PRODUCTION AND LOCALISATION OF HAZE
PROTECTIVE MATERIAL FROM SACCHAROMYCES
CEREVISIAE

by

Isabelle Valérie Simone Dupin,
DEA Food Science (Montpellier, France)

A thesis submitted in fulfillment of the requirements for the degree of
Doctor of Philosophy

Department of Horticulture, Viticulture and Oenology
Faculty of Agricultural and Natural Resource Sciences
The University of Adelaide

The Australian Wine Research Institute

June 1997
TABLE OF CONTENTS

Declaration ... i
Abstract .. ii
Acknowledgements ... v
Publications ... vii
List of Figures ... ix
List of Tables ... xiii
Abbreviations ... xv

1. INTRODUCTION AND GENERAL LITERATURE REVIEW 1
1.1 INTRODUCTION .. 1
1.2 HEAT UNSTABLE PROTEINS ... 2
1.2.1 Protein content of wine ... 2
1.2.2 Heat unstable proteins ... 3
1.3 REMOVAL OF HEAT UNSTABLE PROTEINS 3
1.3.1 Fining agent: bentonite ... 3
1.3.2 Alternatives to bentonite .. 5
1.4 HAZE PROTECTIVE FACTOR (HPF) ... 6
1.4.1 Purification and partial characterisation .. 6
1.4.2 Possible origin of HPF .. 7
1.5 YEAST ENVELOPE AND CELL WALL OF SACCHAROMYCES 8
1.5.1 Composition and structure .. 9
1.5.1.1 Glucans ... 9
1.5.1.2 Chitin ... 9
1.5.1.3 Structural mannoproteins ... 10
1.5.1.4 Cell envelope molecular organisation 13
1.5.2 Biosynthetic pathway of the main cell wall components 14
1.5.3 Cell wall evolution over the yeast growth cycle 17
1.5.4 Autolytic degradation of the cell wall .. 18
1.5.5 Known glycoproteins of the cell envelope of Saccharomyces ... 19
1.5.5.1 Periplasmic enzymes ... 19
1.5.5.2 Sexual agglutination factors .. 20
1.5.5.3 Is HPF a known mannoprotein? ... 21
1.6 AIMS OF THIS THESIS ... 21

2. GENERAL MATERIAL AND METHODS .. 23
2.1 MATERIAL .. 23
2.2 YEAST GROWTH .. 24
2.2.1 Yeast strain .. 24
2.2.2 Synthetic grape juice medium (SGJM) .. 24
2.2.3 Yeast propagation ... 25
2.2.4 Yeast growth .. 25
2.3 GENERAL METHODS ... 26
2.3.1 Wet weight determination ... 26
2.3.2 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS PAGE) 26
2.3.2.1 Sample preparation .. 26
2.3.2.2 Electrophoretic conditions .. 26
2.3.2.3 Staining for protein ... 27
2.3.2.4 Staining for carbohydrate .. 27
2.3.3 Concanavalin-A affinity chromatography .. 27
2.3.4 Ultrafiltration .. 28
2.3.5 Micromethod for the measurement of the heat induced haze (heat test) 28
2.3.6 Production of grape extract ... 30
2.3.7 Method for the determination of mannose and glucose contents 30
2.3.7.1 Hydrolysis .. 31
2.3.7.2 Enzymatic assay ... 31
2.3.8 Amino acid composition .. 33
3. EVALUATION OF METHODS FOR EXTRACTING HAZE
PROTECTIVE MATERIAL FROM SACCHAROMYCES CEREVISIAE 35
3.1 INTRODUCTION AND LITERATURE REVIEW 35
3.2 EXPERIMENTAL 39
3.2.1 Material 39
3.2.2 Yeast strains 39
3.2.3 Growth on glucose enriched media 39
3.2.4 Growth on mannose enriched media 40
3.2.5 Mannoprotein extraction from whole yeast cells 40
3.2.5.1 Mechanical disruption with a French press 40
3.2.5.2 Pretreatment and zymolyase digestion of the cell wall (full zymolyase treatment) 41
3.2.5.3 Hot SDS extraction 41
3.2.5.4 Hot citrate extraction 41
3.2.6 Manoprotein extract purification 42
3.2.7 Heat testing of the manoprotein extracts 42
3.3 RESULTS AND DISCUSSION 42
3.3.1 Extracted manoprotein yields 42
3.3.2 Haze protective ability of the manoprotein extracts 46
3.3.3 Haze forming manoprotein fraction released during French press treatment by Maurivin PDM cells 46
3.3.4 Differentiation of manoprotein extracts on the basis of M, and amino acid composition 46
3.4 CONCLUSION 46
4. EXTRACTION PROFILE OF HAZE PROTECTIVE MATERIAL
FROM SACCHAROMYCES CEREVISIAE MAURIVIN PRISE DE MOUSSE

