Transcriptional regulation of the
Drosophila cyclin E gene during development.

A thesis submitted for the degree of Doctor of Philosophy

by

Lynn Marie Jones, B.Sc. (Hons)

Departments of Biochemistry and Genetics
University of Adelaide,
Adelaide, S. A., 5005
Australia

September 1997

This thesis is copied on acid free paper.
Table of Contents.

Abstract
Statement
Acknowledgements
Common abbreviations

CHAPTER 1 - Introduction ... 1
 1.1 Cell proliferation and development .. 1
 1.2 The cell cycle ... 1
 1.3 Regulation of the cell cycle ... 2
 1.4 Regulation of the G1 to S phase transition 3
 1.4.1 G1 to S phase regulatory molecules 3
 a) G1 cyclins .. 3
 b) Cyclins, pRB proteins and E2F 4
 c) Cyclin/cdk inhibitors ... 5
 1.4.2 G1 to S phase regulated transcription 7
 a) Periodic cell cycle transcription in yeast 7
 b) Periodic cell cycle transcription in mammalian tissue culture cells .. 8
 1.5 Coordination of cell proliferation with development 9
 1.6 Cell proliferation during Drosophila development 11
 1.6.1 Embryonic development ... 11
 1.6.2 Larval development .. 14
 a) 1st instar larval brain neuroblasts 14
 b) 3rd instar larval brain lamina precursor cells 15
 c) 3rd instar larval eye imaginal disc 16
 1.7 Developmental patterning and G2 to M phase regulation during
 Drosophila embryogenesis .. 17
 1.7.1 Patterning genes .. 17
 1.7.2 Transcription regulation of the mitotic inducer, string 19
 1.8 G1 to S phase regulation during Drosophila development 20
 1.8.1 Cyclin E ... 20
 1.8.2 DMCYCE is necessary and sufficient for S phase progression 21
 1.8.3 DMCDC2C kinase and DMCYCE ... 22
 1.8.4 DMCYCE and S phase gene transcription 22
 1.8.5 The E2F/DP S phase transcription factor 23
 1.8.6 RBF ... 26
 1.8.7 dacapo ... 26
 1.8.8 Cyclin D ... 27
1.8.9 Cyclin A and roughex...28

1.9 Developmental control of S phase - transcriptional regulation of
Dmcyce?..29

1.9.1 The Dmcyce gene...29

1.9.2 Dmcyce transcription patterns during development..........30
 a) Embryonic development......................................30
 b) 3rd larval instar development...............................31

1.9.3 Dmcyce transcriptional regulation................................32
 a) Developmental regulation during embryogenesis..........32
 b) Regulation of Dmcyce transcription by DMCYCE and
 E2F..33
 c) Possible negative regulation by DPP in 3rd larval instar
 eye imaginal discs..33

1.9.4 Simple versus complex regulation of Dmcyce transcription......34

1.10 Aims and approaches of this thesis................................34

CHAPTER 2 - Materials and Methods..................................37

2.1 Abbreviations...37

2.2 Materials..38

2.2.1 Chemicals and reagents...38

2.2.2 Enzymes..38

2.2.3 Kits...39

2.2.4 Radionucleotides..39

2.2.5 Antibiotics..39

2.2.6 Nucleic acid molecular weight standards....................39

2.2.7 Oligonucleotides..39
 a) sequencing primers..39
 b) Site directed mutagenesis primers..........................40

2.2.8 Cloning vectors and clones....................................40
 a) Cloning vectors..40
 b) Cloned DNA sequences......................................40
 c) Dmcyce cosmid clones..40

