Fast Asynchronous VLSI Circuit Design Techniques
and their Application to Microprocessor Design

Shannon V. Morton, B. E. (Hons.)

Department of Electrical and Electronic Engineering
The University of Adelaide
Adelaide, South Australia.

January 22, 1997
Addenda

Section 2.2 - Asynchronous hardware

This thesis is focussed on practical asynchronous circuit design with an emphasis on microprocessors, and therefore only those processors which have been designed to fabrication have been included in the literature discussion. Fabricated test structures and coded microprocessors do not provide enough reliable data to justify their discussion in this context, although in Section 8.1 a description of coded superscalar processors, as compared to the author’s, is given.

Section 2.2.2 - AMULET I and II

The AMULET I design was the first generation attempt at implementing a sixth generation commercial ARM6 processor, and was built with significantly less man-power and resources. This makes comparisons between them difficult, and the performance gap of 50% should be treated cautiously. The subsequent AMULET II processor has since demonstrated improved performance over the ARM6.

Section 3.5 - The ECS representation

The ECS representation is intended to enable asynchronous circuits to be specified in a clear and concise format which models the interaction of data and control wires. It is not intended as a formal tool for synthesis, and as such has not been developed using formal methods. Instead, an intuitive description of the representation has been presented based on the practical implementation of asynchronous circuits, as this is the major focus of the thesis.

Section 4.1 - Algebraic improvements of a TS

The simplifications described in this section are synonymous with those of boolean logic.

Section 5.3.1 - Dynamic logic

The nature of the data stream will also impact the power dissipation of a dynamic versus a static gate.

Section 5.3.3.2 - Self-timed pseudo-nmos logic

This circuit has a fast completion detection time compared to the static logic tree, as evidenced in Table 6.8. Compared to a typical dynamic gate however, it will be slow.

Chapter 6 - Self-timed Architectures

The pseudo self-timed architectures presented in this chapter do not require additional safety margins. The computation and completion paths are closely matched in layout, and an implicit margin is already included in the handshaking overhead to compensate for any variations.
Contents

Abstract ix

Declaration x

Preface xi

Acknowledgements xii

List of Figures xiii

List of Tables xvi

1 Introduction 1

1.1 Advantages of asynchronous systems 2

1.1.1 Global communication 2

1.1.2 Data dependent computation times 3

1.1.3 Resilience to operating conditions 3

1.1.4 Reduced power dissipation 4

1.1.5 Incremental improvements 4

1.1.6 Synthesis and verification 4

1.1.7 Power spectrum 5

1.2 Disadvantages of asynchronous systems 5

1.2.1 Control complexity 5

1.2.2 Testability 5

1.2.3 Area overhead 6

1.2.4 Operating speed 6

1.2.5 Integration and software support 7
1.3 Asynchronous paradigms .. 7
 1.3.1 Timing assumptions .. 7
 1.3.2 Control signalling ... 8
 1.3.3 Signal encoding ... 9
 1.3.4 Summary .. 10
1.4 Thesis outline .. 10

2 Related Work ... 12
 2.1 Synthesis and verification 12
 2.1.1 Tangram .. 13
 2.1.2 Communicating processes 13
 2.1.3 Signal transition graphs (STGs) 14
 2.1.4 STG related synthesis 15
 2.1.5 Other contributions 15
 2.2 Asynchronous hardware 15
 2.2.1 Micropipelines and the CFPP 16
 2.2.2 AMULET I and II 17
 2.2.3 DCC error detector 17
 2.2.4 Caltech microprocessor 18
 2.2.5 Other contributions 18
 2.3 Summary of related works 18
 2.4 A need for speed .. 19

3 Event Controlled Systems (ECS) Design Representation 21
 3.1 Conventions ... 21
 3.2 Event controlled elements 22
 3.2.1 Muller-C element 22
 3.2.2 Merge gate ... 23
 3.2.3 Send gate ... 24
 3.2.4 Feed gate ... 25
 3.2.5 Restore gate .. 26
 3.2.6 Until gate ... 27
 3.2.7 Latching element 28
5 Asynchronous Pipelines

