Biological and chemical features associated with salt production in solar saltfields at Dry Creek, South Australia

Fereshteh Ghassemzadeh
B.Sc. (Honors), The University of Mashhad, IRAN
M.Sc. The University of Oklahoma, USA

Department of Zoology
University of Adelaide

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy.

May, 1997
TABLE OF CONTENTS

Table of contents..ii
Abstract..v
Acknowledgements..viii
List of Tables ...x
List of Figures ..xii

CHAPTER ONE

Introduction ... 1
 1.1. History of solar saltfields... 3
 1.2. Literature review.. 6
 1.3. Study area .. 9
 1.4. Aims of study ... 13

CHAPTER TWO

Physico-Chemical Investigations ... 15
 2.1. Introduction .. 15
 2.2. Methods and materials ... 16
 2.2.1. Field methods ... 16
 2.2.2. Laboratory methods ... 17
 2.3. Results ... 18
 2.3.1. Physical parameters .. 20
 2.3.2. Chemical parameters ... 22
 2.4. Discussion .. 25
 2.4.1 Physical parameters .. 26
 2.4.2 Chemical parameters .. 28
 2.5. Conclusions .. 34

CHAPTER THREE

Biological Investigations ... 36
 3.1 Introduction .. 36
 3.1.1. Biological communities in natural saline waters 36
 3.1.2. Biological communities in solar saltfields .. 42
 3.1.3. Aims ... 45
 3.2 Methods and materials .. 45
 3.2.1. Description of sampling sites ... 46
 3.2.2. Methods ... 48
 3.3 Results ... 50

53

i
CHAPTER FOUR

The determination of phosphate and nitrate in highly saline waters

4.1. Introduction ... 76
4.1.1. Previous work .. 76
4.1.2. Aims of the present study 79

4.2. Method and material .. 86

4.2.1. Analysis of PO4-P .. 80
 a. Preparation of standard solution 80
 b. Preparation of reagents ... 81
 c. Procedure ... 81

4.2.2. Analysis of NO3-N .. 81
 a. Preparation of standard solution 81
 b. Preparation of reagents ... 81
 c. Procedure ... 82

4.2.3. Effect of salinity on flow rate of samples through nitrate reduction column .. 82

4.2.4. Effect of salinity on the estimation of PO4-P and NO3-N in saline water (NaCl) (Preliminary study) 83

4.2.5. Nitrate estimation in saline water 83
 a. Dilution method .. 84
 b. Synthetic seawater method 84
 c. Standard addition method 84

4.2.6. Statistical analysis ... 85

4.3. Results .. 85

4.3.1. Effect of salinity on flow rate of samples through nitrate reduction column ... 85

4.3.2. Estimation of PO4-P and NO3-N in synthetic saline water (NaCl) ... 85
CHAPTER FIVE

The impact of *Synechococcus* on viscosity and salt quality and quantity

5.1. Introduction ... 95
5.1.1. Viscosity and its measurement .. 95
5.1.2. The cyanobacterium *Synechococcus* and its extracellular products ... 97
5.1.3. Salt quality ... 100
5.1.4. Experimental aims ... 101
5.2. Methods and materials .. 101
5.2.1. Experimental design ... 102
5.2.2. Data collection in the field .. 103
5.2.3. Laboratory measurement ... 103
5.2.4. Salt quality ... 106
5.2.5. Salt quantity .. 107
5.3. Results ... 107
5.3.1. Physico-chemical parameters 107
5.3.2. Salt quantity ... 108
5.3.3. Salt quality ... 111
5.4. Discussion ... 113
5.5. Conclusions .. 115

CHAPTER SIX

The effect of salinity and light on viscosity and production of extracellular material by the Cyanobacterium, *Synechococcus* 116

6.1. Introduction ... 116
6.1.1. Aims of the experiment .. 119
6.2. Methods and material ... 119
6.2.1. Experimental design ... 119
6.2.2. Sample collection ... 120
6.2.3. Laboratory measurement ... 121
6.2.4. Determination of ECP composition by 13C NMR Spectroscopy ... 123
6.2.5. Statistical analysis ... 124
6.3. Results ... 124
6.3.1. Physico-chemical parameters 124
6.3.2. Identification of the chemical structure of ECP by 13C NMR spectroscopy ... 130
6.3.3. Laboratory examinations .. 131
6.3.4. Microscopic observations .. 133
6.4. Discussion ... 135
6.5. Conclusion ... 128