2.2.9 Buffers and solutions..40

2.2.10 Bacterial media..42
 a) Liquid media...42
 b) Solid media..42

2.2.11 Bacterial strains..43

2.2.12 Drosophila melanogaster strains..............................43

2.2.13 Drosophila melanogaster media...............................44

2.2.14 Drosophila melanogaster embryo collection plates........44

2.2.15 Antibodies...44
 a) Primary antibodies..44
 b) Secondary antibodies..44
2.3 Methods .. 45
 2.3.1 Restriction endonuclease digestion ... 45
 2.3.2 Agarose gel electrophoresis ... 45
 2.3.3 Isolation of DNA restriction fragments from agarose gels 45
 2.3.4 End filling of 5' overhang DNA restriction fragments to generate blunt ends ... 46
 2.3.5 Dephosphorylation of vector DNA ... 46
 2.3.6 Ligation of DNA restriction fragments to vector DNA 46
 2.3.7 Transformation procedure for recombinant plasmids 46
 a) CaCl2 method ... 46
 b) Electroporation method .. 47
 2.3.8 Rapid small scale isolation of plasmid DNA .. 47
 a) Rapid boiling lysis method .. 47
 b) Colony "cracking" .. 48
 2.3.9 Isolation of cosmid DNA .. 48
 2.3.10 Large scale isolation of plasmid DNA .. 48
 2.3.11 Isolation of Drosophila melanogaster genomic DNA 49
 2.3.12 P element plasmid rescue .. 49
 2.3.13 Determination of DNA concentration ... 50
 2.3.14 Radiolabelling of DNA fragments ... 50
 2.3.15 Southern Hybridization .. 50
 a) Agarose gel electrophoresis .. 50
 b) DNA transfer to membrane filters ... 51
 c) Hybridization of radio-labelled DNA probe to a nitrocellulose filter 51
 d) Quantitation of bands ... 52
 2.3.17 DNA sequencing ... 52
 a) Sequencing reactions ... 52
 b) Electrophoresis of reactions .. 52
 c) Autoradiography ... 52
 2.3.18 Site directed mutagenesis .. 52
 a) Template preparation ... 53
 b) Primer kinasing .. 53
 c) Annealing primers to the template ... 53
 d) Synthesis of the mutagenized strand ... 54
 e) Selection of mutant clones .. 54
 2.3.19 Micro-injection of Drosophila embryos ... 54
 a) Preparation of DNA for injection .. 54
 b) Embryo collection .. 55
 c) Dechorionation of embryos ... 55
 d) Micro-injection .. 55
 e) Post injection care ... 55
f) Screening for w+ transformants and chromosome mapping ... 55

2.3.20 Drosophila embryo collections and fixation ... 56
2.3.21 Whole mount RNA in situ hybridization to Drosophila embryos .. 57
 a) Generation of DIG labelled RNA probes .. 57
 b) Preparation of embryos for hybridization ... 57
 c) Hybridization and colour detection .. 58

2.3.22 Immunostaining of Drosophila embryos ... 58
2.3.23 Whole mount RNA in situ hybridization followed by
 Immunostaining of Drosophila embryos ... 60
2.3.24 Drosophila larval dissection and fixation of larval tissues ... 60
2.3.25 Immunostaining of Drosophila larval tissues ... 60
2.3.26 BrdU labelling of Drosophila embryos .. 61
2.3.27 Tissue mounting, microscopy, photography and image manipulation .. 61

CHAPTER 3 - P element-mediated DmcyCE deletions: initial dissection of cis-acting regulatory sequences ... 63
 3.1 Introduction .. 63
 3.2 Molecular mapping of DmcyCE P element insertion mutations .. 64
 3.2.1 Localization of zygotic lethal DmcyCE P element alleles by
 Southern analysis .. 64
 3.2.2 Localization of other DmcyCE P element alleles - a P element
 "hot spot" ... 65
 3.3 Generation of DmcyCE P element-mediated deletions .. 67
 3.3.1 P element Mutagenesis .. 67
 3.3.2 Molecular mapping of mutations ... 68
 a) Determining whether lethal revertants were internal or
 external P element deletions .. 68
 b) Determining the extent of external P element deletions 69
 Small 3' deletions ... 69
 5L, 13L and 19L ... 69
 12L ... 70
 6L ... 71
 8L and 27L ... 72
 3.4 Phenotypic analysis of the DmcyCE deletions ... 73
 3.4.1 Stage of lethality .. 73
 3.4.2 S phase defects during embryogenesis .. 75
 3.4.3 Embryonic DmcyCE transcription ... 76
 3.5 Conclusions and Discussion .. 78

CHAPTER 4 - DmcyCE genomic rescue ... 83
 4.1 Introduction .. 83
4.2 DmcyE genomic rescue construct cannot rescue a null DmcyE mutation to viability ..83
4.3 Zygotic DmcyE transcription from the P[w+]T1 genomic rescue transgene ..84
4.4 Conclusions ..85

CHAPTER 5 - DmcyE promoter-lacZ reporter constructs:

5.1 Introduction ..89
5.2 Generation of DmcyE promoter-lacZ reporter constructs89
 5.2.1 The lacZ vectors ...89
 5.2.2 Cloning of DmcyE promoter-lacZ reporter constructs90
 5.2.3 Generation of transgenic flies containing the constructs ...91
5.3 Analysis of DmcyE promoter-lacZ reporter construct expression during embryogenesis ..92
 5.3.1 The 1.0H/E-TATA-nlacZ heterologous promoter construct 93
 5.3.2 The endogenous promoter constructs94
 a) CNS cells and ubiquitous epidermal transcription94
 b) Transcription in PNS cells ...95
 c) Transcription in the epidermal thoracic patches95
d) Endoreplicative gut transcription96
5.4 Analysis of DmcyE promoter-lacZ reporter constructs expression during 3rd instar larval development97
 5.4.1 Larval brain expression ..98
 5.4.2 Larval eye imaginal disc expression99
 5.4.3 Wing imaginal disc expression101
 5.4.4 Salivary gland expression ..103
5.5 Conclusions and Discussion ..103
 5.5.1 Regulation of embryonic DmcyE transcription103
 5.5.2 Regulation of 3rd instar larval DmcyE transcription105

