NITROGEN ASSIMILATION AND ENERGY CONSERVATION
IN NITROSOMONAS EUROPaea AND NITROBACTER AGIJS

by

Sharad Kumar, M.Sc.

A thesis submitted in fulfilment of the requirements
for the degree of

Doctor of Philosophy

Department of Agricultural Biochemistry,
Waite Agricultural Research Institute,
The University of Adelaide.

October, 1983.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>iv</td>
</tr>
<tr>
<td>NOMENCLATURE AND ABBREVIATIONS</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxi</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>xxi</td>
</tr>
</tbody>
</table>

1. INTRODUCTION

1.1 NITRIFYING BACTERIA

1.1.1 Morphology

1.1.2 The concept of chemolithotrophy

1.1.3 Ammonia and hydroxylamine oxidation by *Nitrosomonas*

1.1.3.1 Ammonia Oxidation

1.1.3.2 Hydroxylamine Oxidation

1.1.4 Nitrite oxidation by *Nitrobacter agilis*

1.1.5 Energy coupling

1.1.5.1 *Nitrosomonas* species

1.1.5.2 *Nitrobacter* species

1.1.6 Nitrogen assimilation

1.2 AIMS OF THE STUDY

2. MATERIALS AND METHODS

2.1 MATERIALS

2.1.1 Chemical and biochemicals

2.1.2 Stable isotopes

2.1.3 Radiolabels

2.1.4 Solutions, buffers and solvents

2.1.5 Chromatographic materials

2.1.6 Enzymes and marker proteins

2.1.7 Bacterial cultures

2.2 METHODS

2.2.1 Growth and harvesting the bacteria

2.2.2 Preparation of spheroplasts and membrane vesicles

2.2.3 Preparation of cell-free extracts

2.2.4 Incorporation of 15N labelled compounds into cell nitrogen

2.2.5 Enzyme purification
2.2.5.1 Glutamine synthetase 21
2.2.5.2 Glutamate dehydrogenase 22

2.2.6 Enzyme assays 23
2.2.6.1 Adenosine triphosphatase (ATPase) 23
2.2.6.2 Glutamine synthetase 23
2.2.6.3 Glutamate synthase 24
2.2.6.4 Glutamate dehydrogenase 24

2.2.7 Determination of \(K_a \) and \(K_b \) for glutamine synthetase and glutamate dehydrogenase by gel filtration 24

2.2.8 Determination of molecular weight of glutamine synthetase by gel filtration 24

2.2.9 Calculation of cumulative inhibition for glutamine synthetase 25

2.2.10 Native and SDS polyacrylamide gel electrophoresis (PAGE and SDS-PAGE) 25

2.2.11 Measurement of oxygen uptake with oxygen electrode 26

2.2.12 Proton translocation 26

2.2.12.1 Fluorescence quenching method 26
2.2.12.2 Oxygen pulse experiments 27
2.2.12.3 Redox pulse experiments 28
2.2.12.4 Estimation of stoichiometric protons 28
2.2.12.5 Permeant ions 29

2.2.13 Determination of membrane potential (\(\psi \)) and transmembrane pH gradient (\(\Delta pH \)) in washed cells 29

2.2.13.1 EDTA treatment of cells 29
2.2.13.2 Intracellular water space 29
2.2.13.3 Uptake of radioactive probes 30
2.2.13.4 Calculations of proton motive force (\(\Delta p \) or \(\psi^{\text{H}^+} \)) 30

2.2.14 \(\text{Na}^+ \) and \(\text{K}^+ \) transport 31

2.2.14.1 \(\text{K}^+ \) depletion of cells 31
2.2.14.2 \(\text{Na}^+ \) and \(\text{K}^+ \) determinations by atomic absorption spectroscopy 32

2.2.15 Stable isotope experiments with \(^{15}\text{N} \) and \(^{18}\text{O} \) labelled compounds to study \(\text{NO}_3^- \) oxidation by cells of Nitrobacter agilis 32

