Bacteriophage SfII Mediated Serotype Conversion in *Shigella flexneri*

by

Maria Mavris B.Sc.(Hons)(Adel)

Microbial Pathogenesis Unit
Department of Microbiology and Immunology
University of Adelaide
Adelaide 5005
Australia

A Thesis Submitted for the Degree of Doctor of Philosophy
May, 1998
Abstract

Shigella flexneri is the causative agent of bacillary dysentery and is responsible for approximately 10^5 deaths per year. Organisms that belong to this species can be classified according to the O-antigenic component of their lipopolysaccharide (LPS). Determination of the serotype is based on agglutination of the organism with polyclonal antisera. *S. flexneri* exhibits at least 12 different serotypes, all of which are variations of the basic tetrasaccharide repeat:

\[\rightarrow 3'\beta-D-\text{GlcNAc}(1\rightarrow2)-\alpha-L-Rha(1\rightarrow2)-\alpha-L-Rha(1\rightarrow3)-\alpha-L-Rha(1\rightarrow) \]

I II III

Variations resulting in different epitopes are due to the addition of either glucosyl or O-acetyl residues at specific positions along the repeat unit. Immunity to *S. flexneri* strains is serotype specific and therefore protection against each serotype is required.

The modifications have been found to be mediated by temperate bacteriophages. To date, two such phages have been identified and characterised; Sf6, responsible for the O-acetylation of rhamnose III and Sf6X which encodes genes which add a glucosyl residue to rhamnose I.

S. flexneri strains of serotype 2 have been associated with a highly virulent phenotype and are more prevalent in nature. Bacteriophage SfIII is responsible for the glucosylation of rhamnose III of the repeat unit and has been isolated from a strain of serotype 2b. Phage SfIII possesses an hexagonal shaped head, a tail with a contractile sheath and tail fibres and has a genome of 43.5 kb in size.

A 4 kb *BamHI* fragment was isolated which was found to mediate serotype conversion. This fragment was found to contain 4 open reading frames, however, only two were required for serotype conversion. These genes were named *bgf*, which encodes a putative bacteriostol glucosyl transferase, and *gurl* encoding the putative type II antigen determining glucosyl
These genes are adjacent to the integrase and excisionase genes and the attachment site (attP) which are highly homologous to those of Salmonella bacteriophage P22. In addition, a gene named ORF2 was identified of unknown function, which did not appear to be required for serotype conversion.

In vitro T7 polymerase /promoter analysis identified a protein of 34 kDa in size corresponding to Bgt. Subsequent subcellular fractionation localised this protein to the cytoplasmic and membrane fractions. Topology studies determined that the carboxy and amino terminal ends were cytoplasmically located. The active site was located to the cytoplasmic domain which is consistent with the role of Bgt. A protein was not observed for OrfH.

The ability of SfII phage and plasmid copies of serotype converting genes to modify LPS with only a single repeat unit was assessed. O-antigen polymerase mutants (pC) of serotype X and Y, were transformed with various serotype converting plasmids and characterised by colony immunoblotting for reactivity to a variety of type aad group antisera. In S. flexneri, it appears that a single O-antigen repeat unit is sufficient to be modified.
TABLE OF CONTENTS

