0000
1.0000
1.0000

Table 7.1: Numerical comparison of HONNs on the lO-city problem.

For each networlc, the annealing parameter t has been set such that the uerter

of the ualid subspace corresponding to the optirnal tour is only just stable. All
possible tours are erhaustiaely searched to determine if the uertices of the ualid

subspace which correspond to each tour are stable. Due to the degeneracy

inherent in representing a tour by an N x N array of neurons, the number of
aertices of the uali,d subspace which are stable is giaen by 2N tirnes the nurnber

of stable tours. Q1 giaes the normalised mean length of the stable tours and

Q2 giaes the normalised weighted rnean length of all stable tours.

100
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Order
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(a) Number of stable tours
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(b) Measure of quality Q1
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(c) Measure of quality Oz

Figure 7.2: Numerical comparison of HONNs on the bayg29 problem.

For each network the annealing pararneter t has been set such that the uerter

of the ualid, subspa,ce corresponding to the optirnal tour is only just stable. The

collecti,on of 705 near-optirnal tours is erhaustiuely searched, to determine if
the uertices of the aalid subspace which correspond to each' tour are stable.

The number of distinct near-optirnal tours whose correspondi,ng aerti,ces of the

aalid, subspace (ffe stable is shown, along wi,th the n'Le(Lsures of quality Q1, which

giues the norrnalised n'¿eún length of the stable tours, and Q2, which giaes the

normalised weighted rneo,n length of all stable tours'
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7.4 Significance of the Results

7.4.1 The Quality Versus Computational Effort Ttade-off

In this chapter we have shown that the number of vertices of the vaiid subspace which are

stable when the optimal tour is only just stable will decrease as the order of the network

is increased. Furthermore, the results of our experiments suggest that the quality of the

stable solutions improved as the order of the network was increased. Both these facts are

evidence of the trade-off that exists between solution quality and computational effort.

HONNs are a family of solution techniques for combinatorial optimisation that embody

a trade-off between solution quaiity and computational effort. By increasing the order

of HONN we use to solve a problem, we can expect an improvement in the quality of

the solutions found. However, we must pay for this improvement by providing more

interconnections in the network.
Following the theme of a trade-off between solution quality and computational effort it

is interesting to consider a (I/- 1)rå order HONN for the solution of the TSP. By analogy

with the HONN objective functions presented in Section 6.3, the objective function for

u (¡/ - 1)rä order network is given by

Eobi - t Ð(d,r"" * d'rr,+ "' + d"*-rr*)urr,i'ux2,i¡1'ut:z,i+2 "' urw,i*N-1'
rLÍ21...Î N N

x1lr2t'...fx¡¡

In a similar fashion to the analysis presented in Section 7.2, we can determine the con-

ditions under which an arbitrary vertex of the valid subspace is asymptotically stable

for the (¡r/ - 1)¿å order network. The analysis presented in Section 7.2 showed that for

a Hopfield network, the stability of a vertex v of the valid subspace is determined by

a function of the distances between three consecutive cities in the tour described by v.

Similarly, for a second-order HONN, the stability of vertex v is described by a function

of the distances between fi.ve consecutive cities in the tour described by v. Therefore' we

would expect that for " (¡ú- 1)rå order HONN, the stability of vertex v will be determined

by a function of the distances between2N - 1 consecutive cities in the tour described by

v. By analogy with equations (7.7) and (7.11), we see that the condition under which

the output of neuron u,r,¿ is asymptotically stable when vertex v corresponds to the tour
tt¡t2¡13...r¡¡ and uxt,i:1 is given by2 3

¡t/
'Y>

+(¡ú - r)d,,""+ (1ú - 2)d*,,"+ (¡ú - 3)d,,*n+... d,r-,,r)

which simplifies to
7 > Iú x tourlength (7.13)

where tourlength is the length of the tour described by vertex v of the valid subspace.

Equation (7.13) shows that for " (¡/ - 1)¿å order network the stability of a, vertex of the

valid subspace is determined by the length of the tour which it describes. Consequently,

as the annealing parameter 7 is increased during the annealing process the first vertex

2Note that equations (7.7) and (7.11) show the conditions under which all neurons, whose output is
equal to one, are asymptotically stable. Here we are only concerned with the stability of the output of
the single neuton urr,¿, and so there is no need for the max operator.

sNote that all indices are evaluated modulo N e.g. Eo= frNt n-t= lcN-1.
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of the valid subspace to become stable must correspond to the optimal solution to the

TSP. This is in stark contrast with the result for the Hopfield network, where the first

vertex to become stable was by no means guaranteed to be the optimal solution.

A (¡¡r - l)tn order HONN represents the ulti,rnate trade-off of computational effort for

solution quality. While we have just shown that the vertex of the valid subspace corre-

sponding to the optimal tour will be the first vertex to become stable as the annealing

pu,ram"tl, is increased, we must realise that u (¡/- 1)¿å order HONN for the TSP requires

u, ,ru-ber of interconnections which is exponential in the size of the problem. In many

ways a (¡ú - 1)¿å order HONN is similar to a direct enumeration approach to solving

tn" fSp, where all tours are listed and the shortest one is chosen. While both methods

u,r" grr¿tu,nteed to arrive at the optimal solution, they must both expend an amount of

computational effort which is an exponential function of the problem size and are there-

fore impractical. For the enumeration approach the computationai effort is seen as an

""porr"ntiully 
long runtime, while for the HONN it takes the form of an exponentially

large number of interconnections in the network.

