The Spatial and Temporal Geomorphology and Surficial Sedimentology
of the Gurra Gurra Crescentic Dunes, Strzelecki Desert, South Australia

Mark A. Bishop M.Sc. (Melb.)

A dissertation submitted in fulfillment of the requirements of the
Degree of Doctor of Philosophy, Department of Geology and Geophysics,
University of Adelaide,

1997
Table of Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>i</td>
</tr>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>Declaration</td>
<td>vi</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>vii</td>
</tr>
<tr>
<td>Figures</td>
<td>viii</td>
</tr>
<tr>
<td>Tables</td>
<td>x</td>
</tr>
</tbody>
</table>

1 Introduction to Aeolian Geomorphology

1.1 Introduction 1
1.2 Regional Geo-Setting of the Strzelecki Desert 4
1.3 Calicozoic Stratigraphy 4
1.4 Climate and Meteorology of the Australian Dunefields 9
1.5 Research Objectives 16
1.6 Research Hypotheses 17
1.7 Dissertation Outline 19

2 Terrestrial and Extra-Terrestrial Dune Studies

2.1 A Historical Perspective of Desert Dune Studies 22
2.2 Aeolian Landforms: Morphologies and Origins 23
2.3 Physics of Dune Processes 26
 2.3.1 Wind - Bed Interactions 26
 2.3.2 Effects of Surface Roughness on Entrainment 27
 2.3.3 Dune Dynamics 30
 2.3.4 Threshold Velocity and the Effect of Slope 32
2.4 Crescentic Dunes 33
 2.4.1 Morphology and Morphometry 33
 2.4.2 Origin 38
 2.4.3 Two-Dimensional Morphology 39
 2.4.3.1 Windward Toe 39
 2.4.3.2 Stoss Slope 40
 2.4.3.4 Crest and Brink 40
 2.4.3.5 Lee Slope: Flow Separation and the Lee Eddy 42
 2.4.3.6 Lee Slope: Grainfall and Avalanching 43
 2.4.4 Three-Dimensional Morphology 44
 2.4.4.1 Age, Form and Process 44
 2.4.4.2 Barchanoid and Transverse Dune Form and Process 45
 2.4.4.3 Integrated Transverse and Linear Dune Form and Process 46
2.5 Linear Dunes
 2.5.1 Morphology and Morphometry
 2.5.2 Erosional Origin
 2.5.3 Depositional Origin
 2.5.4 Resultant or Bi-Directional Wind Models of Origin
 2.5.6 Linear Dune Evolution from Barchans
 2.5.6.1 Bagnold - Tsoar Horn Elongation Models
 2.5.6.2 Kar Model of Barchanoid Coalescence

2.6 Dune Sediments and Sedimentology
 2.6.1 Aeolian Grain-size Distributions
 2.6.2 Aeolian Sand Morphology
 2.6.3 Aeolian Ripple Morphology

2.7 Yardangs and the Process of Erosion

2.8 Comparative Aeolian Planetology
 2.8.1 Crescentic Dune Morphometry of the Hellespontus Region
 2.8.2 Crescentic Dune Morphometry of the North Polar Erg
 2.8.3 Dunes as Indicators of Wind Patterns for the North Polar Erg
 2.8.4 Martian Linear Dunes
 2.8.5 Particle Formation
 2.8.6 Martian Dune Sediments

2.9 Literature Review Summary

3 Research Methods
3.1 The Multi-Disciplinary Approach
 3.1.1 Dune Morphometry: Data Collection
 3.1.2 Dune Granulometry: Data Collection

3.2 Dimensional Analysis in Geomorphology
 3.2.1 Geometrical Similarity of Landforms
 3.2.2 Pearson Product-Moment Correlation and Linear Regression Analysis
 3.2.3 ANOVA Significance Testing for Simple Regression
 3.2.4 Spearman Rank-Order Correlation

3.3 Sedimentological Wind Direction Sensors

3.4 Granulometric Analysis
 3.4.1 The Controversial Phi (θ) Scale
 3.4.2 Descriptive Statistics for Grain-size Distributions
 3.4.2.1 Graphical Derivation of Descriptive Statistics
 3.4.2.2 Mathematical Moment Derivation
 3.4.2.3 A Comparison of Graphical and Moment Methods

3.5 Granulometry and Geomorphic Process

3.6 Experimental Design
 3.6.1 Hypothesis Testing of Grain-size Distributions
 3.6.2 Kruskal-Wallis H Statistic
 3.6.3 The Scheffé-type projection

3.7 Summary of Research Methods

4 Crescentic Dune Morphology and Morphometry
4.1 Dune Morphology and Regional Wind Patterns
4.2 Dune Morphology
 4.2.1 Wind Obliquity and Dune Morphology
4.3 Crescentic Dune Morphometry
 4.3.1 Gurra Gurra waterhole
 4.3.2 Pampa de la Joya
 4.3.3 Salton Sand Sea
4.4 Summary of Dune Morphology and Morphometry