1. INTRODUCTION

1.1 DISCOVERY OF SHERELLA SPECIES

1.2.1 Early serotyping of Shigella flexneri species

1.2.2 Work of J.S. Boyd

1.3.1 Epidemiology

1.3.2 LIFESTYLE OF S. FLEXNERI

1.5 GENETICS OF SHERELLA VIRULENCE

1.5.1 Chromosomal loci

1.5.1.1 vlaK, a central regulatory locus

1.5.1.2 Virulence associated chromosomal (vac) genes

1.5.1.3 Outer membrane protein C (OmpC)

1.6 PLASMID MEDATED FUNCTIONS

1.6.1 Adhesion of bacteria to cell surface

1.6.2 Entry by induced phagocytosis

1.6.3 Escape from the phagocytic vacuole

1.6.4 Intracellular multiplication and spread

1.6.5 Lysis of double membrane surrounding protrusion

1.6.6 Biology of IcsA

1.7 LIPOLYPOLYSACCHARIDE (LPS)

1.7.1 Biosynthesis of LPS

1.7.2 Lipid A - genetics and biosynthesis

1.7.3 Core region

1.7.3.1 Inner core: 3-deoxy-D-manno-octulosonic acid (KDO)

1.7.3.2 Outer core

1.7.4 Genetics of O antigen

1.7.4.1 Genetics of O antigen biosynthesis

1.7.4.2 O-poly saccharide biosynthesis

1.7.4.2.1 Enterobacterial Core Antigen (ECA)

1.7.4.3 Other genes required for O antigen synthesis

1.7.4.4 RfbX

1.7.4.5 RifL, O-antigen ligase

1.7.4.6 RfE, O-antigen polymerase

1.7.4.7 Rol, regulator of O antigen chain length

1.8 LIPOLYPOLYSACCHARIDE AND THE DISTRIBUTION OF ECA

1.9 CHEMICAL UNDERSTANDING OF O-ANTIGEN OF S. FLEXNERI

1.10 VARIATION IN O ANTIGEN

1.10.1 Vibrio cholerae and serotype conversion

1.10.1.1 V. cholerae O139

1.10.2 Salmonella enterica serovar Typhimurium and serovar variation

1.11 BACTERIOPHAGES WHICH HAVE THEIR RECEPTOR IN THE O-ANTIGEN

1.11.1 Lysogenisation of group E Salmonellae

1.11.2 Serotype converting bacteriophages of S. flexneri

1.11.2.1 Identification of S. flexneri bacteriophages
2. MATERIALS AND METHODS

2.1 BACTERIAL STRAINS, BACTERIOPHAGES AND PLASMIDS

2.2 MAINTENANCE OF BACTERIAL AND BACTERIOPHAGE STRAINS

2.3 GROWTH MEDIA

2.4 CHEMICALS AND IMMUNOCONJUGATES

2.5 ENZYMES AND IMMUNOCONJUGATES

2.6 TRANSFORMATION PROCEDURE

2.6.1 Super competent cells

2.7 ELECTROPORATION OF S. FLEXNERI AND E. COLI

2.8 BACTERIAL CONVOLUTION

2.9 PLASMID-DNA EXTRACTION PROCEDURES

2.10 PREPARATION OF S. FLEXNERI OR E. COLI GENOMIC DNA

2.10.1 Quick method for genomic DNA extraction

2.11 ANALYSIS AND MANIPULATION OF DNA

2.11.1 DNA quamination

2.11.2 Restriction endonuclease digestion of DNA

2.11.3 Analytical and preparative separation of restriction fragments

2.11.4 Calculation of restriction fragment size

2.12 DNA CLONING PROCEDURES

2.12.1 Dephosphorylation of DNA using alkaline phosphatase

2.12.2 Ligation of DNA

2.12.3 In vitro cloning

2.12.4 Cosmid Cloning

2.13 SEQUENCING METHODS

2.13.1 Sequencing using dye labelled primers

2.13.2 Sequencing with dye-labelled terminators

2.13.3 Analysis of DNA sequences

2.14 POLYMERASE CHAIN REACTION PROTOCOL (PCR)

2.14.1 Synthesis of oligonucleotides

2.15 SOUTHERN TECHNIQUES

2.15.1 Preparation of DIG-labelled DNA probes

2.15.1.1 DIG labelled PCR

2.15.2 Southern transfer and hybridisation

2.16 SDS-PAGE ELECTROPHORESIS (SDS-PAGE) AND WESTERN TRANSFER

2.16.1 SDS-PAGE

2.16.2 Western transfer and detection

