On the Performance of

Optimisation Networks
by

BRENTON S. COOPER, B.E. (HONs. I)

Thesis submitted for the degree of

Doctor of Philosophy

The University of Adelaide
Faculty of Engineering
Department of Electrical and Electronic Engineering

December, 1996



Table of Contents

Abstract iv
Declaration v
Acknowledgments vi
List of Figures vii
List of Tables viii
Publications ix
Glossary X
1 Introduction 1
1.1 Optimisation Networks . . . . .« v v v v v v v i v i v v v oo e e s

1.2 Themes and Contributions . . . . . . . . . . . . . . e 2

2 Optimisation Networks 4
2.1 Mapping combinatorial optimisation problems . . . . . ... ... .. .. 4
2.2 Discrete Hopfield Network . . oo oo vv v v vu v v vn v v va oa 5
2.2.1 Deterministic Update . . . . . . . .. ... oo 5

2.2.2  Stochastic Update . . ... ... ... ... .. ... ....... 6

2.3 Simulated Annealing . . . . . .. ... e e e e 8
2.4 Mean Field Annealing . . . . . ¢ v i v ie v v s n v s v va o 8
2.4.1 A Simple Example . i s wuon osma s os sonw s owmwwn s 10

2.5 Continuous Hopfield Network . . . . . . . ... ... ... ... ..... 10
2.5.1 A Simple Example . . ... ... ... ... 14

2.5.2 Annealing Techniques . ¢ v v v v v v v e v o i v v v oo v 16

2.6 Hardware Implementation . . .. ... ... ... .. ... 0. 18
2.7 The Niche Market . ... .5 comus caomwmons o fmn a6 o Koo o w R 20

3 The Problem Mapping 23
3.1 Background p. 53 ei it i8 FAimES R G M EB NS MmAA SN e A nd 24
3.2 The Travelling Salesman Problem . . . . .. ... ... ... ....... 25
3.3 TheValidSubspace . . . . . . .. . .46 csmusus oomun 066 @ 26
3.3.1 Simple 3-dimensional example . . . . . .. .. ... 26

332 The TSP . . . . . e e e e e e e e e e e 26

3.4 Enforcing Validity . . . . . . . . . . i i i e e e e e 28

3.5 Kigenvector Analysis . . ... ... .4 comswmvs vaman @& 80 31



3.5.1 Analysis of the Dynamics of the Network . . .. .. ....... 32

3.5.2 Analysis of the Lyapunov function . . . ... .. ... ...... 33

3.6 Mapping Some Common Problems . . . ... ............... 34
3.6.1 Arethey suitable? . . .. .. .. ... ... .0 36

3.7 Chapter SUMINATY . .« v v ¢ v v v v v o o v e e e e e e s s e e e e 36
4 Annealing Techniques 38
4.1 Hysteretic Annealing . . . . . .« v v vt i 38
4.2 Why Use Annealing? . . . . .0 i i v it 39
4.3 Eigenvector Analysis . . . . . . . .. .. .o 40
4.3.1 Analysis of the Dynamics of the Network . . . . . .. ... .. .. 42
4.3.2 Analysis of the Lyapunov function . . .. .. ... ... ..... 43

4.4 Modified Hysteretic Annealing . . . . . .. ... ... ... ... ... 45
4,5 Eigenvector Analysis . . . . . . v v v vt vt i et e e e 48
46 Simulations . ... . . caomes s s ®es VA @ E%HE §FE GE § 5 B YE 50
4.7 Chapter SUmMMATrY . . % o« v o s 0w o5 s 505 5 55 5@ s o & s o 54
5 The Issue of Scaling 56
5.1 Scaling with Problem Size . . . . ¢ o v v v u o v oo v o b oo 56
5.2 Segmentation . . . . . . . ... e e 59
5.2.1 ThelIsing Spin Problem . ¢ . ¢ v v v v oo v v vv v 0 v we ww s 59

5.3 A Comparison of Two Heuristics . . .. .. .. ... ... ... .. 64
5.4 Overcoming Segmentation . . . . . . v o v v v vt e v n e b e 67
5.4.1 Multi-scale Networks . . . . . . ... oo 68
5.4.2 Extended Neighbourhood . . .. ... ... ............ 70

5.5 Chapter Summary . ... ... .: sew i eseseies 5w 35 &5« 73
6 Higher-Order Neural Networks 76
6.1 The HONN model . .. . . . . . . @ e i s et et e s 76
6.1.1 Simple Example . . ... .. ... e 78
6.1.2 Applicationsof HONNs . . . ... ..o oo oo o 79

6.2 The Hopfield approach tothe TSP . . . . .. ... ... .. ....... 81
6.2.1 Extracting the heuristic from the Hopfield network . . .. .. .. 82

6.3 The HONN approach tothe TSP . . . . ... ... ... ... ...... 83
6.3.1 An alternative approach . . . . .. ... ... .. ... 86

6.4 Simulations . . . . . .. . .. ... e e oG s s 87
6.5 Chapter SUMIMATY & w o s s 6w o 5 o @ s % v e w5 6 0w s % 88
7 Investigating the Quality Versus Computational Effort Trade-off 90
7.1 Attractors and Basins of Attraction .. ... .. ... .......... 90
7.2 Stability criteria for valid 0 —1 points . . . . . ... ... .00 92
7.2.1 The Hopfield network . . . . .. ... ... ... ... ... .. 93
T7.2.2 HONNS s comomemeomo s 5% 62 % 5 5 6 96 @ 90 W G0 K & OF w0 e v & 06 % 55 % 3 94

7.3 Numerical comparison of the number of stable points . . .. .. ... .. 96
7.3.1 Procedure .5 s 3w s §a 8 §iG s @ §u@mem s ms e nn 97
7.3.2 Quality Factors . wsa sz cswsa vwmus o s e e @ m s e s 98
7.3.3 BResults . wu ws e wwm et owms 65wy e s e s o 98

7.4 Significance of the Results . . . . .. .. ... ... ... ......... 102
7.4.1 The Quality Versus Computational Effort Trade-off . . .. .. .. 102

1



7.4.2 The Effect of Annealing . . . . . .. . oo oo v v
7.4.3 Further Work . . . . .« . o o o i i e e e e e
7.5 Chapter Summary . . . . . . .. oo et e e e

8 Conclusions

A Derivation of Mean Field Annealing
A.1 Mean Field Theory . . . . . . . . . o v it e e
A.1.1 Simplification of the partition function Z . . . . . .. .. ... ..
A.1.2 Saddle Point Expansion . . . .. ... ... ..o

B Simulation details for TSP experiments

C Eigenvalues of Interconnection Matrices
C.1 Eigenvalues of T . . . . . . .o oo it
C.1.1 Determination of A7 o v v o e v 0 v 5w 0w ws v s o n s 2o s s
C.1.2 Determinationof Ay . . . . . o .o
(1.3 Determination of Az . . . . v v v v i v e e e e e e e e e
C.2 Eigenvalues of T™ . . . . . . .o i vt i it
(21 Determination of A1 « « « v 4 v v v v b bt e e e e e e e
C.2.2 Determination of g . . . & v v o v i i e e e e e e e s
(C.2.3 Determination of Az . . v v v v v v b e e e e e e e e
C.3 Eigenvalues of T™% . . . . . . .. 0ttt
(.3.1 Determination of Af « « v « 5 4 o v v s v + 6 s o0 v a0 ns 0w
(1.3.2 Determination of Az .« v v v v v v b e e e e e e e
(.3.3 Determination of As . . v v v v v v e b e e e e e e e e
C4 Derivation of 8 . . . . o i i i i e e e e e e e e e e e e e e e e e

D Valid Subspace Mapping for the Ising Spin problem
D.1 Deriving T*¥ and s for the Ising Spin problem . . . . . ... ... ....
D.2 Evaluating the Penalty and Annealing Functions . . . . . ... .. .. ..

Bibliography

11

107

109
109
110
111

113

115
115
115
115
116
116
117
117
118
118
118
119
119
120

121
o2l
123

125



Abstract

Optimisation networks are a family of approximate techniques for the solution of com-
binatorial optimisation problems. Typically an optimisation network comprises a large
number of highly interconnected, simple processors which may be programmed to com-
pute a solution to a variety of combinatorial optimisation problems. When implemented
in hardware, optimisation networks like the Hopfield network and the mean field an-
nealing algorithm are capable of producing solutions in a matter of milliseconds. The
capability for real-time combinatorial optimisation is unique to optimisation networks.

As optimisation networks are not a mature technique, there remain several open
questions relating to their use. One such issue, which has gone largely unnoticed in
the literature, is that of solution quality. Previously, various annealing techniques have
been developed to improve the quality of solutions obtained from an optimisation net-
work. Our investigations of these annealing techniques confirm their ability to improve
solution quality, but uncover the tendency to force the network toward invalid states.
Consequently we develop a new, principled approach to annealing that improves solution
quality while maintaining a valid network state.

Simple experiments reveal an alarming feature of the performance of optimisation net-
works: as the problem size increases, the quality of the solutions rapidly decreases. Such
deteriorating performance would restrict optimisation networks to the solution of only
small problems — a significant erosion of the niche market for optimisation networks. Our
investigations show that the simple heuristics that optimisation networks employ to solve
a combinatorial optimisation problem are ultimately responsible for the poor scaling to
large problems. Furthermore, while alternative heuristics can be shown to far outperform
those used by an optimisation network, many of them are not suitable for embedding
into an optimisation network. However, after recognising that for any heuristic there is
a trade-off between solution quality and computational effort, we developed a family of
higher-order neural networks (HONNs) which embody that trade-off. It is shown that
HONNSs offer improved solution quality at the expense of extra complexity in the net-
work. It is concluded that optimisation networks embody a simple heuristic approach to
the solution of combinatorial optimisation problems, and as with any heuristic approach
trade-offs must be made between solution quality and computational effort in order to
meet demands on their performance.

Keywords: combinatorial optimisation, neural networks, Hopfield network, higher-order
neural networks.
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CHAPTER [

Introduction

1.1 Optimisation Networks

Optimisation networks belong to a broad class of systems known as artificial neural net-
works (ANNs), which have been developed to address the shortcomings of conventional
computers. Conventional computers operate in a serial manner by performing a pro-
grammed sequence of instructions. They excel at numerically intensive tasks, but are
significantly less effective at tasks which humans can do routinely, such as recognising
objects and understanding speech. Given that the human brain performs so well on these
complex tasks, there is considerable merit in attempting to develop an artificial neural
network that mimics the computational processes of the brain.

Artificial neural networks (Hecht-Nielsen, 1989; Hertz et al., 1991; Zurada, 1992) gen-
erally comprise a large number of simple processors which are analogous to biological
neurons. These processors are connected together via a dense network of interconnec-
tions, which perform a similar function to the synapses and axons in a human brain.
ANNSs exhibit a computational ability which arises not from the complexity of the indi-
vidual processor, but from the high degree of connectivity between the processors. Just
like the human brain, ANNs have been trained to perform a variety of tasks and have the
ability to learn from experience. This model for computation is in stark contrast with
conventional serial computers and consequently ANNs have been applied to many of the
problems that have proven to be too difficult for conventional computers.

Optimisation networks are a subset of ANNs where the outputs of the individual pro-
cessing units are fed-back, via the network of interconnections, to the inputs of the pro-
cessors. By interconnecting the processors in this manner a nonlinear, dynamic system is
produced, which under certain conditions is ideally suited to the solution of optimisation
problems. Specifically, optimisation networks are used to solve combinatorial optimisa-
tion problems, the most famous example of which is the travelling salesman problem

(TSP). The TSP may be simply stated as:

Given N cities in a plane, all of which must be visited only once, find the order
in which to visit them, making sure to return to the initial city, so that the total
distance travelled is minimised.

The TSP, as with all combinatorial optimisation problems, is characterised by having a
finite set, as opposed to a continuum, of possible solutions over which the objective func-
tion must be optimised. Rather than making the problem easier, it makes problems like
the travelling salesman notoriously difficult. In fact, combinatorial optimisation prob-
lems are amongst the most difficult problems known to the mathematical community. To
date, there is no known method for efficiently finding the optimal solution to a travelling
salesman problem. This is not surprising when we consider that for a ten city travelling
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salesman problem, there are slightly under two hundred thousand tours to consider; yet
if we increase the size of the problem to just twenty cities, there are approximately sixty
million billion tours to evaluate in order to find the optimal solution.

Notwithstanding the complexity of combinatorial optimisation problems, experiments
have repeatedly shown that optimisation networks can produce reasonably good solutions
to problems like the TSP. The Hopfield network (Hopfield, 1984) is typical of most
optimisation networks. Its ability to solve the TSP was first demonstrated by Hopfield
and Tank (Hopfield and Tank, 1985). However, the initial results from the Hopfield
network were far from convincing. The network regularly converged to states that did
not satisfy the constraints of the problem. Furthermore, even when a valid solution was
obtained, it was quite likely to be of poor quality. Despite these shortcomings, it was
quite obvious that the Hopfield network was widely applicable and was a significant,
new approach to the solution of combinatorial optimisation problems. Subsequently, a
great deal of research into optimisation networks has seen many of their early limitations
overcome.

One of the most significant factors to commend the use of optimisation networks
is their amenability to implementation in fast, parallel hardware. Such hardware im-
plementations could yield solutions in a matter of milliseconds, making the solution of
real-time combinatorial optimisation problems an attainable goal. Moreover, as com-
binatorial optimisation problems arise in many areas of engineering and science, there
is a significant array of suitable real-time problems: routing traffic in communications
networks (Cooper, 1994), solving graph labelling problems for object recognition (Gee,
1993) and optimisation problems in low-level vision (Mjolsness et al., 1991) are just a
few. Given the potential for optimisation networks to solve real-time problems and the
many applications that would benefit, it appears that further research into optimisation
networks is justified.

1.2 Themes and Contributions

To date, the vast majority of research into optimisation networks has concentrated on
developing methods that improve the reliability with which networks converge to valid
solutions. An additional thrust of the research has been to apply optimisation networks
to more practical problems than the travelling salesman. While there have been some
attempts at developing mechanisms to improve solution quality, there has been virtually
no research investigating the existence of limits on the solution quality achievable with
optimisation networks, or indeed the factors responsible for such limits, should they exist.
The one theme that underpins all our investigations in this thesis is that of solution
quality.
The main contributions of this thesis may be summarised as follows:

o We demonstrate the importance of annealing mechanisms, which aim to improve
solution quality (Section 4.2). Furthermore we investigate the effect that annealing
may have on the ability to obtain valid solutions (Section 4.3).

e As a result of our investigations we find it necessary to develop a new, principled
approach to annealing that improves solution quality while maintaining a valid
network state (Sections 4.4 and 4.5).

e We investigate the ability of optimisation networks to scale to large problem sizes,
and the impact that problem size may have on solution quality (Sections 5.2 and 5.3).
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e We establish that optimisation networks utilise simple heuristic methods for the
solution of combinatorial optimisation problems (Sections 5.2.1 and 6.2). As with
any heuristic method there is a trade-off between computational effort and solution
quality.

e Following these investigations, we develop a family of alternative optimisation net-
works, which embody the trade-offs that can be made between solution quality and
computational effort (Sections 5.4.2 and 6.3).

o We investigate the impact that the trade-off between computational effort and
solution quality has on the performance of standard optimisation networks (Sec-

tions 7.3 and 7.4).

Throughout the thesis we have avoided large-scale simulations, as the underlying
problems and the methods developed to counter them, are easily demonstrated on simple
examples. While detailed mathematics is included where necessary, we have made as
much use of simple intuitive arguments as possible. The broad outline of this thesis is
as follows:

Chapter 2 presents an overview of various optimisation networks, including their method
of operation, implementation in hardware and brief discussion of their niche market.

Chapter 3 discusses the process of mapping a problem onto an optimisation network.
A rigorous analysis of the proposed mapping technique shows that a valid solution
to problems such as the TSP can always be obtained from an optimisation network.

Chapter 4 investigates the use of annealing techniques to remove dependence on initial
conditions and improve the quality of solutions. A potential conflict between the
problem mapping and annealing process is first identified and then resolved with
the development of the modified hysteretic annealing technique.

Chapter 5 demonstrates that optimisation networks employ simple heuristics to solve
combinatorial optimisation problems. Experimental results show that the solution
quality obtained from an optimisation network deteriorates quickly as the problem
size increases. The poor scaling of optimisation networks to large problem sizes is
directly attributable to the simple heuristics used. Various approaches to improving
the scaling of optimisation networks are presented.

Chapter 6 develops a family of optimisation networks called higher-order neural net-
works (HONNs). HONNs make use of stronger heuristics in the solution of combina-
torial optimisation problems and in many ways they embody the trade-off between
computational effort and solution quality that may be made with any heuristic
approach to optimisation.

Chapter 7 further investigates the computational effort versus solution quality trade-
off by presenting a theoretical analysis of the performance of higher-order neural
networks.

Chapter 8 presents the main conclusions of the thesis.

Appendices contain derivations and experimental details that are supplementary to the
main text.



CHAPTER II

Optimisation Networks

Optimisation networks are a class of ANNs that may be applied to the solution of combi-
natorial optimisation problems. An optimisation networks comprises a large number of
highly interconnected processing units. The outputs of the processing units are fed-back
via the network of interconnections to their inputs. In doing so, a non-linear dynamic
system is created that can be used to solve optimisation problems. It should be noted
that optimisation networks do not attempt to implement any sort of cognitive function or
indeed perform any learning: a fact that sets them apart from more conventional notions
of what comprises an ANN.

In this chapter we present an overview of various optimisation networks and give a
series of simple examples to demonstrate their use. We begin in Section 2.1 by briefly
describing how combinatorial optimisation problems may be mapped into a form which is
suitable for optimisation networks. Then in Section 2.2 we introduce the discrete Hopfield
network and discuss its limitations when applied to combinatorial optimisation. The lim-
itations of the discrete Hopfield network naturally lead to the development of simulated
annealing and the mean field annealing algorithms, as detailed in Sections 2.3 and 2.4.
To complete our coverage of optimisation networks, Section 2.5 introduces the continu-
ous Hopfield network. All optimisation networks rely on hardware implementations to
be competitive with alternative techniques for combinatorial optimisation. Accordingly,
Section 2.6 presents a brief review of hardware implementations of optimisation networks.
Finally, in Section 2.7 the niche market for optimisation networks is identified by con-
trasting their strengths and weaknesses with the performance of competing techniques
for combinatorial optimisation.

2.1 Mapping combinatorial optimisation problems

Typically, combinatorial optimisation problems require the minimisation of an objective
function, subject to a set of constraints, over a set of 0 — 1 variables'. In order to solve
such a problem with an optimisation network it is necessary to reformulate the problem.
This process is called mapping the problem onto the network and is the subject of more |
detailed comment in Chapter 3. In many cases, the outcome of the problem mapping
is to express the original optimisation problem as the minimisation of a single quadratic
objective function over a set of 0 — 1 variables i.e.

minimise ~ E(s) = —1s"Ts —s’b (2.1)
where s, € {0,1}.

Many of the problems that may be represented by such a mapping belong to the class of

1s; is a 0 — 1 variable if s; € {0,1}. The vector s is a 0 — 1 point if s; € {0,1} V.
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NP-hard problems. It is commonly accepted that it is impossible to find an algorithm
that can, for every problem instance, produce the optimal solution to an NP-hard prob-
lem in an amount of time bounded by a polynomial function of the problem size (Garey
and Johnson, 1979; Papadimitirou and Steiglitz, 1982). Consequently, most algorithms
abandon the search for an optimal solution, preferring to find a good, though not neces-
sarily optimal solution in a reasonable amount of time. Such algorithms, may therefore
be referred to as approximate solution techniques.

Optimisation networks are a class of approximate solution techniques that attempt
to solve combinatorial optimisation problems by using the problem mapping given in
equation (2.1). As we have previously stated, an optimisation network is a non-linear
dynamic system. The state vector of the system is given by the outputs of the processing
units in the network, and is constrained to lie within the unit hypercube. The network’s
dynamics, which determine how the state vector moves through the state space, are
constructed so as to guide the state vector through a gradient descent on the objective
function . When the system converges to a stable state, and if measures have been
taken to ensure that that state is a 0 — 1 point, then the stable state may be interpreted
as a solution to the optimisation problem of equation (2.1). Moreover, as the state was
arrived at via a process of gradient descent on the objective function, it is expected that
such stable states should represent good solutions to the optimisation problem. In the
rest of this chapter, various optimisation networks are introduced and their utility at the
solution of combinatorial optimisation problems is discussed.

2.2 Discrete Hopfield Network

The discrete state Hopfield neural network (Hopfield, 1982) is constructed by intercon-
necting a large number of simple processing units. The +th processing unit, or neuron,
is described by two variables: its internal state u; and its output s;. In the discrete
state network each neuron may either be firing or non-firing, as represented by its output
s; = £1. The strength of the synaptic connection from the output of neuron j to the
input of neuron 1 is given by T};. Each neuron also has an external bias b; applied at its
input. The operation of the network depends on the choice of the update rule.

2.2.1 Deterministic Update

The Hopfield network, as it was originally introduced? (Hopfield, 1982), operates with a
deterministic update rule

U; = ZTij3j+bi (22)
J#
s; = sign(u;) (2.3)

where sign(u;) = —1 otherwise.

If the connections are symmetric i.e. T;; = Tj;, and the neurons are updated asyn-
chronously according to equations (2.2) and (2.3), then the network admits a Lyapunov
function of the form (Hopfield, 1982)

2 An equivalent, alternative formulation of the discrete state Hopfield network may use s; = {0, 1}.
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Elyap(s) = —% Z Z TijSiSj — Z biSi. (24:)
i g i

The existence of a Lyapunov function is significant, as it guarantees that as the neurons

are updated, 'Y (s) is monotonically non-increasing (Hopfield, 1982). Since E'ver(s) is

also bounded, state changes will continue until s reaches a local minimum of E'*?(s).

Any such local minimum will be a stable state of the discrete Hopfield network.

Given the quadratic form of the Lyapunov function (2.4), it would at first seem that
the discrete Hopfield network is well suited to the solution of optimisation problems posed
in the form of equation (2.1). However, the utility of the discrete Hopfield network is
dependent upon the relationship between the Lyapunov function and the state space. To
understand this dependence, consider the schematic representation of the function Elyar
shown in Figure 2.1(a). As the network state s is updated according to equations (2.2)
and (2.3), each change in state will result in a decrease in the Lyapunov function. Con-
sequently, s moves towards the global minimum s™" and will eventually converge to it.
Obviously, the discrete Hopfield network is well suited to finding the global minimum of
this function. A contrasting scenario is shown in Figure 2.1(b). As any local minimum
of EWe? is a stable state, it is apparent that the network’s ability to find the global
minimum of this function is much reduced. Only if the initial state of the network lies in
the basin of attraction for the global minimum will it be successful in finding the global
minimum.

When mapping an optimisation problem into the form given by equation (2.1), the
parameters T and b encode both the cost function and the constraints to be satisfied. It
has previously been noted that the mapping process produces a Lyapunov function, or
enerqy landscape, which is rich in structure with many local minima (Peterson and An-
derson, 1988). Consequently, as illustrated by the simple example given in Figure 2.1(b),
the discrete Hopfield network performs poorly.

2.2.2 Stochastic Update

Since the discrete Hopfield network, when operating with a deterministic update rule,
is likely to become stuck at a local minimum of the Lyapunov function, it is desirable
to incorporate a mechanism to facilitate escape from such local minima. To that end, a
stochastic update rule has been suggested (Peretto, 1984),

1

1 + exp(Fpu;)
where u; is defined by equation (2.2) and § is a parameter that controls the steepness
of the transfer function gg(u;) near u; = 0. In the limit 8 — oo, gg(u;) becomes a step
function and the stochastic update rule reduces to the deterministic rule of equation (2.3).
As B is decreased, this sharp threshold is softened in a stochastic manner. When the
discrete Hopfield network operates with a stochastic rule it is known as the stochastic
Hopfield network.

What is the meaning of this stochastic behaviour? The effect of the stochastic update
rule may be loosely thought of as the injection of noise into the network, as modelled by
thermal fluctuations. It is convenient to define the pseudo-temperature for the network

as, T? = % At high pseudo-temperature levels there is a large amount of noise in

Pr(s; = £1) = gg(£u;) =

(2.5)

the network, and consequently transitions that violate the deterministic rule (2.3) are
quite frequent. As the pseudo-temperature drops the amount of noise also drops, and
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Figure 2.1: Schematic representation of two Lyapunov functions.

The ability of the discrete Hopfield network to find the global minimum of E°®
is dependent on the relationship belween E%e? gnd the state space. These two
Lyapunov functions provide contrasting ezamples for the performance of the
discrete Hopfield network. (a) Convergence to the global minimum of this
function is guaranteed. (b) The network will converge to the global minimum
only if the initial state lies within the basin of attraction shown.
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updates of the network state adhere more strictly to the deterministic rule. The stochastic
update rule still moves the state vector from corner to corner of the hypercube, but each
move is no longer guaranteed to decrease E'¥*?(s). In fact, any move which violates the
deterministic update rule of equation (2.3) will result in an increase in E'er(s). The
injection of noise into the system dynamics has therefore made it possible to kick the
network out of a local minimum of the energy function.

It is easily shown (Hopfield, 1982) that a change As; in the state of neuron 1 produces
a resultant change in the Lyapunov function given by AE%® = —u;As;. Consider the
situation where s; = —1; we wish to evaluate the probability that an update of neuron 2
will select s; = +1. From equation (2.5)

1
1 + exp(AEW%/2T?)’

Therefore, from equation (2.6) it can be seen that at high pseudo-temperatures 77,
the probability of accepting a transition that increases E%e? is quite significant. Con-
sequently, the system is able to wander over the state space with little regard to the
underlying energy function. As the pseudo-temperature is decreased, uphill moves are
less likely to be accepted and therefore it becomes increasingly difficult for the network to
escape local minima. Finally, as T? — 0 all local minima of EwP are again stable states.
Operating the stochastic Hopfield network at progressively lower pseudo-temperatures

Pr(s; = +1) = (2.6)

is in fact a useful optimisation technique. Networks operating in this manner are usu-
ally referred to as Boltzmann machines (Ackley et al., 1985; Aarts and Korst, 1989;
Zissimopoulos et al., 1991).

2.3 Simulated Annealing

Simulated annealing (Kirkpatrick et al., 1983) is a general purpose optimisation tech-
nique that performs a discrete, stochastic search of the state space. The stochastic search
process makes use of a pseudo-temperature parameter to determine the probability of
accepting a transition that would result in an increase in the objective function. As the
simulated annealing progresses the temperature is gradually lowered, until at zero tem-
perature, uphill transitions are no longer accepted. Simulated annealing is a successful
approach to optimisation, although it is well-renowned to have an unacceptably long
running time. Indeed, in the limit of infinite computation time, simulated annealing is
guaranteed to find the optimal solution (Aarts and Korst, 1989). As previously discussed,
the combination of simulated annealing and a stochastic Hopfield neural network, pro-
duces a stochastic, parallel solution algorithm for combinatorial optimisation, commonly
known as the Boltzmann machine (Ackley et al., 1985).

2.4 Mean Field Annealing

Mean field annealing (MFA) is a technique, closely related to the Boltzmann machine,
that operates on the average statistics of the simulated annealing process. MFA provides
a deterministic approximation to simulated annealing which gives greatly improved exe-
cution speed at the expense of guaranteed solution quality. MFA operates by computing
a solution to the saddle point equations

1
J
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1

1+ exp(—wu;) (28)

Vi
at progressively lower temperatures. Equations (2.7) and (2.8) have been derived in
Appendix A, where it is shown that a solution (ii, V) to the saddle point equations gives
valuable information about a stochastic Hopfield network operating at the same pseudo-
temperature TP. In particular, the solution ¥ to the saddle point equations gives the
average value of the state of the stochastic Hopfield network i.e. v = (s). Moreover, at
low temperatures it may be expected that ¥ will closely approximate s™" the state that
globally minimises E(s).

It is shown in Appendix A that a solution (ii, V) to the saddle point equations 1s a
local minimum of the effective energy

E'(u,v,T?) = ET(:’,—) +ufv - Zln (exp(u;) + 1)

where E(v) is given by equation (2.1). It is worthwhile to make several remarks about
the effective energy. Firstly, it is important to note that the effective energy E'(u, v, TF)
is smoother than £(v) due to the presence of the 3, In(exp(u;)+1) terms. Unfortunately,
at low temperatures the rugged structure of the quadratic %%l term will dominate the
smooth logarithmic terms and in addition to the global minimum at (1, V) the effective
energy may have many sub-minima® Therefore, it is likely that the solution to the saddle
point equations will simply give values for it and Vv that correspond to one of the sub-
minima. In contrast, at high temperatures it is much less likely that the solution to the
saddle point equations will correspond to a sub-minimum as the smooth logarithmic terms
will dominate the effective energy. However, at such high temperatures V = (s) does not
correspond to a single configuration of the underlying stochastic Hopfield network, but is
an average over many states. Ultimately, when the temperature has risen to a sufficiently
high level, there is only one minimum of the effective energy.

Therefore, in a manner similar to simulated annealing (Kirkpatrick et al., 1983), the
saddle point equations are first solved at a high temperature. The temperature is then
lowered and a new solution to the saddle point equations is computed. As the process
is repeated at gradually decreasing temperatures, ¥ should evolve from an average over
many good configurations to the final desired value s™"_ while avoiding the sub-minima
of the effective energy. The process of solving the saddle point equations at a series of
progressively lower temperatures is known as mean field annealing.

The most common method for solving the saddle point equations (2.7) and (2.8) at
each temperature is an iterative replacement procedure,

U|t+1 = TV|t+b (29)

1
2.10
1+ exp(—usle41/T7) (210)
The update rules (2.9) and (2.10) define the MFA algorithm®. It should be noted that
there is no convergence guarantee for the MFA algorithm just described. In fact £ may
increase at any iteration. In practice MFA is suitable for many optimisation problems
and exhibits rapid convergence to a solution of the saddle point equations.

% |t+1

3The term sub-minimum has been used to describe a local minimum which is not the global minimum.

4 Alternative algorithms for solving the saddle point equations (2.7) and (2.8) have been proposed
(Peterson and Anderson, 1988).
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Figure 2.2: Contours of the quadratic objective function.

A contour plot for the function E(v) = —1(vi+v})+4v,v,—v1—3vs. The global
minimum of this function is E([0, 1]T) = —3.5. Note the saddle point marked
with an x at v = [0.8667, 0.4667]7 and the existence of the sub-minimum
E([1, 0T) =-1.5.

2.4.1 A Simple Example

As a simple example of the operation of the MFA algorithm, we shall use it to minimise
the quadratic function

s = [ L 3 s

1
= _5(1’% + v3) + 4v1vz — v1 — vz (2.11)

A contour plot of E(v) is given in Figure 2.2. In order to use the MFA algorithm to
minimise E(v), we must set
1 —4
e

o-[1].

The operation of the MFA algorithm is illustrated in Figure 2.3. The saddle point
equations (2.7) and (2.8) are solved at a series of progressively lower temperatures until
v; € {0,1} when T? — 0. Rapid convergence of the update rules (2.9) and (2.10) was
observed at each temperature T?. Convergence to the global minimum of this particular
objective function may always be obtained, regardless of the initial conditions, by utilising
a gradual annealing schedule.

and

2.5 Continuous Hopfield Network

The continuous state Hopfield neural network (Hopfield, 1984) is constructed by inter-
connecting a large number of simple analogue processing units. The itk processing unit
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Figure 2.3: Operation of the MFA algorithm.