5 Depositional and Erosional Landforms of the Gurra Gurra Landscape
 5.1 Sedimentological Wind Vanes
 5.1.1 Winter
 5.1.2 Summer
 5.1.3 Autumn
 5.1.4 Spring
 5.2 Slope Inclination and Ripple Orientation
 5.3 Depositional Landforms: Lee Projections and Nebkha
 5.4 Erosional Landforms: Yardangs and Desiccation Features
 5.5 Summary of Depositional and Erosional Landforms

6 Crescentic Dune Surficial Sedimentology
 6.1 Descriptive Surficial Sedimentology
 6.2 Qualitative Spatial Contrasts
 6.2.1 Winter
 6.2.2 Summer
 6.2.3 Autumn
 6.2.4 Spring
 6.3 Quantitative Spatial Variation
 6.4 Summary of Spatial Sedimentological Change
 6.5 Quantitative Temporal Variation
 6.6 Summary of Temporal Sedimentological Change
 6.6.1 Crest-Brink Zone
 6.6.2 Lower Lee Flank
 6.6.3 Lower Stoss Flank
 6.6.4 Dune Homs
 6.7 Bivariate Comparisons of Lee and Stoss Moments
 6.8 Overview of Crescentic Dune Surficial Sedimentology

7 Crescentic Dune Morpho-Genesis and Dynamics
 7.1 Dune Initiation
 7.1.1 Dune Shape
 7.1.2 ENSO and Dune Activity
 7.1.3 Upslope Wind Speed Amplification
7.2 Dune Morphology and Morphometry
7.3 Wind Regime and Morphological Congruity
 7.3.1 Dune Advance and Retrogression
7.4 A Two-Dimensional Morpho-Dynamic Analysis
 7.4.1 Lee Slope Morpho-Dynamics
 7.4.1.1 The Reversing Lee Eddy and Intra-Dune Abrasion and Deflation
 7.4.1.2 The Reversing Lee Eddy and Sand Apron Deposition
 7.4.2 Crest-Brink Morpho-Dynamics
7.5 Substrate Cohesiveness and Pavement Structure
7.6 Desiccation-Polygon and Yardang Evolution

8 Granulometric Differentiation over Crescentic Dunes
 8.1 Sorting Processes
 8.1.1 Upper Dune
 8.1.2 Lee Slope
 8.1.3 Stoss Flank
 8.1.4 Dune Horns
6.2 Concluding Remarks

9 Conclusion
 9.1 Morphology and Morphometry
 9.2 Surficial Sedimentology
 9.3 Aeolian Processes at Gurra Gurra: The Global Implications
 9.4 Research Methods: A Retrospective View
 9.5 Implications and Future Research Directions

Appendices
 Appendix 2 Dune Morphometry of the Gurra Gurra Dunes (Autumn 1994)
 Appendix 3 Graphical Profiles of Granulometric Distributions

Bibliography
Abstract

The Strzelecki Desert's crescentic dunes of north-eastern South Australia (29° 01' S, 140° 02' E) dominate an approximate 2400 m x 320 m area, originating from the crestal zone of a quartz-sand linear ridge at a site known as Gura Gura waterhole. The interaction of linear and crescentic crestal morphologies place the linear dune in the complex class-type, however, in part, the identity of the linear morphology is nebulous. Parasitic erosion of the linear dune-form results in contemporaneous re-deposition of the sediment into crescentic dunes, which move sub-parallel to the longitudinal axis of the underlying linear form.

The intricate natures of dune morphology and surficial sedimentology for the Gura Gura crescentic dunes are responses to site specific sand sources in a semi-closed geomorphic system, topographic enhancement and seasonal periodicity of less dominant secondary and tertiary wind directions, strengths and durations, as well as other climatic and vegetative influences. The principal influences of multi-directional winds and the upslope-amplification of shear velocities, cause dune form to be in continual transition between the dynamic end-members of equilibrium and quasi-equilibrium. Dimensional equilibrium is a transient feature at Gura Gura waterhole and is not characteristic of this dunescap.

The surficial sedimentology of the crescentic dunes is one of medium-to-fine quartz-rich sands with a unimodal, positively skewed and leptokurtic distribution. Analysis has shown that finer mean grain-sizes correlate with better sorting, a less positive skewness and lower kurtosis. The signatures of the sedimentological distributions across the dunes, and in different seasons, are subtle contrasts that are attributed to either the removal or accumulation of the fine tail of the distributions. Seasonal variation is gradual and transitional between each season, while greatest differences are found between the upper and lower micro-geomorphic positions of the dunes.

Through the integration of qualitative and quantitative process-geomorphology, it has been shown that the Strzelecki-Gura Gura dunescap portrays a microcosm of aeolian features, and processes, that are not dissimilar to many in the immense areal deserts of Earth and Mars.