CHAPTER SEVEN

Conclusion ... 140
7.1. Summary ... 140
7.1.1. Ecology of the ponds ... 141
7.1.2. *Synechococcus* and saltfield biology in salt production 144
7.1.3. Management .. 146
7.2. Final conclusion .. 149

References .. 150

Appendices
Appendix 1. Physico-chemical parameters
Appendix 2. Biological parameters
Appendix 3. Phosphate and nitrate determination
Appendix 4. Experimental measurements
Appendix 5. Publications
ABSTRACT

Sodium chloride is important in the manufacture of chlorine, caustic soda and soda ash. It is obtained from several sources, an important one being solar saltfields. One third of the world's sodium chloride is from solar salt fields. Solar salt fields at Dry Creek are the major site of salt production in South Australia. They comprise a series of interconnected evaporating and crystallising ponds where seawater is evaporated and the concentration of sodium chloride increases. Finally, water terminates in crystallises where evaporation continues and sodium chloride precipitates and is then harvested. The aims of this research are to evaluate the biological and physico-chemical parameters and their interactions with the production of salt.

Salt production is strongly dependent upon biological, physical and chemical factors. These were investigated in eight ponds at Dry Creek solar saltfields. Nutrient and other chemical and physical parameters, including salinity, alkalinity, pH, dissolved oxygen, temperature, wind and rainfall, which control the composition of the biota and salt production in the solar saltfields, were measured. Salinity ranged from 46 to 243.5 g/L. The systems were alkaline and low in oxygen concentrations (0.4 - 9.5 mg/L). Ranges of nutrients were 7-22 and 4-19 μg/L for reactive phosphate and nitrate-nitrogen concentrations in the study ponds, respectively.

There are two sources of seawater intake, Middle Beach (low nutrient) and Chapman Creek (high nutrient). Seawater from Middle Beach with low salinity (35 g/L) and nutrients (SRP, 40 μg/L; total P, 52 μg/L; NO₂-N, 4.5 μg/L) is different from seawater from Chapman Creek with high salinity (47 g/L) and high nutrients (SRP, 250 μg/L; total P, 290 μg/L; NO₃-N, 133 μg/L). This excessive amount of nutrients that enter the ponds with intake seawater caused high biological productivity in several ponds. The major source of these nutrients is from the outfall of the nearby Bolivar sewage works.

Standard methods of analysis of plant nutrients (NO₂-N and PO₄-P) may lead to significant errors when applied to saline water. For this reason, analytical methods for the estimation of both NO₂-N and PO₄-P in saline water were re-examined. It was established that the ascorbic acid with antimony (III) phospho-molybdemum blue method is the most useful method for phosphate determination in saline water and shows minimal salinity interferences. For nitrate estimation it was shown that there are substantial salt errors when using the Cd column technique followed by colorimetric procedures. Methods involving dilution, standard addition or the application of a salt error correction are essential for accurate nitrate determination in saline waters.

The biota and biological communities in the solar salt fields at Dry Creek are similar to those found in other solar salt fields. Forty-two species of algae dominated by diatoms, and Cyanobacteria, and 16 species of zooplankton dominated by crustaceans, were identified. Marine brackish faunas and saline forms are the dominant groups of organisms in early stage ponds. As salinity increases through the series of ponds, species diversity falls and finally, only halobiont species remain. In early ponds the fauna includes fishes, gastropods, isopods, amphipods and copepods (calanoids, cyclopoids and harpacticoids),
ostracods and insects (Trichoptera and Diptera). The fish, Atherinosoma microstomum and Pseudogobius olorun, have been recorded from study ponds with salinity 46-110 g/L. Two isopods, (Exosphaeroma bicolour and Synichis sp.), the amphipod, (Parhyalella tankeli), one gastropod (Hydrodiddus tasmanicus) and Palaeomen serenus, a large swimming prawn in pond XDI at a salinity of 55 g/L, represent tolerant macrospecies. They may prevent the growth of benthic mats in this pond. Acorus is the main copepod and tolerates a salinity up to 110 g/L. As salinity increases through the series of ponds, species diversity falls and finally only halotolerant species remain. Dasycyrus dicoptus and Reticulips herbsti were present at a salinity 55.5-137.5 g/L. They did not occur at a higher salinity probably not only due to high salinity but also due to deficiency of some ions, such as carbonates (see Chapter 2). The occurrence of Symphitonetta wheeleri was notable because this insect is rare in saline water and does not belong to the Palaemonidae, the family containing the only known marine Trichoptera. Two species of chironomids (Cladatanyxus sp. and Tomyaraus barbitarsis) and one species of Ephydridae ("Ephydra riparia"), occurred in most ponds. The planktonic community of these highly saline evaporating ponds consists mainly of Artemia franciscana and Pararotia zietziana. Seasonal variation in zooplankton populations reflects seasonal changes in temperature, light, nutrients and algal abundance. Thus, the presence of zooplankton is governed primarily by its salinity tolerance and its abundance by trophic conditions. At salinities above 180 g/L, brine shrimp (Artemia franciscana and Pararotia zietziana), hypersaline algae (Dunaliella salina), and a hypersaline Cyanobacterium (Synechococcus) are abundant.