The plots show the operation of the MFA algorithm on the objective function E
given in equation (2.11). As the temperature is lowered from 10 to 0.1, in equal
decrements of 0.1, the saddle point equations are solved for u and v. At each
temperature the solutions were obtained using the MFA update rule, iterating
until ||Av]] < 0.0001. The network was initialised with v = [0.5, 0.5]T and
converged to the global minimum at v = [0, 1)7 as T? — 0. Figures (a) and
(b) show the values of u and v obtained from the saddle point equations at each
temperature. Figures (c) and (d) give the trajectories of u and v through the
state space. The dashed lines shown in Figure (c) are contours of the objective
function E.

11
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Figure 2.4: Continuous Hopfield network with 3 neurons.

The outputs v; of the neurons are fed-back to the inputs, where they are
weighted by the comnection strengths Tj;. The summation of weighted out-
puts, external bias b; and decay term —nu; is passed through an integrator to
give the internal state u;. The internal state passes through a transfer function
to give the output v; = g(u;).
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is described by two variables: its internal state u; and its output v;. Unlike the binary
outputs of the discrete state Hopfield network (see Section 2.2), the neuron outputs may
assume a value v; € [0,1]. As before, the strength of the synaptic connection from the
output of neuron j to the input of neuron ¢ is given by T;;. Each neuron also has an
external bias b; applied to the input. A schematic diagram of a continuous Hopfield
network is given in Figure 2.4. The network forms a dynamic system described by the
following equations:

dui
7 e ; Tijvj — nu; + b; (212)

Here 7 is a decay parameter. The transfer function ¢(-) is a monotonically increasing
function that restricts the neuron outputs to the range v; € [0,1]. The usual choice is
the shifted hyperbolic tangent (sigmoid) function

() 1

;) =

: 1 + exp(—u;/T?)
where T? is a parameter controlling the slope of the transfer function in the linear region,
and is termed the pseudo-temperature.

If the interconnections are symmetric i.e. T;; = Tj;, then the network admits the
Lyapunov function (Hopfield, 1984)

(2.14)

1 vi
Bwe(u) = —2 3 Y Ty = Lbwi+n 3 [ g7 (V). (2.15)
7 ‘L ) ’

Under the assumption of symmetric interconnections and monotonically increasing trans-
fer functions,

dE"er OEW® dv,
dt { 8’0,‘ _d?

dui

= (_ Z_Tijvj + nui — bi) g'(u-s.)—d?
J

2

- o ()
< 0.

Since EW is bounded below and the time derivative of the Lyapunov function is non-
increasing, it is apparent “that the time evolution of the system is a motion in state space
that seeks out minima in EW% and comes to a stop at such points” (Hopfield, 1984).

Relation Between Stable States of the Continuous and Discrete Hopfield Networks

The nature of the relationship that exists between the stable states of the continuous
and discrete Hopfield networks is primarily determined by the pseudo-temperature 1°7.
The following discussion is based on the original work of Hopfield (Hopfield, 1984).
Consider only the first two terms of the Lyapunov function given by equation (2.15)
for the continuous Hopfield network and assume that 7;; = 0. Then E%* = E where
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E = —% Z ;Tijv,-vj - Z bﬂ)i . (216)
i g ;

Obviously, F is equal to the Lyapunov function for the discrete Hopfield network, as given
in equation (2.4). Typically, all extrema of E will lie at vertices® of the N-dimensional
hypercube 0 < v; < 1. The discrete Hopfield network searches for minimal states at
the vertices of the hypercube i.e. the network searches for a vertex that is lower in £
than its adjacent vertices. Since E is a linear function of a single v; along any edge of
the hypercube, the extrema of £ in the discrete space v; € {0,1} are exactly the same
vertices as the extrema of E defined over the continuous space 0 < v; < 1.

The integral term in the Lyapunov function of equation (2.15) for the continuous
Hopfield network complicates the relationship somewhat. The integral is zero when
v; = 1/2 and is positive otherwise, becoming larger as v; approaches the asymptotes at
0 and 1, as indicated in Figure 2.5. In the low pseudo-temperature limit 77 — 0, the
integral term becomes negligible and the stable states of the low pseudo-temperature
continuous Hopfield network are exactly those of the discrete state Hopfield network.

For small non-zero T?, the integral term gives a significant positive contribution to
E'wa? pear all surfaces of the hypercube, while it still contributes negligibly at the centre
of the hypercube. Therefore, the maxima of the energy function remain at the vertices of
the hypercube, but the minima are slightly displaced towards the interior. As the pseudo-
temperature increases, each minimum moves further inward. Gradually the minima
and saddle-points coalesce until, at very high pseudo-temperatures, the integral term in
equation (2.15) dominates and the only minimum is at v; =1 /2 V1. When the pseudo-
temperature is suitably low so that there are many minima, each minimum is associated
with a single minimum of the 7? = 0 case. Indeed as 77 — 0 each minimum moves
toward a particular vertex of the hypercube.

2.5.1 A Simple Example

To demonstrate the operation of the Hopfield network, we shall use it to minimise the
quadratic function given by equation (2.11). For completeness, we restate the objective

function as
1l 1 -4 rl1
E(V)__§V [_4 1 ]v—v [3]

To use the Hopfield network to minimise £, it is necessary to set the interconnection

v=| LT

o-[1].

The operation of the Hopfield network is illustrated in Figure 2.6. Annealing has not
been used in this example. In order to equate the full Lyapunov function for the Hopfield
network, as given by equation (2.15), with the objective function E it was necessary to
set the decay parameter 7 = 0. Consequently, the u variables are unbounded and will

matrix and external inputs as

and

5In the unusual situation that 7 is positive or negative definite, it is possible for an extremum to
exist in the interior of the hypercube.
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(a) (b)

Figure 2.5: Plots of the transfer function and integral term in Elver,

(a) The sigmoidal input-output transfer function v; = g(u;) for various values
of T?. As T? — 0 the transfer function approaches the step function used
in the discrete Hopfield network. (b) The contribution of the integral term
JPe g™ (V)dV to the Lyapunov function in equation (2.15) for various values
of T?. As T? — 0 the integral term decreases in magnitude and EW%ar for the
continuous Hopfield network approaches that of the discrete network i.e. equa-

tion (2.4).

13
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continue to grow in magnitude. This is only practical when simulating the network on a
digital computer. For a hardware implementation, 7 is set to a small non-zero value and
the quadratic objective function may be approximated by the full Lyapunov function
for the network only if very high gain transfer functions are used. In that case the
contribution to the Lyapunov function from the integral term in equation (2.15) will be
negligible.

As the Hopfield network operates by performing gradient descent, the stable point at
which it arrives is dependent upon the initial conditions. Although the global minimum
was found in the example given in this section, it is apparent that initial conditions
exist that would lead to the sub-minimum at v = [1, 0]7. The process of annealing, as
discussed in Section 2.5.2, is intended to prevent such behaviour and will be the subject
of further discussion in Chapter 4.

2.5.2 Annealing Techniques

An important property of the Lyapunov function FEWer ig that it is smoother than
the quadratic E due to the presence of the [oLg~ ' (V)dV terms®. At low pseudo-
temperatures, when the minima of the Lyapunov function approach the vertices of the
hypercube, the rugged structure of the quadratic E will dominate the smooth integral
terms, and in addition to the global minimum at v the Lyapunov function will have many
sub-minima. As the operation of the Hopfield network is a motion in state space that
seeks out minima of the Lyapunov function, it is likely that the stable point reached by
the network will be a sub-minimum. However, at sufficiently high pseudo-temperatures
this is less likely, as the smooth integral terms dominate and only the deepest minimum of
E will be evident in the Lyapunov function. Unfortunately, at high pseudo-temperatures
the minima of the Lyapunov function have been displaced from the vertices of the hyper-
cube towards the interior and are no longer interpretable solutions of the combinatorial
problem. In order to avoid the sub-minima of the Lyapunov function whilst also ensuring
that the final stable point reached by the network is suitably near a 0 — 1 point, it is
usual to employ some sort of annealing mechanism.

Temperature Annealing

Temperature annealing (Hopfield and Tank, 1985) involves gradually increasing the gain
of the transfer functions (decreasing the pseudo-temperature T?) while integrating the
dynamic equation (2.12). Such a computation is analogous to that performed by the
MFA algorithm, where a solution to the saddle point equations is computed at a series
of progressively lower temperatures. The relationship between MFA and the Hopfield
network may be further explored by considering an Euler approximation to the Hopfield
dynamics in equation (2.12) with time step At,

u(t + At) = u(t) + At (—nu(t) + Tv(t) + b).

Furthermore, if we choose n = 1 and At = 1 the Euler approximation reduces to the MFA
algorithm update rule (2.9) (Peterson and Anderson, 1988; Van den Bout and Miller,
1990). Although MFA is essentially a discrete algorithm it is obviously closely aligned
with the temperature annealed Hopfield network.

6 Note that a similar statement has been made about the effective energy in the MFA algorithm. The
Lyapunov function for the continuous Hopfield network is in fact closely related to the effective energy
for the MFA algorithm.
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Figure 2.6: Operation of a Hopfield network.

The plots show the operation of a Hopfield network on the quadratic function
E in equation (2.11). To ensure that EWwer = E the parameters n = 0 and
TP = 1 are used. Integration of the Hopfield dynamic equations yields the
traces shown in (a) and (b). Since there is no decay term, the u variables are
unbounded. The gradient descent nature of the Hopfield dynamics is evident in
(c) where the dashed lines are contours of EWer The network is initialised at
v = [0.5, 0.5]T and converges to v = [0, 1), which is the the global minimum
of the Lyapunov function within the unit square. The Hopfield dynamics, given
by equations (2.12) and (2.13), were integrated using the Euler method with a
constant step-size At = 0.01.

17
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Hysteretic Annealing

Hysteretic annealing (Eberhardt et al., 1991), matrix graduated non-convexity (Aiyer,
1991) and convex relaxation (Ogier and Beyer, 1990) are all closely related and we shall
collectively refer to them as hysteretic annealing. Hysteretic annealing is an alternative
approach to temperature annealing. When employing hysteretic annealing the pseudo-
temperature parameter T? is held constant and the decay term 7 is commonly set to
zero, in which case the Lyapunov function in equation (2.15) reduces to the quadratic £
in equation (2.16). In its most widely applicable form” (Gee, 1993) hysteretic annealing
involves adding a term

1
o = —572 (vi — 0.5)° (2.17)

to the Lyapunov function Ewe of the Hopfield network. The function E**" 1s either
convex or concave, depending on the sign of the annealing parameter 7. Initially, v 1s
set to a large negative value, in which case EWar ig convex and v converges to a point
inside the hypercube. Subsequently, v is gradually increased allowing more of the rugged
structure of E to be evident in the Lyapunov function. Eventually E'% becomes concave
and the network will converge to a vertex of the hypercube. Hysteretic annealing will
be considered in more detail in Chapter 4. Hysteretic annealing may be implemented by
modifying the dynamic equation (2.12), viz.

du;
Eut_ :ZTijvj—nu,-—l-bi—l-fy(vi—Oﬁ) :
J

2.6 Hardware Implementation

When compared to alternative methods for the solution of combinatorial optimisation
problems, the one significant advantage of optimisation networks is their ability to ap-
proximately solve problems in milliseconds. Such extremely fast solution times may only
be achieved by a direct implementation in hardware.

An analogue circuit implementation of the continuous Hopfield network is shown in
Figure 2.7. Such an analogue circuit would relax to a stable state within a few time
constants of the circuit components. Summing currents at the input to the operational
amplifiers gives the circuit dynamics as (Hopfield, 1984)

Oz— S ZTijvj + b, — — (218)

where

1 1 1
Ti.:R‘?J’.‘_Eg and T_Z':Z(R@’»‘—*_Rm)-l_ﬁi-
(s j 1] 1]
The sigmoidal transfer function v; = g(u;) is implemented by the operational amplifiers
shown in Figure 2.7. Inclusion of both inverted and non-inverted outputs from the
operational amplifier allows both inhibitory and excitatory connections to be made in
the network. For an inhibitory interconnection (73; < 0) the inverted amplifier output
for neuron j is connected to the input of neuron i by a resistor R;IJ‘ An excitatory
interconnection (Tj; > 0) is established by connecting Ef} to the non-inverted amplifier

7Tt will be shown in Chapter 4 that the hysteretic annealing term E*"" given by equation (2.17) is
not particularly well suited to the solution of many problems.



2.6 Hardware Implementation

1 j R j R
—
U; l@ V3 H BN, N —— -
Y3 >O —Y A Py I
b; [\ } Rii? }R%
—.— .
GD Uuj Iy U - A e S
R; 1 C; RY R}

Figure 2.7: Analogue hardware implementation of a Hopfield network (Gee, 1993).

The operational amplifiers in the above circuit implement the sigmoidal trans-
fer function v; = g(u;). Inclusion of inverted and non-inverted amplifier out-
puts allows both inhibitory and excitatory connections to be implemented. The
external bias b; for each processing element is provided by a current source. Ap-
plying Kirchoff ’s current law at the input to the operational amplifiers reveals
that the circuit dynamics are equivalent to those of a Hopfield network.
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output. By comparison of equations (2.18) and (2.12), it is apparent that the circuit
has dynamics equivalent to those of a Hopfield network with n =1 /ri. The speed of
operation is governed by the time constant of the circuit, as determined by the values of
the circuit’s capacitors and resistors. Annealing may be accomplished by slowly varying
the gain of the amplifiers (Lee and Sheu, 1993; Bang et al., 1995).

Whilst circuits such as that in Figure 2.7 are a straightforward implementation of the
Hopfield dynamics, they bear little resemblance to practical implementations. When un-
dertaking analogue hardware design, consideration of non-idealities such as propagation
delay (Smith and Portmann, 1989) and process variations (Johnson et al., 1995) heavily
influence the implementation. Moreover, the programmable resistors required for the
circuit of Figure 2.7 are difficult to implement in VLSI Consequently, the operational
amplifier — resistor circuit has been replaced in favour of MOSFET analogue amplifiers
where the interconnection strengths may be stored as voltages (Eberhardt et al., 1992).
Alternatively, analogue neural networks can be implemented using pulse stream VLSI
(Hamilton et al., 1992; Johnson et al., 1995), where the advantages of both analogue and
digital VLSI techniques may be exploited.

2.7 The Niche Market

As there already exists a wide variety of solution methods for combinatorial optimisation
problems, it is important to understand the comparative advantages and disadvantages
of optimisation networks in order to define their niche market. The existing algorithms
may be broadly classified as either a construction heuristic, improvement heuristic or an
exact method:

Construction Heuristics provide a one-shot solution algorithm i.e. they determine a
solution according to some construction rule, but do not attempt to improve upon
this solution. Typical examples of construction heuristics for the TSP are the nearest
neighbour algorithm, insertion heuristics and heuristics based on spanning trees
(Reinelt, 1994; Johnson, 1990). An average excess over the optimal solution cost,
or alternatively a tightly computed lower bound, of 21% for the nearest neighbour
algorithm, 14% for the insertion heuristics and 19% for the heuristics based on
spanning trees have been reported for various Euclidean T'SPs (Reinelt, 1994).

Improvement Heuristics take as their starting point the solution produced by a con-
struction heuristic, and then attempt to improve upon this solution by iterating
some type of basic moves. Examples of improvement heuristics for the TSP are
node and edge insertion, and the k-opt heuristics of Lin and Kernighan (Lin, 1965;
Lin and Kernighan, 1973). An average excess over the optimal solution cost, or al-
ternatively a tightly computed lower bound, of 8.2% for the node and edge insertion
algorithm, 8.4% for the 2-OPT algorithm, 3.6% for the 3-OPT heuristic and 1.3%
for the full Lin-Kernighan heuristic have been reported for various Euclidean TSPs
(Reinelt, 1994). More recently, simulated annealing (Kirkpatrick et al., 1983) and
genetic algorithms (Goldberg, 1989; Fogel, 1994) have proved popular for combina-
torial optimisation. While both techniques are indeed capable of producing good
solutions they do require a considerably long running time.

Exact Methods such as the branch and bound algorithm (Lawler and Wood, 1966)
or the more successful branch and cut algorithms (Grotschel and Holland, 1991;
Padberg and Rinaldi, 1991) are capable of finding the exact solution to combinatorial
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optimisation problems such as the TSP. However, this is a time consuming process
and it is often necessary to terminate such algorithms before optimality is reached.

Ciiven the classification of existing techniques into these three broad categories, the trade-
off that is possible between solution quality and computation time is made apparent in
Figure 2.8. Obviously the precise execution times and solution qualities are problem
dependent, but Figure 2.8 remains representative of the relative performance of these
solution techniques. While construction heuristics may produce solutions of only moder-
ate quality, they can execute on modern computer workstations in a matter of seconds.
Improvement heuristics are capable of producing far better solution quality but typically
require many minutes of computation time to do so. Exact methods are capable of solv-
ing combinatorial optimisation problems to optimality, but to do so they require very
long run times. In practice they are often terminated after several hours of execution
time, without having necessarily attained the optimal solution.

It is apparent from the vast literature available on the application of optimisation
networks that they provide a solution quality that is worse than most other techniques,
being comparable only with that of construction heuristics. Where optimisation networks
have the edge is that they are inherently suited for implementation in fast, parallel
hardware. Such hardware implementations give rise to solution times of the order of
milliseconds.

However, optimisation networks have a significant disadvantage in that they are forced
to adopt inefficient problem representations: for example, to solve an N-city TSP it is
necessary o use a network of N? processors. Consequently, on a conventional digital com-
puter, the time required for simulation prohibits optimisation networks from application
to a TSP of more than 100 cities. However, as previously explained, the great advantage
of optimisation networks is the quick solution times achieved when implemented in fast,
parallel hardware and so their performance in simulation is only of secondary importance.
Unfortunately, the inefficient problem representations lead to poor space complexity for
hardware implementations.

It would appear from our discussion that the niche market for optimisation networks
is moderate-sized problems of hundreds to tens of thousands of variables, where solu-
tion quality is not the overriding concern, but where execution time is of paramount
importance. However, in the course of this thesis we will find it necessary to revise the
definition of the niche market for optimisation networks — or at the very least, to ac-
knowledge some previously unconsidered factors which are relevant to the definition of
the niche market for optimisation networks.
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Figure 2.8: Comparison of solution methods for combinatorial optimisation.

The graph gives a representative comparison of the quality of solution attainable
from, and computation time required for, several classes of algorithms. Exisling
algorithms have been classified as either a construction heuristic, improvement
heuristic or an ezact method. The remaining class is optimisation networks,
which, at the expense of solution quality, are clearly the fastest algorithms.
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CuaPTER III

The Problem Mapping

In this chapter we demonstrate how combinatorial optimisation problems can be mapped
onto optimisation networks. Given that optimisation networks are well suited to the
minimisation of a quadratic function over a set of 0 — 1 variables, the goal of a successful
mapping is to express the problem in exactly this form. Unfortunately, combinato-
rial optimisation problems are more naturally expressed as a quadratic 0 — 1 program-
ming problem: minimisation of a quadratic objective function, subject to a set of linear
constraints, over a set of 0 —1 variables. While it is straightforward to associate the
quadratic objective function with the Lyapunov function for an optimisation network,
it is not readily apparent how to ensure that the constraints are satisfied. The answer
is to recast the constraints as quadratic penalty functions which attain their minimum
value only when the constraints are satisfied. Consequently, problem mapping involves
the formulation of suitable penalty functions.

The mapping process has been the area of most intense research in the field of op-
timisation networks and so we begin in Section 3.1 by surveying the landmarks in this
research. For the rest of the chapter we take as our starting point the valid subspace
approach, which is the current state-of-the-art mapping technique. As a concrete exam-
ple of the mapping process, the travelling salesman problem will be developed and the
necessary problem representation is given in Section 3.2. When developing concepts in
this chapter particular attention is paid to the travelling salesman problem. However,
the concepts presented are widely applicable and may be used in any application of op-
timisation networks. To elucidate our preferred mapping technique, the valid subspace
for a simple problem is developed in Section 3.3 and then generalised to the TSP. In
Section 3.4 we show that once the valid subspace is defined, it is then a simple process
to construct a penalty function which correctly constrains the network state to lie in
the valid subspace. To gain more than just a geometrical insight into the action of the
penalty function, we examine the penalty function to determine how the individual con-
straints of the TSP are enforced. In Section 3.5 we undertake a linearised analysis of
the network dynamics to confirm that the chosen penalty function will ensure that the
problem’s constraints are satisfied. Finally, in Section 3.6 we show how to map some
common problems onto an optimisation network.
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3.1 Background

As was shown in the previous chapter, the operation of an optimisation network, such
as the continuous Hopfield network, is to seek out minima in the Lyapunov function'

Elver = R R (3.1)
i : :

Consequently, the Hopfield network provides a method for minimising functions given
by equation (3.1), whilst limiting the output of the network to remain within the unit
hypercube. Moreover, as the 0 — 1 points lie at the vertices of the unit hypercube, the
Hopfield network is well suited to the minimisation of a quadratic function over a set of
0 — 1 variables.

Combinatorial optimisation problems, such as the travelling salesman problem, are
naturally expressed as quadratic 0 — 1 programming problems: where it is required to
minimise a quadratic objective function E°Y over a set of 0 — 1 variables, subject to a
set of linear constraints. When mapping a combinatorial problem onto an optimisation
network it would seem reasonable to set EW? = E°i  However, such a strategy does
not account for the problem’s constraints. To do so, the linear constraints are recast as
quadratic penalty functions £ which attain their minimum value whenever the con-
straints are satisfied. The problem may then be mapped onto the optimisation network
by setting

Elya.p — Eobj + Ecns’

and then identifying the necessary network parameters T and b. The exact form of the
penalty functions has been the topic of a great deal of empirical research.

An optimisation network is said to have obtained a valid solution if it converges to
a 0 — 1 point that satisfies the problem’s constraints and is therefore an interpretable
solution to the combinatorial problem. An invalid solution is obtained if the network
converges to a 0 — 1 point that does not satisly the problem’s constraints. The goal of a
stccessful problem mapping is to ensure that the network state v remains valid (i.e. v
always satisfies the problem’s constraints) throughout the operation of the network. As
will be shown in Chapter 4, when a successful problem mapping is combined with an
appropriate annealing technique, convergence to a valid solution can be guaranteed.

One of the carliest criticisms of optimisation networks was for their inability to reli-
ably produce valid solutions (Wilson and Pawley, 1988; Kamgar-Parsi and Kamgar-Parsi,
1990). Primarily, this was caused by the use of incorrectly formulated penalty functions
(Aiyer, 1991). Indeed, it has been shown (Aiyer et al., 1990) that the penalty functions
employed in the original mapping of the TSP onto the Hopfield network (Hopfield and
Tank, 1985) have a tendency to force the network towards invalid solutions. To improve
the performance of optimisation networks, a great deal of research concentrated on the
search for a successful problem mapping. The result was a large array of ad hoc formula-
tions for the penalty functions (Brandt et al., 1988; Protzel et al., 1993; Abe, 1993; Abe
and Gee, 1995; Matsuda, 1995), usually employing a separate term for each constraint.
Such ad hoc approaches were empirically motivated and achieved greatly varying levels
of success.

The identification of successful problem mappings was placed on a solid theoretical
foundation with the introduction of the valid subspace approach. The valid subspace
approach defines a rigorous method for mapping a general combinatorial optimisation

Note that the decay term 7 has been set to zero.
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problem onto an optimisation network (Gee, 1993; Gee et al., 1993; Gee and Prager,
1994; Gee and Prager, 1995). Critical to the success of this approach, is the observation
that any set of feasible linear constraints defines a bounded polyhedron, termed the valid
subspace, in which the network state must lie if it 1s to be valid. By identifying the valid
subspace, a penalty function can be defined that correctly constrains the network state
to be valid.

One of the primary motivations for developing a valid subspace approach was the belief
that ad hoc approaches suffered from a multiplicity of terms which tended to frustrate
each other, and therefore could not guarantee a valid solution (Gee, 1993). In contrast,
the valid subspace approach defines a single penalty function for the problem mapping.
Such penalty functions, while easily understood from a geometric perspective, gave little
insight into how individual constraints were enforced. In the course of presenting and
verifying the validity of the valid subspace approach, we will show that the penalty
function so defined actually consists of several terms, each designed to enforce a single
constraint. In that sense the valid subspace approach is not at all dissimilar to the
previous ad hoc approaches. The main advantage of the valid subspace approach is that
it is a principled, general technique for problem mapping.

3.2 The Travelling Salesman Problem

As it is a popular benchmark for combinatorial optimisation, we will use the travelling
salesman problem to demonstrate the mapping process. Restating the problem:

The travelling salesman problem (TSP) is to visit each of N cities once and only
once, and return to the initial city having travelled the least possible distance.

This problem is NP-complete (Lawler et al., 1985). To solve this problem with an
optimisation network, an N x N array of neurons is used where the output of the neuron
vy in Tow z and column ¢ is one if city « is to be visited in the i position of the tour,
and zero otherwise.

With this problem representation, the TSP may be formulated as the minimisation of
an objective function over a set of 0 — 1 variables, subject to a set of linear constraints.
Denoting the distance between city z and city y as dgy, the TSP is expressed as follows,

oy 1T
minimise B = 5 3> vsidey(vyi-1 + vyit1) (3.2)
r,y=11=1
N
subject to > wvm=1 Vi€ {l,...N} (3.3)
=1
N
and Y vu=1 Vze{l,...N} (3.4)
=1
where vy € [0,1]. (3.5)

Note that all indices are evaluated modulo N. As a solution to the TSP is being cal-
culated, the variables of the optimisation network may take on values in the range
vz € [0,1]. However, for the final state of the optimisation network to be interpreted
as a solution to the combinatorial optimisation problem, it is required that v, € {0,1}.
For the state of the network to represent a valid solution, the column and row sums of
the array of neurons must equal one, as written in equations (3.3) and (3.4). Given a
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valid 0 — 1 solution to the TSP, the objective function E° evaluates the length of the
tour represented.

The operation of an optimisation network is to seek out minima in the Lyapunov
function. As discussed in Section 3.1, to solve the TSP with an optimisation network
it is essential that minima of the Lyapunov function correspond not only to short tours
but also to valid representations of a tour. To achieve this the Lyapunov function is
constructed as

Elyap - Eobj + Ecns,

where E% is the objective function for the TSP (3.2) and E°™ is a penalty function that
is minimised when the constraints given in equations (3.3) and (3.4) are satisfied. In the
rest of this chapter we will focus on the valid subspace approach to problem mapping. For
details of other less successful problem mappings the reader is referred to the literature.

3.3 The Valid Subspace

The valid subspace approach to problem mapping relies on the identification of the valid
subspace: a bounded region in which the problem’s constraints are satisfied. For any set
of feasible linear constraints it is possible to define a bounded polytope, such that if a
0 — 1 point lies within the polytope then it must be a valid solution (Gee, 1993; Gee and
Prager, 1994). This bounded polytope is in fact the valid subspace. This principle will
be demonstrated on a simple 3-dimensional example and then generalised to the TSP.

3.3.1 Simple 3-dimensional example

Consider a problem with three variables, where for a vector to be valid it must meet the
constraint

3
Zvi =1 where v; € [0,1].
i=1

The shaded plane in Figure 3.1 shows the valid subspace, the set of all points that satisfy
the constraints. Obviously, the only valid 0 — 1 points are {[1,0,0], [0,1,0]7, [0,0, 117},
which lie at the vertices of the valid subspace, but there are many other points inside
the unit cube which are valid.

The vector & = [%, 313—,% T is valid as the sum of its elements is equal to one. Conse-
quently the tip of & lies in the valid subspace. It is apparent from Figure 3.1 that any
other valid vector v may be reached from & by the addition of a component v**,

v =v* 4 é.

As & already satisfies the constraints, it is essential that the sum of the elements of
v* equals zero. Therefore, v** is said to lie in the zerosum subspace. The vector € is
orthogonal to the zerosum subspace, since v** - & = 0.

3.3.2 The TSP

To simplify the discussion it is assumed that the output of the N x N array of neurons
that is used to solve the TSP has been reshaped into a vector. When dealing with this
vector it is to be understood that the terms row sum and column sum refer to the sums
of elements in the rows and columns of the underlying matrix structure.
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valid subspace

0,0,1) |

(1,11

(0,1,0)

(0,0,0)

Figure 3.1: The valid subspace for a simple 3-D example (Aiyer, 1991).

The shaded plane shows the valid subspace for the constraint that il @ = 1.
The only valid 0 — 1 points are {[1,0,0]7, [0,1,0]7, [0,0,1]7}, but there any
many points inside the unit cube which satisfy the constraint. Any point which
lies on the valid subspace can be expressed as v =v* + &.
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Now, unlike the simple 3-dimensional example, the constraints (3.3) and (3.4) for the
TSP require that all the row and column sums of a valid vector equal one. However, it is
still possible to define a valid subspace for the T'SP. Integral to the definition of the valid
subspace is the zerosum subspace, which in the case of the TSP, is the set of all vectors
that have row and column sums equal to zero. Any vector v, regardless of whether 1t is
valid or invalid, may be decomposed into three mutually orthogonal components (Gee,

1993)

v = v¥4vi4vi (3.6)
= T#v+4(v-&)eé+vm™

where v#* = T*v is the component of v that lies in the zerosum subspace, T** is a
suitably defined projection matrix, v! = (v -@&)é is a component in the direction of
é= % L, 1 l]T and v'™ is a component in the invalid subspace.

If a vector v does not satisfy the constraints (3.3) and (3.4), it is invalid and must
therefore have a non-zero component v in the invalid subspace. Conversely, if a vector
is valid, there can be no component in the invalid subspace. Additionally, as any com-
ponent in the zerosum subspace does not contribute to the row and column sum, it is
necessary for the magnitude of v' to be such that the column and row sums equal one.
With these considerations it is apparent that any vector in the valid subspace can be

written as

vzs_|_é

T v + é.

<
Il

Obviously, v! = & satisfies the requirement for the row and column sum of a valid vector
to be equal to one, while a component v** will not alter the row and column sum.
Interestingly, all the vertices of the valid subspace coincide with valid 0 — 1 points (Gee
and Prager, 1994).

3.4 Enforcing Validity

Now that the valid subspace for the TSP has been defined, it is a simple matter to
construct an appropriate penalty function. By appealing to simple qualitative arguments,
we will show in this section that the chosen penalty function does indeed enforce the
problem’s constraints.

To ensure that v remains valid, we wish to encourage v to lie in the valid subspace
during the operation of the network. This can be achieved by the use of an appropriate
penalty function (Gee, 1993; Gee and Prager, 1994),

1
_sziﬁv—ﬂWv+@W (3.7)
where c is a positive constant?. When v lies on the valid subspace, E® is zero, while

E°™ grows rapidly as v strays further away from the valid subspace. To map a particular
problem onto the network, the Lyapunov function is set as

E'lya.p — Eobj + [iens

2Note that c¢ is similar to a Lagrange multiplier.
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and in the limit of large ¢, F*** will dominate over E° so that the gradient descent
nature of the network will effectively pin v to the valid subspace. Furthermore, as long
as v remains in the valid subspace, the penalty term does not interfere with the objective
function, so that Ev*P = E°b | This concept is illustrated in Figure 3.2.

