Transcriptional analysis of the role of CD8+ T lymphocytes in acute neural herpes simplex virus infection

David C. Tscharke BSc (Hons)

Infectious Diseases Laboratories
Institute of Medical and Veterinary Science

and

Department of Microbiology and Immunology
University of Adelaide

Adelaide, SA, Australia

A thesis submitted to the University of Adelaide in fulfilment of the requirements for the degree of Doctor of Philosophy

April 1997
Contents

Abstract .. v

Declaration of Originality vi

Acknowledgements ... vii

Abbreviations .. viii

Manuscripts and Presentations Arising xi

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW...... 1

1.1 *Herpesviridae* .. 1
 1.1.1 General properties and characteristics 1
 1.1.2 Alphaherpesvirinae 2
 1.1.3 Betaherpesvirinae 3
 1.1.4 Gammaherpesvirinae 4
 1.1.5 Other comments on herpesvirus classification 5

1.2 Herpes simplex virus (HSV) 6
 1.2.1 History .. 6
 1.2.2 Clinical aspects 7
 1.2.3 Terminology associated with the genome, genes and proteins 9
 1.2.4 The herpes simplex virus virion 10
 1.2.5 Productive replication cycle 12
 1.2.5.1 Viral attachment, penetration and translocation to the nucleus 12
 1.2.5.2 Viral gene expression 14
 1.2.5.3 Replication of the genome 15
 1.2.5.4 Virion assembly and egress 17
 1.2.6 HSV Pathogenesis 19
 1.2.6.1 Anatomy ... 19
 1.2.6.2 Primary infection 20
 1.2.6.3 Latency and reactivation 22
 Structure of latent DNA
 Latency associated transcripts
 Does HSV DNA persist in a single form?
 Latency outside of sensory ganglia
 1.2.6.4 Recurrence .. 27

1.3 Immunity to herpes simplex virus infections 28
 1.3.1 Non-adaptive defences 30
 1.3.1.1 Macrophages 30
 1.3.1.2 Neutrophils 31
 1.3.1.3 Natural killer cells 32
1.3.1.4 α/β Interferon ... 33
1.3.1.5 Genetics of natural resistance 33
1.3.2 Humoral immunity .. 34
1.3.2.1 Role of antibody in HSV infections 34
1.3.2.2 Functions of non-neutralizing anti-HSV antibody 36
1.3.2.3 Antibody in human HSV infections 38
1.3.3 T lymphocyte mediated immunity 39
1.3.3.1 Major histocompatibility complex: T cell subsets and their regulation ... 40
1.3.3.2 Relative roles of HSV-specific CD4+ and CD8+ T lymphocytes 43
1.3.3.3 Analysis of HSV-specific T lymphocytes by function 44
Delayed type hypersensitivity
Cytotoxic T lymphocytes
Other functions of HSV-specific T lymphocytes.
1.3.3.4 The role of cytokines and helper T cell subsets 53
1.3.3.6 T lymphocytes and ganglionic HSV infections 55

1.4 Aim .. 58

CHAPTER 2. MATERIALS AND METHODS 59
2.1 Materials .. 59
2.1.1 Mice .. 59
2.1.2 Virus ... 59
2.1.3 Anti-CD8 monoclonal antibody 60
2.1.4 Oligonucleotides ... 60
2.1.5 Solutions, gel mixtures and miscellaneous reagents 61

2.2 Methods .. 66
2.2.1 Inoculation of mice .. 66
2.2.1.1 Zosteriform model 66
2.2.1.2 Ear model .. 67
2.2.2 In vivo depletion of CD8+ cells by anti-CD8 treatment 67
2.2.3 Removal of tissue samples from mice 68
2.2.3.1 Sensory ganglia ... 68
2.2.3.2 Draining lymph nodes 68
2.2.3.3 Skin .. 68
2.2.4 Extraction of RNA .. 69
2.2.5 DNase treatment of RNA samples 70
2.2.6 RT-PCR to detect known mRNAs 70
2.2.7 Polyacrylamide minigel electrophoresis and electroblotting 72
2.2.8 Dot blotting .. 73
2.2.9 Generation of radio-labelled DNA probes 74
2.2.9.1 Oligonucleotide probes 74
2.2.9.2 Random primed probes 75
2.2.10 DNA hybridizations with oligonucleotide probes 76
2.2.11 DNA hybridizations with random primed probes 77
CHAPTER 3. EFFECT OF DEPLETING CD8+ CELLS ON CYTOKINE mRNA LEVELS IN HSV INFECTED GANGLIA 92