Further to the theme of a trade-off between computational effort and solution quality

we must consider the Hopfield network as the HONN which has obtained the simplest

network architecture by trading a reduction in computational effort for a degradation in

solution quality. Moreover, the Hopfield network has taken this trade-off to the maximum

possible extent, and so we should not be surprised by the relatively poor solution quality

achieved by the Hopfleid network"

7.4.2 The Effect of Annealing

For the numerical comparisons presented in this chapter \rye have held the annealing

parameter constant at a value lopt so that the vertex of the valid subspace corresponding

io the optimal tour is stable. However, were we to actually simulate the operation of a

HONN we would use hysteretic annealing to improve solution quality and so the annealing

parameter would not be held constant. When using annealing 7 is initially set to a large

negative value, which results in the network state v converging to a point on the valid

,,rb.pu."" Subsequently 7 is gradually increased. An important benefit of the annealing

p.o"ãr, is that it actually helps to guide v towards good solutions. Consequently, when

the annealing parameter has reached a value J : Joptt the network state is not at a

random position in the valid subspace, rather we would expect v to be in the vicinity of

a near-optimal solution. The overall effect is that the proper use of annealing allows much

better solution quality to be achieved than is suggested by the numericai comparisons in

this chapter.
When the Hopfield network was used to solve the bayg29 problem in Section 7.3, we

found that settin E ^l : ?opr caused there to be in excess of 7000 stable tours out of the

100,000 near-optimal tours that we considered. This would suggest that the chance of

finding the optimal solution with a Hopfield network is extremely remote. However, we

know from the results presented in Section 4.6 that the Hopfleld network can regularly

find the optimal solution to a similar 30-city Euclidean TSP. These two observations

seem to be contradictory. However, the difference is explained when we realise that the

experiments in Section 4.6 utilised annealing and so were able to guide the network state

towards good solutions. In contrast the results presented in this section assume that the

annealing parameter is fixed and that the network state is placed randomly into the valid

subspace.
Furthermore, when in Section 7.3.3 we noted that extremely high-order networks were
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required so that the optimal solution to the TSP could be obtained, we had not considered

the benefits that are gained from annealing. The ability of annealing to guide v towards
good solutions means that the network can regularly converge to the optimal solution
for networks of much lower order than previousiy suggested. However, the significance

of the results in this chapter is not diminished by the effects of annealing. The number

of stable vertices of the valid subspace when 1 : lopt remains as a worthwhile indicator
of the trade-offs to be made between solution quality and computational effort"

7.4.3 F\nther Worl<

Underpinning much of the analysis in this chapter is the assumption that any decrease

in the number of vertices of the valid subspace which are stable when the vertex cor-

responding to the optimal solution is only just stable will result in the valid subspace

being partitioned into fewer basins of attraction. Furthermore, if there are fewer basins

of attraction in the valid subspace then the probability of placing a random valid starting
point into the basin of attraction of the optimal solution will be increased.

What we have so far neglected to consider is the possibility of stable attractors lying
not at the vertices of the valid subspace but within this subspace. Should any such

attractors exist then the valid subspace may well be partitioned into more basins of
attraction than we have accounted for by considering only attractors at the vertices of
the valid subspace. Consequently, our interpretation of the number of stable vertices of
the vaiid subspace as a measure of the probability that the optimal solution will be found
would no longer be well founded.

To determine if any attractors exist inside the valid subspace we must examine the
time derivative of the Lyapunov function for a HONN solving the TSP. In Section 6.1

we showed that
dryts"p , ( du-,\'

" 
:-Ðs'(u'¿)\-T) <o'

For a point v inside the valid subspace to be an attractor we require that

du-,

f:o vt,i€{l,'''¡ú}' (7'r4)

Here the time derivative of z"¿ is given by the analogy to equation (7.5) which is appropri-
ate for the HONN under examination. In addition, the value of the annealing parameter,
which appears in the time derivative of u,¿, rnüst be set at the value of 'lopt for the HONN
under examination. While equation (7.14) establishes the conditions under which some

point inside the valid subspace is an attractor for the system, we have been unable to
determine if it is or is not possible for any point to satisfy these conditions. Consequently,

while we await a method to determine if attractors do or do not exist inside the valid
subspace we must content ourselves with the analysis presented in this chapter, despite

its possible shortcomings.

7.5 Chapter Summary

In this chapter we have explored the trade-off between solution quality and computational
effort that may be made when using a HONN approach to combinatorial optimisation.
We began by emphasising that an optimisation network is a dynamic system where the
stable attractors can be interpreted as solutions to an optimisation problem. The problem

104
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mapping and annealing techniques that we have developed in previous chapters determine
the number and location of attractors in the system. The key to our investigation of
solution quality is to understand that the more attractors that exist, the less likely it is

that we will arrive at the attractor which corresponds to the optimal solution.
Since we know that annealing wiil eventually force all attractors for the system to the

vertices of the valid subspace, our analysis has focused upon the stability of the vertices
of the valid subspace. As we have previously noted, for the case of the TSP all vertices
of the valid subspace correspond to valid tours. For the Hopfield network we established
that an arbitrary vertex v of the valid subspace would only become stable when the
annealing parameter had been increased to a level where

¡\r

¡/-] w,Ezetour(v)

Here the notation W,û € tour(v) indicates that y,r and z are consecutive cities in the
tour represented by v. We see that the stability of a vertex of the valid subspace is not
determined by the length of the tour it describes, rather it is determined by the maximum
iength of a segment joining three consecutive cities in that tour. Consequently, as the
annealing parameter is increased during the annealing process, the first vertex to become

stable is by no means guaranteed to be the optimal solution. Moreover, by the time the
vertex of the valid subspace which corresponds to the optimal tour is stable, many other
vertices may be stable and so the valid subspace may be partitioned into many basins of
attraction. With many basins of attraction there is little chance of obtaining the optimal
solution, and so the solution quality is expected to be quite poor.

A contrasting situation is presented by a second-order HONN for the solution of the
TSP. In that case an arbitrary vertex v of the valid subspace will only become stable
when the annealing parameter satisfies

¡/
^i ) -- max' 1V - I uttt,utr,rg,vz €tour(v)

Here the notation uu,ur)W,W € tour(v) indicates that u, u,r,A and z are consecutive

cities in the tour represented by t. Once again the stability of a vertex of the valid
subspace is not determined by the length of the tour which it describes, but instead is
determined by a function of the intercity distances on a segment of the tour which passes

through five consecutive cities on the tour. The stability requirement for a vertex v in
the second-order HONN provides a greater ievel of discrimination between optimal and
sub-optimal tours than is the case with the Hopfield network. We suggested that as the
order of the network is increased further, the number of vertices of the valid subspace

which are stable when the optimal tour was only just stable should decrease.