The penalty function (3.7) is easily understood from a polyhedral perspective, but it
‘s less than clear how it enforces the row and column sum to be equal to one. One of
the primary motivations for developing the valid subspace approach was that penalty
functions were previously constructed in an ad hoc manner, employing one term for each
constraint, and it was suggested that such a multiplicity of terms tended to frustrate
each other (Gee, 1993). While the following analysis will confirm that the valid subspace
approach is indeed correct, it will further show that the penalty function (3.7) is itself
constructed from several terms which individually enforce constraints. The remainder of
this section is devoted to reformulating the penalty function (3.7) to understand how it
enforces the constraints for the TSP.

Expanding equation (3.7) we obtain®

E™ = —%vT(T” —Dv—cvie+ %éTé
N2 N2

¢ c c

= —— Z 0,0, [T7 — I 0__Z” + —.

2l = ONS T2

Now to evaluate E™ in terms of vy, the output of the neuron in row z and column ¢ of
the neuron array, we must make explicit the transformation between the N x N array of
neurons and its vector representation,

v, = vy  where p=(z—1)N +: (3.8)

and,

Vy = Uyj where 0 = (y — 1)N + (3.9)

for z,i,y,7 € {1,...N} and p,0 € {1,... N?}. With [A],, denoting the u,v element of
a matrix A, the projection matrix T** may be defined as (Aiyer, 1991; Gee et al., 1993)

[T%],6 = (6a:y — %) (5ij - ]—lv-) (3.10)

and the identity matrix is given by
[I]po - 6zy6ij

where the relationships between the variables p,o and z,y,¢,) are described by equa-
tions (3.8) and (3.9). Making substitutions into the expression for £°** we obtain

1 1

C
B = ST (o ) (b= ) ~oat) ety Dot 3
oYY i
cf1 1 1 c c
= 5 (N’Zvaivyi + szvwivzj . Ngzzvxivy‘j) - szwi + 5
1 T 12 T

Ty 4 g TY ij

3Note that T# is symmetric and since T#* is a projection matrix, T#$T# = T**, Also, & lies in the
nullspace of T?*, so T?*& = 0, where 0 is the zero vector.
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Figure 3.2: The valid subspace problem mapping in one dimension (Gee, 1993).

A simple optimisation problem where it is required to minimise the function
E° over a limited range of validity. To map the problem onto an optimisation
network it is necessary to set BV = E° 4 E™  where E is a suitably
defined penalty function. With the valid subspace mapping the penalty function
is zero over the valid subspace and grows rapidly as v moves away from the
valid subspace. Consequently v is encouraged to lie in the valid subspace.
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where we have used the convention that all summations are from 1 to N unless explicitly
shown otherwise. To make further simplifications it should be noted that

1 z 1 2
N;(;”wi‘g = 22 Uit~ g 2 e+ ] (3.11)

i TY

and

1 : 1 2

T 45

Utilising equations (3.11) and (3.12), the penalty function E°** may be reduced to

2 2
C C
B = 2 (Tonm1) 4 X (T 1)
c | 2 1
_5 (N—va'— WZZ%,’UW —_ 1)

Ty i
c 2 . 2 . 2

= —QW i (Zx:vm' — 1) + -ﬁ; (Z’Um' — 1) — W (%:vm — N) (313)
With the penalty function E°*® expressed as in equation (3.13), it is easy to see how
the constraints for the TSP are enforced. The first two terms are zero when the column
and row sums are equal to one, and positive otherwise. This clearly only penalises
invalid states. These exact terms have been used in many mappings of the TSP onto an
optimisation network (Brandt et al., 1988; Protzel et al., 1993; Abe, 1993; Abe and Gee,
1995; Matsuda, 1995). In fact, these two terms alone are sufficient to guarantee that v
remains in the valid subspace (Aiyer, 1991). The final term is at first counter-intuitive.
The minus sign indicates that it favours states where the sum of all elements is not equal
to N. Tt is only the factor 1/N? that prevents the third term from overpowering the
constraining effects of the row and column sum terms®. Interestingly, the third term has
a similar effect to the global term in Hopfield’s original mapping of the TSP (Hopfield
and Tank, 1985), where parameters were chosen to favour more than N neurons being

switched on.

3.5 Eigenvector Analysis

Qo far we have relied on rather simple, but compelling arguments to see that the penalty
functions defined by the valid subspace approach do indeed restrict the network state v
to be valid. In this section we present a rigorous analysis that formalises much of the
preceding intuitive argument.

If an optimisation network for the TSP is configured without the objective terms in
the Lyapunov function, so that

Elyap — [ens

1
= —ivTTC”sv — vI'b™ + constant (3.14)

4A deeper analysis, following the procedure presented in Appendix C.1, would reveal that the presence
of the third term in E° acts to make equal the eigenvalues of the connection matrix in the invalid
subspace and in the direction of & In doing so, equal significance has been placed on the action of the
penalty functions in both these directions.
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we could appeal to the gradient descent arguments presented in Section 3.4 to see that
v would be restricted to the valid subspace as desired. However, we will obtain further
insight into the operation of a successful problem mapping by analysing the linearised
dynamics of the network. While this analysis only slightly adds to our understanding
of the penalty functions, it will form the basis for understanding the problems with
annealing schemes, as presented in Chapter 4. To undertake a linearised analysis it is
necessary to determine the eigenvectors and eigenvalues of the connection matrix Tems.

To do so, it is first necessary to determine an expression for the connection matrix
Tens. By substituting equation (3.13) into equation (3.14) the connection matrix and
external bias may be determined as

[Tcns]wi,yj = ——§..— =6 (315)
b = ce. (3.16)

As shown in Appendix C.1, the connection matrix T given by equation (3.15) has the
following eigenvalues:

)\1 = —C
The corresponding eigenvector is €.

Ay =0
This is a degenerate eigenvalue with the corresponding eigenspace being the zerosum
subspace.

A3 = —C

This is also a degenerate eigenvalue with the corresponding eigenspace being the
invalid subspace.

3.5.1 Analysis of the Dynamics of the Network

To further understand how the penalty functions restrict the network state to lie in the
valid subspace, it is necessary to analyse the linearised dynamics of the network. The
operation of the network is described by the nonlinear equation

1’1 - Tcnsv + bcns

where v; = g(u;). In order to perform an eigenvector analysis, we must linearise the
transfer functions g(u;) about an arbitrary point v® = g(u®). Linearised analysis
about the point v(% gives sufficient information to approximate the network dynamics
at this point. However, as the network dynamics cause v to move away from v(® the
linearised analysis will become less accurate. To accurately approximate the network it
then becomes necessary to linearise the dynamics about the current state v. Linearisation
of the transfer functions gives

v=Ku+d
(0) (0) S
where [K];; = { v (1 =071 =) and d; = v§°) — u§°)v§°)(1 — vgo))/T”. Therefore

0 LF ]
v = Ku and the linearised network dynamics are given by

", — K (Tcnsv + bcns) .
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Using equation (3.6) to decompose v into its components,
v = KO\ v! 4 Av™ + Agv7™ 4 b)), (3.17)
Substituting b = ¢é, v! = (v - &)é and explicit values for the eigenvalues gives

v = K{M(v-&+c)é+ Av™+ Av™}
K{(c—c(v-&))é—cvim™}. (3.18)

Obviously, when the network has converged v = 0, where 0 is the zero vector, and the
linearised dynamics (3.18) for the network may now be examined to determine how the
network pins v to the valid subspace.

Firstly, the component of Vv in the invalid subspace is —cKv*™. Since K is a diagonal
matrix with non-negative elements, the component of v in the invalid subspace will
decrease in magnitude, leading to |[v™|| = 0.

Secondly, the net component of v in the direction of &, will be K(c — ¢(v - &))é.
Therefore, the component in the direction of & will move to a hyperplane where

c—c(v-é) = 0
v-é = 1
=>vl = @
as required for v to be valid. Obviously, with v! = & and lvi"v|| = 0 the network state

has converged to the valid subspace. Moreover, in doing so there has been no influence on
the component v* in the zerosum subspace, which is the component in a valid solution
which determines the particular tour to be travelled in the TSP. Naturally, this should
be expected, since we have considered only the penalty functions in this analysis and
therefore do not want to influence the choice of a tour in the T'SP. Only the distance
terms in the objective function should influence the component v*°.

3.5.2 Analysis of the Lyapunov function

Further to the analysis of the linearised dynamics it is possible to reformulate the Lya-
punov function in terms of the eigenvalues of the connection matrix. In doing so, it is
clearly shown how the individual components of the network state v are affected by the
energy minimisation nature of the network. By decomposing v into components as in
equation (3.6), and omitting the uninteresting constant, the Lyapunov function (3.14)
becomes

1 :
B = —= (M dallv I+ dslve?) = Vb (3.19)

Furthermore, explicitly substituting for the eigenvalues and noting from equation (3.16)
that b = cé, gives

Elyap - §||V1||2 + %HVMUHZ _ CéTV.

Since v! = (v - 8)& where & is a unit vector, the norm of v' is given by ||v![| = v - &.
Therefore .
lyap _ ~ 1) _ 2 nul|2 _
Bver = S {(IvH] = 1 + vl - 1}
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As an optimisation network seeks out minima in the Lyapunov function, and since ¢
is a positive constant, we would expect the network to converge to a state where

Vil =1 ie. vi=8&

1l

and
lv*™|| = 0.

In doing so, the network will have converged to the valid subspace. Moreover, there has
been no influence on the component v in the zerosum subspace, which is to be expected
for the reasons outlined in Section 3.5.1.

3.6 Mapping Some Common Problems

Optimisation networks have been used to solve many problems apart from the TSP:
shortest Hamilton path, graph labelling and the assignment problem are among the
more common. In this section we show how to map each of these problems onto an
optimisation network. Firstly, it is necessary to give a concise problem statement and
then define a suitable problem representation. To complete the mapping, an appropriate
objective function is defined and the problem constraints are detailed.

Shortest Hamilton Path
The Euclidean, shortest Hamilton path problem (HPP) is simply stated as:

Given N cities in a plane, all of which must be visited once only, find the order
in which to visit them such that the total distance travelled is minimised.

The HPP is quite similar to the travelling salesman problem: the only difference being
that a Hamilton path does not return to the city at which it started. To solve this
problem with an optimisation network, an N x N array of neurons is used, where the
output of the neuron in row z and column i is one if city  is to be visited in the ith
position of the path, and zero otherwise. Denoting the distance between city z and city
y as dg, the objective function for the HPP is given by,

obs 1 N N
o = 9 Y 2 Vaidey(vyia + Vy,it1)- (3.20)
z,y=11i=1

Note that, unlike the TSP, the indices are not evaluated modulo N and so E°% calculates
the length of an open tour. For the network state v to be a valid solution to the HPP,
it, is required that precisely one neuron be on in each row and column of the array.
Accordingly, the constraints are exactly as given for the TSP in equations (3.3) and
(3.4), and the appropriate penalty function is given by equation (3.13).

Graph Labelling

The graph labelling problem is central to several invariant pattern recognition systems
(Mjolsness et al., 1991; Gee et al., 1993). The graph labelling problem is simply stated
as:

Given two graphs Gp and Gg, find the relabelling of the nodes in graph Gp
such that the relabelled graph best matches graph Gg.
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We assume that both graphs have the same number of nodes N, and let the edge weight
matrix for Gp be P and that of Gg be Q. Then the graph labelling problem is to relabel
the nodes in Gp, thereby giving a reordered edge weight matrix P’, such that P’ best
matches Q.

Once again to solve this problem with an optimisation network an N x N array of
neurons is used, where the neuron in row ¢ and column j has output denoted by v;;. If
v;; = 1 then node 7 in G'p is matched with node j in Gg, and if v;; = 0 such a labelling
has not been made. A quantity which measures the dissimilarity of the relabelled Gp
and the original Gg is (Mjolsness et al., 1991)

: N N
Fobi = 9 Z Z Qi:cviijvavy‘

1,j=1z,y=1

For a valid graph labelling, each node in Gp must be matched with a single node 1n Gg.
Consequently, for v to represent a valid labelling, only one neuron must be on in each
column an row of the array. The constraints are therefore the same as the TSP and
a suitable penalty function is given by equation (3.13), with the appropriate change of
indices.

Assignment Problem

The assignment problem has application in certain resource allocation problems (Brandt
et al., 1988; Eberhardt et al., 1991; Tagliarini et al., 1991; Protzel et al., 1993), where it
is desired to find the least costly one-to-one assignment or match between the elements
of two lists. The lists may be thought of as resources R = {4, B,C, ...} and consumers
C ={1,2,3...}. We assume that each list contains a total of N elements. A one-to-one
assignment means that each resource in the set R has to be assigned to exactly one
consumer in the set C. The cost px; for every possible pairing between resource X and
consumer 1 is given. The objective is to minimise the cost of the assignment of resources
to consumers.

A suitable neural representation is a two dimensional array of neurons where the
neuron in row X and column i has output denoted by vx;. If vx; = 1 then resource
X has been assigned to consumer ¢, and if vyx; = 0 the assignment of resource X to
consumer i has not been made. A suitable objective function which gives the overall cost
of a valid one-to-one assignment of resources to consumers, is

N N
E% = %" % uxipxi.
X=14=1
Note that unlike the previous problems that we have mapped onto optimisation networks,
the objective function for the assignment problem is linear: it is an example of linear 0 — 1
programming and can be solved to optimality by many techniques including optimisation
networks. For a valid one-to-one assignment, only one resource may be assigned to each
consumer. Conversely, only one consumer can be assigned each resource. Therefore the
constraints are given by,

N
vy = 1 Vie {1,...N}
X=1

N
Z'UXi = ] VXE{l,N}
=1
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These are the same constraints as given for the TSP, and so a suitable penalty function
is given by equation (3.13) (again with the appropriate change of indices).

3.6.1 Are they suitable?

The standard optimisation networks, such as the continuous Hopfield network and the
MFA algorithm, are not suited to the solution of every combinatorial optimisation prob-
lem. It is the aim of this section to highlight some of the factors which preclude a problem
from being efficiently solved by an optimisation network. More detailed information may
be obtained from the relevant literature.

It is interesting to note that the valid subspace is identical for the TSP, the shortest
Hamilton path problem, graph labelling and the assignment problem. For these problems
the valid subspace is in fact an integral polytope (Gee and Prager, 1994), as all the
vertices of the polytope are valid 0 — 1 points. Moreover, it has been shown that when
the valid subspace is an integral polytope, a valid 0 — 1 solution can always be found by
employing the valid subspace mapping in conjunction with an annealing algorithm (Gee,
1993). Given the nature of the descent process that led to the solution, it is reasonable to
expect that the solution will be quite good. Furthermore, as we show in Chapter 4, the
use of an annealing algorithm enhances the expected quality of solution. Consequently,
optimisation networks are well suited to solving these problems.

However, there do exist many problems whose constraints do not define an integral
polytope and as such standard optimisation networks are not well suited to their solution.
One important example is the knapsack problem:

Given a knapsack of capacity C and a set of N items each with size z; and
usefulness y;, decide which items to put into the knapsack so as to obtain the
mazimum usefulness from the load, without overfilling the knapsack.

The constraints for the knapsack problem define a non-integral polytope (i.e. not every
vertex of the valid subspace is a valid 0 — 1 point) and as such, the valid subspace mapping
cannot guarantee that a valid 0 — 1 solution will be found (Beyer and Ogier, 1991; Gee
and Prager, 1994). Standard optimisation networks are not well suited to these problems.
Modified networks, such as the tabu network (Gee, 1993; Gee and Prager, 1994), which
are capable of searching the vertices of the valid subspace, are better suited to solution
of combinatorial problems over non-integral polytopes.

3.7 Chapter Summary

This chapter presented a comprehensive investigation of problem mapping. While opti-
misation networks are well suited to the minimisation of a quadratic function E%°? over
a set of 0 — 1 variables, most combinatorial optimisation problems are best expressed
as quadratic 0 — 1 programming, where it is required to minimise a quadratic objec-
tive function E°, subject to a set of linear constraints. When solving a combinatorial
problem with an optimisation network, a successful problem mapping ensures that the
solution obtained not only minimises the objective function, but that it also satisfies the
problem’s constraints. To do so the problem’s constraints are reformulated as quadratic
penalty functions £, which penalise invalid states and attain their minimal value when
the constraints are satisfied. The problem is then mapped onto the optimisation network
by setting the Lyapunov function E%°P = E°% 4 Eo,
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Tt should be noted that many of the discouraging results attributed to optimisation
networks are in fact a consequence of incorrect problem mappings. Only recently has
problem mapping been placed onto a solid foundation with the development of the valid
subspace approach (Gee, 1993; Gee et al., 1993). Such an approach recognises that
any set of feasible linear constraints defines a bounded polyhedron, termed the valid
subspace, in which v must lie if it is to be valid. Moreover, any vector which lies in the
valid subspace may be written as

v =T*v 4 é.
Consequently, an appropriate penalty function is easily defined as
cns 1 Z8 b3 2
E = §c||v — (T*v +é)||".

A process of gradient descent on the penalty function naturally encourages v to lie on the
valid subspace. Much of the motivation for developing the valid subspace approach arose
from the belief that ad hoc approaches, typically employing one term in the penalty func-
tion for each constraint, suffered from a multiplicity of terms which tended to frustrate
each other and could not guarantee a valid solution. However, the analysis presented in
this chapter revealed that £ does itself consist of several terms, each designed to en-
force a single constraint. In that sense, the valid subspace approach is not at all dissimilar
to the previous ad hoc approaches.

To gain a deeper insight into the mechanics of the valid subspace approach to prob-
lem mapping, we undertook an eigenvector analysis of the linearised network dynamics.
While this analysis is an original contribution, and interesting in its own right, an ad-
ditional benefit is that it forms the basis for understanding the fundamental problems
with annealing schemes, as presented in Chapter 4.

Finally, it was shown how to map the shortest Hamilton path problem, graph labelling
and the assignment problem onto an optimisation network using the valid subspace map-
ping. The chapter concluded with a brief discussion to highlight that optimisation net-
works are not suitable for the solution of every combinatorial optimisation problem.
However, optimisation networks are well suited to the solution of combinatorial prob-
lems whose constraints define an integral polytope i.e. all vertices of the valid subspace
are valid 0 — 1 points. While not all combinatorial problems satisfy this requirement, it
is fortunate that many do.



CHAPTER IV

Annealing Techniques

It was shown in the previous chapter that by using a suitable problem mapping an
optimisation network can always obtain a valid solution to a problem such as the TSP.
Furthermore, given the nature of the descent process leading to such a solution, it could
even be expected that the solution will be of an acceptable quality. Unfortunately,
optimisation networks, as proposed in their original form, tend to converge to poor, high
cost solutions. While the validity of the solutions may now be guaranteed by the problem
mapping, the quality of the solutions remains unsatisfactory.

In this chapter we investigate hysteretic annealing which is a technique for improving
the quality of the solutions found by an optimisation network. Hysteretic annealing
seeks to guide the network state towards good solutions by continuously modifying the
network’s Lyapunov function. In doing so, annealing influences not only the number
but also the position of attractors in the state space. While the annealed optimisation
network still operates in the same gradient descent manner as the original network, it
aims to give the network a better chance of converging to the global minimum of the
objective function.

We begin in Section 4.1 by introducing the details of the hysteretic annealing tech-
nique. The ability of annealing to improve solution quality is demonstrated in Section 4.2,
where hysteretic annealing is employed in a simple optimisation problem in two dimen-
sions. While such a simple, illustrative example does not address the theoretical foun-
dations of annealing, it serves to demonstrate the concept of hysteretic annealing and is
sufficient for our purposes. In Section 4.3 we present an eigenvector analysis of the effect
that annealing has on the linearised dynamics of an optimisation network. In doing so, it
is shown that hysteretic annealing is not well formulated as it conflicts with the action of
the problem mapping and may well lead to invalid solutions. Consequently, in Section 4.4
we develop a new, principled approach to hysteretic annealing that retains the ability
to improve solution quality while ensuring that a valid solution can still be guaranteed.
A further eigenvector analysis is presented in Section 4.5 to verify the correct operation
of the modified hysteretic annealing approach. Finally, in Section 4.6 the performance
of the standard and modified annealing algorithms are compared on travelling salesman
problems of varying sizes.

4.1 Hysteretic Annealing

As discussed in Section 2.5.2, an annealing mechanism is used in an optimisation network
to discourage the network from converging to a local minimum of the Lyapunov function.
Such a local minimum may well represent a poor, high cost solution to the optimisation
problem. By successfully avoiding local minima in the Lyapunov function, annealing
can give remarkable improvements in solution quality. Various annealing mechanisms
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have been proposed: including convex relaxation (Ogier and Beyer, 1990), hysteretic
annealing (Eberhardt et al., 1991) and matrix-graduated non-convexity (Aiyer, 1991).
These techniques are all closely related and we shall collectively refer to them as hysteretic
- annealing.

Hysteretic annealing has been introduced in Section 2.5.2, but for completeness we
shall again describe the technique. Hysteretic annealing involves adding the term

Eo = —% Z(vi - 05)2

to the Lyapunov function E"? of the Hopfield network. It should be noted that when
employing hysteretic annealing, the decay term 7 1s commonly set to zero, and so the
Lyapunov function for the network reduces to the quadratic function

1
E = ——EVTTV —vTb.

The function E* is either convex or concave, depending on the sign of the annealing
parameter 7. Initially, 7 is set to a large negative value, in which case EW*P = E + E*™
is convex and v converges to a point inside the hypercube. Subsequently, v is gradually
increased, and the deepest minima of the quadratic function E become evident in the
Lyapunov function. As vy increases further, more minima become evident in the Lyapunov
function. Eventually E'¥*? becomes concave and v is pushed toward the boundary of the
hypercube, aiding convergence to a 0 — 1 point. While annealing is unable to free v from
local minima in the Lyapunov function, it is hoped that local minima will be avoided
by the annealing process and that the probability of converging to the globally optimal
solution is increased. The ability of hysteretic annealing to improve solution quality will
be demonstrated in Section 4.2.

Originally, annealing techniques were supported only by their experimentally per-
ceived benefits, but recent theoretical analysis has done much to validate their use (Ohta
et al., 1993; Abe and Gee, 1995; Tomikawa and Nakayama, 1995). Further to the ability
to improve solution quality, hysteretic annealing offers important benefits for a hard-
ware implementation. Hysteretic annealing allows explicit control over the dynamics
of the network: in particular, the ability to control the time required to settle into a
solution. Consequently, by using annealing techniques the sensitivity to variations in
time constants of the various processors in the network is reduced. Such sensitivity to
process variations could otherwise result in oscillations that render the network inopera-
tive (Smith and Portmann, 1989). Hysteretic annealing can easily be incorporated into
hardware realisations of optimisation networks (Lee and Sheu, 1993).

4.2 Why Use Annealing?

The ability of hysteretic annealing to guide v towards good solutions is best understood
with the aid of a simple example. Consider the following problem:

e 1
minimise FE = —3 (Uf + vg) + 4vvy — v1 — 3vg
subject to  v; € {0,1}.

A contour plot of E is given in Figure 4.1. Note, that in addition to the global minimum
at v = [0, 1]7 a sub-minimum exists at v = [1, 0]7. As optimisation networks operate by



4.3 Eigenvector Analysis 40

P
0.8F.

0.6 - - - ]

V2
L}

A

i

A

04F

___________

02F~~~~-- e S

@
-

Figure 4.1: Contours of the quadratic objective function E.

The global minimum is E([0,1]T) = —3.5. Note the saddle point at v =
[0.8667, 0.4667])7, which has been marked with an X, and the existence of the
sub-minimum E([1, 0]T) = —1.5.

a process of gradient descent, it is clear that if E%® = E then the final solution would
depend on the initial conditions. Furthermore, if random initial conditions were used,
there would be a high probability of converging to the sub-minimum at v = [1,0]T.

Hysteretic annealing may be used to overcome this limitation of optimisation networks
by setting E¥* = E + E°". The operation of the annealed optimisation network is
shown in Figure 4.2. With 7 set to a large negative value only one minimum exists in
the Lyapunov function and all initial conditions lead to a state inside the unit square,
as shown in Figure 4.2(a). As 7 is slowly increased, the deepest minimum of E is the
first to influence the dynamics and consequently v moves towards the global minimum
at v = [0,1]7 and eventually converges to it. Notice that if v were to become sufficiently
positive, then all vertices of the unit square would become local minima of E% and the
annealing is then effectively driving v to the nearest vertex. We see that annealing has
influenced both the number and position of attractors in the Lyapunov function, and in
doing so has improved the quality of solution obtained from the network.

4.3 Eigenvector Analysis

As demonstrated by the simple example in the previous section, hysteretic annealing
is capable of improving the quality of solutions obtained from an optimisation network.
However, the effect of annealing on the success of the problem mapping remains unknown.
Can an optimisation network running under the valid subspace mapping guarantee that
a valid solution will be found, even when hysteretic annealing is used? When hysteretic
annealing is employed, does the network state remain pinned to the valid subspace?

To answer these questions it is necessary to analyse the linearised dynamics of an
optimisation network. Accordingly, we examine an optimisation network used to solve
the TSP, and arrange for the Lyapunov function to be

Elyap — Ecns+Eann
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Figure 4.2: Snapshots of the operation of an annealed optimisation network.

The network is given the initial conditions v = [0.6, 0.2)7 and the trajectory of
v is clearly marked. The contour plots are of the Lyapunov function B =
E+ E®*™  given the current value of the annealing parameter v. The annealing
is started with ¥ = —10 causing v to converge to a point inside the hypercube
as seen in (a). As -y is gradually increased, v moves toward the global minima
at v =[0,1]T, eventually converging to it as seen in (c). The gradient descent
nature of the optimisation network and the abilily of annealing to move v
towards good solutions is clearly demonstrated. The network is simulated by
integrating the Hopfield dynamics with the Euler method and a constant step-
size At = 0.01. The annealing parameter + is held constant until |[Av] <
0.0001, at which time «y is increased by Ay = 1.
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1
= — ivTT‘m”v — vIb** 4 constant (4.1)

where the penalty term E°* is given by equation (3.13), and the annealing term is given
by
B = _% 3 (vei — 0.5)2. (4.2)

The distance terms E° have been omitted to obtain a clearer insight into the me-
chanics of hysteretic annealing. Upon substitution, the Lyapunov function becomes

2
lya s _c__ o s = _c_ ,
SRS D
2 1 2
_2_10\7_2(29,,;—N> -1 (vm-—a) . (4.3)

£ i

2

By comparing equations (4.1) and (4.3) the connection matrix and external bias may be
determined as

C C

C
[T oii = =05 = ey + 32 + 70e40i (4.4)

N
benn = (c - —2—7> é. (4.5)

In order to undertake the analysis of the linearised network dynamics it is necessary to
determine the eigenvectors and eigenvalues of the connection matrix T*"". As shown in
Appendix C.2, the connection matrix T*** has the following eigenvalues:

Al =—c+7
The corresponding eigenvector is é.

)\2 =7
This is a degenerate eigenvalue with the corresponding eigenspace being the zerosum
subspace.

A3 = —c+7

This is also a degenerate eigenvalue with the corresponding eigenspace being the
invalid subspace.

4.3.1 Analysis of the Dynamics of the Network

Now that the eigenvalues and eigenvectors of the connection matrix T*** have been
determined we may proceed with the analysis of the network’s dynamics. By analogy with
equation (3.17), the linearised dynamics may be expressed in terms of the eigenvectors
of the connection matrix as

v = KM v! + Av® + Agvim? + b)),

Substituting for b®" from equation (4.5), and explicitly substituting the eigenvalues
gives
Ny

v=K {(—c + )V AV 4+ (—e+ )V + (c - —2—) é} :
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Since v! = (v - &)é this may be further simplified to

V=K {(c — T sl TR — (N—;m—”é (=) 4 fyvzs} . (4.6)

The effect of hysteretic annealing can now be easily explained. Firstly, the component
of v in the invalid subspace is —(c — 7)Kv*™. Since K is a diagonal matrix with non-
negative elements, v will decrease in magnitude if v < c. As the annealing parameter
~ is increased, the tendency for |[vi"™|| — 0 will be lessened. Indeed, if the annealing
parameter is increased to such a point that v > ¢, then vi™ will increase in magnitude,
but such a situation can be avoided by properly setting the weight ¢ on the penalty
functions.

The effect of hysteretic annealing in the valid subspace is most easily understood with
reference to Figure 4.3. E°™ is spherically symmetrical about the point (0.5, 0.5,...)
and will therefore push v radially towards or away from the centre of the hypercube,
depending on the sign of 4. With v positive, annealing pushes any point on the valid
subspace radially away from (0.5, 0.5,...), as indicated by the vector v, which may then
be decomposed into a component v** in the zerosum subspace and a component V' in
the direction of é.

In order to improve solution quality, annealing must control the component of vin the
zerosum subspace, as it is exactly this component which determines the particular tour
to be travelled in the TSP and hence determines the solution quality. The component
v** of the dynamics, which has been introduced by annealing, is necessary to achieve
such control. When considered in conjunction with the objective function E° and a
process of gradually increasing v, v** will guide v towards good solutions (Ohta et al.,
1993). If v is positive, v*° aids convergence to a 0 — 1 point.

The component of v in the direction of & comes under the influence of two forces, as
seen from equation (4.6). Firstly, if v < ¢ the term (¢ — v)(1 — (v - €))& will move v
towards the hyperplane where

1—(v-@) 0
v-e = 1
=vl = &

as required for v to be valid. However, as v is increased during the annealing process, the
tendency to confine v to the hyperplane where v' = & is reduced. The second influence
is the component —#7{%, which will tend to increase the magnitude of the component
v! if v is negative, and decrease it for positive 7. The net result is that the component
of v in the direction of & is not correctly constrained to make v lie on the valid subspace.

We have shown that while annealing has introduced the necessary components into the
dynamics to allow the solution quality to be improved, it has also introduced a conflict
between the penalty functions, which attempt to restrict v to the valid subspace, and
the annealing which is attempting to push v off the valid subspace.

4.3.2 Analysis of the Lyapunov function

Further to the analysis of the dynamics, it is possible to express the Lyapunov function
as given by equation (4.1), in terms of the eigenvalues of the connection matrix. By
decomposing v into components as in equation (3.6), and omitting the uninteresting
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Figure 4.3: Effect of hysteretic annealing on the dynamics in the valid subspace.

The simple 8-dimensional ezample given in Section 3.3 has been chosen to
illustrate the effect of hysteretic annealing. E®™™ s spherically symmetrical
about the point (0.5,0.5,...) and with v > 0 will therefore push v radially away
from the centre of the hypercube, as indicated by v. v may be decomposed into
a component V*° in the zerosum subspace and a component v! in the direction
of & The component v! tends to force v off the valid subspace, in conflict with
the penalty terms which are attempting to confine v to the valid subspace.

44
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constant the Lyapunov function becomes
lyap __ l 112 2s|(2 A inv||2) _ Tbann
Bvr = 2 (M[VP 4 dellv I+ dsflv?) = v

Substituting for the eigenvalues and using equation (4.5) for b*™",

lyap 112 nv||2 zs||2 AT
Ey -—{(—C+"]() (Hv || _I_ ”V “ ) _I_f)/“\r || } —_ (c— —) e v,

Further substituting &7v = ||v!|| and simplifying, gives

Blver =fglﬂww—nﬂwwwv—@+92§ﬁww—%Wﬂﬁ (4.7)

As an optimisation network will seek out minima in the Lyapunov function, it is worth-
while establishing the conditions on the various components of v that correspond to a
minimum of E%. To minimise E%* it is necessary for,

1. |[v™| — 0.

