The Automated Visual Inspection and Grading of Timber

awarded 24.70

submitted by

Peter J. M. Sobey, B.E.(hons)

for the Degree of Doctor of Philosophy

March 1989
SUMMARY

A method has been developed to visually detect and discriminate the features on the surface of sawn planks of radiata pine for the purpose of grading the timber. The features include small and large knots, cone holes, pitch, bark, wane, resin and holes. The grade of the plank is determined by the number, distribution and type of features present. The automation of the visual inspection of timber for grading to a national standard has not previously been attempted which makes the present study unique.

It is postulated that the grey level histogram of the image of the wood is sufficient to discriminate the features from the background of prominent growth rings. The image of the wood is digitised from a charge coupled device (CCD) camera and segmented into smaller sub-images, called local areas. Statistics of the distribution of pixel intensities within each local area place it in a feature-measure space. A decision boundary is derived from a labelled set of samples that divides the feature-measure space into two half-spaces: one containing local areas that enclose a part of a feature, and the other containing local areas that contain only growth rings. This method allows over 95% of the local areas to be correctly classified.

Local areas that contain parts of the same feature are identified and merged together to form feature areas. The grey level histogram of the feature area is postulated as being sufficient to separate and size the features within a feature area. It is further postulated that an identification of the type of feature can be made with shape measures. This is supported by the analysis of a series of images containing a range of features which reveals the strengths and weaknesses of the methods used to discriminate them.

A comprehensive study of the use of texture measures in the detection and discrimination of features concludes that these measures are required to improve the performance of the algorithms based on histogram methods to a level that will allow commercialisation of an automated inspection system. The design of a production system is described and found to be a realisable project.
TABLE OF CONTENTS

SUMMARY
STATEMENT OF ORIGINALITY
PERMISSION TO COPY
ACKNOWLEDGEMENTS
NOMENCLATURE ... N.1
LIST OF SYMBOLS ... S.1

1. INTRODUCTION ... 1.1
 1.1 The Need for Automated Inspection 1.2
 1.2 Previous Work ... 1.3
 1.3 Objectives .. 1.9
 1.4 Layout of this Thesis 1.9

2. THE TIMBER INDUSTRY 2.1
 2.0 Introduction .. 2.1
 2.1 The Forest .. 2.2
 2.2 The Timber Mill ... 2.7
 2.3 The Features of Radiata Pine 2.8
 2.4 Appearance Grade Visual Inspection 2.28
 2.5 Quality Assurance Assessment of Manual Grading 2.30

3. LITERATURE SURVEY 3.1
 3.0 Introduction .. 3.1
 3.1 Automated Visual Inspection of Timber 3.1
 3.1.1 Laser Scanning Systems 3.2
 3.1.2 Camera Systems 3.4
 3.1.3 Hough Transform Methods for Feature Recognition .. 3.8
 3.1.4 Dedicated Hardware for Timber Inspection 3.9
 3.1.5 Computer Grading 3.12
 3.1.6 Summary of Automated Wood Inspection 3.13
 3.2 Industrial Applications of Automated Visual Inspection .. 3.14
 3.2.1 Binarisation Techniques 3.14
8.1 The Spatial Grey Level Dependence Matrix (SGLDM) ... 8.3
8.1.1 Methods for Reducing the Number of Grey Levels ... 8.6
8.1.2 Measures of Texture ... 8.7
8.2 Applying the Classification Algorithm ... 8.11
8.2.1 Stability of the Algorithm Iteration ... 8.13
8.2.2 Effect of Texture Measures ... 8.17
8.3 Initial Conclusions ... 8.20
8.4 Postscript ... 8.21