CHAPTER 6 - The epidermal thoracic patches:

trans-acting factors and further enhancer dissection109
6.1 Introduction ..109
6.2 Epidermal thoracic patch DmcyE promoter-lacZ reporter constructs110
 6.2.1 Generation of lacZ reporter constructs111
 a) Cloning of constructs ..111
 b) Generation of transgenic flies112
 6.2.2 Analysis of epidermal thoracic patch DmcyE promoter-lacZ reporter construct expression112
 a) lacZ transcription in the epidermal thoracic patches112
 b) Other embryonic lacZ transcription114
6.3 The boundaries of DmcyE epidermal thoracic patch transcription117
6.4 DmcyE transcription in patterning gene mutants119
6.4.1 Distal-less ... 119
6.4.2 Antennapedia and teashirt 120
6.4.3 wingless ... 121
6.4.4 Ultrabithorax ... 122
 a) Dmcy cE transcription 122
 b) 3.1H/Bl-TATA-nlacZ transcription 123
 c) Ectopic Ubx expression 124
6.5 Developmental fate of the T1 epidermal thoracic patch 125
6.6 Conclusions and discussion 126
 6.6.1 Dmcy cE epidermal thoracic patch cis-acting elements 126
 6.6.2 Other Dmcy cE embryonic cis-acting elements 127
 6.6.3 Trans-acting factors regulating Dmcy cE transcription 129
 a) UBX, a negative regulator of Dmcy cE transcription? 129
 b) Potential UBX binding sites within the Dmcy cE promoter 131
 c) Potential homeotic activators of Dmcy cE epidermal thoracic patch transcription 132
 d) Spatial regulation of Dmcy cE epidermal thoracic patch transcription ... 133
 e) DLL and Dmcy cE transcription in the head segment PNS cells ... 134
6.6.4 Conclusions ... 135

CHAPTER 7 - General Discussion and Future Directions 136
 7.1 Regulation of Dmcy cE transcription is complex 136
 7.2 Further dissection of Dmcy cE cis-acting regulatory regions 136
 7.2.1 Further Dmcy cE promoter-lacZ reporter constructs 137
 7.2.2 P element-mediated Dmcy cE deletions 137
 7.2.3 Genomic rescue ... 138
 7.3 Identification of trans-acting regulators of Dmcy cE transcription 138
 7.3.1 Regulation of Dmcy cE transcription in the epidermal thoracic patches ... 138
 7.3.2 Trans-acting regulators that drive Dmcy cE transcription in other tissues ... 140
 a) Embryonic endoreplicating gut tissues 140
 b) 3rd instar larval lamina precursor cells 140
 7.4 Final conclusions ... 141

References ... 142
Abstract

Cell proliferation during *Drosophila* development occurs in a complex spatio-temporal pattern and is co-ordinated with differentiation. The regulation of cell proliferation is important for correct animal development and may be achieved in part by the developmentally controlled expression of cell cycle regulators. Cyclin E, a G1 cyclin, acts as a regulatory subunit of the cyclin dependent serine/threonine kinase, cdk2. The cyclin E/cdk2 complex functions during the G1 to S phase transition of the cell cycle, promoting entry into S phase. *Drosophila* Cyclin E (DMCYCE), is an important cell cycle regulator that is both necessary and sufficient for S phase during development. *Dm cycE* transcription occurs in all proliferating tissue, and ceases when cells exit from the cell cycle into G1 phase. Ectopic *Dm cycE* transcription drives cells prematurely into S phase. These results suggest that regulation of *Dm cycE* transcription is important for appropriate cell proliferation during development.

The focus of this research has been to investigate how *Dm cycE* transcription is regulated during development, as a basis for determining how developmental signals control cell proliferation during *Drosophila* development. Three approaches have been undertaken to identify cis-acting regulatory sequences that control *Dm cycE* transcription. First, by the phenotypic characterization of a set of *Dm cycE* deletion mutations, second, by analysis of a *Dm cycE* genomic rescue construct for its ability to rescue *Dm cycE* null mutants and thirdly by expression analysis of a series of *Dm cycE* promoter-lacZ reporter constructs. Results from these experiments demonstrated that *Dm cycE* transcription is under the control of a large regulatory region, containing a complex arrangement of multiple tissue specific cis-acting regulatory elements. The complexity of these cis-acting regulatory elements suggested that *Dm cycE* transcription may be regulated directly by developmental signals, providing a potential mechanism by which cell proliferation may be co-ordinated with developmental processes.

In an attempt to identify potential trans-acting regulators of *Dm cycE* transcription, research has been focused on the embryonic epidermal thoracic patch cells. This tissue is unique in the embryo, as cell proliferation appears to be regulated at the G1 to S phase transition. Analysis of *Dm cycE* transcription in several patterning gene mutants indicated that the homeobox protein Ultrabithorax is either directly or indirectly repressing *Dm cycE* transcription and that the signalling protein Wingless may positively regulate *Dm cycE* in the epidermal thoracic patches, suggesting a link between developmental patterning cues and the regulation of cell proliferation.

This research has formed the basis for the identification of transcriptional regulators that bind to *Dm cycE* cis-acting regulatory sequences. Such studies will provide insight into how developmental signals and patterning cues, control *Dm cycE* transcription and therefore cell proliferation during development.