2. If v < 0 then ||[v**|| — 0, else if ¥ > 0 then ||[v**|| — oo, although it should be
noted that v** cannot continue to grow indefinitely as v is restricted to the unit

hypercube.
3. v! must be set so that 6_El§1ﬂ =0, i.e
vl
N -2
=i -1+ 22T g
1 — 1 (N —2)y 4
=1- =2 (48)

Given that v will converge to a local minimum of the Lyapunov function, further
evidence of conflict between the penalty functions and annealing is found by examining
the third condition from above. For v to be valid v! = & i.e. ||v!|| = 1; but an annealed
optimisation network with 4 < 0 will converge to a state where ||v!|| > 1 and v lies
above the valid subspace. Similarly for v > 0, ||[v!|]| < 1 and v lies beneath the valid
subspace. The magnitude of v! corresponding to a minimum of the Lyapunov function,
as given by equation (4.8), is shown in Figure 4.4 for various values of 7 and N.

While hysteretic annealing may be used to improve the quality of solutions obtained
by an optimisation network, this section has shown that it also removes v from the
valid subspace. At worst, this could lead to invalid solutions, a situation that has until
now been avoided by careful selection of parameters. It is also apparent that having
pushed v from the valid subspace, the operation of the optimisation network is no longer
principled, as we are attempting to minimise E%7 with an invalid representation for v.
Consequently, it is necessary to reappraise our approach to annealing.

4.4 Modified Hysteretic Annealing

Although hysteretic annealing can lead to improved solution quality, the previous section
showed that it invalidates the use of an optimisation network as it forces v off the
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Figure 4.4: The magnitude of v! necessary to minimise Elver,

When EWeP = E°ns 4 Eo  the magnitude of v' necessary to minimise Elvar gs
given by equation (4.8). The plots show ||v!|| for various values of the problem
size N and annealing parameter . Note that for v to be valid ||v'|| = 1, and
so it is obvious that annealing has forced v off the valid subspace. The weight
on the penalty functions was set so ¢ = N, which is consistent with suggestions

in (Abe and Gee, 1995).
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valid subspace. Consequently, the optimisation network is attempting to minimise ) el
without a valid representation for v. Therefore, it is necessary to reformulate annealing
so that the ability to guide v toward good solutions is retained, whilst ensuring that v
will remain on the valid subspace.

With the insight gained in Section 4.3 we can see that a correctly formulated approach
to hysteretic annealing must have three essential features,

1. Tt should introduce a non-zero eigenvalue in the zerosum subspace that is controlled
by the value of the annealing parameter . To encourage good solutions, annealing
should be able to influence the component v** of a valid solution v, as it is this
component which decides the particular tour to be travelled in the TSP.

9. As the penalty terms alone correctly constrain v to be valid, annealing should not
interfere with the operation of the penalty terms. Therefore, hysteretic annealing
should not modify the eigenvalues of the connection matrix associated with the
penalty terms, in the invalid subspace and in the direction of &.

3. The relative values of E'¥% when evaluated at valid 0 —1 points should not be
altered. As the Lyapunov function at a valid 0 —1 point reflects the cost of the
solution, the relative ordering of these points should be maintained.

As a candidate for a correctly formulated approach to annealing, consider the modified
hysteretic annealing function given by

Emod — _%vstIvzs (49)
= —%VTTZSV

where the substitution v = T?*v has been made'. Obviously such a function will allow
annealing to influence the component of v in the zerosum subspace. Additionally, it will
not conflict with the penalty functions, as it has no effect on the components of vin
the invalid subspace and in the direction of &. Thirdly, from equation (4.9) it can be
seen that E™¢ = —2||v**||? and since for all valid 0 —1 points ||v**|| is identical, ™
maintains the relative ordering of valid 0 — 1 points. Therefore, the modified hysteretic
annealing function satisfies the criteria for a correctly formulated approach to annealing
and deserves further detailed investigation.

To clearly illustrate the utility of the modified annealing function, it is necessary to
obtain an alternative expression for E™¢. Substituting equation (3.10) for the projection
matrix T?*and expanding gives

1 1 1
Emot = —5’722(5xy—'ﬁ> (&'j‘ﬁ) VUgily;
zi yj
N £ B D) DL MILE o) SRR o) Sl
2 1 o N r i e N T Ty o N2 i yj e

Using equations (3.11) and (3.12) this simplifies to

2 2
mod  __ l_ L _j_ A
= L8 (Soam1) 455 T (o)

10Once again, note that T?® is symmetric and since T** is a projection matrix, T#*T?* = T*’.
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Noting the similarity between the first three terms of the modified hysteretic annealing
and the penalty functions in equations (3.13) and (3.7), allows E™ to be written

grmod — Lony _(Teya)?— L Ly (4.11)
2’)’”V ( V+e)|| 22 Ui N ) :

The function of the modified annealing term is now transparent. The first term in
equation (4.11) is similar to the penalty term E°"*, where the weight ¢ has been replaced
by the annealing parameter v, and serves to restrict v to the valid subspace. The second
term in equation (4.11) is similar to the original hysteretic annealing term, but is now
spherically symmetrical about &, which lies in the centre of the valid subspace. This is
the only term in E™°? which influences the component of v in the zerosum subspace. It
makes sense to have the term which controls v** centred in the valid subspace, rather
than offset from the valid subspace, as it is in the original formulation of hysteretic
annealing.

For any point v that does not lie on the valid subspace, there is a delicate balance
between the penalty term in E™¢, which forces v back to the valid subspace and the
expansive influence of the second term, which is attempting to move v further from the
valid subspace. The net effect is that only v* is influenced by the modified annealing,
leaving the components vi™ and v! to be determined by the penalty functions E**.

4.5 Eigenvector Analysis

When the modified hysteretic annealing is employed, does the network state remain
pinned to the valid subspace? Does modified hysteretic annealing incorporate the nec-
essary components into the dynamics to improve solution quality? To answer these
questions we will once again analyse the linearised dynamics of an optimisation network
used to solve the TSP. Consider an optimisation network with the Lyapunov function

Elyap — Ecns+Emod

1
e —3 Trpmody, _ yThmod 4 constant

where the penalty term E°* is given by equation (3.13), and the annealing term is given
by equation (4.10). Upon substitution, the Lyapunov function becomes

g = 25 (Z v 1>2 sty (Z v — 1)2

t T &

(c+7) Py ( 1>2
2N2 va N - 2 — Vi — -]\7 .

1
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By analogy with equations (4.1), (4.3), (4.4) and (4.5) the connection matrix and external
bias may be determined as

c+ c+ ¢+
[T i y; = —( 7) 0i; — ( N7)5zy + ( N:) + ¥0240i; (4.12)

bmod = cé. (4.13)

In order to analyse the linearised dynamics it is necessary to determine the eigenvectors
and eigenvalues of the connection matrix T™od  Ags shown in Appendix C.3 the connection
matrix T™°¢ has the following eigenvalues:

/\1 = —C
The corresponding eigenvector is é.

)\2 =7
This is a degenerate eigenvalue with the corresponding eigenspace being the zerosum
subspace.

)\3 = —C

This is also a degenerate eigenvalue with the corresponding eigenspace being the
invalid subspace.

By analogy with equation (3.17), the linearised dynamics may be expressed in terms of
the eigenvectors of the connection matrix as

\.f = K()\lvl + )\gvzs + )\3Vim} + med).

Substituting for b™¢ from equation (4.13), and explicitly substituting the eigenvalues
gives
v =K {—cv!+ v —cv'™ + cé}.

Further substituting v! = (v - &)é gives
v=K{c(l—(v-&)e—cv™ +yv=}. (4.14)

When the network has converged v = 0, where 0 is the zero vector and the success of the
modified annealing approach may be determined by examining the linearised dynamics
given by equation (4.14). Firstly, it should be noted that the component of v in the invalid
subspace is —c¢Kv*’. Since K is a diagonal matrix with non-negative elements, the
component of v in the invalid subspace will decrease in magnitude, leading to lvinY|| = 0.

Secondly, the net component of v in the direction of &, will be K(c — ¢(v - &))e.
Therefore, the component in the direction of & will move to a hyperplane where

c—c(v-&) = 0
v-é = 1
= vl = &,
as required for v to be valid. Obviously, with v} = & and |[v?™|| = 0 the network

state has converged to the valid subspace. While annealing now influences v only in
the zerosum subspace, the penalty functions control v only in the invalid subspace and
in the direction of & The actions of annealing and the penalty functions have been
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effectively decoupled into separate subspaces, thereby resolving the apparent conflict
between hysteretic annealing and the penalty functions that was identified in Section 4.3.

The effect of modified hysteretic annealing in the valid subspace is illustrated in Fig-
ure 4.5. With reference to equation (4.10), the penalty-like terms in E™? are zero on
the valid subspace, while the remaining term in E™°d is spherically symmetrical about &
and will push v radially away or towards & depending on the sign of v. For positive v
the effect of E™? on a valid v is shown as v. Obviously v = v** as it lies wholly within
the zerosum subspace. The effect of modified annealing is simply to guide v through
the valid subspace by influencing the component v*°. Unlike the original hysteretic an-
nealing, there is no tendency to push v from the valid subspace, avoiding any potential
conflict with the penalty functions. As discussed in Section 4.3, the component of the
dynamics v which has been introduced by annealing, when considered in conjunction
with the objective function and a process of gradually increasing v, will guide v towards
good solutions.

The modified approach to hysteretic annealing proposed in equation (4.11) has all the
essential features of a correctly formulated annealing mechanism. It retains the ability
to guide v toward good solutions, by introducing a non-zero eigenvalue in the zerosum
subspace. It also avoids any conflict with the penalty functions by effectively decoupling
the actions of annealing and the penalty functions into different subspaces. As a result,
v will remain in the valid subspace throughout the annealing process, which is a vital
requirement for any optimisation network to operate correctly.

4.6 Simulations

To evaluate the performance of the standard and modified annealing algorithms, both
algorithms were simulated on several Euclidean travelling salesman problems. The prob-
lems considered had 10,30 and 50 cities placed randomly using a uniform distribution
over the unit square. The optimised step-size technique as reported in (Abe, 1996) was
used in all experiments. While more detailed information on the optimised step-size tech-
nique may be found in Appendix B, it is sufficient to note that such an algorithm holds
the annealing parameter constant at o for the first ¢4 time steps, and then increments
the annealing parameter by an amount Ay at successive time steps. In all simulations
reported here, the penalty weight c is set so that

¢ = coN max(dzy + dzz),
as suggested by results in (Abe and Gee, 1995). 1t should be noted that all simulations
converged to valid solutions, as a result of setting co to an appropriately large value. The
initial conditions are given by vy = 1/N + 0.01 x rand where rand is a random value in
the range [—0.5,0.5].

The results for the standard and modified annealing algorithms are shown in Tables
4.1, 4.2 and 4.3 and may be compared to the results from several well-known heuristics
operating on the same set of problems, as given in Table 4.4. As a measure of the quality
of solutions obtained from the optimisation networks, the mean percentage above the
minimal tour length has been calculated. The minimal length tour is defined as the
shortest tour found by any of the heuristic methods. Additionally, the number of times
the optimisation networks found the minimal length tour is also recorded. It is apparent
that optimisation networks give a similar quality of solution to the nearest neighbour
techniques. This is consistent with the general trade-off between time and quality of
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valid subspace

Figure 4.5: Action of modified annealing in the valid subspace.

The simple 8-D example given in Section 3.8 has been chosen to illustrate
the effect of the modified hysteretic annealing in the valid subspace. With the
annealing parameter v > 0, the modified annealing will push a point in the
valid subspace radially away from &. It should be noted that v lies wholly
within the valid subspace. Consequently, modified hysteretic annealing serves
only to move v through the valid subspace and does not conflict with the penalty
terms which are attempting to confine v to the valid subspace. '

51
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Standard Modified
Yo | mean % mno. min. | mean % no. min.
-1 0.47 95 0.47 95
-1.5 0.39 95 0.217 97
-2 1.74 82 1.91 82
-2.5 1.78 85 1.64 83
-3 1.49 83 1.22 88

Table 4.1: Simulation results for the 10-city problem.

The table shows the mean percentage above the minimal tour length of 2.9933
(as found by heuristic methods - see Table 4.4), and the number of minimal
length tours for various initial values of Yo (100 trials, Ay = 0.005, co = 2,
ty = 200). tCorresponds to a mean tour length of 2.9996.

solution, as faster solution methods generally produce results of worse quality than more
sophisticated techniques.

Several issues must be considered when comparing the standard and modified ap-
proaches to annealing. Firstly, the analysis of the preceding sections has shown that both
annealing algorithms provide the ability to guide v towards good solutions. However,
while modified annealing cannot cause invalid solutions, standard hysteretic annealing
may potentially cause the network to converge to invalid solutions by removing v from
the valid subspace. In our simulations, we have avoided this scenario by carefully select-
ing the weight on the penalty functions, thereby allowing the annealing methods to be
compared on the quality of solution alone.

Once the potential for invalid solutions is removed, we may compare the annealing
algorithms based solely on their quality of solution. It should be remembered that while
the modified annealing approach does not remove v from the valid subspace, standard
annealing does and so is attempting to minimise E°% with an invalid representation for
v. While both the standard and modified annealing algorithms achieve similar results,
as given in Tables 4.1, 4.2 and 4.3, it is clear that the modified annealing algorithm has
a slightly superior quality of solution. The similarity between the two algorithms is not
unexpected, as both possess the ability to guide v towards good solutions. Additionally,
the distinction between the standard and modified annealing algorithms is blurred by the
action of the objective function E°? which itself tends to push v from the valid subspace.

The results presented in this section support modified annealing as being superior
to the standard hysteretic annealing algorithm. Not only does the modified algorithm
remove the possibility of annealing causing invalid solutions, it has been demonstrated
to produce a better quality of solution.

It should be noted that the results for the optimisation networks may be improved by
employing a more gradual annealing schedule. Alternatively, improvements may be made
by reducing the weight ¢ on the penalty functions (Abe, 1993), possibly at the expense
of guaranteed convergence to a valid solution. It is also interesting to note the obvious
deterioration in solution quality as the problem size increases. For the 10-city problem
the best results from an optimisation network gave a mean tour length just 0.21% above
that found by heuristic methods, while for the 50-city problem the corresponding result
is 19.99%. While such a degrading quality of solution with increasing problem size is
typical for optimisation networks, it has received little atiention in the literature (Cooper,
1995b) and will therefore be considered in detail in Chapter 5.
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Standard Modified
7o | mean % no. min. | mean % no. min.
-1 13.73 7 12.39 11
2| 7.98 16 7.91% 22
-3 8.66 9 8.75 11
-4 9.14 4 12.42 2
-5 14.24 17 11.14 37
-6 14.81 21 14.03 32

Table 4.2: Simulation results for the 30-city problem.

The table shows the mean percentage above the minimal tour length of 4.4714
(as found by heuristic methods - see Table 4.4), and the number of minimal
length tours for various initial values of Yo (100 trials, Ay = 0.005, co = 2.5,
tg = 1500). {Corresponds to a mean tour length of 4.8251.

Standard | Modified
4o | mean % | mean %
-2 22.65 21.84
-3 21.43 20.24
4| 2189 | 19.99t
-9 21.08 20.17
-6 23.87 22.53

Table 4.3: Simulation results for the 50-city problem.

The table shows the mean percentage above the minimal tour length of 5.8286
(as found by heuristic methods - see Table 4.4) for various initial values of Yo
(100 trials, Ay = 0.005, co = 4, t3 = 3000). No tours were found with length
equal to the best tour found by heuristic methods. 1 Corresponds to a mean tour

length of 6.9938.

10-city 30-city 50-city
mean % min. | mean % min. | mean % min.
NN 10.93  2.9933 14.58  4.6694 | 20.51  6.2193
NI 0.00 2.9933 3.64 4.4714 7.66 5.8853
2-OPT 0.00 2.9933 2.01 4.4714 5.16 5.9124
LK 0.00 2.9933 0.56 4.4714 1.88 5.8286

Table 4.4: Simulation results for various heuristics on 10, 30 and 50-city problems.

The table shows simulation results for the nearest neighbour (NN), node in-
sertion (NI), 2-OPT and Lin and Kernighan (LK) heuristics on all problem
sizes. All heuristics are implemented as in (Reinelt, 1994). For each method
and problem, the mean percentage above the minimal tour length (over 50 tri-
als) and the minimum tour length found by that method are given. The minimal
tour length found by any heuristic method is 2.9933 (10-city), 4.4714 (30-city)
and 5.8286 (50-city).
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4.7 Chapter Summary

This chapter presented an investigation of hysteretic annealing which is a technique used
to improve the quality of solutions obtained from an optimisation network. Without
hysteretic annealing an optimisation network is prone to become stuck in a local minimum
of the objective function. Such a local minimum may represent a poor, high cost solution
to the problem at hand.

Hysteretic annealing seeks to guide the network state towards good solutions by con-
tinuously modifying the network’s Lyapunov function. Standard hysteretic annealing
involves the addition of an extra term

B = — 2 (s — 0.5)°

to the Lyapunov function for the network. As shown in this chapter, a linearised analysis
of the network dynamics reveals that while annealing has introduced the necessary com-
ponents into the dynamics to allow solution quality to be improved, it also acts to push
v away from the valid subspace. Consequently, there is a fundamental conflict between
the penalty functions, which attempt to restrict v to the valid subspace, and standard
annealing which forces v off the valid subspace. At worst this could lead to invalid so-
lutions, a situation that has until now been avoided by careful selection of parameters.
Moreover, by removing v from the valid subspace the operation of the network is inval-
idated as it now seeks to minimise an objective function without a valid representation
for v.

To overcome the limitations of the standard hysteretic annealing algorithm, it was
necessary to develop a new approach. A correctly formulated approach to hysteretic
annealing must satisfy three requirements:

1. Annealing must introduce a non-zero eigenvalue in the zerosum subspace that is
controlled by the annealing parameter . This enables annealing to guide v towards
good solutions.

2. As the penalty terms alone correctly constrain v to be valid, annealing should not
interfere with the operation of the penalty terms.

3. The relative values of E'*? when evaluated at valid 0 — 1 points should not be
altered.

Consideration of these requirements led to the development of the modified hysteretic
annealing function, which for the TSP is given by

gret = Ly v e - T8 (- )
2 2 < N

The modified approach to hysteretic annealing has all the essential features of a correctly
formulated annealing mechanism. It retains the ability to guide v toward good solutions,
by introducing a non-zero eigenvalue in the zerosum subspace. It also avoids any conflict
with the penalty functions by effectively decoupling the actions of annealing and the
penalty functions into different subspaces. Consequently, v will remain in the valid
subspace throughout the annealing process, which is vital for the correct operation of an
optimisation network.
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Simulations on a range of travelling salesman problems support the modified annealing
approach as being preferable to the standard annealing algorithm. Not only does the
modified annealing remove the possibility of causing invalid solutions, but it has been
demonstrated to produce a slightly superior quality of solution.



CHAPTER V

The Issue of Scaling

To this point in the thesis we have examined an approach to problem mapping that can
guarantee that valid solutions will be found for a variety of combinatorial optimisation
problems. In addition, we have developed annealing techniques which help to guide
an optimisation network to good quality solutions, while retaining the ability to ensure
valid solutions. Therefore, it would appear that optimisation networks are ready for
application.

However, we must look more closely at the performance of optimisation networks for
there awaits another challenge. The many empirical studies of optimisation networks
solving combinatorial optimisation problems to be found in the literature display an
alarming feature: as the problem size increases, the quality of the solutions found by the
network rapidly decreases. These empirical studies lead to the belief that optimisation
networks scale poorly to large problem sizes. While this fact has been acknowledged
by few researchers, it has serious ramifications for the already tight niche market of
optimisation networks and must therefore be addressed.

In this chapter we uncover the reasons for the poor scaling of optimisation networks
to large problems and investigate several approaches to overcoming the problem. Of
particular importance to our investigations is the discovery that optimisation networks
operate by embedding a heuristic into the dynamics of the network. Moreover, it will be
shown that the heuristics used by optimisation networks are ultimately responsible for
their poor scaling. To improve the performance of optimisation networks it is necessary
to replace or modify the heuristics that they use.

We begin in Section 5.1 by demonstrating the poor scaling properties of optimisa-
tion networks when used to solve the travelling salesman problem. In Section 3.2 we
use the Ising spin problem, which is a simple graph 2-colouring, to show that optimisa-
tion networks use simple heuristics to solve a problem. Furthermore, we show that the
poor performance of optimisation networks on large problems can be attributed to the
tendency of such simple heuristics to encourage the formation of small, locally optimal
segments in the solution. As the key to the poor performance of optimisation networks is
the heuristic that they employ, in Section 5.3 we contrast the performance of two discrete
heuristics for solving the TSP. While these heuristics are more closely aligned with sim-
ulated annealing than optimisation networks, they offer valuable insights into the poor
scaling of optimisation networks to large problem sizes. Finally, in Section 5.4 we propose
two alternative methods for improving the performance of optimisation networks.

5.1 Scaling with Problem Size

While the optimisation network literature is heavily populated with experimental results
for combinatorial problems such as the TSP, many of which add weight to the conjecture
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Mean Solution Quality (%)

Yo | 10-city 20-city 30-city 40-city 50-city
-1 | 0.00 1.26 9.61 10.72  19.24
-2 1 0.00 0.27 6.61 11.50  15.88
-3 | 0.00 0.51 3.97 11.21 13.61
-4 1 0.00 1.41 7.74 9.79 13.62
-5 1 0.00 1.44 10.61 9.50 14.66
-6 | 0.00 1.44 9.17 9.92 15.27

Table 5.1: Performance of the Hopfield network on the travelling salesman problem.

For each TSP and initial value of the annealing parameter v, the Hopfield net-
work is run 50 times. The mean cost of the tours found by the Hopfield network
is expressed as a percentage above the cost of the best tour found by 50 trials of
the Lin-Kernighan heuristic. The Lin-Kernighan heuristic was implemented
as given in (Reinelt, 1994). Parameters for the Hopfield network simulations
were co = 2, Ay = 0.001, ¢4 = 1000(10-city), 1500(20-city), 2000(30-city),
2500(40-city), 3000(50-city).

that optimisation networks scale poorly e.g. (Abe and Gee, 1995; Abe, 1996), their
purpose has not been to investigate the scaling properties of optimisation networks. To
demonstrate the poor scaling of optimisation networks we have simulated the Hopfield
network on a series of progressively larger Euclidean travelling salesman problems.

The problems considered had 10, 20, 30, 40 and 50 cities placed randomly using a
uniform distribution over the unit square. Once again, the objective function E°b for
the travelling salesman problem is given by equation (3.2) and the penalty function £
is given by equation (3.13). For each problem, the weight ¢ on the penalty function is
set so that

c=coN Iglg}(dxy + dzz),

as suggested by the most recent results presented in the literature (Abe and Gee, 1995).
By setting ¢ to an appropriately large value all simulations were made to converge to
valid solutions. The initial conditions are given by v;; = 0.5 + « * rand where rand is a
random value in the range [—0.5,0.5] and o = 0.0001. Annealing was accomplished with
the modified hysteretic annealing technique described in Section 4.4 and the integration
was performed using the optimised step-size technique. While detailed information on
the optimised step-size technique can be found in Appendix B, it is sufficient to note
that such a technique holds the annealing parameter constant at 7o for the first ¢4 time
steps and then increments the annealing parameter by an amount A~y at successive time
steps.

The results of the experiment are displayed in Table 5.1 and Figure 5.1, where the
performance of the Hopfield network is given relative to the best solution found by the
Lin-Kernighan (LK) heuristic. On the 10-city problem the Hopfield network always
produces the solution found by the LK heuristic. For the 30-city problem the mean
length of the tour found by a Hopfield network is 3.97% above the best solution from the
LK heuristic and for the 50-city problem this figure has risen to 13.61%. For the results
in this experiment we see that as the problem size increases, the quality of the solutions
found by an optimisation network decreases.

In Section 2.7 a comparison between optimisation networks and alternative solution
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Solution Quality (%)

10-city 20-city 30-city

Problem S0y

Figure 5.1: Performance of the Hopfield network on the travelling salesman problem.

The data for this graph is obtained from Table 5.1. For each problem the best
mean solution quality obtained by the Hopfield network is plotted. The quality
of the solutions found by the Hopfield network quickly deteriorales as the size

of the problem increases.
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methods for combinatorial optimisation problems was undertaken in order to establish
the niche market for optimisation networks. It was concluded that even though optimi-
sation networks generally produce solutions of lower quality than other methods, their
great advantage is the very fast solution times achievable when implemented in hard-
ware. In light of the evidence presented in this section it is necessary to consider a further
element in the comparison: problem size. Extensive experimental studies (Reinelt, 1994)
of heuristics such as the nearest neighbour algorithm, 2-OPT, 3-OPT and the full Lin-
Kernighan algorithm show that the quality of solution achieved by these heuristics is
nearly independent of the problem size. In contrast, the results of this section demon-
strate that the problem size is a significant influence on the solution quality obtained
from an optimisation network. While the space complexity of a hardware implementa-
tion already limits optimisation networks to moderate-sized problems, the poor scaling of
optimisation networks is a significant limitation which further restricts the niche market
for optimisation networks. Ideally, the performance of optimisation networks would be
independent of problem size. In the rest of this chapter we investigate the reasons for the
poor scaling of optimisation networks to large problems and suggest possible remedies.

5.2 Segmentation

The key to understanding the poor scaling of optimisation networks to large problem
sizes was alluded to by Wilson and Pawley when they noted that the Hopfield network
typically produces solutions which are “composed of several segments, each of which
is locally a good (solution), but which are joined together in such a way as to make a
bad (solution) overall” (Wilson and Pawley, 1988). In this section we will show that
as the problem size increases, a growing level of segmentation of the solution results
in ever-decreasing solution quality. As a vehicle for demonstrating the consequences of
segmentation we have chosen the Ising spin problem, which is a simple graph 2-colouring.
Although the Ising spin problem has obvious global minima, it serves to demonstrate the
limitations of the Hopfield network and thereby explain the poor scaling of optimisation
networks.

5.2.1 The Ising Spin Problem

The Ising spin model consists of N elements arranged into a m X n rectangular grid. Each
element must be assigned the state black or white. Any two elements are neighbours
if they share an edge. The problem is to assign a state to every element such that the
number of neighbouring elements with the same state is minimised. For the Ising spin
problem, the global minimum corresponds to a situation where each element has the
opposite state from all of its neighbours, giving a checkerboard pattern of activity across
the grid. Figure 5.2 shows the global minimum and a random state of an 8 x 32 Ising
spin model.

Hopfield Network Mapping

In order to solve the Ising spin problem with the HoFﬁeld network, each element ¢ in the

Ising model is assigned two neurons', with outputs viw) and vz(b) respectively. The neuron

1The Ising spin problem is a restricted version of the general graph N-colouring problem, which itself
may be mapped onto the Hopfield network by using N neurons to represent each node in the graph.
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(b) Global minimum.

Figure 5.2: States of an Ising spin model.

An 8 x 32 Ising spin model is shown with (a) random element states and (b)
in the global minimum state. The reverse checkerboard pattern, obtained by
flipping the state of each element is also a global minimum.

outputs are continuous and may vary over the interval [0, 1]. If v§b) =1 and ’Uigw) =0
then element ¢ has been assigned the state black. Similarly, if vl(w) =1 and vfb) =)
then element i has been assigned the state white. With this problem representation, the
Ising spin problem may be expressed as follows:

. 1NN . .
minimise ~ E° = B B M A7 ('Uz(w)vj(-w) + v(b)v](-b) — o} )vj(-b) — vz(b)vj(- )) + Ey (5.1)

i
=1 j5=1

subject to v 4 WP =1 Vie{l,...N} (5.2)

where C;; is 1 if elements 7 and j are neighbours, and 0 otherwise. The objective function
for the Ising spin problem is given in equation (5.1) and with the constant term given
by Eo = Y(m(n — 1) 4 n(m — 1)) the optimal checkerboard solution to the Ising spin
problem has a cost E° = 0. Note that careful consideration of equation (5.1) would
reveal that for every neighbouring pair of elements that share the same state, the cost of
the solution is increased by one.

To map this problem onto an optimisation network we set FEler = Eob 4 B8 where

the penalty function is given by

B = S5 (uf®) 4 o - 1)’ (5.3)
4 Z : '

=1

in accordance with the valid subspace problem mapping. The procedure for determining
E may be found in Appendix D. The penalty function £°** is zero when the constraints
for the Ising spin problem are satisfied and is positive otherwise. With c set to a large
positive constant, the penalty function E°* will encourage the network state to lie on
the valid subspace.

Once again it is necessary to employ an annealing technique to encourage the forma-
tion of good solutions and aid convergence to a 0 — 1 point. In Appendix D, it is shown
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that an appropriate modified hysteretic annealing function for the Ising spin problem is
given by

et = _15° (o) — o)’ (5.4)
B 4 =1 ' ' . .

For the purposes of our simulations the annealing parameter is given by v = (¢/7)* 4+ 7o
where 7 is set to a positive constant and 7y is a small negative constant. Increasing the
absolute values of both 7 and 7, will improve the solution quality at the expense of longer
running time. Modified hysteretic annealing operates in the usual manner by adding Emed
to the Lyapunov function for the Hopfield network viz. E*? = Eobi 4 Eens 4 Emod,

Now that the problem representation and L{&punov functlon have been determined,
the dynamic equation for the internal state u; ' of neuron v; () can be calculated as

dugw) 3E' tyap
dt v (w)

1Y B W) €[ (w) (5 Y (@ b
= EZ ”(J- ’Uj )—E(Ui +'Ui _1)+§(vz —Y; ) (55)

A dynamic equation for uz(b) may be determined in similar fashion. Considering only the
terms arising in equation (5.5) from the objective function, the dynamics of the Hopfield
network may be simply explained: if the neighbours of element ¢ are likely to be assigned
the state black (i.e. vJ(»b) > vj(w)) then the assignment of state white to element ¢ is

encouraged (dul(-w) /dt > 0). Conversely, if the neighbours of element ¢ are likely to be
assigned the state white (i.e. vj(b) < vj(w)) then the assignment of state white to element

7 is discouraged (dul(-w)/ dt < 0). Therefore, the combined effect of the dynamics for the
neurons associated with element 7 is to encourage the formation of a locally optimal
segment encompassing element ¢ and its four immediate neighbours.

The tendency of the Hopfield network to encourage the formation of locally optimal
segments encompassing an element and its four immediate neighbours may be viewed
from an algorithmic standpoint as a rule or heuristic that has been inserted into the
dynamics of the optimisation network. The success of the Hopfield network approach to
the Ising spin problem will ultimately depend upon the utility of such a heuristic.

Simulation Results

For all experiments reported below the parameters were set as follows: ¢ = 200, 7 =
100, v = 0 and the gain of the transfer function in the Hopfield network was set to
T? = 1. Initially, the internal states of the neurons were randomly distributed on the
interval [—0.005,0.005]. Integration of the network dynamics given by equation (5.5) was
performed using the function ode15s.m available in MATLAB®. As previously stated, the
quality of solutions may be improved by employing a more gradual annealing schedule,
corresponding to larger absolute values for 7 and . However, while the solution quality
may be improved, the qualitative results reported here will still be evident, but at a
larger problem size.