This assertion was validated by a numerical comparison of the number of stable points
in HONNs when operating on two example TSPs. The first problem that we investigated
\Mas a l0-city Euclidean TSP, where it was possible to exhaustively search all vertices of
the valid subspace. \Mhen the annealing parameter was set so that the optimal tour was

stable, ïrr'e sarvv that for the Hopfreld network there \4/ere over 230 other stable tours. In
contrast, for a HONN of order 5 the optimal tour was the first tour to become stable.
The second problem was bayg29, a 29 city Euclidean TSP where the size of the problem
made it necessary to investigate the stability of a collection of near-optimal tours. Once
again our results showed that the number of stable tours decreased rapidly as the order of
the network was increased. Furthermore, as the order of the network increased, the mean
length of the stable tours decreased, indicating that the solution quality was improving.

(do" + d,")

(d,- l2d-, lzd,E + ds")
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The results of our experiments motivated the observation that HONNs are a family

of solution techniques for combinatorial optimisation that embody a trade-off between

solution quality and computational effort. By increasing the order of the network used to

solve a problem, r¡/e can expect an improvement in the quality of the solutions produced.

However, we must pay for this improvement by providing more interconnections in the

network. Further insight into the trade-off between solution quality and computational

effort was gained by cãnsidering a (¡ú - l)tn order network for the solution of the TSP. It
was shown that such a network can guarantee that the first vertex of the valid subspace to

become stable will correspond to the optimal solution, but to do so the network requires

a number of interconnections which is exponential in the size of the problem. In many

\Mays a (¡ú - 1)tn order HONN is similar to an enumeration technique for the solution of

the TSP. Both method.s are guaranteed to find the optimal solution to the problem, but

to d,o so they require an impractical amount of computational effort.

Our investigations of the trade-off between solution quality and computational effort

provide a cleai explanation of the shortcomings of the Hopfield network approach to

combinatorial optimisation. The IIopfield network must be considered as the simplest

possible HONN where we have traded a reduction in network complexity for a corre-

sponding d.ecrease in the solution quality. When compared to the (1ú - 1)tn order HONN

the Hopfield network lies at the opposite extreme of the solution quality versus computa-

tional effort trade-off, and so we should not be surprised by the relatively poor solution

quality achieved by the Hopfield network.
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Concluslons

In this thesis we have presented an examination of the performance of optimisation
networks. Our main objective was to determine if there exist any factors which limit the
solution quality that may be achieved with optimisation networks. Furthermore, our aim
was to determine the reasons for any such limitations, and if possible to suggest remedies
for them.

It has long been recognised that optimisation networks, in their original form, tend to
produce poor, high cost solutions. Various annealing algorithms have been developed to
improve the solution quality obtained from optimisation networks, and so we began our
examination of the performance of optimisation networks by investigating the effects of
these annealing algorithms. Our investigations confirmed that annealing has the ability
to improve solution quality, but also uncovered the tendency of annealing to force the
network toward invalid states. Consequently, we developed a new, principled approach
to annealing that retained the ability to improve solution quality, while also ensuring
that the network state remained va1id.

Even when a correctly formulated approach to annealing is used, experimental ev-

idence suggests that as the problem size increases, the solution quality obtained from
an optimisation network will decrease. While the inability of optimisation networks to
scale to large problem sizes has gone largely unnoticed in the literature, it represents a
significant erosion of the niche market for optimisation networks. In order to discover
the causes of such poor scaling to large problems, we showed that optimisation networks
solve combinatorial problems by using simple heuristics which are embedded into the
network dynamics. These heuristics encourage the formation of small, locally optimal
segments in the solution. Moreover, as the size of the problem increases there is no
corresponding increase in the size of the locally optimal segments which are formed by
these heuristics. The simple heuristics are ultimately responsible for the poor scaling
of optimisation networks. To improve the performance of optimisation networks it is

necessary to replace or modify the heuristics that they use.

To improve upon the poor scaling of standard optimisation networks, HONNs were
proposed as a means to extend the neighbourhood in which locally optimal segments
are encouraged. By increasing the order of the network, a stronger heuristic may be
embedded into the network dynamics and consequently the solution quality should be
improved. However, as the order of the network is increased, the number of interconnec-
tions necessary to implement the network also increases. HONNs are a family of solution
techniques for combinatorial optimisation that embody a trade-off between solution qual-
ity and computational effort. Further insight into the trade-off between solution quality
and computational effort is gained by contrasting the performance of the Hopfield net-
work with u (¡/ - I)tn order HONN when solving a I/ city TSP. While a (,nú - L)tn

order network can almost guarantee that the optimal solution will be found, it requires
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a number of interconnections which is exponential in the size of the problem. In con-

trast, the Hopfield network is a reiatively simple network with O(1ü3) connections, but

it cannot guarantee that the optimal solution will be found. The Hopfi.eld network must

be consideìed as the simplest possible HONN, where we have traded a reduction in net-

work complexity for a corresponding decrease in solution quaiity. When compared to the

(¡,r - 1)r, ã.d", HONN, the Hopfield network lies at the opposite extreme of the trade-off

between solution quality and computational efiort, and so we shouid not be surprised by

the relatively poor performance of the Hopfield network'

