Aspects of Topological Field Theories

Ali Imaanpur

Supervisor: Dr. Jim McCarthy

Thesis Submitted for the Degree of
Doctor of Philosophy
in the
Department of Physics and Mathematical Physics,

University of Adelaide

May, 1998



Contents

1 Introduction

2 Twisted Supersymmetric Yang-Mills theories
2.1 Introduction . . . . . . .« . o it e e e e
2.2 N =2 SYM theory and its twisting . . . . .. .. ... oL
2.2.1 Physicll N=2SYMtheory . . .. .. vvv v
2.2.2 The twisted theory . . . . . . . . . .. oo oo
2.2.3  The topological observables of the twisted theory . . . ... ...
2.2.4 Reducible connections . . . . . . . . i e e e e
2.2.5 Existence of zero modes on Kahler manifolds . . . . .. ... ...
2.2.6 Integrating out nonzero modes and the integral over M . . . . . .
2.2.7 Mass gap and the twisted theory on Kéhler manifolds . . . . . ..
2.2.8 Effective low energy description of Donaldson invariants . . . . .

2.3 N =4 SYM theory and its twisting . . . . . . ..o

2.3.1 The physicaltheory . . . . . . . . oo v i v oo
2.3.2 The twistedmodel . . . . . ¢ i vt o v v v o s oo o0 00w
23.3 Twistedtheoryon Z X C . . . . oo oot

2.4 Higher dimensional analogues of Donaldson-Witten theory . . ... ...
24.1 N =1SYM theory in ten dimensions . . . . . . . . .. . ... ..
2.4.2  Supersymmetry of £ and supercurrent . . . .. .. ...

2.4.3 Reduction to lower dimensions . . . . -« v « ¢ v o e v e b e 0w e

3 Supersymmetric Gauge Theory on Calabi-Yau 3-folds
3.1 Imtroduction . . . . . v v v v i i i e e e e e e e e e e e

3.2 The reduced 6-dimensional theory . . . . . . . .. .o



3.2.1  Field decomposition . . . . ... ..o ivii .
3.2.2 Lagrangian and the supersymmetry transformations . . ... . .
3.3 Reduction to manifolds with SU(3) holonomy . . ... ..........
3.3.1 A Fierz identity and covariantly constant tensors . . .. .. ...
3.3.2  Field content and the Lagrangian . .. ..............
3.3.3 The cohomology classes of the BRST operator . . . .. ......
3.3.4 A balanced cohomological field theory . . .. ...........
335 N=2reduction . .......... ...
3.36 Thecaseof Kdhler3-fold . . . ... ... ... ...,
3.4 Partial twisting on product six manifolds . . . . .. ... ... ......
341 DiSCUSSION .« 4 5 5 5.5 55 56 m o 5o nene os nm e
N =4 SYM on X x S? and its Topological Reduction
41 Introduction . . . . . .. . ... ... e
4.2 Twisted N =4 on X x 5? and its reduction . . . ... ... .......
4.3 Perturbing by massterm . . . .. .. ... ... ... .. .........
43.1 Integrating A\, pand x .............. ... .. ......
4.3.2 Large ¢ Limit and The Integration over b, C, , J .........
4.3.3 Large m Limit and The Final Reduction . ... ... .......
4.4 Discussion . . . .. ...

The Fixed Point Theorem

Majorana-Weyl spinors in ten dimensions
B.1 A 10d Fierz identity and the proof of supersymmetry . . ... ... ...

B.2 Conventions . . . ... .. ... ...
The Vanishing Argument

Faddeev-Popov gauge fixing

11

103

105
106
107

109

113



Abstract

Since their introduction in 1988, topological field theories have attracted a great
deal of interest from both mathematicians and physicists. Mathematically they provide
alternative formulations for certain topological invariants such as Donaldson invariants.
Physically, topological field theories are important as they may be used to test different
characteristics of their corresponding physical theory. In this thesis twisted N = 2
and N = 4 SYM theories in four and six dimensions are studied. We first provide the
general background for topological field theories which can be obtained by twisting.
A supersymmetric Yang-Mills theory is then constructed on a Calabi-Yau 3-fold by
dimensional reduction. It is shown that this theory is a cohomological field theory and
the corresponding path integral, in the weak coupling limit, localizes on the moduli
space of Donaldson-Uhlenbeck-Yau equations. We also construct a partially twisted
theory on a product six-manifold X x Y. When Y is supersymmetrically embedded in
a Calabi-Yau manifold M, it is argued how the moduli space on which the path integral
localizes can be related to the mirror manifold of M. We also study the twisted N =4
SYM theory on the product four-manifold ¥ x S?. We derive the effective theory in the
limit where S2 shrinks. The correlators of the cohomology classes of the BRST operator

are then computed in the mass deformed effective theory.
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Chapter 1