The operation of a Hopfield network on an 8 x 16 Ising spin problem is shown in
Figure 5.3. As the operation of the network progresses, several regions in the Ising
spin model evolve independently. Each of these regions is a seed-point, which due to
the actions of the heuristic embedded into the network, will reinforce and expand in
diameter. Gradually the elements of the Ising model converge to states representing
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(a) t = 0.1301.

white

(b) t = 2.8506.

black

(e) t = 81.2304.

Figure 5.3: The Hopfield network solving an Ising spin problem.

Time evolution of the state of a Hopfield network as it solves an 8 x 16 Ising
spin problem. The elements of the Ising model have been rende1(“e()i aca()g)“ding to
W v, ) The

the difference in outputs of their associated neuron pair (i.e. v;
final solution has a cost E°b = 18. Note the formation of multiple seed-points.
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Figure 5.4: Performance of the Hopfield network on the Ising spin problem.

The performance of the Hopfield network as the problem size n is increased for
the 8 x n Ising spin problem. For a given problem size n, the Hopfield network
was simulated 100 times.

black or white. As the heuristic used by the Hopfield network encourages the formation
of only a small, locally optimal region, several seed-points can evolve simultaneously, as
no one seed-point has enough influence to annihilate the others. Unfortunately, in this
instance the seed-points correspond to opposing checkerboard patterns and the inevitable
result is segmentation of the final solution as shown in Figure 5.3(e). Similar results have
been noted for the travelling salesman problem, where disjoint segments of the tour are
seen to evolve from several seed points, creating the need to introduce a sub-optimal
cross-over into the tour (Van den Bout and Miller, 1989).

With a clear understanding of the heuristic used by the Hopfield network to solve
the Jsing spin problem, it is interesting to examine the performance of the network on
a variety of problem sizes. Accordingly, we have trialed the network on instances of an
8 x n Ising spin problem with increasing horizontal dimension n. The results of the
experiment are shown in Figure 5.4, where the poor scaling of the Hopfield network is
again apparent. For an 8 x 4 Ising spin problem the average cost of the solution is
approximately E°% = 1, implying that the average solution had only one segment. In
contrast, for an 8 x 32 problem the average cost of the solution is over £°% = 24, implying
that the average solution contained four segments.

As has been shown in this section, the optimisation network approach to solving a
combinatorial optimisation problem is to embed a simple heuristic into the dynamics of
the network. These simple heuristics encourage the formation of locally optimal segments
and are evident as seed-points in the solution. Moreover, as only small, locally optimal
regions are encouraged, there arises the possibility for several seed points to coexist. This
is increasingly true as the size of the problem grows and the influence of one seed point on
another lessens. With an increased number of seed-points there will be a corresponding
increase in the segmentation of the final solution. As the problem size increases we see
a greater degree of segmentation, which translates to a decrease in the solution quality.
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5.3 A Comparison of Two Heuristics

In the previous section we have seen that optimisation networks operate by embedding
a heuristic into the dynamics of the network. The success of the network is dependent
upon the utility of that heuristic for that problem. Moreover, the experiments conducted
in the previous section on the Ising spin problem indicate that the heuristics employed by
optimisation networks are responsible for the segmentation of solutions and ultimately
for the poor scaling of optimisation networks to large problems. It is natural then to ask
if there are heuristics that scale to large problem sizes better than the standard heuristics
used by optimisation networks. One of the few researchers to address this issue is Lister
(Lister, 1990; Lister, 1993; Lister, 1994), who has investigated the connection between
the heuristic employed in an optimisation algorithm and characteristics of the energy
landscape that may make the search successful.

In his work Lister considers two algorithms for the solution of the travelling salesman
problem. While both algorithms are really instances of simulated annealing and may
not truly be called optimisation networks, they do offer valuable insight into the poor
scaling of optimisation networks to large problem sizes. In the rest of this section we
summarise Lister’s work on the scaling properties of two different approaches to the
travelling salesman problem.

The first algorithm implements a node insertion heuristic that can shift a city from
one position in the tour to another, in a single operation. The algorithm starts with an
initial randomly chosen tour and at each step moves to another legal tour by applying a
node insertion move. The choice of which node insertion move to make at each step of
the algorithm is determined by applying rejection-less simulated annealing (Greene and
Supowit, 1984). Such a technique makes a weighted random selection from the set of all
possible node insertion moves, with the bias for each move calculated as a function of
the resulting change in the tour length. By favouring node insertion moves that decrease
the tour length, this algorithm can achieve good solutions to the travelling salesman
problem.

To understand the operation of the node insertion algorithm, consider the travelling
salesman problem shown in Figure 5.5. The problem consists of sixteen cities arranged
‘nto four clusters of four cities each. The tour shown in Figure 5.5(a) is typical of those
found by optimisation networks, as it exhibits segmentation of a good solution, similar
to that which we have shown to occur for the Ising spin problem and which others have
noticed for the travelling salesman problem (Wilson and Pawley, 1988; Van den Bout
and Miller, 1989). The tour consists of two locally optimal segments which have been
connected by a sub-optimal crossing-over of the segments Bl — C1 and D1 — Al. The
operation of the node insertion algorithm can be seen in Figure 5.5(b), where city C1 has
been moved between cities Al and D1. This node insertion move has removed the cross-
over from Figure 5.5(a), but has introduced another cross-over and actually increased
the length of the tour. To remove all cross-overs from the tour it is necessary to move
every city from one side of the cross-over to the other. In this instance it would take a
further six moves, and there would be no appreciable decrease in the length of the tour
until the cross-over had been removed.

As shown by the simple example in Figure 5.5(a) and (b), to remove a sub-optimal
cross-over from a tour with the node insertion heuristic, it takes a number of moves which
is proportional to the number of cities on one side of the cross-over. Moreover, there is
no appreciable decrease in the length of the tour until the cross-over has finally been
removed. Consequently, the energy landscape defined by the node insertion algorithm
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Figure 5.5: Heuristics operating on a travelling salesman problem.

An initial tour for a 16-city travelling salesman problem is shown in (a). The
tour shown in (b) is obtained from the original tour in (a) by using the node
insertion heuristic to move city C1 between cities Al and D1. The tour shown
in (c) is obtained from the initial tour shown in (a) by reversing the direction
of travel on the segment C1...DI1.

can be seen to have large flat spots. These flat spots become larger as the problem
size increases and the number of cities that must be moved to remove a cross-over in
a tour increases. Experimental evidence (Lister, 1990; Lister, 1993) suggests that for
small problem sizes there is a reasonable probability that a cross-over in the tour can be
eliminated by node insertion, but as the problem size increases and the flat spots in the
energy landscape become larger, the probability of removing a cross-over from the tour
decreases.

The second algorithm considered by Lister combines the segment reversal heuristic
with rejection-less simulated annealing. The result of the segment reversal heuristic can
be seen in Figure 5.5(c), which shows the tour from Figure 5.5(a) after the direction of
travel on the segment C1...D1 has been reversed. Obviously only one segment reversal
is needed to remove the sub-optimal cross-over from the tour. Simulations performed by
Lister (Lister, 1993) show that the segment reversal heuristic gives much better solutions
to the TSP than the node insertion heuristic. A typical run of both algorithms on a 200
city TSP is shown in Figure 5.6 (Lister, 1993). While both algorithms maintain a random
solution at a high temperature, as the temperature in the annealing process is decreased,
the solution for the segment reversal heuristic exhibits good coarse structure. In contrast,
the solution for the node insertion heuristic contains many long-range connections which
are retained in the final solution. This example clearly demonstrates that even when
operating on large problems, solutions found by the segment reversal heuristic do not
exhibit any segmentation. Lister concludes that the segment reversal heuristic scales well
to large problem size (Lister, 1993).

Why does segment reversal scale to large problem sizes better than node insertion?
Considering that any node insertion move can be emulated by two operations of segment
reversal, whereas an arbitrary segment reversal can take up to N/2 node insertion moves
to accomplish - can we attribute the supremacy of segment reversal to it being in some
sense a stronger heuristic? Lister has suggested that the explanation is not this simple.
Rather, he argues that segment reversal defines an energy landscape that is “quasi-
fractal” and that simulated annealing is well suited to finding the global minimum of a
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Figure 5.6: Operation of the two heuristics on a 200 city TSP (Lister, 1993).

Three intermediate solutions and the final solution from a run of simulated
annealing using the segment reversal heuristic (top) and the node insertion
heuristic (bottom). At high temperatures both algorithms have maintained ran-
dom solutions. However, as the temperature falls the segment reversal heuristic
quickly develops a good coarse structure for the final solution. In contrast, the
node insertion heuristic continues to contain many long-range connections.
The final solution produced by the node insertion heuristic exzhibits the same
poor structure that was noticed for optimisation networks by Wilson and Paw-

ley (Wilson and Pawley, 1988).

66



5.4 Overcoming Segmentation 67

B B’

Eobj
1k

-
|

state space

Figure 5.7: A fully-fractal landscape (Lister, 1993).

A fully-fractal energy landscape exhibits self-similar structure. It has been
shown that simulated annealing is well suited to finding the minimum of a

fully-fractal landscape (Sorkin, 1990).

quasi-fractal landscape (Lister, 1993; Lister, 1994; Lister, 1995). The utility of simulated
annealing when operating on a fully-fractal energy landscape can be understood with
reference to Figure 5.7. At very high temperatures, simulated annealing allows the state
to wander freely over the entire state space. As the temperature decreases, the transition
A—B—C is substantially more probable than the reverse transition, causing the solution
to be effectively confined to the region between C and C’. Such ergodicity breaking
effectively locks in the coarse structure of the final solution, in a sense implementing
a divide and conquer approach to optimisation. Obviously, as the temperature drops
further simulated annealing will readily converge to the global minimum. While segment
reversal does not define a fully-fractal landscape there is quantitative support for the
conjecture that the landscape is quasi-fractal (Kirkpatrick and Toulouse, 1985). Lister
argues that the failure of node insertion to scale to large problems is a consequence of
its landscape not being quasi-fractal.

Finally, it must be asked if the performance of discrete heuristics such as node in-
sertion and segment reversal is relevant to analog optimisation networks? The answer
lies in the rule that has been embedded into the dynamics of an optimisation network
approach to the TSP. In Chapter 6 it will be shown that the node insertion heuristic
discussed here is in fact a close discrete-state analogy to the rule embedded in an ana-
logue optimisation network and as such, if flat spots in the energy landscape for the node
insertion heuristic prevent the heuristic from working well on large problems, then it
can be expected that similar problems will be encountered by the analogue optimisation
network. However, while segment reversal overcomes the problems associated with the
node insertion heuristic Lister readily admits that segment reversal is “incompatible with
the gradient descent component” (Lister, 1994) of optimisation networks and therefore
cannot be implemented as an analogue optimisation network.

5.4 Overcoming Segmentation

So far in this chapter we have established that optimisation networks work by embedding
simple heuristics into the dynamics of the network. Moreover, it was shown that these
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heuristics are responsible for the poor performance of optimisation networks on large
problems. Naturally we must ask if the performance of optimisation networks can be
improved, by simply choosing a discrete heuristic that performs well and embedding it
into the dynamics of the optimisation network? Unfortunately this is not always possible,
as the heuristic we choose must be compatible with the gradient descent nature of an
optimisation network. As we noted in the previous section, while segment reversal is
indeed a good heuristic for the travelling salesman problem it is not possible to embed
segment reversal into the dynamics of an optimisation network.

In this section we will investigate two different approaches that attempt to improve
the performance of optimisation networks by modifying the heuristics used. Of particular
concern is their applicability to a wide variety of problems.

5.4.1 Multi-scale Networks

To improve the performance of optimisation networks, it is necessary to somehow pre-
vent the network from converging to solutions exhibiting locally optimal segments which
have been poorly connected together. Perhaps the most obvious way to eliminate the
segmentation problem is to implement a multi-scale approach by incorporating several
layers into an optimisation network. The basic structure of a multi-scale network is
shown in Figure 5.8. The lowest layer of a multi-scale network is similar to a standard
optimisation network and represents the optimisation problem at the finest scale or res-
olution. At successively higher layers the optimisation problem is represented at coarser
scales, requiring fewer neurons in each layer. Top-down connections between the layers
would ensure that information about the state of the coarser scale layers flows down to
the finer scale layers. At the same time, bottom-up connections ensure an information
flow from the finer to the coarser scale layers. Such a multi-scale optimisation network
implements a divide and conquer approach to optimisation. Lister (Lister, 1993; Lister,
1994; Lister, 1995) suggests that when an optimisation network implements a divide and
conquer strategy, it will have an energy landscape that scales well to large problems.

In his work on simulated annealing, Lister (Lister, 1994) has proposed a discrete multi-
scale heuristic for solving the Ising spin problem. The multi-scale heuristic constructs a
hierarchy of layers, as shown in Figure 5.9, with each layer in the hierarchy representing
the Ising spin problem at a different scale. In this case, the lowest level is, in isolation,
a normal 4 x 16 Ising spin model. At level two there is a 2 x 8 network of elements,
with each element being associated with several contiguous elements in level one. Levels
three and four are constructed in a similar manner. When an element in level two or
higher changes state, all of its associated level one elements change state. The change in
energy for such a transition is given by the energy change at level one of the hierarchy.
It should be noted that elements in level two and higher can adopt more than two states.
The exact number of states equals the number of possible state configurations that their
corresponding level one elements can adopt. For the hierarchy shown in Figure 5.9,
level two elements have 2% states. When used in conjunction with simulated annealing,
the multi-scale heuristic is a powerful mechanism for solving the Ising spin problem,
which significantly outperforms simulated annealing operating directly on the Ising spin
problem (i.e. directly on level one). While the multi-scale heuristic is not developed as
an optimisation network, the structure of an analogous multi-scale network for solving
the Ising spin problem is immediately obvious when comparing Figures 5.8 and 5.9.

This is not the first time that the concept of multi-scale networks has been proposed.
Indeed, multi-scale optimisation networks have been developed and applied to graph
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Figure 5.8: A multi-scale optimisation network.

A multi-scale optimisation network consists of several layers. Layer 1 repre-
sents the optimisation problem at its finest scale. At successively higher layers
the problem representation becomes coarser, requiring fewer neurons in each
layer. For clarity the interconnections belween layers have not been explicitly
shown. Instead we have indicated the typical extent of comnections between
layer 1 and a single neuron in layer 2 by shading. Both top-down and bottom-
up interconnections exist. Similarly the connections between layer 2 and a
neuron in layer 3 have been indicated by shading.

Level 4 (1 x 2)

Level 3 (1 x 4) 7
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Level 2 (2 x 8)

Level 1 (4 x 16)

Figure 5.9: Multi-scale discrete heuristic for the Ising spin problem (Lister, 1994).

The discrete multi-scale heuristic for the Ising spin problem makes use of a
hierarchy of layers. In isolation, level 1 is a normal 8 X 16 Ising spin problem.
Level 2 is constructed by associating each element with several contiguous el-
ements from layer 1. Layers 8 and 4 are constructed in a similar manner. If
an element in level 2 or higher changes state then all of its associated level 1
units also change state.
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labelling (Mjolsness et al., 1991), selected problems in low-level vision (Mjolsness et al.,
1991; Tsioutsias and Mjolsness, 1996) and signal decomposition (Truyen and Cornelis,
1995). In the majority of these cases, the motivation for using a multi-scale optimisation
network has been to speed up the rate of convergence by using smaller, approximate
versions of the problem at coarser scales (Mjolsness et al., 1991). The emphasis has not
been on the improvements in solution quality that a multi-scale approach to optimisation
can offer.

To implement a multi-scale network, it is first necessary to identify a suitable partition-
ing function which will allow the optimisation problem to be represented at progressively
coarser scales. This is clearly exhibited by the multi-scale heuristic for the Ising spin
problem in Figure 5.9. In this case the partitioning function groups several contiguous
clements at the lower level and represents them by a single element in the next highest
level. Our knowledge of how segmentation occurs in the Ising spin problem naturally
suggests this partitioning function. To understand why, consider the lowest level of the
hierarchy for the multi-scale heuristic. As shown by the simulations in Section 5.2.1 1t
is common for the state of this level to be given by two locally optimal segments, each
belonging to opposing checkerboard solutions to the Ising spin problem. With the parti-
tioning function used in the multi-scale heuristic, one of these locally optimal segments
can be changed into the opposing checkerboard solution by coordinated switching of sev-
eral elements in the higher levels. In doing so, the globally optimal solution to the Ising
spin problem has been obtained by removing the segmentation from the lowest level in
the hierarchy.

In much the same way as we have done for the Ising spin problem, all applications
of multi-scale networks to date, have exploited some knowledge about how segmenta-
tion effects the problem at hand. This knowledge is then used to construct a suitable
partitioning function. Moreover, this knowledge is available prior to simulation of the
multi-scale network and so can be built into the structure of the network. Unfortunately
this is not true for all problems. Take for example a random travelling salesman prob-
lem. It is not immediately clear where in the final solution of the TSP segmentation will
become evident. Of course, a suitable partitioning function may well be learnt through
experience in repeatedly running the multi-scale network and optimising the partitioning
function. However, such a process will be exceptionally time costly and will erode the one
great advantage of optimisation networks — speed. It seems that even though multi-scale
networks can significantly improve the performance of optimisation networks, they are
limited to problems such as the Ising spin problem where a suitable partitioning function
does not have to be learnt.

5.4.2 Extended Neighbourhood

In Section 5.2 it was shown that segmentation of solutions found by optimisation networks
arises as a consequence of the dynamics encouraging the formation of small, locally
optimal segments. As this is true for all applications of optimisation networks, a widely
applicable approach to improving their performance is to extend the neighbourhood in
which the network encourages the formation of locally optimal segments. This concept
will be demonstrated on the familiar Ising spin problem.

Using the problem representation for the Ising spin problem given in Section 5.2.1,
we will construct a dynamic equation for the internal state uf.“’) of neuron vgw), that will
encourage the formation of larger locally optimal segments. To that end, consider the
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An equivalent dynamic equation for uz(-b) may be constructed. The second-order dynamics
are easily interpreted; if the neighbours of element ¢ are likely to be assigned the state
black, and the neighbours of the neighbouring elements of z are likely to be assigned the
state white, then the assignment of state white to element ¢ is encouraged (dugw)/dt > 0).
Conversely, if the neighbours of element i are likely to be assigned the state white, and
the neighbours of the neighbouring elements of ¢ are likely to be assigned the state
black, then the assignment of state white to element ¢ is discouraged (dul(-w)/dt < 0).
The combined effect of the second-order dynamics for neurons associated with element
i is to encourage the formation of a locally optimal segment encompassing element ¢z, its
four immediate neighbours and their immediate neighbours. The second-order dynamics
represent a much stronger heuristic approach to solving the Ising spin problem than that
which is implemented by the Hopfield network.

The concept of enlarging the neighbourhood in which locally optimal segments are en-
couraged may be further extended by including even higher-order terms in the dynamics
e.g. the third-order dynamics' ?
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Simulation Results

To demonstrate the benefit that can be obtained from extending the neighbourhood
in which locally optimal segments are encouraged, we have simulated the higher-order
dynamics given in equations (5.6) and (5.7) and compared the results with those obtained
for the Hopfield network in Section 5.2.1. The simulation method and parameters were
as given in Section 5.2.1.

A typical solution to the third-order dynamics of equation (5.7), when simulated on an
8 x 16 Ising spin problem, is shown in Figure 5.10. These results may be contrasted with
the results obtained by a Hopfield network in Figure 5.3. Once again, the final solution
is seen to evolve from seed-points which were formed in the early stages of convergence.
However, as can be seen in Figures 5.10(b) and (c), the extended neighbourhood of the
third-order dynamics allows only a single seed-point to form. Under the action of the
dynamics, the seed-point reinforces and expands in diameter, with the elements of the
Ising spin model converging to states representing black or white. In this run of the
third-order dynamics one of the globally optimal checkerboard patterns was obtained.

Our motivation for developing the higher-order dynamics was to extend the neigh-
bourhood in which locally optimal segments are encouraged and in doing so to overcome

2For the sake of clarity, annealing and penalty terms have not been shown but must be included as
in equation (5.5).
3The existence of a Lyapunov function for these dynamics is not guaranteed by the results of Chapter 6

as the necessary symmetry conditions are not satisfied. However, convergence has been attained in all
experiments reported herein.
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(a) t = 0.0962.
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(b) t = 0.3398.
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() t = 2.5494.

Figure 5.10: Solution of an Ising spin problem using third-order dynamics.

Time evolution of the third-order dynamics (equation (5.7)) used to solve an
8 x 16 Ising spin problem. The elements of the Ising model have been rendered
according to the difference in outputs of their associated neuron pair (i.e. v
v}b)). The final solution is the global minimum with cost E°% = 0. Note the

(w) _

formation of only a single seed-point.
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the problem of segmentation. If the higher-order dynamics have been successful in tack-
ling the problem of segmentation, then they should also improve upon the scaling of the
Hopfield network to large problem sizes. To investigate this claim, we have simulated
the higher-order dynamics on instances of an 8 x n Ising spin problem, and compared
the results to those obtained with the Hopfield network in Section 5.2.1. The results
of the experiment are shown in Figure 5.11. By obtaining more optimal solutions and
achieving a lower mean cost over 100 trials at each problem size, it is quite obvious that
the higher-order dynamics have improved upon the Hopfield network.

The superior performance of the higher-order dynamics may be attributed to the
empirical observation that the basin of attraction for the globally optimal solution is
enlarged as the order of the dynamics is increased. However, this observation must
be tempered by the realisation that if a near-optimal solution is desired then as the
problem size increases, it is necessary to introduce even higher-order dynamics so as to
encourage the formation of even larger locally optimal segments. The need to introduce
even higher-order dynamics exemplifies the trade-off between between computational
effort and solution quality, that can be made with many heuristics.

In Chapter 6 we will further develop the use of higher-order dynamics in optimisa-
tion networks by formalising the concept of higher-order neural networks (HONNS) for
optimisation. In addition, it will be shown how to map the travelling salesman problem

onto a HONN.

5.5 Chapter Summary

At the beginning of this chapter we used the travelling salesman problem to demonstrate
that as the problem size increases, the quality of solutions found by an optimisation
network rapidly decreases. Such poor scaling further restricts the already tight niche
market for optimisation networks. The purpose of this chapter was to understand the
causes for poor scaling, and if possible to suggest remedies.

It was revealed that optimisation networks operate by embedding simple heuristics
into the dynamics of the network. Typically, these heuristics encourage the formation of
small, locally optimal segments and their effect can be seen most clearly when used to
solve the Ising spin problem, which is a simple graph 2-colouring problem. The heuristics
used in the Ising spin problem allow several seed-points to evolve independently. As
a tesult, the final solution exhibits several locally optimal segments which have been
joined together so as to produce a poor solution. Moreover, as the problem size increases,
even more locally optimal segments develop independently and consequently the solution
quality deteriorates.

To improve the performance of optimisation networks it is necessary to replace or
modify the heuristics used in their dynamics. An investigation into the node insertion
and segment reversal heuristics for the travelling salesman problem suggested that the
energy landscape of standard optimisation network approaches contained large flat spots.
Moreover, the size of such flat spots increased with the problem size and made it increas-
ingly difficult to find good solutions to the travelling salesman problem. In contrast, the
segment reversal heuristic was shown to scale well to large problem sizes, but unfortu-
nately it was not amenable to implementation as a heuristic to be used in optimisation
networks.
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Figure 5.11: Performance of higher-order dynamics on the Ising spin problem.

The performance of the higher-order dynamics is contrasted to that of the Hop-
field network (1 order dynamics) on the 8 x n Ising spin problem, with in-
creasing horizontal dimension n. For a given problem size n, each network
was simulated 100 times. As shown in (a) the mean cost of the solutions found
decreases as the order of the dynamics used increases, and (b) the number of
optimal solutions found increases as the order of the dynamics increases. Note
that in (b) the direction of increasing magnitude has been reversed on some
azes as compared to (a).
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Although there do exist heuristics which outperform those used by optimisation net-
works, we cannot simply select one and then embed it into the dynamics of the opti-
misation network. Instead, we have proposed two new optimisation networks. The first
is a multi-scale optimisation network, which incorporates several layers into an optimi-
sation network. Fach layer treats the problem at a different scale and so the whole
multi-scale network implements a divide and conquer strategy to optimisation. Unfor-
tunately, implementation of a multi-scale network relies on detailed apriori knowledge of
how segmentation will be exhibited in the solution obtained from a standard optimisa-
tion network. While such knowledge is available for simple problems like the Ising spin
problem, it is not readily available for other problems like the travelling salesman.

We have shown that the poor scaling of optimisation networks arises form the tendency
of the heuristics to encourage small locally optimal segments in the solution. In view of
this fact, the second approach to improving the performance of optimisation networks
extends the neighbourhood in which the network encourages the formation of locally
optimal segments by including higher-order terms in the network dynamics. The resulting
network is more complex, but this can be seen as embodying the trade-off between
computational effort and solution quality that can be made with most heuristics. Using
higher-order dynamics greatly improved the performance of optimisation networks on
the Ising spin problem.



CHAPTER VI

Higher-Order Neural Networks

We have now established that the Hopfield network does not scale well to large prob-
lem sizes due to its tendency to form solutions which consist of small, locally optimal
segments. Moreover, the Hopfield network’s dynamics embed simple heuristics which
are responsible for this behaviour. We showed in Chapter 5 that to improve the perfor-
mance of optimisation networks we can use higher-order terms in the network dynamics
to extend the neighbourhood in which locally optimal segments are encouraged. In this
chapter we will formalise this concept as that of higher-order neural networks (HONNs)
for optimisation. HONNs are a new class of optimisation networks that may be applied
to almost any combinatorial optimisation problem to which the Hopfield network has
been applicd. In this chapter we will show how to apply HONNs to the solution of the
travelling salesman problem.

We begin in Section 6.1 by describing the model we have used for HONNs. As with
other optimisation networks, HONNSs operate by a process of gradient descent and are
therefore suited to the solution of optimisation problems. A simple example is given in
Section 6.1.1 where we show how a HONN may be used for minimising a cubic objective
function. While our approach of using HONN for the solution of combinatorial optimi-
sation problems is novel, it is not the first application of higher-order recurrent neural
networks that has been documented. Consequently, in Section 6.1.2 we present a brief
survey of other applications of higher-order recurrent networks that may be found in the
literature.

A major goal for this chapter is to demonstrate how to use a HONN for the solution
of difficult combinatorial optimisation problems like the travelling salesman. However,
before we apply HONNs to the solution of the TSP it is necessary to understand the ap-
proach used by the Hopfield network for solving the TSP. Consequently, in Section 6.2 we
examine the dynamics of the Hopfield network to extract the heuristic used when solving
the TSP. We then proceed to formulate a HONN approach to the TSP by extending the
heuristic to encourage the formation of larger locally optimal segments. This process is
described in Section 6.3. An experimental comparison of the Hopfield network and the
HONN approach to the TSP is given in Section 6.4. Finally, in Section 6.5 we present a
summary of the chapter.

6.1 The HONN model

In many ways a HONN may be viewed as an extension of the Hopfield network where
the feedback vector is no longer restricted to be linear, but is allowed to be a polynomial
function of the network output v. As with the continuous state Hopfield network, the
ith processing unit is described by two variables: its internal state u; and its output
v; € [0,1]. In order to produce a feedback vector which is a polynomial function of the
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neuron outputs, a HONN uses multiplication units to form the products of outputs from
various subsets of neurons, which are then fed-back to the input of the network. The
HONN forms a dynamic system described by the following equations:

d 7 L i k mj

Eu_ = Z Tk———m (k) H v; ik _ nu; (6.1)
t k=1,:€T) Vi jer,
v, = g ul) (62)

where 7 is a decay parameter, T = {Iy, I, .. .T1.} is a collection of L unordered subsets of
the indices {1,2,... N}, Tk is the synaptic weight applied to the product of the outputs
of neurons in the unordered subset Iy and m;(k) is the power to which the output of
neuron j is raised when calculating the product of neuron outputs in subset Zz. The
transfer function g(-) is a monotonically increasing function that restricts the neuron
outputs to the range v; € [0,1]. As for the continuous Hopfield network, the usual choice
is the shifted hyperbolic tangent function

B 1

g(uz) 1 T exp(—ui/T”)

where T? is a parameter controlling the slope of the transfer function in the linear region,
and is termed the pseudo-temperature. A cursory examination of the HONN dynamics
given by equation (6.1) reveals that the feedback vector is now a polynomial function
of the neuron output v. The continuous Hopfield network is a restricted version of the
HONN where the subsets Z; are given by all indices and all unordered pairs of indices
from {1,2,...N}. In which case, if the m;(k) functions are suitably chosen the dynamic
equation (6.1) will reduce to the Hopfield dynamics given by equation (2.12).

A HONN admits the Lyapunov function (Dembo et al., 1991; Poteryaiko, 1991)

L v
By = -3 T [ 0@ 493 [ g7 (V)av. (6.3)
k=1  j€Ix i 05

It is easily shown that under the action of the network dynamics the Lyapunov function
for the network is non-increasing, viz.

dEWr QEW dv;
dt N i 6vi dit
L m;(k " du;
= > (— > T (%) II vj’(k)Jrnui .q’(us)—t—
. k=1,icTx Vi jery e

-z ()
< 0.

Since EW is bounded below and the time derivative of E"°? is non-increasing, the
HONN will seek out minima in the Lyapunov function and come to a stop at such points.
Obviously HONNs operate in much the same manner as continuous Hopfield networks,
with only the form of the Lyapunov function being different. While a HONN does
necessitate the use of multiplication units and an increase in the number of connections
in the network, it also allows more flexibility than is available with a Hopfield network.
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Figure 6.1: Contours of the 2-dimensional cubic objective function.

A contour plot for the function E = vivg — o3 +v3. The global minimum of

this function is E([1, 0]7) = —1.

6.1.1 Simple Example

To demonstrate the operation of a HONN, we shall use a HONN to minimise the 2-
dimensional cubic function given by

E = viu, — v} + vs. (6.4)

A contour plot of the function E is shown in Figure 6.1. In order to minimise this
function with a HONN it is necessary to equate the Lyapunov function of equation (6.3)
with the function E given in equation (6.4). To achieve this we set 7 = 0, and choose
the unordered sets as T = {I1, T2, Tz} = {(1,2), (1), (2)}. Other parameters are set as
follows:

Tl,Tg - —1
T2 = 1
my = (2, 3, 0)
me = (1, 0, 3)

By substituting these parameters into equation (6.3), it is easily verified that BV = E.
Further substitution of the parameters into equation (6.1) gives the network dynamics
as

’1.1,1 = —2’01’02+3'U%

C 2 2
Uy = —vy— 3v;.

Note that these dynamics are a second-order system and so the entire network is referred
to as a second-order IIONN?. Operation of the HONN is shown in Figure 6.2. The

1A second-order HONN will have a third-order Lyapunov function. Throughout this thesis we have
used the convention of naming a system according to the order of its dynamics and not the order of its
Lyapunov function.
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network is initialised at the centre of the unit square and converges to the global minimum
of the Lyapunov function at v = [1, 0]7. Obviously the network is performing gradient
descent upon the Lyapunov function.

6.1.2 Applications of HONNs

The concept of HONNs is not new. Indeed, recurrent networks that utilise higher-
order connections have been applied to a variety of problems, usually in response to the
shortcomings of first-order networks such as the Hopfield network. In this section we
briefly present the applications of HONNs that have appeared in the literature.