We conclude that optimisation networks embody a simple heuristic approach to the

solution of combinatorial optimisation problems. As with any heuristic approach to

optimisation, there are trade-ofis to be made between solution quality and computationai

effort. HONNs embody that trade-off by allowing increased computational effort to be

traded for improved solution quality by simply increasing the order of the network' If
when applying optimisation networks to a particular problem it becomes necessary to

trade increased complexity for improved solution quality, we must be aware that this can

only be done up to a certain level, beyond which the complexity of the network prohibits

it from being implemented.
The major contributions made by this thesis may be summarised as follows:

o We have performed a rigorous analysis of the effects of annealing techniques on

the validity and quality of soiutions obtained from an optimisation network (Sec-

tion 4.3). Following this analysis, we proposed a principled approach to annealing

which allows solution quality to be improved while maintaining a valid network state

(Sections 4.4 and 4.5).

o We have explained the inability of standard optimisation networks to scale to large

problem sizes (Sections 5.2 and 5.3). Furthermore, we have investigated two alterna-

iirr" upp.oaches that attempt to improve the performance of optimisation networks

by modifying the heuristics that they use (Section 5.4).

o Finally, we have introduced a new family of optimisation networks that embody

a trade-off between solution quality and computational effort (Section 6.3). Our

investigation of that trade-ofi provided a clear explanation of the shortcomings of

the Hopfield network approach to combinatorial optimisation (Sections 7.3 and 7.4).
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Derivation of Mean Field Annealing

Simulated Annealing (Kirkpatrick et al., 1983) is a powerful, general purpose optimi-
sation technique, that has been widely applied since its introduction. The technique
employs a controlled, stochastic search of the state space, but unfortunately it is some-

times unacceptably slow. Mean field annealing (MFA) is a deterministic approximation
to simulated annealing, which sacrifices solution quality for execution speed. Essentially,
the MFA algorithm computes a solution to a pair of temperature dependent, coupled,

nonlinear equations which are termed lhe saddle point equations. This section presents

a rigorous derivation of the saddle point equations and is based on the works of Aiyer
(Aiyer, 1991) and Peterson (Peterson and Anderson, 1988). More practical implementa-
tion details of the MFA algorithm are presented in Section 2.4.

4.1 Mean Field Theory

When a stochastic Hopfield network operates at a constant non-zero temperature, its
state will vary with time. When the network has reached thermal equilibrium, the state
of the network will fluctuate about a constant average value. Mean field theory allows
stch aaerage statistics of the network to be determined.

A fundamental result from physics is the Boltzmann-Gibbs distribution. It states that
a system, such as the stochastic Hopfleld network, when in thermal equilibrium will be
found in state s with probability,

Pr(s) : I ""o r-99) (A 1)2".-"\ ln )
where the normalising factor

z:D""r(+lt)

is called the partition function and the summation is over all possible states i.e. all2N
combinations of s¿ : {0,1} for i e {1,... ¡/}. The energy function E(s) is exactly
the Lyapunov function for the stochastic Hopfield network, and is reproduced here for
completeness

E(s) : -|srT" - b"s. (4.2)

In order to facilitate comparisons between MFA networks and the continuous Hopfield
network, the activation levels of the units in the stochastic Hopfield network have been

changed from s¿ : :El to s¿ € i0,1Ì.
In principle, the expected value of the energy may now be calculated by utilising

equation (4.1),



(ø(,)) : L¿E(s)exp (+P) (4 3)

In practice, the difficulty lies in calculating the partition function Z " However' once \Me

have d.one so, most useful quantities may be derived horn Z itself. For example, the

expected value of the state vector can be determined as,

ToVvln(Z) : ,''Ðt

Dr"t å ""P 
(_srÐl

Tpl
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rnp
f

Z
: ! s Pr(s)

The summation over all 2N possible states may be simplifled by noting that,
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è TeY6ln(Z) (A.4)

A.1.1 Simplifrcation of the partition function Z

To obtain a more tractable expression for the partition function, we utilise the multi-

dimensional delta function,

/ o('- ")/(")¿v 
: /(s).JmN \

Noting that the multi-dimensional delta function can be expressed as a complex expo-

nential,

{s}
(')

ó(. - v) : C /, ""0 ("('- v)) du

where C is a constant; the partition function Z rnay be written as the summation of a

double integral, at the expense of introducing 21/ new variables, u and v:

z : 
"äÍ," /, "*n ("(, - '))"* (-#) ," r'

, l*./," "*o (-ry - "") ä*o (T",',) dttd'v'

Ð ""p Ðuot : f[ (exp(u¿) + 1) - exp D l" (exp(u¿) a 1)

{"}

With the effectiae energA E'(u,v,TP) deflned as,

E'(u,v,T'): u#+ u"v - Dh(exp(u¿) 11)
'¿

the partition function may now be expressed as,

z : c l*- l,-exP(-E'(u 'v'To)) 
d'od'v '

(A.5)
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A.1.2 Saddle Point Expansion

The partition function may be further analysed by performing a saddle point expansion

of -E'(u, v,TP).Firstly, we must make use of the rnean f,eld approrimati,on by defining

the average effective energy per neuron,

-f(t,t, T') : "-þf,-II
thereby allowing the partition function to be written with the exponent proportional to
¡y',

Z:Ct texp(-.n//(t,',Te))tud,v. (46)
Jmw .-/¡w

This expression still requires the evaluation of a double integral, but as the exponent in
equation (4.6) is proportional to l/, it is easily evaluated in the limit of large lú. The

bigger lrl is, the moïe the integral is dominated by contributions from where /(t, t,7e) is

smallest. So we can approximate the integral by finding the value (ú, i) which minimises

"f 
(r, r, Te), and expanding the integrand around there. This is known as the saddle point

method and in the limit of large Iú, yields (Hertz et al., 1991),

Z x C exp(-1ú/(ú,ç,Te)): Cexp(- E'(i,i,T')) (4.7)

i.e. the partition function may be approximated by the value of the effective energy at

the saddle point (", i).
At a saddle point, the following equati'ons will be satisfied,

OE'

0u¿
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(A.8)

(A.e)

(A.10)

0

AE'
ðr¿

Evaluating the partial derivatives at (ü, i) gives the saddle point equations,

1

w lT¿¡í,t¡ t b,i

0

u¿

ú¿

J

1

1 * exp(-z¿) ' (A.11)

Now that the saddle point equations have been successfully derived, and if it is realised

that the MFA algorithm presented in Section 2.4 rnerely computes a solution to the
saddle point equations, then the question arises: why is the solution of the saddle point
equations important?