2.2.15.1 GC/MS studies 32
2.2.15.2 \(^{15}\text{N}-\text{NMR studies} \) 34

2.2.16 General techniques 35

2.2.16.1 Electron-microscopy 35
2.2.16.2 High voltage paper electrophoresis (HVPE) 36
2.2.16.3 Liquid scintillation spectrometry 36
2.2.16.4 Preparation of chromatographic columns 36
RESULTS

3.1 NITRITE OXIDATION BY WASHED CELLS, SPHEROPLASTS AND MEMBRANE VESICLES OF NITROBACTER AGILIS

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.1 Electrode measurement of NO₂⁻ production and O₂ uptake</td>
<td>39</td>
</tr>
<tr>
<td>3.1.2 Stoichiometry of NO₂⁻ oxidation by washed cells</td>
<td>39</td>
</tr>
<tr>
<td>3.1.3 Preparation of spheroplasts and membrane vesicles</td>
<td>42</td>
</tr>
<tr>
<td>3.1.4 Stoichiometry of NO₂⁻ oxidation by spheroplasts and membrane vesicles</td>
<td>42</td>
</tr>
<tr>
<td>3.1.5 Optimum conditions for NO₂⁻ oxidation by membrane vesicles</td>
<td>42</td>
</tr>
<tr>
<td>3.1.6 Effects of metabolic inhibitors on NO₂⁻ oxidation</td>
<td>42</td>
</tr>
<tr>
<td>3.1.7 ATPase activity in membrane vesicles</td>
<td>54</td>
</tr>
<tr>
<td>3.1.8 Effects of inhibitors of ATPase activity in membrane vesicles</td>
<td>54</td>
</tr>
<tr>
<td>3.1.9 Effects of phospholipase A₂ on nitrite oxidase and ATPase activities in membrane vesicles</td>
<td>54</td>
</tr>
</tbody>
</table>

3.2 ASSIMILATION OF INORGANIC NITROGEN COMPOUNDS BY NITROBACTER AGILIS

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1 Growth studies</td>
<td>58</td>
</tr>
<tr>
<td>3.2.2 Inhibition of NO₂⁻ oxidation by NH₄⁺ in washed cells</td>
<td>58</td>
</tr>
<tr>
<td>3.2.3 Incorporation of ¹⁵N labelled compounds into cell nitrogen</td>
<td>61</td>
</tr>
<tr>
<td>3.2.4 Enzymes of NH₄⁺ assimilation</td>
<td>61</td>
</tr>
<tr>
<td>3.2.5 Effects of L-methionine-DL-sulphoximine (MSX) and azaserine on the activities of GS, GOGAT and GDH</td>
<td>66</td>
</tr>
<tr>
<td>3.2.6 Effects of MSX and azaserine pretreatment of cells on the incorporation of ¹⁵NO₂⁻ and ¹⁵NH₄⁺ into cell nitrogen</td>
<td>66</td>
</tr>
</tbody>
</table>

3.3 PURIFICATION, PROPERTIES AND REGULATION OF GLUTAMINE SYNTHETASE (GS) FROM NITROBACTER AGILIS AND NITROSOMONAS EUROPÆA

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1 Purification of GS</td>
<td>70</td>
</tr>
<tr>
<td>3.3.2 Properties of GS</td>
<td>70</td>
</tr>
<tr>
<td>3.3.2.1 Molecular weight</td>
<td>70</td>
</tr>
<tr>
<td>3.3.2.2 Substrate requirements for enzyme activity</td>
<td>75</td>
</tr>
<tr>
<td>3.3.2.3 Effects of metal ions</td>
<td>75</td>
</tr>
<tr>
<td>3.3.2.4 K₅ for substrates of transferase and biosynthetic reactions</td>
<td>75</td>
</tr>
<tr>
<td>3.3.2.5 Heat stability and effects of denaturing agents</td>
<td>82</td>
</tr>
<tr>
<td>3.3.2.6 Inhibition of transferase activity by NH₄⁺Cl</td>
<td>87</td>
</tr>
</tbody>
</table>
3.3.3 Regulation of GS
3.3.3.1 Feed back inhibition
3.3.3.2 Adenylylation and deadenylation of GS