Associative Memories

One of the earliest uses of the Hopfield network was as a form of associative or content
addressable memory (CAM) (Hopfield, 1982; Hopfield, 1984). When a set of patterns
have been stored into memory, a CAM will retrieve one of these patterns based upon
the similarity of the stored patterns to the pattern which 1s presented at the input.
When a corrupted version of one of the patterns is presented at the input, the CAM
will retrieve the stored pattern which best matches the input. To utilise the Hopfield
network as a CAM, the connection weights and external biases must be programmed so
that the minima of the network’s Lyapunov function correspond to the desired stored
patterns. When operating as a CAM, the state of the Hopfield network is initialised with
a corrupted pattern and the network dynamics will guide the network state to the nearest
local minimum of the Lyapunov function. In doing so, it is expected that the network will
have corrected the errors in the corrupted pattern. While it is now generally accepted
that the Hopfield network has a low storage capacity, HONNs have been proposed as a
means to improve the number of patterns that may be stored. Unlike the continuous
state HONNs which were introduced in Section 6.1, most studies of HONNs as content
addressable memories have used discrete state units (Lee et al., 1986; Chen et al., 1986;
Psaltis and Park, 1986; Gardner, 1987; Abbott and Arian, 1987; Personnaz et al., 1987;
Baldi and Venkatesh, 1987; Baldi, 1988; Baldi and Venkatesh, 1993; Karlholm, 1993;
Chao et al., 1993).

Grammatical Inference

Grammatical inference is the task of learning to recognise temporal sequences (strings)
generated by a set of rules known as a grammar (Hopcroft and Ullman, 1979). The
language of a grammar is the set of all strings that can be generated by the grammar.
To infer the grammar from a set of positive and negative example strings (i.e. strings that
do or do not belong to the language) an inference engine is used to determine which rules
belong to the grammar. A ruleis of the form: {input, current state} — next state.

There has been considerable interest in the use of recurrent neural networks as infer-
ence engines for the task of grammatical inference. Recurrent neural networks seem to
be well suited to implementing grammars as their dynamics make use of internal state
information and naturally implement the state transitions that correspond to the rules of
a grammar. By using suitable algorithms to learn the weights on the connections in the
network, a recurrent neural network can infer the grammar based on a set of positive and
negative example strings. While the recurrent networks used for grammatical inference
are not exactly as described in Section 6.1, it is interesting to note that both theoreti-
cal and experimental comparisons show that second-order recurrent networks are better
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Figure 6.2: Operation of a HONN.

The plots show the operation of a HONN on the cubic function E given in
equation (6.4). To ensure that EWwe = E_ the parametersn = 0 and T? =1
are used. Integration of the HONN dynamic equations yields the traces shown
in (a) and (b). Since there is no decay term, the u variables are unbounded.
The gradient descent nature of the HONN dynamics is evident in (¢) where the
dashed lines are contours of EW*?. The network is initialised at v = [0.5, 0.5)7
and converges to v = [1, 0]7, which is the the global minimum of the Lyapunov
function within the unit square. The HONN dynamics were integrated using
the Euler method and a constant step-size At = 0.01.
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suited to the task of grammatical inference than first-order networks (Goudreau et al.,
1994: Miller and Giles, 1993). These studies suggest that second-order dynamics offer a
more direct implementation of the rules of a grammar. Consequently, most approaches
to grammatical inference with recurrent networks now advocate the use of higher-order
connections (Giles et al., 1992; Watrous and Kuhn, 1992; Zeng et al., 1993; Horne and
Giles, 1995; Giles and Omlin, 1993; Giles and Omlin, 1994).

Optimisation

Higher-order neural networks have been used for the solution of optimisation problems
where the objective function could not be expressed as a quadratic function. For example
the problems of line labelling (Salem and Young, 1991), block design (Bofill, 1993) and
relational structure mapping (Miller and Zunde, 1992) require cubic or quartic objective
functions and so must be solved with a HONN.

A very different standpoint on the use of HONNs for optimisation was suggested in
Chapter 5 and underlies the rest of this thesis and various other published works (Cooper,
1995a; Cooper, 1995b). As optimisation networks operate by embedding simple heuristics
into the network’s dynamics, higher-order networks potentially have the ability to embed
more sophisticated heuristics into the dynamics. While we are not compelled to use the
higher-order connections in order to solve the problem, we do so in order to gain an
improvement in the solution quality at the expense of extra network complexity.

Another approach to the use of higher-order neural networks was proposed by Xu and
Tsai (Xu and Tsai, 1991). They propose a first-order network for the solution of the TSP
and proceed to run that network many times. For each trial run, if the network converged
to a poor solution, then higher-order terms were added to the network dynamics in order
to prevent this solution from being obtained again. In essence, they are sculpting the
Lyapunov function, using higher-order terms to add “bumps” in locations which help to
prevent poor solutions from being obtained in the next trial.

Pattern Recognition

Although we are primarily interested in the applications of recurrent networks that utilise
higher-order connections, it is worthwhile noting that there have been many applications
of higher-order feed-forward networks. Specifically, feed-forward networks have been
used to implement translation, rotation and scale invariant pattern recognition (Maxwell

et al., 1986; Giles and Maxwell, 1987; Giles et al., 1988; Perantonis and Lisboa, 1992).

6.2 The Hopfield approach to the TSP

In Chapter 5 it was shown that a practical approach to improving the performance of
optimisation networks was to extend the neighbourhood in which locally optimal solu-
tions were encouraged by using higher-order terms in the network dynamics. Moreover,
while this approach was demonstrated only on the relatively simple Ising spin problem
we stated that increasing the order of the network dynamics was a widely applicable
approach to improving solution quality. To justify this assertion we shall demonstrate
how to apply HONN s to the solution of the travelling salesman problem.

However, before we can apply higher-order networks to the TSP it is necessary to
ascertain the approach that the Hopfield network has employed in solving the TSP. In
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order to do this we must proceed, as we did with the Ising spin problem, by analysing the
dynamics of the Hopfield network to determine the heuristic that has been embedded.

It is appropriate at this time to recapitulate the problem representation for the TSP
as it was presented in Section 3.2. To solve a N city TSP, a N X N array of neurons
is used where the output vg; of the neuron in row z and column i is one if city z is to
be visited in the i'* position of the tour and zero otherwise. To map the TSP onto the
Hopfield network, we set the Lyapunov function to be

Elyap — Eobj + Jens + Emod

where the objective function is given by equation (3.2), viz.

. 1
EObJ — 5 Z Z Uzidzy(vyvi‘“l + vy'i+1)
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Here we have once again made use of the convention that all summations are from 1
to N unless explicitly shown otherwise. Furthermore, the penalty function is given by
equation (3.13), viz.

2 2 2
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and the modified hysteretic annealing function is given by equation (4.10), viz.
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6.2.1 Extracting the heuristic from the Hopfield network

The first step in extracting the heuristic used by the Hopfield network for solving the TSP
is to establish the dynamics of the network. The network dynamics are easily determined
as follows:

dum . _8E’y‘”’
dt OVg;
c+ v 4y c+ v
= —( N ) (Zvyi—l) — -(—N——)- (vaj——l) + ( N2 ) (Zvyj —*N)
y J yJ
1
+y (vwi - N) - Z dmy(vy,i+l + vy,i—l)- (65)
Y

yFT

Our analysis of the valid subspace mapping in Chapter 3 showed that the terms in the
dynamic equation arising from the penalty function E°* act only to restrict the network
state v to lie on the valid subspace. Additionally, the analysis of the modified annealing
technique presented in Chapter 4 showed that the terms arising in the dynamic equation
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from E™¢ help only to guide v through the valid subspace. In no way do these terms
represent a heuristic for minimising the distance travelled in the TSP, and so for the
purpose of extracting a heuristic we may simply express the network dynamics as

dugz; penalty and
dt ~ \ annealing terms

) S oy (vt 4 V). (6.6)
K]

y#a

Although it is not explicitly stated in the problem representation, there is considerable
merit in interpreting v, ;11 as the probability that city y will occupy position ¢+ 1 of the
tour. Indeed, our understanding of the network dynamics is greatly assisted by making
such an interpretation of the network outputs. Consider the situation where it is probable
that city y will occur in position ¢ + 1 of the tour i.e. vyt is much larger than all other
neuron outputs in column ¢ + 1 of the array. We can see from equation (6.6) that in
such a situation ug; will be decreased by an amount which is proportional to the distance
between cities = and y. Moreover, a decrease in the internal state us; also results in a
decrease in the neuron output vy = g(us) and so the probability that city « occupies
position 7 of the tour is decreased. However, 1t must be remembered that all neurons in
column i of the array will have their internal state decreased by an amount proportional
to the distance between city y and the city that they represent. Consequently, if the
distance between cities z and y is small compared to the distance between city y and any
other city, then the probability of city « occurring in position ¢ of the tour is comparatively
encouraged. A similar argument may be presented for the interaction between a neuron
vy,i—1 and the neurons in column ¢ of the array.

Lister (Lister, 1993) suggests that equation (6.6) embeds an analogue version of the
node insertion heuristic for the TSP where “portions of cities are moved around” in the
tour. However, the preceding discussion of the network dynamics suggests an alternative
interpretation: as equation (6.6) is acting to encourage the inclusion into the tour of
segments which connect two nearby cities, we suggest that the network dynamics embed
an analogue version of the nearest neighbour heuristic for the TSP (Reinelt, 1994). In its
discrete form, the nearest neighbour heuristic builds a tour for the travelling salesman
by starting at any city and then including the segment which visits the closest city
which has not yet been included into the tour. The analogue version of the nearest
neighbour heuristic embedded into equation (6.6) constructs a tour by using “portions”
of segments between two cities. Interpretation of the network dynamics as an analogue
nearest neighbour heuristic is further supported by the formation of seed-points as the
network computes a solution to the TSP (Van den Bout and Miller, 1989). When the
seed point first forms, it represents a small path that will be found in the final tour. As
the seed point expands, the path is extended by adding a further segment to the end of
the existing path. Obviously this is closely related to the manner in which the discrete
nearest neighbour heuristic works. The difference between the two interpretations of the
network dynamics is only of interest when we consider how to extend the heuristic for

use in HONNS.

6.3 The HONN approach to the TSP

As was shown in Section 6.2 the Hopfield network approach to the TSP is an analogue
nearest neighbour heuristic, whereby a tour is constructed by encouraging the formation
of locally optimal segments between two cities. In this section we will show that a HONN
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may be used to extend the neighbourhood of these locally optimal segments to include
not just two cities, but three or more cities.

As an objective function for the TSP when mapped onto a second-order HONN,
consider

E%% = Z Z(dzy + dyz )VaiVy,i41Vzi42- (6.7)

When equation (6.7) is evaluated at a valid 0 — 1 point it equates to twice the length of the
tour represented by that point. In that respect, equation (6.7) is similar to the objective
function used for the Hopfield network mapping of the TSP. However, it is important
to note that equation (6.7) differs from the objective function for the Hopfield network
at points inside the hypercube and consequently the basins of attraction for valid 0 — 1
points have been altered. This observation will be the subject of more detailed comment
in Chapter 7.

With the objective function given by equation (6.7), the Lyapunov function for the
second-order HONN to solve the TSP is given by

Elyap - Eobj + Fens + Emod.

Here the penalty function E°** and the modified hysteretic annealing function E™? are
as given in Section 6.2. The network dynamics are determined as follows:

dug; QE'wer
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Once again, we note that the terms arising in the dynamic equation from the penalty
function E°* act only to restrict v to lie on the valid subspace. Additionally, any term
arising in equation (6.8) from the modified annealing function E™ helps only to guide v
through the valid subspace. As none of these terms act to minimise the distance travelled
in the TSP, they should not be considered as part of the heuristic embedded into the
dynamic equation of the HONN. Consequently, for the purpose of analysing the heuristic
used by a HONN, we may simply express equation (6.8) as

dug; ( penalty and )

- Z (d:vy + dyz)vy,i+1vz,i+2

dt annealing terms ™
y#2#¢e
- Z (dy:l; + d:cz)vy,i—lvz,i+1 - Z (dyz + dz:v)vy,i—i,?vz,i—l- (69)
y;éyzz#w yaéyzz#w

In developing the heuristic which is embedded into the network dynamics of equa-
tion (6.9), we shall again interpret v,;41 as the probability that city y will occur in
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position i + 1 of the tour. Consider the situation where it is probable that city y will oc-
cupy position i4-1 of the tour and city z will occupy position ¢+2 of the tour (i.e. vy1118
much larger than all other neuron outputs in column i+ 1 of the array and v, ;42 is much
larger than all other neuron outputs in column 7 + 2 of the array). In such a situation,
the effect of the first summation in equation (6.9) is to decrease uy; by an amount which
is proportional to the length of the path connecting & — y — z. Moreover, a decrease in
the internal state ug; also results in a decrease in the neuron output ve; = g(ug;) and so
the probability that city z occupies position ¢ of the tour is decreased. However, it must
be remembered that all neurons in column 4 of the array will have their internal state
decreased by an amount which is proportional to the length of the path which connects
the city they represent to city y and then to city z. Consequently, if the length of the
path ¢ — y — z is small compared to the length of the path connecting any other city
to city y and then to city z, then the probability of city « occuring in position 7 of the
tour is comparatively encouraged.

A similar argument may be presented to explain the operation of the second and third
summations in equation (6.9). These summation terms will encourage city = to occupy
position i of the tour if city z corresponds to short paths y >z — zandy — z > ¢
respectively.

The preceding analysis of the dynamics for a second-order HONN suggests that the
network encourages the formation of locally optimal paths which connect three cities in
the tour. In contrast, it was shown in Section 6.2 that the Hopfield network encouraged
the formation of locally optimal paths (or segments) which connect only two cities in the
tour. By extending the neighbourhood in which locally optimal segments are encouraged,
the second-order HONN embeds a much stronger heuristic approach to the solution
of the TSP than that which is used in the Hopfield network. In view of the results
presented in Chapter 5 for the Ising spin problem, we expect that HONNs will give similar
improvements in the solution quality for the T'SP. Section 6.4 presents an experimental
evaluation of the performance of the HONN approach to the solution of the TSP.

The concept of enlarging the neighbourhood in which locally optimal segments are
encouraged may be further extended by considering even higher-order networks e.g. a
third-order HONN with the objective function

EObj - Z Z(dwy + dyz + dzw)vm'vy,i+1vz,i+2vw,i+3 (610)

chvatu
will act to encourage the formation of locally optimal paths which connect four cities in
the tour. A (N — 1)** order network would encourage the formation of locally optimal
paths which connect all N cities in the tour. However, calculation of the Lyapunov
function for a (N —1)™ order network would explicitly calculate the cost of every possible
tour. In that case, calculating the Lyapunov function involves the same computational
effort as an enumeration technique which calculates the length of every possible tour and
chooses the shortest. It is well known that as the number of possible tours for the TSP
rises exponentially with the problem size, such enumeration techniques are impractical for
all but the smallest problems. Consequently, a (N — 1)** order HONN is also impractical
for all but the smallest problems.

As the order of the HONN increases, the heuristic which is embedded into the network
dynamics offers a progressively stronger approach to the solution of the TSP. In that
sense, we may view HONNs as a family of heuristic approaches to the solution of the
TSP where we may trade increased computational effort for improved solution quality
by simply increasing the order of the network. Unlike most other heuristics for the
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TSP, an increase in the computational effort required by a HONN does not mean a
longer running time, but rather it results in an increased number of connections in the
network. This is quite obvious when we consider that the number of interconnections
necessary to implement a Hopfield network for the TSP is O(N?), while for a second-order
HONN that number has increased to O(N*) and for a third-order HONN the number of
interconnections is O(IV®). As the order of the HONN increases, the limits of what may be
feasibly implemented in hardware will very quickly be approached. Consequently, when
considering a HONN approach to the TSP, one must have in mind a clear understanding
of their performance. While we may be willing to trade complexity for improved solution
quality, this can only be done up to a certain level, beyond which the complexity of
the required network prohibits it from being implemented. It should be noted that such
limitations are not unique to optimisation networks. Most other heuristics involve a
trade-off between run time and solution quality, where as the demands on the solution
quality increase the necessary run time will approach the impractical run times needed
for a direct enumeration approach to the TSP.

6.3.1 An alternative approach

The HONN approach to the solution of the TSP that we have described was first pro-
posed by Cooper (Cooper, 1995a). An alternative approach to the solution of the TSP
with a higher-order recurrent network was recently proposed by Matsui (Matsui and
Nakabayashi, 1995). While the higher-order recurrent network they use does not have a
Lyapunov function, it is similar to our approach in that E° is a cubic function of the
network state v, viz.

EObj . Z E(dxy + dyz)vxi('vy,i+1 + vy,i—l)(vz,i—}-l + Uz,i—l)- (611)
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Equation (6.11) may be compared to the objective function which we have proposed for a
second-order HONN, as given in equation (6.7). There are several significant differences
between our HONN approach to the TSP and that suggested by Matsui and Nakabayashi.

e Firstly, it is not apparent that minimising the objective function given by equa-
tion (6.11) will lead to short tours. Although equation (6.11) does equate to four
times the tour length at a valid 0 — 1 point, its meaning at points inside the hyper-
cube is not clear. Consider the term

(dxy + dxz ) VziVy,i+1Vz,i4+1

which appears in the objective function of equation (6.11). This term measures the
distance between a city & occuring in position ¢ of the tour and two cities y and
2z occuring in position ¢ + 1 of the tour; but as we know, for the network state to
represent a valid tour only one city can occupy each position in the tour. There is
1no sound basis for including this and other similar terms into the objective function

for the TSP.

In contrast, the only term in the objective function given by equation (6.7) for
our approach to the TSP measures the length of a path visiting cities z, y and
2z in consecutive positions on the tour. Quite obviously, minimising the objective
function that we have proposed will lead to short tours for the travelling salesman.
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e The objective function given by equation (6.11) does not correspond to a Lya-
punov function for the higher-order network that has been proposed in (Matsui and
Nakabayashi, 1995). Consequently, the value of the objective function may increase
at any iteration of their algorithm.

e Finally, the results of their simulations are questionable. They report that a Hopfield
network solving a twenty city TSP obtained solutions which were in the vicinity of
90% longer than the optimal solution. This should be compared to the simulations
presented in Section 5.1 where on a similar twenty city problem we showed the
Hopfield network obtained solutions which were only 0.27% longer than the optimal.
While this massive performance difference may well be attributable to the rigorous
problem mapping and principled annealing mechanisms that we have used, it also
casts doubt on any conclusions drawn from a comparison between their higher-order
recurrent network and the Hopfield network when operating in such an environment.

6.4 Simulations

In this section we present an experimental comparison of the Hopfield network and HONN
approaches to the TSP. For the purposes of this comparison we have solved 1000 instances
of a 10-city Euclidean TSP, where, for each instance, the cities have been placed randomly
inside the unit square and the optimal tour has been found by exhaustive search?. Each
instance of the TSP was solved with a Hopfield network, a second-order HONN and a
third-order HONN.

The network dynamics are given by equation (6.5) for the Hopfield network and equa-
tion (6.8) for the second-order HONN. The network dynamics for a third-order HONN,
where the objective function is given by equation (6.10), can be determined by setting
the Lyapunov function to ¥ = E°b + Ems 4 E™? and evaluating the partial derivative
OE"® [Qu,;. In all cases integration of the network dynamics was performed using the
function ode15s.m available in MATLAB®.

For each of the optimisation networks used in this experiment we have employed
modified hysteretic annealing. The annealing parameter was given by v = (/ )’ + 7
where 7 is a positive constant and -y is a small negative constant. Increasing the absolute
values of both 7 and 7o will improve the solution quality at the expense of longer running
time. For the experiments reported in this section, we set the network parameters as
follows: T = 100, 4o = —1 and the gain of the transfer function was set to T? = 1. For
cach instance of the TSP the weight ¢ on the penalty function £ was set so that

c=coNv I%l?g((dxy + dyz)

where cp = 1 and
1 for the Hopfield network

p =< 3 for the second-order HONN
6 for the third-order HONN.

This method of setting the weight on the penalty function £ is consistent with results
recently presented in the literature (Abe and Gee, 1995). For each simulation the initial
conditions were given by vz = 1/N + 0.01 * rand where rand is a random value in the

range [—0.5, 0.5].

2The problem database used for these simulations was developed and made available by A. H. Gee
of the University of Cambridge, England.
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Order Mean % error | Number of Optimal tours
1 (Hopfield) 1.9983 477
2 1.8013 523
3 1.6497 525

Table 6.1: Simulation results for HONNs solving the TSP.

The performance of the Hopfield network and second and third-order HONNs
on 1000 instances of a 10-city TSP is shown. For each order of network, the
mean percentage error and the number of optimal solutions found is reported.
The percentage error is given by (Ljound — Lopt)/ Lopt % 100% where L jound 1S
the length of the tour found by the optimisation network and Loyt is the length
of the optimal tour which has been found for each TSP by ezhaustive search.

The results of these experiments can be seen in Table 6.1. While the performance
of the three networks is quite similar, Table 6.1 shows that the mean percentage error
decreases and the number of optimal solutions found increases as the order of the network
is increased. While the advantages of increasing the order of the network are evident in
these results, the difference between the Hopfield network and HONNS is not astounding.
This should be expected as we know that the Hopfield network performs satisfactorily
on problems as small as these 10-city TSPs. We would also expect that HONNs will
significantly outperform the Hopfield network on larger problems, but we have not verified
this by simulation as the ability of HONNs to scale to large problem sizes was adequately
demonstrated on the Ising spin problem in Chapter 5. The main aim of this chapter,
which we have quite clearly accomplished, was to demonstrate how to apply HONNs to
the solution of difficult combinatorial optimisation problems like the travelling salesman.

6.5 Chapter Summary

Our investigations in previous chapters have suggested that higher-order terms in the
dynamics of an optimisation network may be used to improve solution quality. Such
higher-order terms allow more sophisticated heuristics to be embedded into the dynamics
of an optimisation network. In this chapter we have formally introduced higher-order
neural networks (HONNs) for optimisation. HONNs are a new class of optimisation
techniques that may be applied to a wide variety of combinatorial optimisation problems.

HONNs are basically an extension of the Hopfield network where the feedback vector
is no longer restricted to be linear, but is allowed to be a polynomial function of the
network output v. A HONN forms a dynamic system described by

du,- L y WL,'(-{;') m; (k)
k=1,i€Zy ' JE€ZLy
v; = g(u).

Here 7 is a decay parameter, Z = {I1,Z5,...Z1} is a collection of L unordered subsets of
the indices {1,2,... N}, T} is the synaptic weight applied to the product of the outputs
of neurons in the unordered subset I and m;(k) is the power to which the output of
neuron j is raised when calculating the product of neuron outputs in subset Zy. The
transfer function g(-) is a monotonically increasing function that restricts the neuron



6.5 Chapter Summary 89

outputs to the range v; € [0,1]. A HONN admits a Lyapunov function

L vi
porr(u) = = T [T o 403 [ o7 (V)aV

k=1 JET, 1

As with the Hopfield network, HONNs operate by a process of gradient descent on the
Lyapunov function. While the work reported in this thesis is amongst the first applica-
tions of HONNs to optimisation, HONNs have been applied as associative memories and
have also been used to solve the task of grammatical inference.

The major goal of this chapter was to demonstrate the application of HONNs to
difficult combinatorial optimisation problems like the TSP. In order to achieve this it
was first necessary to ascertain the approach that the Hopfield network has employed
in solving the TSP. When using the Hopfield network to solve the TSP, the objective

function is given by
"y
E = Z Z dxyvm-vy,iﬂ.
oy i

T#Y
Our analysis revealed that an analogue version of the nearest neighbour heuristic is
embedded into the dynamics of the Hopfield network. The Hopfield network effectively
constructs a tour by encouraging the formation of locally optimal segments which join
two cities. The HONN approach to the TSP was then formulated by extending the
neighbourhood in which locally optimal segments are encouraged. For a second-order
HONN approach to the TSP we suggested the objective function

EObj = Z Z(dxy +dyz)va:ivy,i+1v21i+2'

TYz 7

syt

Analysis of the dynamics for the second-order HONN suggests that the network con-
structs a tour by encouraging the formation of locally optimal paths which connect three
cities.

The concept of enlarging the neighbourhood in which locally optimal segments are
encouraged may be further extended by considering even higher-order networks. As the
order of the HONN increases, the heuristic which is embedded into the dynamics be-
comes a progressively stronger approach to the solution of the TSP. However, as the
order of the network increases the number of connections necessary to implement the
network increases exponentially. Consequently, we may view HONNs as a family of
heuristic approaches to combinatorial optimisation where we may trade increased com-
putational effort for improved solution quality. The trade-off between solution quality
and computational effort is the subject of more detailed discussion in Chapter 7.



CHAPTER VII

Investigating the Quality Versus
Computational Effort Trade-off

To this point in the thesis we have highlighted the need for improved heuristics for opti-
misation networks and subsequently developed the higher-order neural network approach
to combinatorial optimisation. We have applied HONNs to the solution of the Ising spin
and travelling salesman problems. While experimental evidence has supported our mo-
tivation for using HONNSs, in this chapter we will develop a deeper understanding of
HONNs by investigating the trade-off that can be made between network complexity
and solution quality. An important outcome of this investigation is a clear explanation
of the shortcomings of the Hopfield network approach to combinatorial optimisation.

We begin in Section 7.1 by considering the operation of an optimisation network as a
dynamic system whose stable attractors can be interpreted as solutions to an optimisa-
tion problem. We discuss how the location and number of attractors in the system affects
both the validity and quality of solutions found by an optimisation network. We proceed
in Section 7.2 by establishing the conditions under which, for the TSP, a vertex of the
valid subspace is a stable attractor for both the Hopfield network and HONNs. When
the optimal solution to the TSP satisfies these conditions for a given network, we can ob-
tain a measure of the expected solution quality by determining the number of competing
attractors in that network. In Section 7.3 we present a numerical comparison of the num-
ber of stable attractors in various networks when operating on two example TSPs. The
results of these comparisons support our assertion that HONNs are a family of solution
techniques that embody a trade-off between solution quality and computational effort.
In Section 7.4 we discuss the implications of our results for the performance of HONNs
and show that they clearly explain the inadequacies of the Hopfield network approach to
combinatorial optimisation. The impact of annealing on our quantitative results is also
considered, along with a discussion of further work which may be undertaken. Finally in
Section 7.5 we present a summary of the chapter.

7.1 Attractors and Basins of Attraction

Throughout this thesis we have considered optimisation networks simply as an algorithm
for minimising a quadratic function of the network state. While such an algorithmic
treatment of optimisation networks has afforded great insights into their operation and
allowed us to formulate an approach to combinatorial optimisation, it is interesting to
shift our emphasis slightly by considering the operation of an optimisation network as
that of a dynamic system. Viewing an optimisation network as a dynamic system does
not invalidate any of our previous analysis, for the network is unchanged, but it will
motivate the analysis that we present in this chapter.
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Figure 7.1: Optimisation networks are dynamic systems with stable attractors.

The Lyapunov function for an optimisation network defines an energy land-
scape over the entire state space. The minima of the Lyapunov function are
attractors for the network dynamics. Each attractor has an assoctated basin
of attraction which corresponds to a “valley” in the Lyapunov function for the
network.

Quite clearly, an optimisation network is a dynamic system where the network output
v moves about the state space under the action of the network equations. Moreover, our
analysis of the Lyapunov function for the Hopfield network, as presented in Section 2.5,
and for HONNs, as presented in Section 6.1, shows that v will converge to a stable
attractor. Fach attractor in the system corresponds to a minimum in the network’s
Lyapunov function and is therefore located at the bottom of a “valley” in the Lyapunov
function. As the system dynamics perform a gradient descent on the Lyapunov function,
the basin of attraction for each attractor is defined by the corresponding “valley” in
the Lyapunov function. When utilising an optimisation network for the solution of a
combinatorial optimisation problem the system is given some initial condition vq for
the state vector v. The system dynamics will then move the state vector v toward the
attractor at the bottom of the basin of attraction in which v is situated. When v has
converged to that attractor it is interpreted as the solution to the combinatorial problem.
A schematic representation of an optimisation network as a dynamic system is shown in
Figure 7.1, where we can see that the entire state space is partitioned into various basins
of attraction.

As the attractors of the dynamic system are interpreted as solutions to the optimi-
sation problem, both the problem mapping and annealing techniques that we have used
must impact upon the attractors in an optimisation network. In order to understand
the nature of the impact of annealing and problem mapping, we begin by making several
remarks with regard to how the location and number of attractors of the dynamic system
affect the validity and quality of the solutions found by the network:

Location of attractors - Firstly, as the attractors of the system are interpreted as
solutions to the optimisation problem, we can guarantee that no invalid solutions
are found by ensuring that all attractors for the system lie in the valid subspace.
Secondly, the attractors must be situated sufficiently close to a 0 — 1 point so as to
be interpretable solutions to the combinatorial problem.

Number of attractors - As the number of attractors increases, the valid subspace
is partitioned into more basins of attraction. With more attractors in the valid
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subspace, the likelihood of placing the initial state vo into the basin of attraction
of the optimal solution is decreased. Consequently, we can expect fewer optimal
solutions to be found.

Size of the basin of attraction - To obtain a good solution quality from the optimi-
sation network it is desirable for good solutions to the problem to have large basins
of attraction. Ideally we would like the optimal solution to the optimisation problem
to be the only attractor in the valid subspace with a basin of attraction encompass-
ing the entire state space. However, numerical results presented in Section 7.3 will
show that this is impractical.

From the above discussion, we see that to guarantee valid solutions we must ensure
that all attractors lie in the valid subspace. It should be remembered that the problem
mapping discussed in Chapter 3 guaranteed that the network state would always remain
valid by defining suitable penalty functions E°** to be included in the network’s Lyapunov
function. Therefore, we can infer that the penalty functions £** guarantee valid solutions
by ensuring that all attractors for the system lie in the valid subspace.

The impact of annealing on the location and number of attractors in an optimisation
network is somewhat more complicated but our understanding is aided by considering the
simple example of annealing presented in Section 4.2. With reference to that example,
when the annealing parameter v is set to a sufficiently large negative value there will be
only one attractor in the valid subspace and the network state v will move towards it (see
Figure 4.2(a)). As the annealing parameter is gradually increased more attractors appear
in the system and consequently the valid subspace is further partitioned into separate
basins of attraction (see Figure 4.2(c)). Furthermore, we know that as the annealing
parameter is increased still further, annealing encourages convergence to a 0 — 1 point.
This is achieved by forcing the attractors to the vertices of the valid subspace. The key to
the success of annealing in improving the solution quality is to ensure that the attractor
which corresponds to the optimal solution is among the first attractors to be included
into the system. Obviously, the more attractors that have been included into the system
before the optimal solution becomes an attractor, the less likely it is that v will converge
to the optimal solution.

7.2 Stability criteria for valid 0 — 1 points

In this section we will establish the conditions under which an arbitrary solution to a
TSP is an attractor for both the Hopfield network and the HONN.