4.1 INTRODUCTION AND LITERATURE REVIEW

4.2 EXPERIMENTAL

4.2.1 Material

4.2.2 Yeast strain

4.2.3 Growth protocol

4.2.4 Cell wall purification

4.2.5 Mannoprotein extractions

4.2.5.1 Pretreatment and zymolyase digestion

4.2.5.2 EDTA and DTE treatments

4.2.5.3 SDS treatment

4.2.6 Purification of mannoprotein extract

4.2.7 Micromethod for the measurement of the heat induced haze (heat test)

4.3 RESULTS AND DISCUSSION

4.3.1 Extraction of HPM by protocols related to the full zymolyase treatment
applied to thawed Maurivin PDM cells in late exponential phase

4.3.1.1 Sub-treatments: pretreatment and zymolyase treatments

4.3.1.2 Extraction of HPM by protocols related to the sub-treatment ‘pretreatment’

4.3.2 Effect of freeze-thawing whole Maurivin PDM cells in late exponential or stationary phase on the release of HPM

4.3.2.1 Nature and yield of the carbohydrates released during thawing of whole Maurivin PDM cells in late exponential phase

4.3.2.2 Haze protective ability of the mannoprotein extract obtained after thawing whole Maurivin PDM cells in late exponential or stationary phase

4.3.3 Extraction of HPM by SDS or EDTA treatment applied to fresh Maurivin PDM whole cells in late exponential or stationary phase

4.3.3.1 Yield of extraction of the mannoprotein material obtained by SDS or EDTA treatment of fresh whole cells in late exponential or stationary phase

4.3.3.2 Haze protective ability of the mannoprotein extracts obtained by SDS or EDTA treatment of fresh cells in late exponential or stationary phase
5. RELEASE OF HPM FROM SACCHAROMYCES CEREVISIAE MAURIVIN PRIS DE MOUSSE DURING FERMENTATION AND STORAGE ON YEAST LEES
5.1 INTRODUCTION AND LITERATURE REVIEW ... 107
5.2 EXPERIMENTAL ... 109
5.2.1 Material .. 109
5.2.2 Fermentation trials conducted at 25°C with agitation - Collection of culture supernatants. Recovery of the extracellular material by ultrafiltration or ethanol precipitation .. 109
5.2.3 Large scale fermentation conducted at 25°C with agitation - Yeast propagation, monitoring and sampling of culture. Recovery of extracellular material by dialysis .. 110
5.2.4 Fermentation at 18°C without agitation - Yeast propagation, monitoring and sampling of culture. Recovery of the extracellular material by ultrafiltration .. 111
5.2.5 Storage on yeast lees at 18°C - Sampling of culture. Recovery of the extracellular material by ultrafiltration .. 111
5.2.6 Determination of total and viable cell counts 112
5.2.7 Determination of polymeric mannose and glucose contents 112
5.2.8 Micromethod for the measurement of the heat induced haze (heat test) 113
5.3 RESULTS AND DISCUSSION .. 113
5.3.1 Release of HPM by Maurivin PDM cells at either exponential or stationary phase .. 113
5.3.1 Differences in yield of extracellular material released from cells according to the phase of cell growth and method of recovery .. 113
5.3.2.1 Monitoring of the release of polymeric mannose and glucose during the large scale agitation 25°C fermentation .. 121
5.3.2.2 Monitoring of the release of polymeric mannose during the non-agitated 18°C fermentation .. 128
5.3.2.3 Release of HPM during the different growth phases for the large scale agitated 25°C fermentation or for the non-agitated 18°C fermentation 130
5.3.3 Release of HPM by Maurivin PDM cells during storage on yeast lees .. 134
5.4 CONCLUSION .. 135