At high salinity, Synechococcus excreted large amounts of extracellular material and this caused an additional increase in brine viscosity with effects on salt production. The effects of the extracellular material produced by Synechococcus were tested in a field experiment which used microcosms to investigate how Synechococcus affected the quantity and quality of salt produced. Five tanks were filled with brine from salt ponds and inoculated with different amounts of Synechococcus. The tanks were monitored for 12 weeks in two stages. In stage I, Synechococcus was present in evaporating tanks until the brine concentration increased to the point of sodium chloride crystallization. Regular measurements were made of salt concentration and viscosity in different treatments. In stage II, Synechococcus was excluded and salt was allowed to crystallize in the tanks; deposited salt was harvested at the end of the experimental period. The values of pH in the brine ranged 7.3 to 9. The value for salinity ranged 210 to 325 g/L and correspondingly, for specific gravity, from 1.1495 to 1.2278 during the period of experiment. The relative viscosity increased throughout stage I; it ranged from 1.103 to 1.290, 1.301, 1.336, 1.346 and 1.353 in tanks 1, 2, 3, 4 and 5, respectively. The highest value occurred in tank 5 which contained the highest amounts of Synechococcus. The salt quality harvested from each treatments was evaluated by the dry sieve technique using a Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray Analyser (EDX) was used to determine crystal form, size and elemental composition, thus to determine impurities in the harvested salt. The results showed that the size and shape of salt crystals harvested are affected by liberated organic material (ECM) produced by Synechococcus, and that more brine is retained in these salt crystals which affects the composition of the salt and lead to a decreased in the quality of salt crystals. Data on size distribution of salt crystals showed that it was unimodal for all tanks and ranged from 0.125 to 4 mm. Overall, the largest crystals were
from the control tank (tank #1), and the smallest from the high Synechococcus tank (tank # 5). Moreover, the quantity of harvested salt decreased with increasing amounts of Synechococcus due to the decreasing percentage of evaporating water.

The effects of high salinity and high light intensity on the production of extracellular material were tested by an experiment using aquaria as microcosms. Twelve aquaria with the same amounts of Synechococcus standing crop were filled with low and high salinity brine from ponds PA7 (190.5 g/L) and FA1 (295 g/L) and kept under covered and uncovered conditions. Viscosity values were 1.51340 and 1.5790 centistokes in ponds PA7 and FA1, respectively. Regular measurements were made of salinity and viscosity in different treatments. The highest value of viscosity occurred in high salinity-uncovered samples in week four with viscosity of 1.84342 centistokes and the lowest value was in low salinity-covered aquaria and in week one. The salinity was almost constant throughout the experiment. Samples from the aquaria were taken to assess the amount of extracellular material and to investigate its structure. The results of ash free dry weight (AFDW) of the Synechococcus standing crop showed that more organic material was produced under high salinity and high light intensity than at low salinity and low intensity of light. Part of this organic material produced by Synechococcus was released to the media and increased the viscosity of the brine. Thus, relative viscosity was higher in conditions of high salinity and high light intensity due to the ECP produced by Synechococcus. The chemical composition of extracellular material was investigated by solid state resolution 13C Nuclear Magnetic Resonance (NMR) with Cross Polarisation and Magnetic Angle Spinning technique. These techniques indicated that the samples were mixture of glycopolymers and glycolipids.

The information collected from the physico-chemical, biological and experimental investigation is used to make appropriate recommendations about solar salt pond management. Proper management of biological systems is essential for production of high-quality salt.