Generalized Quadrangles
and Associated Structures

Matthew Ross Brown, B.Sc (Hons) (Adelaide)

Thesis submitted for the degree of
Doctor of Philosophy
in
Pure Mathematics
at
The University of Adelaide
(Faculty of Mathematical and Computer Sciences)

Department of Pure Mathematics

May 8, 1997
Contents

Abstract iv
Signed Statement v
Preface vi
Acknowledgements viii

1 Preliminaries 1
 1.1 Graphs 1
 1.2 Quadrics 2
 1.3 An introduction to geometries 4
 1.3.1 Examples of geometries 4
 1.4 Generalized Quadrangles (GQs) 6
 1.4.1 Combinatorics of GQs 6
 1.4.2 The classical GQs 7
 1.4.3 The non-classical GQ of Tits 8
 1.4.4 Isomorphisms between GQ 8
 1.4.5 The q-clan GQs 9
 1.4.6 Ovoids and rootvses of GQs 11
 1.5 Algebraic topology on a simplicial complex 15
 1.5.1 Modules 15
 1.5.2 Simplicial complexes, homology and cohomology 16
 1.5.3 Cohomology groups of a simplicial complex 20
 1.5.4 The simplicial complex of a graph 20
 1.5.5 Homology and cohomology over \(\mathbb{F}_2 \) 20
 1.6 Covers of a graph and cover of a geometry 22
2 The Kantor void K1(c)
2.1 Flats and Ovoids ... 26
2.2 Symmetry properties of the K1(c) void 28
2.3 Intersections of 8, and elliptic quadrics on Q(4,q), containing Xr 30

2.3.1 Case 1: ℓa ⊂ Σ .. 30
2.3.2 Case 2: ℓa ⊄ Σ but Xr ⊂ Σ .. 31
2.4 More properties of the Σs,c .. 32
2.5 Characterizations of the K1(c) void 34
2.6 Rotsettes containing K1(c) avoids 35

2.6.1 Elliptic rotsettes of K1(c) avoids 36
2.6.2 Rotsettes, trades and towers 42
2.6.3 Rotsettes of Q(4,9) .. 51
2.7 Remarks ... 53

3 SPGs and GQs of order (r,r^2) .. 54
3.1 SPGs from GQs of order (r,r^2) 54

3.1.1 Algebraic 2-fold covers of SPGs and the GQ condition 59
3.2 Isomorphisms of SPGs .. 63
3.3 A GQ of Kantor, an avoid of Kantor and a new SPG 64
3.4 SPG from q-Clan GQs, q even ... 70

3.4.1 Algebraic conditions .. 70
3.4.2 Examples .. 77

4 Characterizations of GQs of order (r,r^2) 80
4.1 Characterizations of Q(5,q), q even 81

4.1.1 The intersection and subtending of avoids of W(q), q = 2t, t even ... 81
4.1.2 Applications to Q(5,q), q even 85
4.2 GQs of order (r,r^2) with a doubly subtended subquadangle of order r .. 86

4.2.1 Introducing the cohomology .. 88
4.2.2 Calculating the homology .. 91
4.3 Application to Q(5,q) .. 93

4.3.1 Explicit homology calculation for Q(4,q), q odd 94
4.3.2 The graph G_{i,l,c(l,a)}, l ≠ 0, -4η 95
4.4 Remarks ... 104
5 Affine planes and GQs of order s

5.1 Covering affine planes ... 116
5.2 Algebraic covers and GQs .. 119
 5.2.1 A cover associated with the GQ $W(q)$ 122
 5.2.2 A cover associated with the GQ $T_2(O)$, q even 123
 5.2.3 A "geometric" construction of a cover of $T_2(O)$, with regular point (∞) 110
5.3 Equivalence of covers of π 116
 5.3.1 Normalised algebraic covers 118
 5.3.2 Equivalent algebraic covers of π 117
5.4 The automorphism group of π and the group of S fixing (∞) 123
 5.4.1 Relations and symmetries about (∞) 125
 5.4.2 Example: The subgroup of $\text{AGL}(3,q)$ admitted by $r_{11} y_2 - x_{21} y_1$ 127
 5.4.3 Example: Covers of $\text{AG}(2,q)$, q even, of the form $(x_1 + y_1)^P \left(\frac{x_2 + y_2}{x_1 + y_1} \right)$ 127
5.5 Automorphisms of π and coboundaries associated with collineations of π .. 129
5.6 Covers associated with $T_2(O)$ 132
 5.6.1 Case (a) $X = (0,0,1,0)$ 133
 5.6.2 Case (b) $X = (0,1,1,0)$, $t \in \text{GF}(q)$ 134
5.7 Remarks ... 135

Bibliography .. 137
Abstract

Our aim in this thesis has been to consider questions concerning the relationship between a Generalized Quadrangle (GQ) and various substructures, with a view to proving characterisation and classification results. We also lay the groundwork for new GQ construction methods, although no new GQs are constructed here.

In Chapter 1 we introduce preliminary concepts and results required for the rest of the thesis, involving graphs, quadrics, geometries, GQs, algebraic topology on a simplicial complex and covers of geometries.

Chapter 2 contains a detailed investigation of the ovoid $K_1(\sigma)$ of $Q(4,q)$ constructed by Kantor in [30], including construction of non-dual rosettes of $Q(4,q)$ containing only $K_1(\sigma)$ ovoids and rosettes containing both $K_1(\sigma)$ ovoids and elliptic quadric ovoids.

In Chapter 3 we show that if S is a GQ of order (q,q^2) and S' is a subquadrangle of order a doubly subed in S, then the subbounded ovoid/rosette structure is a Semi-Partial Geometry (SPG). A new SPG is constructed from a GQ of Kantor ([31]) and a $Q(4,q)$ subquadrangle. For a q-class GQ S, q even, Payne constructed a family of subquadranges S_α of order q ([55]). We derive the algebraic conditions under which S_α is doubly subed in S, and hence gives an SPG.

In Chapter 4 it is shown that if q is even a non-classical GQ of order (q,q^2) containing a subquadrangle isomorphic to $Q(4,q)$ implies the existence of a new ovoid of $PG(3,q)$. Also, by a homology calculation, it is shown that if S is a GQ of order (q,q^2), q odd, such that S contains a $Q(4,q)$ subquadrangle, with each ovoid of $Q(4,q)$ subed by S an elliptic quadric ovoid, then S is isomorphic to $Q(5,q)$.

In Chapter 5 we show a GQ S of order s with a regular point (∞) gives rise to a cover of the affine plane constructed from S and (∞), as in [45, 1.3.1]. Given an affine plane π of order s and an s-fold cover of π, satisfying special conditions we construct a GQ of order s with a regular point. If the cover of π is algebraic the condition on the cover is interpreted in cohomological terms; we investigate these for the remainder of the Chapter 5.