The answer is that the soiution to the saddle point equations gives a great deal of
insight into the underlying stochastic Hopfield network. Utilising the MFA algorithm,
a solution (ú, ú) to the saddle point equations may be obtained. Then, by making the
appropriate substitutions from equations (,{.7), (4.5) and (4.2), the expected value of
the state vector at temperaltre Tp can be deduced from equation (4.4) as,

(t) : T'YvIn(Z)
Yvz

Te
Z
C exp (- E' (ír,l,T')) (V bE (i) I Te)_Te

v
Cexp (-E'(ír,i,To))

(A.12)
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i.e. lhe expected value of the state vector of the stochastic Hopfield network operating

at a temperature Tp is given by the solution ú to the saddle point equations (,{.10)

and (4.11) at that temperature. Moreover, it is apparent from the Boltzmann-Gibbs

distribution of equation (4.1) that as the temperature decreases, those states with lower

energy E(s) witt predominate, and so at low temperatures it may be expected that the

solution û to the saddle point equations will be a good approximation to s^in, the global

minimum of E(s). Conversely, at high temperatures i : (s) does not correspond to a

single configuration but is an average over many states.

In addition, the expected value of the energy (Lyapunov) function for the Hopfield

network (equation (4.2)), may be determined as,

1(¿(')) : -;DIr,¡(",'¡¡ -f ó;(s;)
'¿ j t

1È -;tÐro¡("0)('¡) - Da,('o)zij2
1È -tt lT¿¡u¿ú¡ -Dtntozijt'

N E(i) (4.13)

where the meanfield approximation ("n"¡) av ("¿)(s¡) has been used (Aiyer, 1991).
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Simulation details for TSP
experiments

When simulating an optimisation network for soiving the TSP, we have utilised the

optimised step-size technique (Abe, 1996). Such a technique, integrates the dynamic

equation 
* :Tv f b, u¿ € [0,1]dt

by setting the integration step-size aL time ú to be the minimum step-size which will make

some component of v reach the surface of the unit hypercube. Obviously if u; - 0 and

[Tv * b], I 0, or if ui : I and [Tv+ b]¿ > 0 at time ú, then u¿ is moving away from the

unit hypercube and component i must be excluded from the calculation of the step-size.

Therefore, Iet I be the set of integers where ui : 0 and [Tv+b]¿ < 0, or u; : 1 and

[Tv * b]n 2 0. Additionally let Al : {I,...¡rr}. Then for i € N - z calculate

ui
for [Tv + b]i < 0

for [Tv + b]r > 0
ti: [Tv + þ]¿

D¿- I
[Tv * b]¿

where f¿ is the step-size required for u¿ to reach the surface of the unit hypercube. The

integration step-size Aú at time f is then chosen as,

¡¿ : ryin t¿. (8.1)

Since the determination of the step size is a deterministic process, it is possible that
the algorithm will become stuck in a infinite loop during the integration. In such a sit-

uation the same components of v will continually be chosen to determine the step-size,

and v will move between several constant states. Obviously this is not desirable and

must be prevented. Consequently, several mechanisms have been developed to introduce
randomness into the step-size determination process, thereby helping to prevent an in-

finite loop from occuring. While the precise details can be obtained from the original
exposition (Abe, 1996), we will present a summary of the proposed methods.

1. Firstly, if the same component i is selected by equation (B.1) to determine the step-

size in consecutive time steps, then the calculated step-size is modified by setting

At <- Af x rand (8.2)

where rand is a random value uniformly distributed in the range 10,1]
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2. If equation (B.2) does not succeed in preventing an infinite loop and the same com-

porrånt is ,eiectád by equation (8.1) to determine the step-size at three consecutive

iim" ,t"ps, or if the same pairs of indices are selected by equation (8.1) three times

in succession e.g. the sequence...256256256..., then the calcuiated step-size is

modified by

A¿ <- Af (1 + B1 x rand)

where Bl is a small positive constant; typically Ér : 0'01'

3. For all other time steps, the step-size is modified by setting

Af <- A¿(1 + B2 x rand)

where B2 is a small positive value; typically Éz : 0'0001'

Unlike most alternative algorithms for simulating the operation of an optimisation

network e.g. (Abe, 1993), the optimised step-size algorithm does not examine the rate

of convergãn"" of v to control the annealing schedule. Instead, the optimised step-size

algorithm holds the annealing parameter constant at 'yo for the first ú¿ time steps and

thãn increments the annealing parameter by an amount Al at successive time steps

until an upper \irnitl^o, is reached. The simuiation is stopped when a valid solution is

reached. or the number of iterations exceeds a user defined value (typically of the order

of ten thousand iterations). While the precise value of all parameters will depend on the

probiem to be solved, representative values for the problems solved in this thesis are:

"/o : -1 to -6, t¿ : 2000 and A'Y : 0'005'



Apppxotx C

Eigenvalues of Interconnection
Matrices

C.1 Eigenvalues of T""
rvVhen the Lyapunov functi on Etaop : E"n' , the connection matrix for the optimisation

network is given by equation (3.15), i.e'

lT'n"l,r,,yj: -*un, - *u,o+ ft (c.1)

The eigenvalues and eigenvectors of the connection matrix T"'" are determined, using

the method employed in (Aiyer et al., 1990), as follows'

C.1.1 Determination oÍ )'1

We determine À1 by showing that a : # [1,1,. . . ,1]" is a eigenvector of T""" with an

eigenvalue Àr : -c. Now

[T"""ê],,
c^
Ñòo¡

:tt
sj

c

c- c\1
ñ6'o+ l¡r)n

+;,.??#
c-t N2 ¡/ (c.2)

i,.e. T'c?¿sê : -cê. Therefore ê is an eigenvector of T"'" with a corresponding eigenvalue
\_/\1 

- -L.