5.1 FIFO pipelines ... 75
 5.1.1 Micropipeline 2P FIFOs .. 75
 5.1.2 4P FIFO circuits ... 76
 5.1.3 A fast ECS FIFO .. 77
 5.1.4 Comparison of FIFO designs 79

5.2 Pipelines with processing delays 80

5.3 Precharge pipelines: general concepts 82
 5.3.1 Dynamic Logic .. 83
 5.3.2 Requirements of a PP for dynamic logic 84
 5.3.3 Methods of completion and precharge detection 86

5.4 Decoupled 4P precharge pipelines 90
 5.4.1 Implementations for PPα, PPβ, and PPγ 90
 5.4.2 Performance comparisons ... 91

5.5 ECS precharge pipelines ... 92
 5.5.1 PPα implementation ... 92
 5.5.2 PPβ implementation .. 93
 5.5.3 PPγ implementation .. 94
 5.5.4 Performance comparisons ... 95

5.6 Comparison of ECS and D4P PP structures 96

5.7 Summary .. 97

6 Self-Timed Architectures ... 98

6.1 Strict self-timing requirements 99

6.2 Designing and utilizing self-timed units 101

6.3 Adder Structures .. 102
 6.3.1 Self-timed ripple carry implementation 103
 6.3.2 Self-timed ripple select implementation 105
 6.3.3 Comparison of ST adders ... 106
 6.3.4 Pseudo self-timing (PST) .. 107
 6.3.5 PST ripple carry implementation 108
6.3.6 PST ripple select implementation ... 109
6.3.7 Comparison of PST and ST adders .. 110
6.4 Incrementer structures .. 112
 6.4.1 Self-timed incrementer ... 113
 6.4.2 Incrementer performance .. 114
6.5 Comparator structures .. 115
 6.5.1 Possible implementations .. 116
 6.5.2 Comparator tree .. 117
 6.5.3 Comparator performance ... 119
6.6 Multiplier structures ... 120
 6.6.1 Exploiting self-timed operation .. 121
 6.6.2 Simple partial product generation 121
 6.6.3 Radix 4 Booth encoding for generating partial products 122
 6.6.4 Recoding Booth’s algorithm to improve performance 124
 6.6.5 Implementation, floorplanning, and area usage 125
 6.6.6 Performance and comparisons ... 126
 6.6.7 Potential improvements ... 128
6.7 Summary ... 130
7 ECSTAC: A Pipelined Microprocessor ... 131
 7.1 Design considerations .. 132
 7.2 Instruction set architecture ... 133
 7.3 Architectural overview .. 135
 7.4 Processor sub-systems .. 137
 7.4.1 Instruction decode ... 137
 7.4.2 Operand fetch .. 138
 7.4.3 Adder, comparator, and stack processor 142
 7.4.4 Arithmetic and logical unit ... 147
 7.4.5 Order unit ... 148
 7.4.6 Registers and scoreboard ... 149
 7.4.7 Program counter ... 151
 7.5 Testability issues ... 154
7.5.1 Delay modelled Vtt bus .. 154
7.5.2 Interface delays ... 155
7.5.3 Scan testing .. 155

7.6 Simulation results ... 156
7.6.1 Sub-system simulations 157
7.6.2 Core simulation environments 158
7.6.3 General purpose instruction streams 159
7.6.4 Instruction streams for determining bottlenecks 161
7.6.5 Comparisons ... 162

7.7 Summary .. 164

8 ECSCESS: A Superscalar Microprocessor 166
8.1 Other asynchronous superscalar microprocessors 167
 8.1.1 SCALP ... 167
 8.1.2 Fred ... 168
 8.1.3 Rotary pipeline processor 169

8.2 Characteristics of ECSCESS 170

8.3 Instruction set architecture 171
8.4 General architecture .. 173

8.5 Implementation of the shore 174
 8.5.1 Controlling RAW hazards 175
 8.5.2 Controlling WAR hazards 176
 8.5.3 Structure of the pre-FU unit 177
 8.5.4 Generating the return event to the sun 178
 8.5.5 Switching network 179