Introduction

Topological field theories (TFT) [1] have proven to be a useful tool in the investigation of
the nonperturbative characteristics of supersymmetric gauge theories such as NV = 2 and
N = 4 supersymmetric theories. There is an interplay between certain supersymmetric
gauge theories and their corresponding topological versions: one can use topological
results on smooth manifolds to learn about the underlying physical theory; conversely,
one may use physical arguments to gain new insight into the topological structure of
the manifold on which the fields are defined.

As an example of the first, in [2] Witten has shown that IV = 2 supersymmetric Yang-
Mills (SYM) theory cannot have a mass gap using some known facts about Donaldson
invariants of Kahler manifolds. Then, as an example of the second, he shows how one can
use certain nonperturbative facts about N =1 SYM theory to compute the Donaldson
invariants of Kiahler manifolds. In this way, all Donaldson invariants of Kahler four-
manifolds’ are beautifully determined.

Another example of the use of TFT to learn about a physical theory is found in
N = 4 SYM theory. This theory has been conjectured to have an exact SL(2,Z)
duality [3] providing a correspondence between the weak and strong coupling limits of
the same theory. Since this relation involves strong coupling, to test the conjecture one
needs quantities such as the partition function to be computed nonperturbatively. This
is a formidable task and one actually does not know how to proceed in this direction.

This is where topological field theory comes to provide an alternative approach to the

lHowever, there is a topological restriction on these Kéhler manifolds that we will discuss later.



problem. Instead of the physical theory, one considers the corresponding topological
field theory obtained by a procedure called twisting (discussed in detail later). The
basic characteristics of the theory, such as SL(2,Z) invariance, remain intact under
twisting, so one hopes to see the realization of this symmetry in the twisted model. In
[4] it has been shown how, using known facts about the structure of the moduli space
of instantons and the associated Euler characteristic, the partition function of N = 4
twisted theory on some specific manifolds can be computed. So, in this way, it has
become possible to make some exact and nonperturbative statements about the theory
and its self-duality properties.

From the mathematical point of view, TFT has provided a new formulation for ex-
pressing some typical topological invariants of manifolds in terms of the observables of
the theory. In the case of Donaldson theory, this reformulation has been very fruitful
since, as we mentioned above, one can use physical arguments in determining the in-
variants. More importantly, an effective field theory description of Donaldson theory
has been discovered [5]. This effective theory has its own invariants, however, they en-
code all the subtle informations about the Donaldson invariants. Further, as might be
expected physically, in the effective theory calculations of the new invariants are much
easier.

Although it might seem that TFT have a rather ad hoc appearance in physics, they
naturally arise as the effective field theory of some solitonic states in string theory [6].
These solitonic states (D-branes) are generically extended curved objects which appear
upon compactifying the string theory on Calabi-Yau manifolds. Since these objects have
a curved worldvolume, and since they preserve part of the space-time supersymmetry,
the effective field theory living on the worldvolume which describes the low energy
excitations of the D-brane is forced to be a topological field theory. Therefore, from this
perspective, topological field theories are quite physical.

Let us discuss briefly the contents of this thesis. The introduction in chapter 2
contains a review of relevant literature. The remaining chapters contain our original
work. More details on these chapters follows, but let us just state first what the main

new results are.

¢ A cohomological field theory on Calabi-Yau threefolds is constructed.
o It is shown that this theory is indeed a balanced topological field theory.
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We construct a partially twisted theory on product six-manifolds. In a particular

limit we determine the moduli space on which the path integral localizes.

e We derive the effective field theory of twisted N = 4 SYM theory on ¥ x S? in
the limit where 52 shrinks.

e This theory is then perturbed by a mass term for the hypermultiplet preserving

part of the supersymmetry.
e We compute a set of correlation functions in this effective theory.

Finally then, let us return to an outline of the thesis. The second chapter is devoted
to a review of topological field theory. The basic construction of TFT from super-
symmetric theories, the twisted N = 4 SYM, and the higher dimensional analogues of
Donaldson-Witten theory are the main topics which are reviewed in this chapter. Among
these different topological field theories, twisted N = 2 SYM theory has the most basic
features of a topological field theory and plays a central role in understanding the others.
Therefore, in this chapter, we concentrate on this theory.