C.1.2 Determination of )'2

We calculate 12 by showing that the zerosum subspace is an eigenspace of T"'" with

a corresponding eigenvalue Àz : 0. As described in Section 3.3, every valid solution v
to the TSP can be decomposed into a componertt v"" in the zerosum subspace and a

component ê,

v:v'"*ê.

: TcrÙsv - Tcr¿sê

: Tcnsv - ,ltê.

u

Therefore

Tcnsvzs
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Now since v is valid, Ðouo;: D¡u4 1 and DoÐ¡u¿ : l{, allowing the following

simplification,

lT"""ul"¿ D' (-#u,,-*u,o*#),,, c

¡rgJ

Upon substitution we obtain

lT"n"v""f,i : -*-(#)
Therefore there is a degenerate eigenvalue of ìz - 0

subspace.

0

that corresponds to the zerosum

C.1.3 Determination of À3

To determine À3 it is shown that the invalid subspace is an eigenspace of T"'" with a

corresponding eigenvalue 13 : -c.
Firstly, consider the matrix S which is the sum of outer products of all valid solutions

v and is derived in Appendix C.4. Since the invalid subspace is mutually orthogonal to

both the valid subspace and ê, Sv'" : 0, where 0 is the vector of all zeros. Therefore

the eigenvalue of S in the invalid subspace is zero.

Now by establishing an expression for T"'" in terms of S, we shall determine the

eigenvalues of T"'" in the invalid subspace. By considering the equations (C.1) and

(C.9) the connection matrix T"'" may be written as

Tc",s -,-d_Ðf s * c(1 - 1/)êê" - cr. (c.3)

To verify equation (C.3) we shall evaluate the right hand side. Noting that lèèrl*¿,0¡ :
I lN' , lTl,a,ui : 6,a6¿j and substituting equation (C.9) gives

c(1 - ,nrr

lT"n"l,¡,yj : - c6,16¿¡

: _" 6-",_96,, c

,¡v ""* Ñ
which coincides with the expression for T"" given by equation (C.1).

The eigenvalue of T"'" in the invalid subspace may now be determined by consid-

ering the individuai terms in equation (C.3). Multiplication of S bV æd:¡¡ scales the

eigenvalues of S, but the eigenvalue of S in the invalid subspace remains'zeró. Similarly,
multiplication of êê" by a constant affects only the eigenvalue of the eigenvector in the

direction of ê. The remaining term, -cI introduces an eigenvalue of -c in the invalid

subspace. Therefore, for a vectoÍ v'n'which lies in the invalid subspace

Tcnsvxnu : _¿yxnu

i.e. there is a degenerate eigenvaiue l, : -" that corresponds to the invalid subspace.

C.2 Eigenvalues of Ton'

For an optimisation network where the Lyapunov function Ets"p - Ecns ! 8""", the
connection matrix is given by equation (4.4), i,.e.

fTonnl,r,y¡: -*un, - #u,"+ #*16"06¿¡. (c.4)

cllú-l) . ca-"-zó,06¿¡ I,(t - ó,r)(1 - 6 ¡) t N2
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The eigenvalues and eigenvectors of the connection matrix Tonn ate determined, using a

method similar to that employed in (Aiyer et al', 1990), as follows.

C.2.1 Determination of ),1

The eigenvalue 11 is calculated by showing that ê : # [1,1,. . . , t]r is an eigenvector of

To" with a corresponding eigenvalue ì, : -" *'y. Now

lr"nêf,o : T? (fru,, - *u,o + # ¡ 1d,,do,) fi
: -+#-\#-Ð?#.i

(c.5)

i.e. Tannè: (-c + ,y)ê. Therefore ê is an eigenvector of Tonn with a corresponding

eigenvalue Àt : -c * ^1.

C.2.2 Determination of )'z

The eigenvalue 12 is determined by showing that the zerosum subspace is an eigenspace

of Tonn with a corresponding eigenvalue À2 - ?. As described in Section 3.3, every valid

solution v to the TSP can be decomposed into a component v'" in the zerosum subspace

and a component ê,
v:v"*ê.

Therefore

Tannvzs : Tannv_To'nnè
: Tannv - Àrê.

( -c
1

¡/+7)

Now since v is valid, Duuo;: Ð¡u,,j 1 and DoÐ¡D¿ : Iy'' allowing the following

simplification,

lTonnuf,¿ : ? ? (-#u,, - *u," + # * 16,06;¡) uo¡

c- c- c: -:t,oo- iÐr,t + lv, tt uo¡ t1u,¿N7 ;1 a r
c

-Ñ l't"n

Upon substitution we obtain

lT"nnu"'f ,, -f + lu'i-[l'ê],¿
1

wrl' 
¡/

.Y zs'luri

Therefore there is a degenerate eigenvalue of À2 - 7 that corresponds to the zerosum

subspace.
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C.2.3 Determination of 13

To determine À3 we show that the invalid subspace is an eigenspace of Tonn with a

corresponding eigenvalue À3 - -cI'1.
Firstly, consider the matrix S which is the sum of outer products of ali valid solutions

v and is derived in Appendix C.4. Since the invalid subspace is mutually orthogonal to

both the valid subspace and ê, Svi" : 0, where 0 is the vector of all zeros. Therefore

the eigenvalue of S in the invalid subspace is zero.