2.17 LIPOPOLYSACCHARIDE (LPS) PREPARATION

2.17.1 LPS-specific silver staining

2.17.2 Colony immunoblotting of LPS

2.17.3 Bacterial agglutination assays

2.17.4 O antigen hydrolysis assay

2.17.4.1 Preparation of formaldehyde (formalin)-fixed cells

2.17.4.2 O antigen hydrolysis assay

2.18 T7 POLYMERASE / PROMOTER EXPRESSION SYSTEM AND L-[35S]-METHIONINE LABELLING
2.18.1 Cell Fractionation ... 57
2.18.2 Autoradiography ... 57
2.19 ALKALINE PHOSPHATASE AND β-GALACTOSIDASE ASSAYS 58
2.19.1 Alkaline phosphatase assays .. 58
2.19.2 β-galactosidase assays ... 58
2.20 BACTERIOPHAGE TECHNIQUES .. 59
2.20.1 Construction of lysogens ... 59
2.20.2 Phage assays ... 59
2.20.3 Preparation of phage stocks ... 60
2.20.3.1 Low titre phage stocks .. 60
2.20.3.2 High titre phage stocks by liquid infection 60
2.20.3.3 CFC block density gradient for preparation of high titre phage stocks 61
2.20.3.4 Phenol extraction of bacteriophage DNA 61
2.20.3.5 Bacteriophage sensitivity tests 62
2.21 ELECTRON MICROSCOPY (EM) .. 62

3. ISOLATION AND CHARACTERISATION OF S. FLEXNERI SEROTYPE CONverting BACTERIOPHAGE SFII ... 63
3.1 INTRODUCTION ... 63
3.2 RESULTS .. 64
3.2.1 Attempts to isolate bacteriophage SFII 64
3.2.2 Cosmid cloning of serotype conversion genes from strain PE655 .. 64
3.2.3 Isolation of bacteriophage SFII from NCTC4 65
3.2.4 Purification and characterisation of bacteriophage SFII 65
3.2.4.1 Proteins of bacteriophage SFII 66
3.2.4.2 O-antigen hydrolysis assays .. 66
3.2.4.3 SFII lysogenisation of r/f mutant RM109 of serotype Y 67
3.2.5 Characterisation of lysogens of bacteriophage SFII 67
3.2.6 Isolation and cloning of Prf fragments of SFII genome 68
3.2.7 Characterisation of Prf fragments of SFII genome 69
3.2.8 Identification of a region of bacteriophage SFII with serotype-converting ability 70
3.3 SUMMARY .. 70

4. SEQUENCE OF PRRMM264 AND IDENTIFICATION OF THE ATTACHMENT REGION OF BACTERIOPHAGE SFII ... 71
4.1 INTRODUCTION ... 71
4.2 RESULTS ... 72
4.2.1 DNA sequencing of the BamHI-BamHI insert in pRRM264 72
4.2.2 Open reading frames in 4 kb BamHI fragment of pRRM264 72
4.2.3 Open reading frames in 5.2 kb sequence 73
4.2.4 Integrase (int) and Excisionase (xir) 73
4.2.5 The attachment site, atuF .. 73
4.3 SUMMARY .. 75

5. LOCALISATION OF THE SEROTYPE CONVERTING GENES OF BACTERIOPHAGE SFII ... 76
5.1 INTRODUCTION ... 76
5.2 RESULTS ... 77
5.2.1 ORF2 ... 77
6. CHARACTERISATION OF S. FLEXNERI TYPE II NEGATIVE MUTANTS AND BGT PROTEIN ANALYSES

6.1 INTRODUCTION

6.2 RESULTS

6.3 DETECTION OF BGT AND GTRII GENETIC PRODUCTS

6.4 SUMMARY AND CONCLUSIONS

7. DISCUSSION

7.1 INTRODUCTION

7.2 BACTERIOPHAGE SFII AND OTHER SEROTYPE DETERMINING BACTERIOPHAGES

7.3 LYSOGENS OF BACTERIOPHAGE SFII

7.4 GENOME MAPPING OF BACTERIOPHAGE SFII

7.5 BACTERIOPHAGE SFII ATTACHMENT SITE

7.6 A TWO STEP PATHWAY FOR SEROTYPE CONVERSION

7.7 DIPM1: DOLECHOL PHOSPHATE MAHNOYL SYNTHASE

7.8 COMPLEMENTATION ANALYSES

7.9 COMPARISON OF ORGANISATION OF GENOMES

7.10 BGT AND GTRII PROTEINS

7.11 ADDITION OF MODIFICATION

7.12 CONCLUSIONS

8. BIBLIOGRAPHY