9. USING THE CLASSIFICATION ALGORITHM TO DETECT FEATURE
LOCAL AREAS USING TONAL AND TEXTURE MEASURES 9.1
9.1 Determining the Influence of Algorithm
Parameters using Tonal Measures ... 9.1
9.1.1 Description of the Training and Test Sets ... 9.2
9.1.2 Stability with Changes in Dead Zone and Loss
Function ... 9.5
9.1.3 Variation of the Loss Ratio ... 9.13
9.1.4 Variation of the Iteration Step Size ... 9.18
9.1.5 Conclusions of Algorithm Parameter Values ... 9.20
9.2 Using Combinations of Tonal Measures in the
Classification Algorithm ... 9.21
9.2.1 Examination of Local Areas Misclassified by
Tonal Measures ... 9.33
9.3 The Addition of Texture Measures to Improve
the Classification of Local Areas ... 9.37
9.3.1 Investigation of the Role of Texture Direction ... 9.44
9.4 Conclusions of the use of Tonal and Texture
Measures to Perform the Classification of
Local Areas ... 9.53

10. FEATURE DISCRIMINATION 10.1
10.1 Determining the Feature Extent
Within a Local Area ... 10.2
10.1.1 The Line Statistics Method ... 10.3
10.1.1.2 Conclusions of the Line Statistics Method ... 10.9
10.1.2 The Adaptive Threshold Method ... 10.10
10.1.2.1 Finding Peaks and Valleys in the Histogram... 10.11
10.1.2.2 Choosing a Threshold Value ... 10.13
10.1.2.3 Summary of the Adaptive Threshold Method ... 10.25
10.1.2.4 Conclusions of the Adaptive Threshold Method ... 10.27
10.1.3 Assessment of Feature Extent Methods ... 10.27
10.2 Formation of Feature Areas from Feature Local Areas ... 10.29
10.2.1 Determining the Extent of Features Within Feature Areas ... 10.30
10.2.2 Separating Features Within the Feature Area ... 10.33
10.3 Application of the Feature Discrimination Method ... 10.33
10.3.1 Measures for the Classification of Feature Blobs ... 10.35
10.3.2 The Influence of Texture in the Feature Detection Stage on the Results of Feature Discrimination ... 10.39
10.3.3 Conclusions of Feature Discrimination ... 10.41

11. GRADING TIMBER PLANKS

- Examples of an Automatic Grading Program ... 11.2

12. DESIGN OF A PRODUCTION SYSTEM

- Imaging Hardware ... 12.2
- Processing Speed ... 12.4
- Other Imaging Systems ... 12.7
- Flank Locating System and Lighting ... 12.7
- Flank Deformation Measurement ... 12.8
- Conclusions ... 12.9

13. CONCLUSIONS - THE FEASIBILITY OF AUTOMATING THE VISUAL INSPECTION OF RADIATA PINE

A1A. APPENDIX 1A - WOOD IMAGE LIBRARY

- TRAINING SET ... A1A.1
- FEATURE LIST ... A1A.5

A1B. APPENDIX 1B - WOOD IMAGE LIBRARY

- TEST SET ... A1B.2
A2. APPENDIX 2 - VISUALISATION OF 4-D TONAL PATTERN SPACE

A3A. APPENDIX 3A - FEATURE DISCRIMINATION
TRAINING SET - LINE STATISTICS METHOD
BLOB DESCRIPTION
FEATURE DESCRIPTION

A3B. APPENDIX 3B - FEATURE DISCRIMINATION
TEST SET - LINK STATISTICS METHOD
BLOB DESCRIPTION
FEATURE DESCRIPTION

A4A. APPENDIX 4A - FEATURE DISCRIMINATION
TRAINING SET - ADAPTIVE THRESHOLD METHOD
BLOB DESCRIPTION
FEATURE DESCRIPTION

A4B. APPENDIX 4B - FEATURE DISCRIMINATION
TEST SET - ADAPTIVE THRESHOLD METHOD
BLOB DESCRIPTION
FEATURE DESCRIPTION

A5. APPENDIX 5 - GRADING RULES FOR SAWN BOARDS

B. BIBLIOGRAPHY