3.4 GLUTAMATE DEHYDROGENASES OF NITROBACTER AGILIS
3.4.1 Evidence for two isozymes of GDH in Nitrobacter agilis
3.4.2 Purification of NADP⁺-GDH
3.4.3 Amination and deamination reactions in S₁₁₀ fraction
3.4.4 Properties of NADP⁺-GDH from Nitrobacter agilis

3.5 ENERGY CONSERVATION IN NITROSOMONAS EUROPAEA AND NITROBACTER AGILIS
3.5.1 Proton translocation and oxygen pulse experiments
3.5.1.1 Kinetic parameters of respiration in Nitrosomonas europaea and Nitrobacter agilis
3.5.1.2 Permeation requirement
3.5.1.3 Stoichiometric proton production
3.5.1.4 Oxygen pulse experiments with Nitrosomonas europaea
3.5.1.5 Oxygen pulse experiments with Nitrobacter agilis
3.5.1.6 Duration of respiration after an oxygen pulse
3.5.2 Proton electrochemical-gradientes in washed cells of Nitrosomonas europaea and Nitrobacter agilis
3.5.2.1 Uptake of radioactive probes
3.5.2.2 Measurement of δpH as a function of external pH (pHm)
3.5.2.3 Measurement of Δp as a function of cell
3.5.2.4 Total proton-motive force (δp)
3.5.2.5 Proton-motive force in cells of Nitrosomonas europaea harvested at various stages of growth
3.5.2.6 Effects of some inhibitors on the components of Δp
3.5.2.7 Effects of NH₄⁺ and NH₂OH on δp and δpH

3.5.3 ATP biosynthesis driven by artificially induced proton motive force
3.5.3.1 ATP biosynthesis in Nitrosomonas europaea
3.5.3.2 ATP biosynthesis in Nitrobacter agilis

3.5.4 Na⁺ and K⁺ transport
3.5.4.1 Preparation of K⁺ depleted cells
3.5.4.2 Respiration in K⁺ depleted cells
3.5.4.3 Proton-motive force in K⁺ depleted cells and the effect of added K⁺
3.5.4.4 22Na⁺ loading of K⁺ depleted cells
3.5.4.5 22Na⁺ extrusion from 22Na⁺ loaded cells

3.5.5 Stable isotope experiments with ¹⁵N and ¹⁸O labelled compounds to study NO₂⁻ oxidation by cells of Nitrobacter agilis
3.5.5.1 GC/MS studies of NO₂⁻ oxidation
3.5.5.2 ¹⁵N-NMR studies of NO₂⁻ oxidation
4. DISCUSSION

4.1 NITRITE OXIDATION BY WASHED CELLS, SPHEROPLASTS AND MEMBRANE VESICLES OF NITROBACTER AGILIS

4.2 ASSIMILATION OF INORGANIC NITROGEN COMPOUNDS IN NITROBACTER AGILIS AND NITROSOMONAS EUROPAEA

4.2.1 Pathways of nitrogen assimilation in Nitrobacter agilis

4.2.2 Purification, properties and regulation of glutamine synthetase and glutamate dehydrogenase from Nitrobacter agilis and Nitrosomonas europaea

4.3 ENERGY CONSERVATION IN NITROSOMONAS EUROPAEA AND NITROBACTER AGILIS

4.3.1 Respiration driven proton translocation

4.3.2 Proton-motive force and ATP biosynthesis

4.3.3 Na+ and K+ transport

4.3.4 15N, 18O isotope studies of NO2 oxidation by Nitrobacter agilis

5. BIBLIOGRAPHY
SUMMARY

1. This thesis embodies results of an investigation on some aspects of nitrogen assimilation and energy conservation in nitrifying bacteria, *Nitrosomonas europaea* and *Nitrobacter agilis*.