N"* by establishing an expression for To" in terms of S, we shal1 determine the

eigenvalues of To" in the invalid subspace. By considering the equations (C"4) and

(C.9) the connection matrix Tonn rnay be written as,

Tann - 
-j---=-S 

+ c(t - ¡ü)êêr - cI* 1I. (C.6)
N(N -'z¡'

Equation (C.6) may be verified by following the same procedure as used in Appendix C.1.3

The details of this procedure are left to the reader. To determine the eigenvalue of T"nn

in the invalid subspace, we must consider each term in equation (C.6). Multiplication of

S by ¡ff:¡¡ scales the eigenvalues of S, but the eigenvalue of S in the invalid subspace

remains zero. Similarly, multiplication of êê" by a constant affects only the eigenvalue

of the eigenvector in the direction of ê. The remaining term, -cI *'yI introduces an

eigenvalul of -c * 7 in the invalid subspace. Therefore, for a vectot vin' which lies in

the invalid subspace 
aannuinu : (_c+.,)vonu

i.e. there is a degenerate eigenvalue 13 - -cl'y that corresponds to the invalid subspace.

C.3 Eigenvalues o¡ r¡mod

For an optimisation network where the Lyapunov functi on Elsop -- Ecns + E od, the

connection matrix is given by equation (4.12), i.e.

lT^odf,;,yi
("+r) _\#4,* (c i.l 116'06¿¡. (C.7)

¡r N2

The eigenvalues and eigenvectors of the connection matrix T-'d are determined, using a

method similar to that employed in (Aiyer et al., 1990), as foliows.

118

C.3.1 Determination of ),1

To determine ì1 we show that ê : # [1, I,. .. ,t]" is an eigenvector of T-od with an

eigenvalue Àr : -c. Now

[t*,0ê],, : Ð\(-#r,, - ffd,, * # + til,6n¡) #
: _\-c*'Y_\-c*l+\-\-"*.1 *- :-? N ? ¡.r '?? N2 t t .^ú

i.e. T*"dê: -cê. Therefore ê is an eigenvector of T^od with a corresponding eigenvalue
\_A7 

- -L.
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C.3.2 Determination of )'2

The eigenvalue À2 is determined by showing that the zerosum subspace is an eigenspace

olT^Ã with a correspond.ing d,egenerate eigenvalue Àz - ?. As described in Section 3.3,

every valid solution to the TSP can be decomposed into a component v'" in the zerosum

subspace and a component ê,
v:v'"*ê.

Therefore

r¡mod,zs : r¡mod' 
-r¡mod¿

: amod'u - Àrê.

Now since v is valid, Ðouyt: D¡ t)ri 1 and DrÐ¡uai: lú, allowing the following

simplification,

119

lT-,o.rlL )rz ?? (-'#u,, - +u + # + 16'06;¡) uo¡

-+Ð'oo - +\"' + #?? uo¡ r 1u'¿

aIt
--1V I ^lu'¿

Upon substitution we obtain

lT*"ou'"1,0

= t(r,,-ñ) : ^tuä

Therefore there is a degenerate eigenvalue of Àz - 'y that corresponds to the zerosum

subspace.

C.3.3 Determination of À3

To determine À3 we show that the invalid. subspace is an eigenspace of T*od with a

corresponding eigenvalue À3 - -cl'Y.
Firstly, consider the matrix S which is the sum of outer products of all valid solutions

v and is derived in Appendix C.4. Since the invalid subspace is mutually orthogonal to

both the valid subspace and ê, Sv'" : 0, where 0 is the vector of all zeros' Therefore

the eigenvalue of S in the invalid subspace is zero.

Now by establishing an expression for ¡mod in terms of S, we shall determine the

eigenvalues of T-od in the invalid subspace. By considering the equations (C.7) and

(C.9) ihe connection matrix T*od rrray be written as,

,¡mo,t - #5s * (c + 7)(1 - t/)êê" - cr. (c.8)

Equation (C.S) may be verified by following the same procedure as used in Appendix C.l'3.
The details of this procedure are left to the reader. The eigenvalue of T*od in the invalid

subspace can now be determined by considering the individual terms in equation (C.8).

Multiplication of S ¡y fË¡l scales the eigenvalues of S, but the eigenvalue of S in
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the invalid subspace remains zero. Similarly, multiplication of êê" by a constant affects

only the 
"igenvalue 

of the eigenvector in the direction of ê. The remaining term, -cI
introduces an eigenvalue of -c in the invalid subspace. Therefore, for a vectot v'no which

lies in the invalid subspace
r¡mod,inu : -¿ylnu

i.e. there is a degenerate eigenvalue Às : -c that corresponds to the invalid subspace.

C.4 Derivation of S

To assist in the determination of eigenvalues in the invalid subspace, it is necessary to

first derive the matrix S, which is formed from the sum of outer products of all the valid

solutions v. The derivation of S presented here follows that given in (Aiyer et al., 1990).

Let I/ be the number of cities in the TSP and v(o) b" a valid 0 - 1 vectot i'e. it
satisfies the constraints (3.3) and (3.4) and u'; € {0,1}. Since S is formed from the sum

of outer products of all valid solutions, S is given by

S : !v(')v(')r

t20

¿ Sri,ai Ð'')'fr)
a,

a

Now, consider the following cases

ci:jandrtA.
In a valid solution it is not possible ror u'¿: 1 and uvi : 1 fi r I y' Therefore

Sri,ai:0 Vi, *#Y.

.i+jandï:y.
Inavalid solutionit isnot possible lor u'¿:1and urj f fii+ j' Therefore

Sri,rj:0 Vr,i+i.

oi:jandr:A.
There are (1ú - 1

Therefore S,i,,i:

.i+jandxly.
C:ty * is flxed at position i and city y is fixed at position j of the tour. The

remaining cities may be arranged in (,nú - 2)! possible permutations. Therefore

S,i,yj :(¡i - 2)! V r l A, i + i.

)! valid solutions v(") with city x fixed at position i of the tour
(¡ú - 1)! Vr,i.