8.6 Implementation of the sun and moons 179
 8.6.1 Globe controller 180
 8.6.2 PC controller .. 181
 8.6.3 Branch moon controller 182
 8.6.4 Stack moon controller 182

8.7 Implementation of functional units 183
 8.7.1 AID unit ... 183
8.7.2 MEM unit .. 184
8.7.3 CMP unit .. 184
8.8 Floorplanning issues 185
 8.8.1 Size of the ocean 185
 8.8.2 Size of the switching network 185
 8.8.3 A floorplan based on the minimum FU width .. 186
 8.8.4 Floorplanning for a larger FU width 187
8.9 Simulation results 188
8.10 Comparisons 190
8.11 Extensions and improvements 191
 8.11.1 Incorporating interrupts 191
 8.11.2 Exception handling 193
 8.11.3 Reducing the ocean width for WAR and RAW hazards 194
8.12 Summary ... 195

9 Conclusions .. 196
 9.1 Further work 199

A Fundamental Temporal Equations and Corresponding ECS Gates 201

B ISA of the ECSTAC Microprocessor 203
 B.1 Memory instructions 203
 B.1.1 Two byte instructions 203
 B.1.2 Four byte instruction 204
 B.1.3 The unused mode 204
 B.2 ALU instructions 204
 B.2.1 Two byte instruction (short mode) 204
 B.2.2 Three byte instructions (long mode) 205
 B.3 Branch instructions 205
 B.3.1 One byte instruction - CALL 205
 B.3.2 Two byte instructions - BRANCH 206
 B.4 Stack instructions 206
 B.5 Special instructions 207
C ISA of the ECSCESS microprocessor ... 208
 C.1 Branch instructions .. 208
C.2 Interrupt instructions ... 209
C.3 MOVE instruction .. 210
C.4 LDC instruction ... 210
C.5 FU instructions ... 211
 C.5.1 Register unit .. 211
 C.5.2 Arithmetic unit ... 212
 C.5.3 Multiply, divide, and sqrt unit 212
 C.5.4 Shifter and logical unit .. 213
 C.5.5 Comparator unit .. 213
 C.5.6 Memory unit ... 214
 C.5.7 Floating point units and co-processors 215

Bibliography ... 216
Abstract

Over the past decade a variety of asynchronous synthesis techniques have been proposed. The majority of these have been concerned with generating provably correct circuits with high reliability, whereas others have focussed on producing circuits with low power dissipation. However in taking such approaches the resulting circuits are usually swamped with a large number of gates in the critical paths and are consequently inefficient in terms of speed.

This thesis describes a collection of novel design techniques engineered for high speed operation (such as fast pipeline control circuits and pseudo self-timed computations). In addition, a new gate representation is proposed to better reflect their functionality in an asynchronous domain. As an illustration of these design techniques two microprocessors have been implemented:

- **ECSTAC** is styled as a linear pipeline with a load/store architecture and an 8 bit data path and a 24 bit address path. It employs fast pipeline control circuits and utilizes some interesting asynchronous techniques for bypassing stages, controlling data hazards, and register fetching. **ECSTAC** has been fabricated using ES2's 0.7μm DLM CMOS process and demonstrated a peak operating speed of 28 Mips.

- **ECSCESS** is structured to take advantage of self-timed data dependent computations and to employ functional parallelism. It has a 32 bit data path and can provide for up to 32 single precision (16 double precision) functional units which interact directly with each other, thus enabling out-of-order execution and global results forwarding. Their operation is fully decoupled from branches and interrupts to minimize stalling. Emphasis has been placed on maintaining a high throughput to the functional units. It employs novel design techniques for rapid data hazard detection between units, PC updating, and decoupled branch evaluation and branch target determination. **ECSCESS** has been simulated in VHDL with delays comparable to those of the 0.7μm standard cell library used in **ECSTAC**, and demonstrated a peak operating speed of 181 Mips.