2. Electrode techniques have been developed to measure NO$_3^-$ production and O$_2$ uptake simultaneously and continuously during NO$_2^-$ utilization by *Nitrobacter agilis*. The stoichiometry of NO$_2^-$ oxidation by washed cells was 1NO$_2^-$: 0.5O$_2$: 0.75NO$_3^-$ compared to 1NO$_2^- : 0.50_2 : 1NO_3^-$ for spheroplasts and membrane vesicles of *Nitrobacter agilis*. The effects of several metabolic inhibitors on NO$_2^-$ and O$_2$ utilization and NO$_3^-$ production were investigated. Nitrite oxidation was found to be particularly sensitive to the inhibitors of cytochrome oxidase (eg. azide), ATPase (eg. DCCD), -SH group (eg. pCMB) and uncouplers of oxidative phosphorylation (eg. CCCP).

3. A Mg$^{2+}$ dependent ATPase was detected in membrane vesicles of *Nitrobacter agilis* which was inhibited by classical ATPase inhibitors (eg. DCCD) but was unaffected by uncouplers (eg. 2,4-DNP, CCCP). The ATPase activity of membrane vesicles was progressively lost by delipidation of membranes by phospholipase A$_2$.

4. The growth yields of *Nitrobacter agilis* were increased about 2 fold by growing the bacterium in a NO$_2^-$ medium supplemented with 2mM-NH$_4$Cl. Higher concentrations of NH$_4$Cl however competitively inhibited NO$_2^-$ oxidation and the growth of the bacterium.

5. Washed cells of *Nitrobacter agilis* readily incorporated 15NH$_4^+$, 15NH$_2$OH, 15NO$_2^-$ and 15NO$_3^-$ respectively (in decreasing order) into cell nitrogen inhibitors of glutamine synthetase (L-methionine DL-sulphoxide) and glutamate synthase (serine) did not affect the incorporation of either 15NH$_4^+$ or 15NO$_2^-$ into cell nitrogen, indicating that glutamate dehydrogenase pathway is the main route for the assimilation of NH$_4^+$ in *Nitrobacter agilis*.

6. Glutamine synthetase was purified 400 fold from *Nitrobacter agilis* and its properties and regulation studied. The enzyme (molecular weight 200,000) which contained 12 subunits of 58,000 each was regulated by feed back inhibition involving amino acids and nucleotides, substrate
inhibition by NH₄⁺ as well as by an adenylylation/deadenylylation mechanism. An isoactivity pH of 7.4 was recorded for the purified enzyme.

7. Glutamine synthetase from Nitrosomonas europaea was purified 710 fold. In crude extracts, the Mg²⁺ effect on the γ-glutamyl transferase activity was related to NH₄⁺ concentration in the growth medium. This enzyme activity was stimulated two fold by Mg²⁺ in crude extracts from cells of culture from which NH₄⁺ had been depleted. Unlike the Nitrobacter enzyme, the γ-glutamyl transferase activity of either crude extracts or the purified enzyme from Nitrosomas europaea was unaffected by snake venom phosphodiesterase treatment.

8. Two isoforms of glutamate dehydrogenase specific for NAD⁺ and NADP⁺ respectively were detected in the cytosol fraction of Nitrobacter agilis. The NAD⁺ enzyme functioned in both directions i.e. ammination and deamination whereas the NADP⁺ enzyme was primarily for the amination of α-ketoglutarate to glutamate. The NADP⁺ enzyme was purified 52 fold (free of NAD⁺ enzyme) by affinity chromatography on 2′-5′ADP Sepharose-4B and some of its properties studied. Substrate activation of the NADP⁺ enzyme was observed with NH₄⁺ and NADPH. A comparison was made of the properties of the purified NADP⁺ enzyme from Nitrobacter agilis with that from Nitrosomonas europaea.