The first step towards our goal is to establish the criteria under which a 0 —1 point
is an attractor for the system dynamics. We begin by noting that when the annealing
techniques described in Chapter 4 are used to improve solution quality, it is common
practice to set the decay parameter 1 equal to zero. Consequently, if a 0 —1 point is
to be an attractor the internal state u of the network will grow without bound at that
point. Evidence of this is shown in the simple examples of the Hopfield network and the
HONN presented in Sections 2.5.1 and 6.1.1'. We will consider a 0 — 1 point v to be
an attractor if that point is an asymptotically stable equilibrium point of the network

1'N0te that in these simple examples annealing was not employed. However, to ensure that Elyer =
E° the decay parameter 77 was set to zero and we saw that in each case u grows without bound at the
0 — 1 point to which the network converged.
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dynamics, i.e.
dvg;

dt

Furthermore, as v,; € [0,1] we require that f'l—z;‘:ﬂ — 0 from above if v,; = 1, and d—Z—fi -0
from below if v,; = 0. Note that since vy; = g(usi) we have

50 Vaziefl,...N} (7.1)

dv.m' dg duxi
= : 2
dt dug; dit (72)

Here -22 is the slope of the sigmoid function, which, although it is always positive, does

dugg

approach zero as Ug; — 00 OT Ug; — —OO. Therefore, from equations (7.1) and (7.2) we
can deduce that a 0 — 1 point v will be asymptotically stable if

d:;:i >0 for vy; =1 (7.3)
and p
Z;“ <0 for vy =0. (7.4)

Examination of equations (7.3) and (7.4) shows that when v is an asymptotically stable
0 — 1 point u will grow without bound.

7.2.1 The Hopfield network

Now that we have established the criteria for which a 0 — 1 point v is an asymptotically
stable equilibrium point, we turn our attention to the problem mapping of the TSP for
the Hopfield network. Once again, to map the TSP onto the Hopfield network we set
the Lyapunov function to be

Ei-yrzp — Eobj + B 4 Emod

where E% is the objective function for the TSP, E“* is the penalty function defined
by the valid subspace problem mapping and E™? is the modified hysteretic annealing
function. While complete details of the problem mapping may be found in Section 6.2,
we take as our starting point the dynamic equation for the network which is given by
equation (6.5) and which for completeness we restate as

dit (e+7) (e+7) (e+)
T - N (;in = 1) = (Z'vxj - I) + NZ (%:Uw - N)

J

1
+ (’Um‘ B —1\7) — > doy(vyitr + vyim1)- (7.5)
Y
y#T

Here c is the weight on the penalty function, + is the annealing parameter and dg, is the
distance between cities z and y.

From the analysis presented in Chapter 3 we know that the penalty functions E?
will correctly constrain v to lie on the valid subspace. Furthermore, we have established
that annealing will force v to a vertex of the valid subspace, which in the case of the
TSP will be a valid 0 — 1 point (Gee and Prager, 1994). Consequently, we will confine
our stability analysis to consider only the valid 0 — 1 points. When v lies on the valid
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subspace the first three terms in equation (7.5) will equate to zero, in which case the
dynamic equation reduces to

dum-

1
=1 (v = )~ sl +inr) (7.6)
y#zT

Now for a valid 0 — 1 point to be an asymptotically stable equilibrium point, equa-
tion (7.3) or equation (7.4) must be satisfied for each neuron vy. In order for equa-
tion (7.3) to be satisfied for each neuron in the network where vy; = 1, we can deduce
from equation (7.6) that

-l max  (dys + doz)- (7.7)

N — 1 yz,7z € tour(v)

v >

Here the notation yT, Tz € tour(v) indicates that the segments yT and Zz occur in the
tour described by vertex v of the valid subspace (alternatively y, = and z are consecutive
cities in the tour described by v). Similarly, for equation (7.4) to be satisfied for each
neuron in the network where vy; = 0, we can deduce from equation (7.6) that

v>-—N 10121;51 dyy. (7.8)

It is apparent from equations (7.7) and (7.8) that the annealing parameter -y determines
the stability of a vertex of the valid subspace. When v < 0, equation (7.7) cannot be
satisfied and therefore no vertex of the valid subspace is stable. However, we should
remember that during the course of the annealing process the annealing parameter is
gradually increased, and when v > 0 equation (7.8) is satisfied for all valid v and the
stability of a vertex of the valid subspace is then determined solely by equation (7.7).
Moreover, we see from equation (7.7) that the stability of a vertex of the valid subspace
is determined not by the length of the tour it describes but by the maximum length of
a segment joining three consecutive cities in that tour.

As the annealing parameter 7 is increased, there will be a critical value v = 7. where
the first vertex of the valid subspace becomes stable. It is important to realise that the
tour described by that vertex of the valid subspace is by no means guaranteed to be
the optimal tour (i.e. the minimal length tour). Indeed, it is likely that the annealing
parameter must be increased to a level ¥opt > 7 before the vertex of the valid subspace
which describes the optimal tour is stable. Moreover, when v = Yopt it is most likely
that there will be many other vertices of the valid subspace which will also be stable,
cach of which corresponds to a sub-optimal tour. Each of these stable vertices of the
valid subspace will have a basin of attraction and consequently the valid subspace will
be partitioned into many different basins of attraction. If we were to place the network
output v at a random position in the valid subspace then it is quite likely that the
network will converge to a vertex of the valid subspace which corresponds to a sub-
optimal tour. Obviously the method by which the Hopfield network attempts to solve
the TSP does not provide the necessary discrimination between optimal and sub-optimal
tours to guarantee that the network will reliably converge to the optimal solution.

7.2.2 HONNs

We will now consider the HONN approach to the TSP and establish the criteria under
which a valid 0 — 1 point is an asymptotically stable equilibrium point for the HONN.



7.2 Stability criteria for valid 0 — 1 points 95

Once again, to map the TSP onto an HONN we set the Lyapunov function to be
Elyap - Eobj + Jens + Emod

where E°™ is the penalty function defined by the valid subspace problem mapping, Emod
is the modified hysteretic annealing function and E°% is the objective function for the
TSP. In this section we will consider a second-order HONN for the solution of the TSP
and so the objective function is given by

EObj = Z Z(dwy + dyz)vxivy.i+1vzvi+2'

rYyz 2

TFYy#2

While complete details of the problem mapping may be found in Section 6.3, we will
take as our starting point the dynamic equation for the network which is given by equa-
tion (6.8) and which for completeness we restate as

dusi  (e+7) ) _(et) o
i - N (zy:v“ 1) N (va 1)

J

(e+7) 1
R
Y3
e Z (da:y + dyz)vy,i+1vz,i+2 - Z (dyz + dzz)vy,i—lvz,i—{-l
y#zfaéw y#yz;w
- Z (dyz + dza:)vy,i—sz,i—l- (79)
yvéyzz;éw

Here c is the weight on the penalty function, v is the annealing parameter and dg, is the
distance between cities z and y.

Once again we will confine our analysis to an examination of the stability of ver-
tices of the valid subspace. When v lies on the valid subspace the first three terms in
equation (7.9) will equate to zero, in which case the dynamic equation reduces to

dum- 1
dt = 79 ('U_,,.;,' - N) - %z: (dwy + dyz)vy,i+1vz,i+2
yF£2FT

- Z (dyz + dmz)vy,i—lvz,i+1 - 2 (dyz + dz:c)vy,i—sz,i—l- (710)

y;éyzz#w y;éyz;x
Note that a vertex v of the valid subspace is a valid 0 — 1 point and therefore if v is to
be an asymptotically stable equilibrium point equation (7.3) or equation (7.4) must be

satisfied for each neuron vg;. In order for equation (7.3) to be satisfied for each neuron
in the network where v,; = 1, we can deduce from equation (7.10) that

N
maXx (d'uu) + de;p + 2dwy + dyz) (711)

N — 1 vw, 7,7y, 77 € tour(v)

v >

Here the notation 7w, WT, T, JZ € tour(Vv) indicates that the segments 7w, Wz, Ty and ¥z
occur in the tour described by vertex v of the valid subspace (alternatively v, w, z,y and
2 are consecutive cities in the tour described by v). Similarly, for equation (7.4) to be
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satisfied for each neuron in the network where vg; = 0, we can deduce from equation (7.10)
that

v > NHG e A B 3 (dgy + dy2) - (7.12)
It is apparent from equations (7.11) and (7.12) that the stability of a vertex of the valid
subspace is once again determined by the annealing parameter . Note that when v <0
equation (7.11) cannot be satisfied and therefore no vertex of the valid subspace can be
stable. However, during the course of the annealing process the annealing parameter will
be increased and when v > 0 equation (7.12) is satisfied and the stability of any vertex
of the valid subspace is then determined solely by equation (7.11). Furthermore, it is
interesting to note from equation (7.11) that the stability of a vertex of the valid subspace
is not determined by the length of the tour it describes, but instead is determined by
a function of the intercity distances on a segment of the tour which passes through five
consecutive cities. This is in clear contrast with the Hopfield network, where the stability
of a vertex of the valid subspace was determined by the maximum length of a segment
joining three consecutive cities in the tour.

Despite the seemingly stricter stability criteria for a vertex of the valid subspace in a
second-order HONN as compared to a Hopfield network, it is still possible that the first
vertex of the valid subspace to become stable as the annealing parameter is increased
will not correspond to the optimal solution to the TSP. Indeed, when the annealing
parameter has been increased to a level v = 7.,y Where equatlon (7.11) is satisfied for
the vertex of the valid subspace which corresponds to the optimal tour, it is likely that
many other vertices of the valid subspace will also be stable. However, we suggest that
the number of vertices of the valid subspace which are stable when v = v, will be
greatly reduced in the second-order HONN as compared to the Hopfield network. Such
a reduction in the number of stable vertices of the valid subspace is a consequence of the
stricter stability criteria of equation (7.11) for the HONN as compared to equation (7.7)
for the Hopfield network. Consequently, the valid subspace will be partitioned into fewer
basins of attraction than was the case with the Hopfield network, and so we can expect
the second-order HONN, when given a random starting point in the valid subspace, to
be more likely to find the optimal tour.

As was shown in Section 6.3, third or even higher-order objective functions may be
used in a HONN to solve the TSP. For each network, analogous conditions to those
given in equations (7.11) and (7.12) may be derived for the asymptotic stability of a
vertex of the valid subspace. In much the same way as we have suggested for the second-
order HONN, we would expect that the stability criteria for even higher-order networks
would provide a significantly greater level of discrimination between optimal and sub-
optimal tours. Consequently, as the order of the network is increased there should be
a reduction in the number of vertices of the valid subspace which are stable when the
annealing parameter is set so that the vertex which corresponds to the optimal tour
is only just stable. Furthermore, such a reduction in the number of stable vertices of
the valid subspace results in the valid subspace being partitioned into fewer basins of
attraction. With fewer basins of attraction in the valid subspace, the likelihood of the
network converging from a random starting point to the optimal solution will increase.

7.3 Numerical comparison of the number of stable points

In the previous section we asserted that the number of vertices of the valid subspace
which are stable when the optimal tour is only just stable will decrease as the order of
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the network is increased. In this section, we aim to justify that assertion by presenting a
numerical comparison of the number of stable vertices of the valid subspace for HONNs
of increasing order when operating on two example problems.

7.3.1 Procedure

To undertake a numerical comparison of the number of stable points for HONNs of
increasing order, we must first find the optimal tour for each of our chosen problems. In
turn, this will allow us to calculate the value of the annealing parameter v,,; at which
the optimal tour is only just stable. We stress that knowledge of the optimal tour is only
necessary to facilitate a numerical comparison of the number of stable points for HONNs
of increasing order. If we were to actually simulate the operation of these networks
then we would use an annealing mechanism to encourage good solutions, in which case
it is not necessary to calculate v,,; as the annealing process initially sets v to a large
negative value and gradually increases it without reference to ¥,p:. The first of our chosen
problems is a 10-city Euclidean TSP where the cities have been placed randomly in the
unit square according to a uniform distribution. In this case the optimal tour is easily
found by exhaustive search. The final problem we have considered is bayg29, a 29 city
Euclidean TSP which may be found in the widely available TSPLIB (Reinelt, 1991)
database. The optimal solution for bayg29 has been found by an exact solution method
and is also found in the TSPLIB database.

Given the optimal solution to our chosen problems we must then determine, for each
order of HONN that we wish to examine, the value of the annealing parameter v, at
which the optimal solution to the TSP is only just stable. For the Hopfield network 7o
is calculated by evaluating the stability condition given in equation (7.7) for the vertex
v of the valid subspace which represents the optimal solution. Similarly, v, for the
second-order HONN is calculated by evaluating equation (7.11) with v corresponding to
the optimal tour. For higher-order networks it is a simple matter to determine analogous
stability conditions to those given in equations (7.7) and (7.11). To determine the value
of Yopt for a HONN of a particular order the appropriate stability condition is evaluated
for the vertex of the valid subspace which represents the optimal tour.

For the 10-city problem we want to examine the stability of every vertex of the valid
subspace for HONNSs of order 1 (i.e. a Hopfield network) through to 10. To accomplish
this we proceed by selecting a particular HONN and then setting the annealing parameter
at the appropriate value of 7y,,: such that the optimal solution is only just stable. We then
enumerate all possible tours, testing each tour to determine if it satisfies the stability
condition for the current network (the stability condition is given by the analogy to
equations (7.7) and (7.11) which is appropriate for the current HONN). This procedure
is performed for each HONN that we wish to examine. The results for this experiment
are given in Section 7.3.3.

The numerical comparison is performed in a similar fashion for the bayg29 problem.
The only significant difference is that we do not enumerate all possible tours as the
number of tours makes it prohibitive to do so. Instead, we have generated a set of one
hundred thousand near-optimal tours to examine. Starting from the optimal tour, the
near-optimal tours were generated by performing a series of segment reversal and node
insertion moves. To ensure that the tours generated were near-optimal, the maximum
number of such moves performed in succession was forty, after which the sequence was
repeated starting once again from the optimal solution. For the bayg29 problem we
examined HONNs of order 1 through to 16. The results for this experiment are presented
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in Section 7.3.3.

7.3.2 Quality Factors

Until now we have only been interested in the number of vertices of the valid subspace
which are stable when the annealing parameter is set so that the vertex corresponding to
the optimal tour is stable. While this will give some indication of the relative performance
of HONN s of different orders, it is also interesting to investigate the quality of the stable
points which correspond to sub-optimal tours. Consequently we define a measure of
quality Q; which is simply the normalised mean length of all stable tours

_ Yvesw) L(v)
ISP L(Vopt)

Here S(p) is the set of vertices of the valid subspace which are stable for a HONN of
order p when the annealing parameter is set so that the optimal tour is only just stable,
|S(p)]| is the number of vertices in the set S(p), L(v) is the length of the tour described
by vertex v of the valid subspace and L(Vv,y:) is the length of the optimal tour.

By weighting the length of each tour equally, the quality measure ()1 implicitly as-
sumes that each stable vertex of the valid subspace is equally likely to be found by the
network. However, with a random starting point in the valid subspace, the probability
of converging to a particular stable vertex is directly related to the size of its basin of at-

Q1(p)

traction. Therefore, an improved measure of quality is given by the normalised weighted
mean length of all stable tours, where the weighting factor is a measure of the size of the
appropriate basin of attraction. Unfortunately, it is an exceptionally difficult problem to
exactly determine the size of a basin of attraction in a dynamic system. Instead we will
weight each stable vertex by the factor

M(v)=3"

1

dt

duu:f l

where |- | denotes the absolute value. Note that M(v) is a measure of the total derivative
of the internal state u at an asymptotically stable vertex v. When a vertex v is only just
stable the corresponding basin of attraction is small. Moreover, as the stability conditions
given in equations (7.3) and (7.4) have only just been satisfied, the total derivative of
the internal state u will also be small. As the annealing parameter is increased, the
total derivative of the internal state u will also increase. We would also expect that as
the annealing parameter is increased, the basin of attraction for vertex v will expand.
Therefore, while M(v) is by no means an exact measure of the size of the basin of
attraction for vertex v, we do expect that it is somehow related. With the weighting for
each stable vertex given by M(v), we define the measure of quality Q)2 as

Yvesp) LV)M(v)
|S(PIL(Vopt) M (Vopt) .

QZ(p) = |

7.3.3 Results

In this section we present results for both the 10-city and bayg29 experiments.

o The results for the 10-city experiment are shown in Table 7.1, where we see quite
clearly that the number of tours which are stable when the optimal tour is only just
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stable decreases as the order of the network is increased. Note that the figures given
in Table 7.1 refer to the number of stable tours, each of which will correspond to
9N vertices of the valid subspace due to the inherent degeneracy in representing a
tour with a N x N array of neurons.

e Furthermore, the measure of quality given by Q1 indicates that as the order of the
network is increased, the mean length of the tours that remain stable is becoming
smaller. This suggests that the quality of solution will improve as the order of the
network increases.

e We also note that for each order of HONN Q) is greater than ()y, which suggests that
longer tours have been weighted more heavily than shorter tours. As the weighting
factor M(v) is related to the size of the the basin of attraction for a stable vertex v of
the valid subspace, we suggest that the longer tours have larger basins of attraction.

The results for the bayg29 problem are shown in Figure 7.2. Once again we see that
the number of stable vertices decreases as the order of the network increases. While there
are approximately 8000 stable tours for a HONN of order 1, there are only two stable
tours (including the optimal tour) for a HONN of order 16. In addition, the quality
measures Q; and Qo both suggest that the quality of solution will improve as the order
of the network increases.

The results presented in this section support our assertion that the number of vertices
of the valid subspace which are stable when the optimal tour is only just stable will
decrease as the order of the network is increased. But what is the relevance of this fact
to the operation of an optimisation network? By determining the number of vertices
of the valid subspace which are stable, we have effectively measured the probability of
finding the optimal tour when starting from a random point in the valid subspace. While
this observation does give great insight into the operation of these networks, it is a valid
observation only if the network is run with the annealing parameter held at a constant
value of 4,p¢. For a general problem we will not know the value of Yop and moreover,
by holding y constant we have discarded the benefits that may be gained by properly
utilising annealing. This will be the subject of further comment in Section 7.4.

A further factor which is worthy of comment is that extremely high-order networks
are required to ensure that the only stable vertices of the valid subspace correspond to
the optimal tour. For example in the bayg29 problem even a HONN of order sixteen has
two stable tours. We know that the space complexity of a HONN increases exponentially
with the order of the network and so it is certainly not feasible to build a HONN of order
16. However, the necessity for such extremely high-order networks in order to guarantee
the optimal solution is consistent with the trade-off between computational effort (in this
case space complexity of the HONN) and solution quality, that we have developed as a
major theme for this thesis. While it is infeasible to build a HONN of extremely high-
order to guarantee the optimal solution, the numerical comparisons we have performed
do reveal the extent to which the Hopfield network has accepted a trade-off resulting in
a simple network that will produce solutions of poor quality.
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Number of
Order stable tours | (1 Q2
1 (Hopfield) 233 1.2844 | 1.5455
2 11 1.1028 | 1.1909
3 2 1.0341 | 1.0623
4 2 1.0292 | 1.0532
5 1 1.0000 | 1.0000
6 1 1.0000 | 1.0000
7 1 1.0000 | 1.0000
8 1 1.0000 | 1.0000
9 1 1.0000 | 1.0000
10 1 1.0000 | 1.0000

Table 7.1: Numerical comparison of HONNs on the 10-city problem.

For each network, the annealing parameter v has been set such that the vertex
of the valid subspace corresponding to the optimal tour is only just stable. All
possible tours are exhaustively searched to determine if the vertices of the valid
subspace which correspond to each tour are stable. Due to the degeneracy
inherent in representing a tour by an N x N array of neurons, the number of
vertices of the valid subspace which are stable is given by 2N times the number
of stable tours. @y gives the normalised mean length of the stable tours and
Q)2 gives the normalised weighted mean length of all stable tours.

100
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Number of stable tours

(c) Measure of quality Q.

Figure 7.2: Numerical comparison of HONNs on the bayg29 problem.

For each network the annealing parameter v has been set such that the vertex
of the valid subspace corresponding to the optimal tour is only just stable. The
collection of 10° near-optimal tours is ezhaustively searched to determine if
the vertices of the valid subspace which correspond to each tour are stable.
The number of distinct near-optimal tours whose corresponding vertices of the
valid subspace are stable is shown, along with the measures of quality Q1, which
gives the normalised mean length of the stable tours, and @2, which gives the
normalised weighted mean length of all stable tours.
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7.4 Significance of the Results

7.4.1 The Quality Versus Computational Effort Trade-off

In this chapter we have shown that the number of vertices of the valid subspace which are
stable when the optimal tour is only just stable will decrease as the order of the network
is increased. Furthermore, the results of our experiments suggest that the quality of the
stable solutions improved as the order of the network was increased. Both these facts are
evidence of the trade-off that exists between solution quality and computational effort.
HONNs are a family of solution techniques for combinatorial optimisation that embody
a trade-off between solution quality and computational effort. By increasing the order
of HONN we use to solve a problem, we can expect an improvement in the quality of
the solutions found. However, we must pay for this improvement by providing more
interconnections in the network.

Following the theme of a trade-off between solution quality and computational effort it
is interesting to consider a (N —1)** order HONN for the solution of the TSP. By analogy
with the HONN objective functions presented in Section 6.3, the objective function for
a (N — 1)** order network is given by

EObj = Z Z(d:cla:z + d:c2.1;3 +...4+ da:N_la;N)vzl,ivx2,i+1v$3,i+2 - Vgni+N-1-
el ln

In a similar fashion to the analysis presented in Section 7.2, we can determine the con-
ditions under which an arbitrary vertex of the valid subspace is asymptotically stable
for the (N — 1)** order network. The analysis presented in Section 7.2 showed that for
a Hopfield network, the stability of a vertex v of the valid subspace is determined by
a function of the distances between three consecutive cities in the tour described by v.
Similarly, for a second-order HONN, the stability of vertex v is described by a function
of the distances between five consecutive cities in the tour described by v. Therefore, we
would expect that for a (N —1)* order HONN, the stability of vertex v will be determined
by a function of the distances between 2N — 1 consecutive cities in the tour described by
v. By analogy with equations (7.7) and (7.11), we see that the condition under which
the output of neuron vy, ; is asymptotically stable when vertex v corresponds to the tour
T1,T2,T3...¢x and vy, ; = 1 is given by? ®

9 B =g (dagos + 2syzy + -+ (N = Dday_yay + (N = Ddaya,

+(N - l)dmm + (N - 2)dw2w3 + (N - 3)d$3$4 + ... dﬁN—ﬂN)

which simplifies to
v > N X tourlength (7.13)

where tourlength is the length of the tour described by vertex v of the valid subspace.
Equation (7.13) shows that for a (N — 1)"* order network the stability of a vertex of the
valid subspace is determined by the length of the tour which it describes. Consequently,
as the annealing parameter v is increased during the annealing process the first vertex

2Note that equations (7.7) and (7.11) show the conditions under which all neurons, whose output is
equal to one, are asymptotically stable. Here we are only concerned with the stability of the output of
the single neuron v, ;, and so there is no need for the max operator.

3Note that all indices are evaluated modulo N e.g. 9 = zn, x—1 = ZN_1.
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of the valid subspace to become stable must correspond to the optimal solution to the
TSP. This is in stark contrast with the result for the Hopfield network, where the first
vertex to become stable was by no means guaranteed to be the optimal solution.

A (N — 1) order HONN represents the ultimate trade-off of computational effort for
solution quality. While we have just shown that the vertex of the valid subspace corre-
sponding to the optimal tour will be the first vertex to become stable as the annealing
parameter is increased, we must realise that a (N —1)t" order HONN for the TSP requires
a number of interconnections which is exponential in the size of the problem. In many
ways a (N — 1)** order HONN is similar to a direct enumeration approach to solving
the TSP, where all tours are listed and the shortest one is chosen. While both methods
are guaranteed to arrive at the optimal solution, they must both expend an amount of
computational effort which is an exponential function of the problem size and are there-
fore impractical. For the enumeration approach the computational effort is seen as an
exponentially long runtime, while for the HONN it takes the form of an exponentially
large number of interconnections in the network.

Further to the theme of a trade-off between computational effort and solution quality
we must consider the Hopfield network as the HONN which has obtained the simplest
network architecture by trading a reduction in computational effort for a degradation in
solution quality. Moreover, the Hopfield network has taken this trade-off to the maximum
possible extent, and so we should not be surprised by the relatively poor solution quality
achieved by the Hopfield network.

7.4.2 The Effect of Annealing

For the numerical comparisons presented in this chapter we have held the annealing
parameter constant at a value Yo,¢ so that the vertex of the valid subspace corresponding
to the optimal tour is stable. However, were we to actually simulate the operation of a
HONN we would use hysteretic annealing to improve solution quality and so the annealing
parameter would not be held constant. When using annealing 7 is initially set to a large
negative value, which results in the network state v converging to a point on the valid
subspace. Subsequently 7 is gradually increased. An important benefit of the annealing
process is that it actually helps to guide v towards good solutions. Consequently, when
the annealing parameter has reached a value ¥ = 7o, the network state is not at a
random position in the valid subspace, rather we would expect v to be in the vicinity of
a near-optimal solution. The overall effect is that the proper use of annealing allows much
better solution quality to be achieved than is suggested by the numerical comparisons in
this chapter.

When the Hopfield network was used to solve the bayg29 problem in Section 7.3, we
found that setting v = 7,pr caused there to be in excess of 7000 stable tours out of the
100,000 near-optimal tours that we considered. This would suggest that the chance of
finding the optimal solution with a Hopfield network is extremely remote. However, we
know from the results presented in Section 4.6 that the Hopfield network can regularly
find the optimal solution to a similar 30-city Euclidean TSP. These two observations
seem to be contradictory. However, the difference is explained when we realise that the
experiments in Section 4.6 utilised annealing and so were able to guide the network state
towards good solutions. In contrast the results presented in this section assume that the
annealing parameter is fixed and that the network state is placed randomly into the valid
subspace.

Furthermore, when in Section 7.3.3 we noted that extremely high-order networks were
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required so that the optimal solution to the TSP could be obtained, we had not considered
the benefits that are gained from annealing. The ability of annealing to guide v towards
good solutions means that the network can regularly converge to the optimal solution
for networks of much lower order than previously suggested. However, the significance
of the results in this chapter is not diminished by the effects of annealing. The number
of stable vertices of the valid subspace when v = 7,,: remains as a worthwhile indicator
of the trade-offs to be made between solution quality and computational effort.

7.4.3 Further Work

Underpinning much of the analysis in this chapter is the assumption that any decrease
in the number of vertices of the valid subspace which are stable when the vertex cor-
responding to the optimal solution is only just stable will result in the valid subspace
being partitioned into fewer basins of attraction. Furthermore, if there are fewer basins
of attraction in the valid subspace then the probability of placing a random valid starting
point into the basin of attraction of the optimal solution will be increased.

What we have so far neglected to consider is the possibility of stable attractors lying
not at the vertices of the valid subspace but within this subspace. Should any such
attractors exist then the valid subspace may well be partitioned into more basins of
attraction than we have accounted for by considering only attractors at the vertices of
the valid subspace. Consequently, our interpretation of the number of stable vertices of
the valid subspace as a measure of the probability that the optimal solution will be found
would no longer be well founded.

To determine if any attractors exist inside the valid subspace we must examine the
time derivative of the Lyapunov function for a HONN solving the TSP. In Section 6.1
we showed that

dEtver , dug; \’
= — Uz < 0.
dt 29 (usi) ( dt ) =
For a point v inside the valid subspace to be an attractor we require that

d’um'

dt

=0 Vaz,ie{l,...N}. (7.14)

Here the time derivative of ug; is given by the analogy to equation (7.5) which is appropri-
ate for the HONN under examination. In addition, the value of the annealing parameter,
which appears in the time derivative of u,;, must be set at the value of ~,,; for the HONN
under examination. While equation (7.14) establishes the conditions under which some
point inside the valid subspace is an attractor for the system, we have been unable to
determine if it is or is not possible for any point to satisfly these conditions. Consequently,
while we await a method to determine if attractors do or do not exist inside the valid
subspace we must content ourselves with the analysis presented in this chapter, despite
its possible shortcomings.

7.5 Chapter Summary

In this chapter we have explored the trade-off between solution quality and computational
effort that may be made when using a HONN approach to combinatorial optimisation.
We began by emphasising that an optimisation network is a dynamic system where the
stable attractors can be interpreted as solutions to an optimisation problem. The problem



7.5 Chapter Summary 105

mapping and annealing techniques that we have developed in previous chapters determine
the number and location of attractors in the system. The key to our investigation of
solution quality is to understand that the more attractors that exist, the less likely it is
that we will arrive at the attractor which corresponds to the optimal solution.

Since we know that annealing will eventually force all attractors for the system to the
vertices of the valid subspace, our analysis has focused upon the stability of the vertices
of the valid subspace. As we have previously noted, for the case of the TSP all vertices
of the valid subspace correspond to valid tours. For the Hopfield network we established
that an arbitrary vertex v of the valid subspace would only become stable when the
annealing parameter had been increased to a level where

N max  (dys + dygz).

N -1 YT, TZ € tour(V)

v >

Here the notation yz,zz € tour(v) indicates that y,z and z are consecutive cities in the
tour represented by v. We see that the stability of a vertex of the valid subspace is not
determined by the length of the tour it describes, rather it is determined by the maximum
length of a segment joining three consecutive cities in that tour. Consequently, as the
annealing parameter is increased during the annealing process, the first vertex to become
stable is by no means guaranteed to be the optimal solution. Moreover, by the time the
vertex of the valid subspace which corresponds to the optimal tour is stable, many other
vertices may be stable and so the valid subspace may be partitioned into many basins of
attraction. With many basins of attraction there is little chance of obtaining the optimal
solution, and so the solution quality is expected to be quite poor.

A contrasting situation is presented by a second-order HONN for the solution of the
TSP. In that case an arbitrary vertex v of the valid subspace will only become stable
when the annealing parameter satisfies

N

max
N — 1 vw, 7,77, 7% € tour(v)

7> (dpw + 2dyz + 2dsy + dy,).

Here the notation 7w, wz, Ty, yz € tour(v) indicates that v, w, z,y and z are consecutive
cities in the tour represented by v. Once again the stability of a vertex of the valid
subspace is not determined by the length of the tour which it describes, but instead is
determined by a function of the intercity distances on a segment of the tour which passes
through five consecutive cities on the tour. The stability requirement for a vertex v in
the second-order HONN provides a greater level of discrimination between optimal and
sub-optimal tours than is the case with the Hopfield network. We suggested that as the
order of the network is increased further, the number of vertices of the valid subspace
which are stable when the optimal tour was only just stable should decrease.

This assertion was validated by a numerical comparison of the number of stable points
in HONNs when operating on two example TSPs. The first problem that we investigated
was a 10-city Euclidean TSP, where it was possible to exhaustively search all vertices of
the valid subspace. When the annealing parameter was set so that the optimal tour was
stable, we saw that for the Hopfield network there were over 230 other stable tours. In
contrast, for a HONN of order 5 the optimal tour was the first tour to become stable.
The second problem was bayg29, a 29 city Euclidean TSP where the size of the problem
made it necessary to investigate the stability of a collection of near-optimal tours. Once
again our results showed that the number of stable tours decreased rapidly as the order of
the network was increased. Furthermore, as the order of the network increased, the mean
length of the stable tours decreased, indicating that the solution quality was improving.
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The results of our experiments motivated the observation that HONNs are a family
of solution techniques for combinatorial optimisation that embody a trade-off between
solution quality and computational effort. By increasing the order of the network used to
solve a problem, we can expect an improvement in the quality of the solutions produced.
However, we must pay for this improvement by providing more interconnections in the
network. Further insight into the trade-off between solution quality and computational
effort was gained by considering a (N — 1)™ order network for the solution of the TSP. It
was shown that such a network can guarantee that the first vertex of the valid subspace to
become stable will correspond to the optimal solution, but to do so the network requires
a number of interconnections which is exponential in the size of the problem. In many
ways a (N — 1) order HONN is similar to an enumeration technique for the solution of
the TSP. Both methods are guaranteed to find the optimal solution to the problem, but
to do so they require an impractical amount of computational effort.