3.1 Generation of experimental material ... 93
3.2 Development of a semi-quantitative RT-PCR method 93
3.3 Cytokine expression in HSV infected ganglia 95
3.4 Verification of CD8+ cell depletion ... 96
3.5 CD8+ cell depletion increases HSV replication 97
3.6 CD8+ cell depletion alters cytokine mRNA levels in HSV infected ganglia 98
3.7 Cytokine expression five days after infection 99
3.8 Discussion .. 100

CHAPTER 4. DEVELOPMENT AND VERIFICATION OF mRNA DIFFERENTIAL DISPLAY 105

4.1 Basis of DD and considerations on the choice of primers 106
4.2 Choice of gels for use in DD .. 108
4.2 Optimisation of RT-PCR conditions for DD 111
4.3 Reliability of DD .. 113
4.4 Cloning differentially displayed cDNAs 115

2.3 List of suppliers ... 90
4.4.1 The "shot gun" approach .. 115
4.4.2 Screening of DD clones by differential hybridization 117
4.4.3 An integrated strategy for purifying and cloning DD cDNAs 119

4.5 Validation of DD in an in vivo setting 122
4.6 Summary .. 124

CHAPTER 5. AN mRNA DIFFERENTIAL DISPLAY BASED ANALYSIS OF THE ROLE OF CD8+ T CELLS IN HSV INFECTED SENSORY GANGLIA .. 125

5.1 Differential display of RNA from HSV infected ganglia of immunocompetent and CD8+ cell depleted mice 125

5.2 Northern blot analyses based on DD clones 126
5.2.1 Ganglionic RNA .. 126
5.2.2 RNA from draining lymph nodes and HSV infected skin 129

5.3 DNA sequence analyses of DD clones 129
5.4 Discussion .. 131

CHAPTER 6. CONCLUDING DISCUSSION 136

References ... 141
Abstract

CD8+ T cells have a crucial role in clearance of herpes simplex virus (HSV) from the peripheral nervous systems of infected mice, but the mechanism of this protection is not known. To approach this problem, comparative transcriptional analyses of sensory ganglia from (i) HSV infected immunocompetent mice and (ii) HSV infected mice depleted of CD8+ cells were done. Two types of analysis were undertaken. The first was directed at mRNAs encoding molecules of known importance in immunity and the second utilized mRNA differential display, a non-directed method for identifying differentially expressed genes. The directed analyses examined the effect of CD8+ cell depletion on IL-2, IL-4, IL-6, IL-10 and IFN-γ mRNA levels in ganglia of mice at the peak (day five) or the recovery phase (day seven) of HSV infection. Transcription of each cytokine tested was upregulated in sensory ganglia in response to HSV infection. IL-4 mRNA levels were increased by the depletion of CD8+ cells both at day five and day seven, raising the possibility that overexpression of IL-4 may be detrimental to clearance of HSV. IL-2 and IL-6 mRNAs were more abundant in the CD8+ cell depleted mice at day five and day seven, respectively. The remaining cytokine transcripts were not significantly affected by CD8+ cell depletion. Notably, mRNA for IFN-γ, a candidate effector of CD8+ T cell function, was not altered.

An mRNA differential display based analysis was developed, with the aim of detecting transcripts whose abundance in HSV infected sensory ganglia is dependent on the presence (or absence) of CD8+ T lymphocytes. Nine such mRNAs were found and partial cDNAs of five of these were cloned. Northern blotting confirmed that two of the differential display clones, designated CC28 and CT03, represented mRNAs that were more abundant in HSV infected ganglia of immunocompetent mice compared with CD8+ cell depleted mice. Nucleic acid sequence analyses disclosed that CC28 contains an as yet unreported sequence and CT03 is likely to represent mRNA for the α subunit of Galpha, a heterotrimeric G protein, not found before in sensory nerve ganglia.