(c.e)

So it is clear that the matrix S may be expressed as

[S],;,v; : (^/ - I)l 6,a6ij + (¡ú - 2)! (1 - 6,ò(7 - 6¿¡)



Apppttox D

Valid
Ising

Subspace Mapping for the
Spin problem

The valid subspace mapping (Gee, 1993; Gee et al., 1993; Gee and Prager, 1994) is the

current state-of-the-art method for mapping a combinatoriai optimisation problem onto

an optimisation network. In this section we will show how to use the valid subspace

u,pprãa.h to map the Ising spin problem onto an optimisation network. In addition, a

modified hysteretic annealing function that encourages the formation of good solutions

is derived for the Ising spin problem.
Before considering the Ising spin problem in detail, it is necessary to demonstrate

how the valid subspace mapping may be applied to a general combinatorial optimisation

probiem (Gee, 1993). Many combinatorial optimisation problems may be expressed as

the minimisation of a quadratic objective function, subject to a set of linear constraints:

Eobt---f,u'ru-v"b
Av: V

u¿ € [0,1].

To map such a problem onto an optimisation network, the valid subspace approach sets

the Lyapunov function for the network to be Ets"p - Eobi + 8""" . The penalty function

is given bv 
Ecns -l"ll" - (T,,,r + .)ll, (D.1)2"

where c is a positive constant, rløal 1. a projection matrix and s is an offset vectorl. The

projection matrix and offset vector are given by (Gee, 1993)

,¡uat : I_A"(nn")-tl

minimise

subject to
where

(D.2)

(D 3)s : ¡r (ur)_, v.

D.1- Deriving T'o/ and s for the Ising Spin problem

Before proceeding with the valid subspace mapping of the Ising spin problem it is neces-

sary to restate the probiem representation that was introduced in Section 5.2.I. In order

lln Chapter 3 when the valid subspace mapping was used to map the TSP onto an optimisation

network, the projection matrix T'ol was renamed T" and the offset vector s was renamed ê.

to solve the Ising spin problem,..each element in the Ising spin model is assigned two

neurons with outpui*ofu) u.rrd ,{å) respectively. If u[o) : i u,ttd ,:-) :0 then element i
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has been assigned the state brack' similarly, ir u\-): 1 and u[u) :0 then element i has

been assigned the state white" The output of the network may be represented as the

column vector,
., : [rÍ-), ufb), ,$-), ut'),. ..rÍË), ,Í.})]t.

The constraints for the problem mapping were given in equation (5.2) and have been

reproduced here for completeness,

uÍ-) +r:o):1 vi e {1,...¡u'.}.

These constraints may be written in vector notation as Av - y where A is the 1ú x 2Iú

matrix given by,
0

0

1100
0011

0

0A- (D.4)

(D.5)

(D.6)

0000 11
and y is the I{ x 1 column vector with all entries equal to one.

Before the projection matrix and the offset vector for the valid subspace mapping of the

Ising spin problem are determined, we shall evaluate some useful auxiliary expressions.

By substituting from equation (D.a) it can be shown that

L^r -- 2r

and therefore

(
1 :!r

2
AAT

Also, the 2N x 2ll matrix A"A is given by

ATA:

1100
1100
0011
0011

00
00
00
00

0000 11
0000 11

Now the offset vector for the valid subspace mapping of the Ising spin probiem can

be determined by substituting from equations (D.a) and (D.5) into equation (D.3), i.e.

s : ¡r (la")-l v

(D.7)

where o is a 2N x I column vector with all entries equal to one. Similarly, the projection
matrix for the Ising spin problem can be determined by substituting from equations (D.5)
and (D.6) into equation (D.2), i.e.

!,A.t.,2"
1

")-'o

-o
2

(auat : I-4" AA
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1^I_:Ä.,A
2

0

0

0.5

-0.5

0

0

-0.5
0.5

0

0

0

0

-ò.r
0.5

t23

(D.s)

(D.e)

0

0

0

:

0.5 -0.5
-0.5 0.5

00
00

ô

0

0

0

0

0

0

0

0.5

-0.5

D.2 Evaluating the Penalty and Annealing Functions

Given the projection matrix and offset vector for the valid subspace mapping of the Ising

spin problem, rre can now proceed to evaluate the penalty function -8""". Expanding

equation (D.1) we obtain2

Ecns - -lu' (r""' - I)., - "v?s + 1"r".

By substituting equation (D.8) for T"of and equation (D.7) for s, the penalty function

simplifies to

Ecns +,[\ + ic

4

Nt
t"=1

N

D
i=l

(rÍ-) + rÍu))
2C N

Ð(,Í-)i-r2

c

4
(rÍ-,*rÍu)- r)'

It is easily verified that the penalty function E n" is zero only when the constraints for

the Ising spin problem are satisfied. \ /ith c set to a large positive constant, the penalty

function E'n" is positive for any point that does not satisfy the constraints for the Ising

spin problem and a simple gradient descent argument reveals that the penalty function

encourages the network state v to lie on the valid subspace.

To improve the quality of solutions found by an optimisation network approach to the

Ising spin problem it is desirable to include some form of annealing. Modified hysteretic
annealing is a principled approach to annealing, which allows the solution quality to
be improved whilst maintaining the ability to guarantee convergence to a valid solution'

White the principles motivating the modified hysteretic annealing technique may be found

in Chapter 4, it is sufficient to know that the modified hysteretic annealing function, as

given by equation (4.9), is3

Bmod - -l..uTT""Iu.
2

Substitution of equation (D.S) for T'ol gives the modified hysteretic annealing function
for the Ising spin problem as

Bmod, : -ii,(,j-) (,(-) - ,Íu)) +,Í,) (,Íur - ,Í-,))
x=I

2Note that Tuol i, symmetric and since T'ol is a projection matrix , Tuatauat = T'ot . Also, s lies

in the nullspace of T'o¡, so 1'uals = 0 where 0 is the zero vector.
3As previously stated the projection matrix for the TSP was named T" and so it is appropriate to

make the substitution o1 1'ucl for T'" in equation (4.9).
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(D.10)('Í-' - 'Í")'
¡rt
i=l

_!
4
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