Our investigations of the trade-off between solution quality and computational effort
provide a clear explanation of the shortcomings of the Hopfield network approach to
combinatorial optimisation. The Hopfield network must be considered as the simplest
possible HONN where we have traded a reduction in network complexity for a corre-
sponding decrease in the solution quality. When compared to the (N —1)** order HONN
the Hopfield network lies at the opposite extreme of the solution quality versus computa-
tional effort trade-off, and so we should not be surprised by the relatively poor solution
quality achieved by the Hopfield network.



CHAPTER VIII

Conclusions

In this thesis we have presented an examination of the performance of optimisation
networks. Our main objective was to determine if there exist any factors which limit the
solution quality that may be achieved with optimisation networks. Furthermore, our aim
was to determine the reasons for any such limitations, and if possible to suggest remedies
for them.

It has long been recognised that optimisation networks, in their original form, tend to
produce poor, high cost solutions. Various annealing algorithms have been developed to
improve the solution quality obtained from optimisation networks, and so we began our
examination of the performance of optimisation networks by investigating the effects of
these annealing algorithms. Our investigations confirmed that annealing has the ability
to improve solution quality, but also uncovered the tendency of annealing to force the
network toward invalid states. Consequently, we developed a new, principled approach
to annealing that retained the ability to improve solution quality, while also ensuring
that the network state remained valid.

Even when a correctly formulated approach to annealing is used, experimental ev-
idence suggests that as the problem size increases, the solution quality obtained from
an optimisation network will decrease. While the inability of optimisation networks to
scale to large problem sizes has gone largely unnoticed in the literature, it represents a
significant erosion of the niche market for optimisation networks. In order to discover
the causes of such poor scaling to large problems, we showed that optimisation networks
solve combinatorial problems by using simple heuristics which are embedded into the
network dynamics. These heuristics encourage the formation of small, locally optimal
segments in the solution. Moreover, as the size of the problem increases there is no
corresponding increase in the size of the locally optimal segments which are formed by
these heuristics. The simple heuristics are ultimately responsible for the poor scaling
of optimisation networks. To improve the performance of optimisation networks it is
necessary to replace or modify the heuristics that they use.

To improve upon the poor scaling of standard optimisation networks, HONNs were
proposed as a means to extend the neighbourhood in which locally optimal segments
are encouraged. By increasing the order of the network, a stronger heuristic may be
embedded into the network dynamics and consequently the solution quality should be
improved. However, as the order of the network is increased, the number of interconnec-
tions necessary to implement the network also increases. HONNs are a family of solution
techniques for combinatorial optimisation that embody a trade-off between solution qual-
ity and computational effort. Further insight into the trade-off between solution quality
and computational effort is gained by contrasting the performance of the Hopfield net-
work with a (N — 1) order HONN when solving a N city TSP. While a (N — 1)t

order network can almost guarantee that the optimal solution will be found, it requires
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a number of interconnections which is exponential in the size of the problem. In con-
trast, the Hopfield network is a relatively simple network with O(N?) connections, but
it cannot guarantee that the optimal solution will be found. The Hopfield network must
be considered as the simplest possible HONN, where we have traded a reduction in net-
work complexity for a corresponding decrease in solution quality. When compared to the
(N — 1)** order HONN, the Hopfield network lies at the opposite extreme of the trade-off
between solution quality and computational effort, and so we should not be surprised by
the relatively poor performance of the Hopfield network.

We conclude that optimisation networks embody a simple heuristic approach to the
solution of combinatorial optimisation problems. As with any heuristic approach to
optimisation, there are trade-offs to be made between solution quality and computational
effort. HONNs embody that trade-off by allowing increased computational effort to be
traded for improved solution quality by simply increasing the order of the network. If
when applying optimisation networks to a particular problem it becomes necessary to
trade increased complexity for improved solution quality, we must be aware that this can
only be done up to a certain level, beyond which the complexity of the network prohibits
it from being implemented.

The major contributions made by this thesis may be summarised as follows:

o We have performed a rigorous analysis of the effects of annealing techniques on
the validity and quality of solutions obtained from an optimisation network (Sec-
tion 4.3). Following this analysis, we proposed a principled approach to annealing
which allows solution quality to be improved while maintaining a valid network state
(Sections 4.4 and 4.5).

o We have explained the inability of standard optimisation networks to scale to large
problem sizes (Sections 5.2 and 5.3). Furthermore, we have investigated two alterna-
tive approaches that attempt to improve the performance of optimisation networks
by modifying the heuristics that they use (Section 5.4).

e Finally, we have introduced a new family of optimisation networks that embody
a trade-off between solution quality and computational effort (Section 6.3). Our
investigation of that trade-off provided a clear explanation of the shortcomings of
the Hopfield network approach to combinatorial optimisation (Sections 7.3 and 7.4).



APPENDIX A

Derivation of Mean Field Annealing

Simulated Annealing (Kirkpatrick et al., 1983) is a powerful, general purpose optimi-
sation technique, that has been widely applied since its introduction. The technique
employs a controlled, stochastic search of the state space, but unfortunately it is some-
times unacceptably slow. Mean field annealing (MFA) is a deterministic approximation
to simulated annealing, which sacrifices solution quality for execution speed. Essentially,
the MFA algorithm computes a solution to a pair of temperature dependent, coupled,
nonlinear equations which are termed the saddle point equations. This section presents
a rigorous derivation of the saddle point equations and is based on the works of Aiyer
(Aiyer, 1991) and Peterson (Peterson and Anderson, 1988). More practical implementa-
tion details of the MFA algorithm are presented in Section 2.4.

A.1 Mean Field Theory

When a stochastic Hopfield network operates at a constant non-zero temperature, its
state will vary with time. When the network has reached thermal equilibrium, the state
of the network will fluctuate about a constant average value. Mean field theory allows
such average statistics of the network to be determined.

A fundamental result from physics is the Boltzmann-Gibbs distribution. It states that
a system, such as the stochastic Hopfield network, when in thermal equilibrium will be
found in state s with probability,

Pr(s) =  exp (‘i@) (A1)

where the normalising factor
—E(s)
Z = E exp <—TP )

is called the partition function and the summation is over all possible states i.e. all 2V
combinations of s; = {0,1} for ¢ € {1,...N}. The energy function E(s) is exactly
the Lyapunov function for the stochastic Hopfield network, and is reproduced here for
completeness

E(s) = —1s"Ts — b”s. (A.2)

In order to facilitate comparisons between MFA networks and the continuous Hopfield
network, the activation levels of the units in the stochastic Hopfield network have been
changed from s; = £1 to s; € {0,1}.

In principle, the expected value of the energy may now be calculated by utilising
equation (A.1),



A.1 Mean Field Theory 110

—E(s
EE exp ( ( )) . (A.3)
Tp
{S}

In practice, the difficulty lies in calculating the partition function 7. However, once we
have done so, most useful quantities may be derived from Z itself. For example, the
expected value of the state vector can be determined as,

T*VyIn(Z) = PV;Z
_ ppiis 77 P (-7
V/
= EsPr(s)
(s}
= TPVy1n(Z) = (s) (A.4)

A.1.1 Simplification of the partition function Z

To obtain a more tractable expression for the partition function, we utilise the multi-
dimensional delta function,

[, 8 =) v = f(5)

Noting that the mlti-dimensional delta function can be expressed as a complex expo-
nential,

d(s—v)= C/.N exp (uT(s — v)) du

where (' is a constant; the partition function Z may be written as the summation of a
double integral, at the expense of introducing 2N new variables, u and v:

7 = CZ/RN /INexp (uT(s—v)) exp (—%) dudv

- /.N/ exp( )Zexp (Zuisz) du dv.

{s} i

The summation over all 2V possible states may be simplified by noting that,

3 exp (Zu 31> - 1‘[ (exp(u;) +1) = exp (Z In (exp(u;) + 1)) .

{s} i

With the effective energy E'(u,v,TF) defined as,
E(v)
F'(u,v,T?) = B +ufv — Eln (exp(u;) + 1) (A.5)

the partition function may now be expressed as,

7 = C/N/N exp (—E'(u,v,T?)) du dv .
R ]
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A.1.2 Saddle Point Expansion

The partition function may be further analysed by performing a saddle point expansion
of E'(u,v,TT). Firstly, we must make use of the mean field approzimation by defining
the average effective energy per neuron,
E'(u,v,T?)

N

thereby allowing the partition function to be written with the exponent proportional to

N,

flu,v,T7) =

Z = O/MN /IN exp (=N f(u,v,T?)) dudv. (A.6)

This expression still requires the evaluation of a double integral, but as the exponent in
equation (A.6) is proportional to N, it is easily evaluated in the limit of large N. The
bigger N is, the more the integral is dominated by contributions from where f(u,v,T?) is
smallest. So we can approximate the integral by finding the value (i1, V) which minimises
f(u,v, T?), and expanding the integrand around there. This is known as the saddle point
method and in the limit of large N, yields (Hertz et al., 1991),

Z ~ Cexp(—Nf(4,v,T?)) = Cexp(—E'(1,¥,T?)) (A.7)
i.e. the partition function may be approximated by the value of the effective energy at
the saddle point (1, V).
At a saddle point, the following equations will be satisfied,
OF'

5 = 0 (A.8)
OE'
5 = 0 (A.9)

Evaluating the partial derivatives at ({1, V) gives the saddle point equations,

. 1 -
7

TR — (A.11)
1 + exp(—u;)
Now that the saddle point equations have been successfully derived, and if it is realised
that the MFA algorithm presented in Section 2.4 merely computes a solution to the
saddle point equations, then the question arises: why is the solution of the saddle point
equations important?

The answer is that the solution to the saddle point equations gives a great deal of
insight into the underlying stochastic Hopfield network. Utilising the MFA algorithm,
a solution (1, V) to the saddle point equations may be obtained. Then, by making the
appropriate substitutions from equations (A.7), (A.5) and (A.2), the expected value of
the state vector at temperature T? can be deduced from equation (A.4) as,

(s) = TPVyIn(Z)

» VbZ

B

,Cexp (—E'(i,V,T?)) (Vb E(V)/T?)
Cexp (—E'(14,v,T?))

v (A.12)

=T

Q

=T

Q
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i.e. the expected value of the state vector of the stochastic Hopfield network operating
at a temperature T? is given by the solution ¥ to the saddle point equations (A.10)
and (A.11) at that temperature. Moreover, it 1s apparent from the Boltzmann-Gibbs
distribution of equation (A.1) that as the temperature decreases, those states with lower
energy E(s) will predominate, and so at low temperatures it may be expected that the
solution v to the saddle point equations will be a good approximation to s™" the global
minimum of E(s). Conversely, at high temperatures v = (s) does not correspond to a
single configuration but is an average over many states.

In addition, the expected value of the energy (Lyapunov) function for the Hopfield
network (equation (A.2)), may be determined as,

(BE) = —5 XX Tfsisi) — L blsd
“%ZZ:Tij(Si)(Sj) — > bifsi)
~ —%ZZTijﬁiﬁj—Zbiﬁi

~ E(¥) (A.13)

Q

where the mean field approximation (s;s;) =& (s;)(s;) has been used (Aiyer, 1991).



APPENDIX B

Simulation details for TSP
experiments

When simulating an optimisation network for solving the TSP, we have utilised the
optimised step-size technique (Abe, 1996). Such a technique, integrates the dynamic
equation

c(li—‘t/:TV—i-b, ’UiE[O,l]

by setting the integration step-size at time ¢ to be the minimum step-size which will make
some component of v reach the surface of the unit hypercube. Obviously if v; = 0 and
[Tv 4 b], <0, or if v; = 1 and [Tv +b]; > 0 at time ¢, then v; is moving away from the
unit hypercube and component ¢ must be excluded from the calculation of the step-size.
Therefore, let T be the set of integers where v; = 0 and [Tv+b], <0,o0rv; =1 and
[Tv + b, > 0. Additionally let A" = {1,...N}. Then for i € /' — T calculate

v;
i — v; —
[’I‘_V—|——b]i for [TV+b]l >0

where t; is the step-size required for v; to reach the surface of the unit hypercube. The
integration step-size At at time ¢ is then chosen as,

At = min t;. (B.1)
iEN-T

Since the determination of the step size is a deterministic process, it is possible that
the algorithm will become stuck in a infinite loop during the integration. In such a sit-
uation the same components of v will continually be chosen to determine the step-size,
and v will move between several constant states. Obviously this is not desirable and
must be prevented. Consequently, several mechanisms have been developed to introduce
randomness into the step-size determination process, thereby helping to prevent an in-
finite loop from occuring. While the precise details can be obtained from the original

exposition (Abe, 1996), we will present a summary of the proposed methods.

1. Firstly, if the same component i is selected by equation (B.1) to determine the step-
size in consecutive time steps, then the calculated step-size is modified by setting

At — At x rand (B.2)

where rand is a random value uniformly distributed in the range [0, 1].
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9. If equation (B.2) does not succeed in preventing an infinite loop and the same com-
ponent is selected by equation (B.1) to determine the step-size at three consecutive
time steps, or if the same pairs of indices are selected by equation (B.1) three times
in succession e.g. the sequence ...256256256. .., then the calculated step-size is
modified by

At — At(1+ B x rand)

where B, is a small positive constant; typically ; = 0.01.

3. For all other time steps, the step-size is modified by setting
At «— At(1 + B, X rand)
where f, is a small positive value; typically 82 = 0.0001.

Unlike most alternative algorithms for simulating the operation of an optimisation
network e.g. (Abe, 1993), the optimised step-size algorithm does not examine the rate
of convergence of v to control the annealing schedule. Instead, the optimised step-size
algorithm holds the annealing parameter constant at 7o for the first t; time steps and
then increments the annealing parameter by an amount Ay at successive time steps
until an upper limit Yyqs is reached. The simulation is stopped when a valid solution is
reached or the number of iterations exceeds a user defined value (typically of the order
of ten thousand iterations). While the precise value of all parameters will depend on the
problem to be solved, representative values for the problems solved in this thesis are:

~vo = —1 to —6, t4 = 2000 and A~y = 0.005.



APPENDIX C

Eigenvalues of Interconnection
Matrices

C.1 Eigenvalues of T

When the Lyapunov function E'Y?P = E°**, the connection matrix for the optimisation
network is given by equation (3.15), i.e.

c c c

- (C.1)

The eigenvalues and eigenvectors of the connection matrix Te are determined, using
the method employed in (Aiyer et al., 1990), as follows.

C.1.1 Determination of A\

We determine A; by showing that & = & [1,1,..., l]T is a eigenvector of T** with an
eigenvalue Ay = —c. Now
c c c\ 1
Tensgl . = ___52.. — _533 _> —
[ e]z‘z zy:z]: < N J N y + N2/ N
c c ¢ c
- Y Imtily - W (€-2)
3 v o
i.e. Tend = —cé&. Therefore & is an eigenvector of T with a corresponding eigenvalue
/\1 = —C.

C.1.2 Determination of Ay

We calculate Ay by showing that the zerosum subspace is an eigenspace of T with
a corresponding eigenvalue A; = 0. As described in Section 3.3, every valid solution v
to the TSP can be decomposed into a component v?* in the zerosum subspace and a
component &,

a~

v=v*+e.
Therefore

Tcnsvzs — TcnsV_Tcnsé

Ty — )\1 e.
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Now since v is valid, 3, vyi = 20z = 1 and )2 X 50y = N, allowing the following
simplification,

ons B c c c B ¢
[T, = ;;(—N%—N‘Sxﬁm)% = W
Upon substitution we obtain
c —c
Tcns L2 — ____( ) - 0.
[ v 1 N N

Therefore there is a degenerate eigenvalue of A, = 0 that corresponds to the zerosum
subspace.

C.1.3 Determination of A3

To determine A3 it is shown that the invalid subspace is an eigenspace of T** with a
corresponding eigenvalue A3 = —c.

Firstly, consider the matrix S which is the sum of outer products of all valid solutions
v and is derived in Appendix C.4. Since the invalid subspace is mutually orthogonal to
both the valid subspace and &, Sv™ = 0, where 0 is the vector of all zeros. Therefore
the eigenvalue of S in the invalid subspace is zero.

Now by establishing an expression for T in terms of S, we shall determine the
eigenvalues of T°* in the invalid subspace. By considering the equations (C.1) and
(C.9) the connection matrix T<** may be written as

c T
pens — N)ée' — cl. :
=N 2)!S-i—c(l )éé c (C.3)

To verify equation (C.3) we shall evaluate the right hand side. Noting that (887 5y =
1/N?, [M)z,y; = 6sy6i; and substituting equation (C.9) gives

cns C(N - 1) c C(l - N)
[T aigi =~ Seydii + N(l = 8ey)(1 = 8ij) + =7 — by
C C C
= TN TNt W

which coincides with the expression for T** given by equation (C.1).

The eigenvalue of T°* in the invalid subspace may now be determined by consid-
ering the individual terms in equation (C.3). Multiplication of S by m scales the
eigenvalues of S, but the eigenvalue of S in the invalid subspace remains zero. Similarly,
multiplication of 887 by a constant affects only the eigenvalue of the eigenvector in the
direction of é. The remaining term, —cl introduces an eigenvalue of —c in the invalid

subspace. Therefore, for a vector v"” which lies in the invalid subspace
Tcnsvinu — _cvinv

i.e. there is a degenerate eigenvalue A3 = —c that corresponds to the invalid subspace.

C.2 Eigenvalues of T**"

For an optimisation network where the Lyapunov function E%*? = E°** + E** the
connection matrix is given by equation (4.4), i.e.

C C
[T Jais = —776ii = ey +

C

N2 + 75zy6ij- (04)
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The eigenvalues and eigenvectors of the connection matrix T*"" are determined, using a
method similar to that employed in (Aiyer et al., 1990), as follows.

C.2.1 Determination of \

The eigenvalue ); is calculated by showing that € = % . 1]T is an eigenvector of
T with a corresponding eigenvalue Ay = —c 4 «. Now
[T €], = Z Z ( N‘S“’ S N2 + 75xy5ij) %
RRCH Ty SERe
= (et Ny (C5)

i.e. T°"& = (—c + v)é. Therefore & is an eigenvector of T*"" with a corresponding
eigenvalue A\ = —c+ 7.

C.2.2 Determination of Ag

The eigenvalue ), is determined by showing that the zerosum subspace is an eigenspace
of T with a corresponding eigenvalue A, = 7. As described in Section 3.3, every valid
solution v to the TSP can be decomposed into a component v** in the zerosum subspace
and a component €&,

v=v¥4e.

Therefore

Tannyzs = Tenny . Tenng
Taerny — Alé

Now since v is valid, 3, vy = 305 = 1 and 3, 35 v; = N, allowing the following
simplification,

[# C C
[Tomny],, = ijc—4f——@+_—+7&&)v-
b NY N N2 e £

C C C
= —Nzy:vyi — 2 vt m;;vyrmvm

J

= TN T
Upon substitution we obtain
[Ty =] S [Ar]

D — —_— U:z:i — .

Tt N 7 1 &re
( 1 ) z8
— v:ci e — -
v N YV

Therefore there is a degenerate eigenvalue of A\, = 7 that corresponds to the zerosum
subspace.
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C.2.3 Determination of A3

To determine As we show that the invalid subspace is an eigenspace of T*"" with a
corresponding eigenvalue A3 = —c + 7.

Firstly, consider the matrix S which is the sum of outer products of all valid solutions
v and is derived in Appendix C.4. Since the invalid subspace is mutually orthogonal to
both the valid subspace and &, Svi™* = 0, where 0 is the vector of all zeros. Therefore
the eigenvalue of S in the invalid subspace is zero.

Now by establishing an expression for T®*" in terms of S, we shall determine the
eigenvalues of T?"" in the invalid subspace. By considering the equations (C.4) and
(C.9) the connection matrix T**" may be written as,

ann __ _C—_ . aal
Tom = N{N = 2)!S +c(1—-N)é&" —cl+L (C.6)
Equation (C.6) may be verified by following the same procedure as used in Appendix C.1.3.
The details of this procedure are left to the reader. To determine the eigenvalue of T*""
in the invalid subspace, we must consider each term in equation (C.6). Multiplication of
S by ﬁ(}\?T)' scales the eigenvalues of S, but the eigenvalue of S in the invalid subspace

remains zero. Similarly, multiplication of ééT by a constant affects only the eigenvalue
of the eigenvector in the direction of & The remaining term, —cl + ~I introduces an
eigenvalue of —c + 7 in the invalid subspace. Therefore, for a vector v™ which lies in
the invalid subspace

Tannvin'u — (—C+ ,.Y)Vinv

i.e. thereis a degenerate eigenvalue A3 = —c+7~ that corresponds to the invalid subspace.

C.3 Eigenvalues of T™

For an optimisation network where the Lyapunov function ElWer = Eems 4 Emod the
connection matrix is given by equation (4.12), i.e.

(c+17)

mo c+ c+
[T d]zi,yj = _( 7)5 ( 7) N2

N % N

62y +

—+ ’y(sxyéij. (07)

The eigenvalues and eigenvectors of the connection matrix T™°¢ are determined, using a
method similar to that employed in (Aiyer et al., 1990), as follows.

C.3.1 Determination of A\

To determine A\; we show that & = & [1,1,..., 1]7 is an eigenvector of T™¢ with an
eigenvalue A\; = —c. Now

c+v
N
’7_

=3 ;<_
= _gc;

c+76 c+y

[TmOdé] N zy N2

c+ c+y _ ¢
2N +ZyIZJ: Nz t7T T TN

J

1

i

i.e. T™odg = —cé. Therefore & is an eigenvector of T™°* with a corresponding eigenvalue
)\1 = —C.
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C.3.2 Determination of Ay

The eigenvalue ), is determined by showing that the zerosum subspace is an eigenspace
of T™4 with a corresponding degenerate eigenvalue A; = 7. As described in Section 3.3,
every valid solution to the TSP can be decomposed into a component v#® in the zerosum
subspace and a component &,

v=v* +e.

Therefore

Tmodvzs - Tmodv_Tmodé

TmOdV . )\1é

Now since v is valid, 3o, vy = Xj vz = 1 and Y-, Y vy = N, allowing the following
simplification,

I c+ c+ (o o
[Tmetv] = Zyzz,:(_ N %N vt m +76”5“) Vi
¢t et Lt . .
- N Zy:vyt N ;vx]'*' N2 zy:zj:vyj +’)’Um
—CJ-I;T’Y-I-’)"Ua:i-

Upon substitution we obtain

+ =
[Tmodvzs] = S N’y + YVgi — P‘le]m’
1 zs
= [ (Ua:i — N‘) = YUz

Therefore there is a degenerate eigenvalue of Ay = < that corresponds to the zerosum
subspace.

C.3.3 Determination of \g

To determine A3 we show that the invalid subspace is an eigenspace of Tmd with a
corresponding eigenvalue A3 = —c+ 7.

Firstly, consider the matrix S which is the sum of outer products of all valid solutions
v and is derived in Appendix C.4. Since the invalid subspace is mutually orthogonal to
both the valid subspace and &, Sv™ = 0, where 0 is the vector of all zeros. Therefore
the eigenvalue of S in the invalid subspace is zero.

Now by establishing an expression for Tmod in terms of S, we shall determine the
eigenvalues of T™¢ in the invalid subspace. By considering the equations (C.7) and
(C.9) the connection matrix T™°¢ may be written as,

mod _ __ TV _ anaal _
Tmot = N(N_2)!S—I—(c+fy)(1 N)ée" —cL (C.8)
Equation (C.8) may be verified by following the same procedure as used in Appendix C.1.3.
The details of this procedure are left to the reader. The eigenvalue of T™¢ in the invalid
subspace can now be determined by considering the individual terms in equation (C.8).

Multiplication of S by N(%'_Y?)—, scales the eigenvalues of S, but the eigenvalue of S in
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the invalid subspace remains zero. Similarly, multiplication of & éé&” by a constant affects
only the eigenvalue of the eigenvector in the direction of &. The remaining term, —cl
introduces an eigenvalue of —c in the invalid subspace. Therefore, for a vector v** ¥ which
lies in the invalid subspace

nv

Tmodvinv = —cv

i.e. there is a degenerate eigenvalue A3 = —c that corresponds to the invalid subspace.

C.4 Derivation of S

To assist in the determination of eigenvalues in the invalid subspace, it is necessary to
first derive the matrix S, which is formed from the sum of outer products of all the valid
solutions v. The derivation of S presented here follows that given in (Aiyer et al., 1990).

Let N be the number of cities in the TSP and v(®) be a valid 0 — 1 vector i.e. it
satisfies the constraints (3.3) and (3.4) and v,; € {0,1}. Since S is formed from the sum
of outer products of all valid solutions, S is given by

S — vav(a)T

o Sy = S,

Now, consider the following cases :

e:=jand z #y.
In a valid solution it is not possible for vy; = 1 and vy; = 1 if = # y. Therefore

Sriyi=0 Vi, z#y.

e:1#jandz =y.
In a valid solution it is not possible for vy; = 1 and vy; = 1 if ¢ # j. Therefore

Sxi,xj =0 VCE, 7 #_]

ei=jand z =y.
There are (N — 1)! valid solutions v(®) with city = fixed at position 7 of the tour.
Therefore Syzi i = (N —1)! Vaz,i.

ei#jand z #y.
City z is fixed at position ¢ and city y is fixed at position j of the tour. The

remaining cities may be arranged in (N — 2)! possible permutations. Therefore

Seigi =(N=2)! Ve £y, 1 #7.

So it is clear that the matrix S may be expressed as

[S]xi,yj & (N — 1)' 5:L'y6ij + (N — 2)‘ (1 - 5wy)(1 - 6”) (Cg)



APPENDIX D

Valid Subspace Mapping for the
Ising Spin problem

The valid subspace mapping (Gee, 1993; Gee et al., 1993; Gee and Prager, 1994) is the
current state-of-the-art method for mapping a combinatorial optimisation problem onto
an optimisation network. In this section we will show how to use the valid subspace
approach to map the Ising spin problem onto an optimisation network. In addition, a
modified hysteretic annealing function that encourages the formation of good solutions
is derived for the Ising spin problem.

Before considering the Ising spin problem in detail, it is necessary to demonstrate
how the valid subspace mapping may be applied to a general combinatorial optimisation
problem (Gee, 1993). Many combinatorial optimisation problems may be expressed as
the minimisation of a quadratic objective function, subject to a set of linear constraints:

C : 1
minimise E°bi = —EVTTV —vTp
subject to Av =Yy
where  v; € [0,1].

To map such a problem onto an optimisation network, the valid subspace approach sets
the Lyapunov function for the network to be Ewer — ot 4 EFers The penalty function
is given by

Fens — %cnv (Tl 4 5)|2 (D.1)

where ¢ is a positive constant, T* is a projection matrix and s is an offset vector!. The
projection matrix and offset vector are given by (Gee, 1993)

Tl = 1- AT (AAT)T A (D.2)
s = AT(AAT)y. (D.3)

D.1 Deriving T"¥ and s for the Ising Spin problem

Before proceeding with the valid subspace mapping of the Ising spin problem it is neces-
sary to restate the problem representation that was introduced in Section 5.2.1. In order
to solve the Ising spin F

roblem, each element in the Ising spin model is assigned two
neurons with outputs viw)

and v respectively. If vgb) =1and v}w) = 0 then element :

t

In Chapter 3 when the valid subspace mapping was used to map the TSP onto an optimisation
network, the projection matrix T was renamed T?* and the offset vector s was renamed &.



D.1 Deriving T** and s for the Ising Spin problem 122

has been assigned the state black. Similarly, if vfw) =1 and vgb) = 0 then element ¢ has
been assigned the state white. The output of the network may be represented as the
column vector,

v = B, o, o, o, o), oI,

The constraints for the problem mapping were given in equation (5.2) and have been
reproduced here for completeness,

vfw)—l—vi(b) =1 Vie{l,...N}

These constraints may be written in vector notation as Av =y where A is the N X 2N
matrix given by,
1100 00
0 011 00
A= . (D.4)

0000 --- 11
and y is the N x 1 column vector with all entries equal to one.
Before the projection matrix and the offset vector for the valid subspace mapping of the

Ising spin problem are determined, we shall evaluate some useful auxiliary expressions.
By substituting from equation (D.4) it can be shown that

AAT =91

and therefore ]
=1
(AAT)" = 5L (D.5)

Also, the 2N x 2N matrix AT A is given by

0
0

1
ATA = 1

N N N
O O R =
==
oo oo
oo o o

000O0---11
0000 ---11

Now the offset vector for the valid subspace mapping of the Ising spin problem can
be determined by substituting from equations (D.4) and (D.5) into equation (D.3), i.e.

-1

s = AT(AAT) y

il
= AT
) y
1
== 50 (D7)

where o0 is a 2N x 1 column vector with all entries equal to one. Similarly, the projection
matrix for the Ising spin problem can be determined by substituting from equations (D.5)
and (D.6) into equation (D.2), i.e.

Tvdl = T— AT (AAT)—lA
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- I—lATA
2
T 05 -05 0 0 0 0 ]
—05 05 0 0 0 0
0 0 05 —05 0 0
— 0 0 —0.5 05 0 0 (D.8)
0 0 0 0 - 05 —0.5
L0 0 0 0 --- —05 05 |

D.2 Evaluating the Penalty and Annealing Functions

Given the projection matrix and offset vector for the valid subspace mapping of the Ising
spin problem, we can now proceed to evaluate the penalty function E*°. Expanding
equation (D.1) we obtain?

E™® = —%vT(T”“l —Dv—cvis + %sTs.

By substituting equation (D.8) for T** and equation (D.7) for s, the penalty function
simplifies to

Fens  — %i (’UEW) n vf”))2 B gﬁ’: (vi(w) n vi(b)) + 2
1=1 1=1
= 23 (o 4o - )" (D.9)

=1

It is easily verified that the penalty function E°* is zero only when the constraints for
the Ising spin problem are satisfied. With c set to a large positive constant, the penalty
function E* is positive for any point that does not satisfy the constraints for the Ising
spin problem and a simple gradient descent argument reveals that the penalty function
encourages the network state v to lie on the valid subspace.

To improve the quality of solutions found by an optimisation network approach to the
Ising spin problem it is desirable to include some form of annealing. Modified hysteretic
annealing is a principled approach to annealing, which allows the solution quality to
be improved whilst maintaining the ability to guarantee convergence to a valid solution.
While the principles motivating the modified hysteretic annealing technique may be found
in Chapter 4, it is sufficient to know that the modified hysteretic annealing function, as
given by equation (4.9), is®

Emod — _ZVTT’UG.IV.
2

Substitution of equation (D.8) for T¥* gives the modified hysteretic annealing function
for the Ising spin problem as

Emod .

]2

N
(w) (, (w) _ (b) ®) (,,® _,(w)
; (vZ (vl v; ) + v, (vz v; ))

2Note that T?% is symmetric and since T'¥ is a projection matrix , TvaiTvel — Tval Also, s lies
in the nullspace of T'%, so T"%s = 0 where 0 is the zero vector.

3As previously stated the projection matrix for the TSP was named T?* and so it is appropriate to
make the substitution of T*% for T?* in equation (4.9).
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= 21 i (v — v£b>)2 (D.10)
4 1=1 7 13 " :
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