6. IMMUNOLOCALISATION OF HPF IN THE CELL WALL
OF SACCHAROMYCES CEREVISIAE MAURIVIN PRISE DE MOUSSE 139
6.1 INTRODUCTION AND LITERATURE REVIEW .. 139
6.2 MATERIAL AND METHODS ... 143
6.2.1 Material ... 143
6.2.2 Source of heme protective factor (HPF) ... 143
6.2.3 Production of polyclonal antibodies ... 144
6.2.3.1 Immunisation and test procedure ... 144
6.2.3.2 Partial immunoglobulin fractionation .. 144
6.2.4 Test of immunospecificity and cross-reactivity by Ouchterlony's immunodiffusion assay ... 145
6.2.5 Test of immunospecificity and cross-reactivity by electrophoresis in agarose gels and immunoblotting ... 145
6.2.5.1 Gel polymerisation .. 145
6.2.5.2 Sample preparation .. 145
6.2.5.3 Electrophoretic conditions .. 146
6.2.5.4 Transfer to nitrocellulose membrane (immunoblotting) 146
6.2.5.5 Immunodetection on the nitrocellulose membrane 147
6.2.6 High performance size-exclusion chromatography ... 148
6.2.7 Direct agglutination assay ... 148
6.2.8 Immunoelectron microscopy .. 151
6.2.8.1 Cell processing: fixation and embedding ... 151
6.2.8.2 Immunogold labelling of ultrathin sections ... 152
6.3 RESULTS AND DISCUSSION ... 153
6.3.1 Specificity and cross-reactivity of the polyclonal antibodies 153
 6.3.1.1 Origin of the second component contained in the antigenic solution 154
 6.3.1.2 Cross reactivity of the polyclonal antibodies ... 157
6.3.2 Presence of PPF antigenic determinants on the Maurivin PDM cell surface. Interpretation of the direct agglutination assay .. 158
6.3.3 Immunolocalisation of HPF in the cell wall of the yeast Maurivin PDM 160
 6.3.3.1 Immunolabelling on the cell wall ... 161
 6.3.3.2 Immunolabelling of the cytoplasm ... 162
6.4 CONCLUSION .. 163

7. CONCLUDING REMARKS .. 167

Appendix A .. 171
Appendix B .. 173
Appendix C .. 175

REFERENCES ... 177
ABSTRACT

The effectiveness of methods to extract haze protective material (HPM) from whole yeast cells was tested on three winemaking *Saccharomyces cerevisiae* strains [Maurivin Prise de mousse (PDM); flocculent yeast AWRI 65; Champagne yeast AWRI 85]. For the three strains, hot extraction with SDS (boiling cells in Tris buffer for 5 min) and the full zymolyase treatment (which combined a pretreatment of the cells with DTE and EDTA followed by an enzymatic digestion of the cell debris with zymolyase) were the most efficient in releasing HPM. In contrast, hot citrate extraction (using an autoclave) was far less effective whereas disruption of the cells using a French press device released haze-forming mannanproteins. Overall, better results were obtained with Maurivin PDM and AWRI 85 compared to AWRI 65.

Thorough studies of the parameters responsible for HPM release from Maurivin DPM showed that SDS itself was not necessary to extract HPM. Boiling the cells in Tris buffer, without SDS, efficiently extracted HPM. Similarly, the decomposition of the full zymolyase treatment showed that HPM was more specifically extracted during the pretreatment rather than during the enzymatic digestion with zymolyase. Further investigation revealed that HPM was released by EDTA whereas DTE preferentially extracted haze forming mannanproteins. The implications of these data for the location of HPF and its interactions with other cell wall components are discussed.

The extracellular material released during fermentation of Maurivin PDM yeast during storage on yeast lees was recovered either by ultrafiltration or ethanol precipitation. In both cases, the material collected was active in reducing the haze without the enrichment of the extract in mannanproteins being necessary.

Antibodies to a purified wine HPF were used to localise HPF in Maurivin PDM yeast cell. No cross-reactivity against yeast mannan or invertase was detected by the methods of gel double diffusion and western immunoblotting. Agglutination assay indicated that HPF was present on the cell wall surface. Successful immunogold labelling followed by transmission electron microscopy showed HPF to be distributed on the cell wall surface, in particular, at the periphery and innermost layers of the cell wall.