9. Oxygen pulse experiments were carried out with washed cells of Nitrosonomas europaea and Nitrobacter agilis and with spheroplasts and everted membrane vesicles prepared from Nitrobacter agilis. In addition to thiocyanate, the salting-in anions perchlorate and trichloroacetate and lipophilic cation triphenyl methyl phosphonium (TPMP⁺) proved to be permeant and effective in allowing respiration-dependent proton translocation in cells of Nitrosomonas europaea. The observed +H⁺/O ratio for NH₄⁺ oxidation by Nitrosomonas europaea was 3.4 and that for both NH₄OH and N₂H₅⁺ oxidation was 4.4. These values when corrected for the production of stoichiometric protons and for the fact that the first step in NH₄⁺ oxidation is mediated by a mono-oxygenase, gave effective +H⁺/O ratios of about 4 for these three substrates. No convincing evidence was obtained for the operation of a respiratory proton pump in Nitrobacter agilis during NO₂⁻ oxidation.

10. The components of proton-motive force (Δp), namely membrane potential (Δψ) and transmembrane pH gradient (ΔpH) were determined in washed cells of Nitrosomonas europaea and Nitrobacter agilis. In these bacteria, both Δψ and ΔpH were dependent on external pH (pHₑ). Thus at pHₑ 8 cells of
Nitrosomonas europaea and *Nitrobacter agilis* had Δψ of 175mV and 125mV (inside negative) respectively as determined by the distribution of \(^3H\) tetraphenyl phosphonium cation (TPP\(^+\)). Intracellular pH was determined by the distribution of \(^{14}C\) benzoic and \(^{14}C\) acetyl salicylic acids and \(^{14}C\) methylene. At pH 7 for *Nitrosomonas europaea* and 7.3 for *Nitrobacter agilis* there was no detectable ΔpH so that only Δψ contributed to Δp. Intracellular pH (pHi) in cells of *Nitrosomonas europaea* varied from 6.2 at pH 6 to 7.8 at pH 8.5. In *Nitrobacter agilis* however pH was relatively constant (7.3 to 7.8) over the pH range of 6 to 8.5. The components of Δp (Δψ and ΔpH) remained constant at various stages of growth of *Nitrosomonas europaea* so that the metabolic state of the cells did not affect Δp. Such an experiment was not possible with *Nitrobacter agilis* because of low cell yields.

11. Spheroplasts of *Nitrosomonas europaea* synthesized ATP in response to an artificially created Δp. This ATP synthesis was inhibited by DCCD indicating that it was mediated by an ATPase.

12. Cation (Na\(^+\), K\(^+\) and NH\(_2\)\(^+\)) transport systems in *Nitrosomonas europaea* and *Nitrobacter agilis* were investigated. In K\(^+\) depleted cells it was shown that K\(^+\) is transported by an electrogenic mechanism in both bacteria and its uptake resulted in partial conversion of Δψ into ΔpH. NH\(_2\)\(^+\) was transported essentially as a neutral species (NH\(_4\)) by a simple diffusion mechanism. Experiments with \(^22Na\) loaded cells indicated that antiporters for Na\(^+\)/H\(^+\), Na\(^+\)/K\(^+\) and K\(^+\)/H\(^+\) were present in both bacteria. At least one of these antiporters (Na\(^+\)/K\(^+\)) required an electrochemical gradient for its operation.

13. Using stable isotopes of \(_{15}N\) (\(^{15}NO\(_2\)\) and \(^{15}NO\(_3\)) and \(^{18}O\) (H\(_2\)\(^{18}O\), \(^{18}O\(_2\) and P\(^{18}O\(_2\)) it was shown by GC/MS and \(^{15}N\)-NMR techniques that the third 'O' in \(^{15}NO\(_3\) produced by \(^{15}NO\(_2\) oxidation by cells of *Nitrobacter agilis* originated from \(^{18}O\(_2\) and not from \(^{15}NO\(_3\) or PO\(_4\)\(_3\).