In the third chapter we study the analogue of Donaldson-Witten theory in six dimen-
sions. In trying to twist the six-dimensional theory, we face a limitation; the nonanoma-
lous part of the global symmetry is not large enough to allow us to twist the theory
on an arbitrary six-manifold. Thus we are limited to consider manifolds with restricted
holonomies such as Kahler or product manifolds. This is in sharp contrast with the
Donaldson-Witten theory in four dimensions where the theory can be defined on an ar-
bitrary four-manifold, resulting in a set of genuine topological invariants. We construct
a cohomological field theory on Calabi-Yau threefolds. This theory, in some respects,
parallels the Donaldson theory in four-dimension; it is a theory independent of metric
and coupling constant and its correlation functions are topological invariants. However,
unlike Donaldson theory, we are here limited to those metric deformations which pre-
serve the holonomy structure of the manifold. In analogy with Donaldson theory, we
also write down the cohomology classes of the BRST operator which have topological
correlators. Furthermore, we show that there is a balanced formulation of the theory in
the sense of [7]. As noted earlier, the cohomological field theories built on Calabi-Yau
manifolds are important as they naturally arise in the low energy description of D-

branes. In the present case, they describe the low energy physics of euclidean D5-branes
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wrapping around the whole threefold. Therefore, in studying the various properties of
such branes our cohomological theory is valuable.

A partially twisted theory on product six-manifolds is also constructed in chapter
three. This theory is useful in studying the D-branes wrapping around a special La-
grangian submanifold of the Calabi-Yau manifold. We study a particular limit of the
theory and determine the moduli space on which the path integral localizes.

Motivated by the work of Vafa and Witten [4] to examine the duality properties of
N = 4 theory using topological methods, in chapter four we study the twisted N = 4
theory on the manifold ¥ x S?. We consider the limit where S? shrinks to zero size.
The eflective theory in this limit is derived. Following [4], we will see that the partition
function of the reduced theory in fact computes the Euler characteristic of the moduli
space of flat connections over . Perturbing by a mass term allows us to compute
a set of correlation functions in this effective theory. Although perturbing by mass
introduces some new fixed points to the original moduli space, it is possible to isolate
their contributions to the path integral. We analyze the contribution of the points where
a component of the hypermultiplet becomes massless and in particular discuss that these
points do not contribute in the case of a nontrivial SO(3) bundle. Using this fact we
are able to write down an explicit result for the correlation functions.

In the course of the present investigations many fascinating problems have arisen.
Some of them have been incorporated in this thesis. Some remain, and seem to be

interesting. We briefly summarize the latter at the end of the chapters.



Chapter 2

Twisted Supersymmetric

Yang-Mills theories

2.1 Introduction

There are basically two different ways to construct a topological field theory. One is a
mathematical construction starting from the moduli space of some interesting equations,
the other starts from a supersymmetric physical theory in flat space and tries to extend
it to a general manifold preserving part of the supersymmetry. In this thesis we are
interested in the latter, and this chapter will review the status of the field. However,
for completeness, let us briefly outline the basics of the first approach, known as the
Mathai-Quillen approach [8, 9, 10] which constructs invariants of a vector bundle V" over
some manifold M. We will not give a mathematical discussion, but rather a physical
motivation [4].

Introduce coordinates u' on M and a basis of sections s of V. The interesting
equations above are incorporated as s = 0. The idea is to construct quantities which
are invariant under small changes in the data ' and s. A small change in v, §u’, can
be identified with a one-form on M. So, as is familiar from supersymmetric quantum

mechanics, we write
Sut = iep’
§y' =0,
where € is an anticommuting parameter. As §2 = 0, this immediately reminds us of
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the BRST implementation of gauge fixing, where the 1*’s are identified with the ghosts.
Indeed, let us follow this line to the resulting invariants.

Introduce antighosts x?, which are also sections of V, in order to have a nondegen-
erate action for the ghosts. The auxiliary fields, H%, then naturally enter the formalism
to close the BRST algebra, with the basic structure §x® = eH*, §H® = 0. Since we
have introduced explicit coordinates and a basis of sections, we need a curvature A; on
V to covariantize the differential structure §. These transformations are then modified

to
§x% = eH®* —iep' A% X"
BH® = e A H — isypIF

where F}; is the curvature of A;. Let us initially assume that the equations s* = 0 have

only isolated zeros. The invariants we are interested in have the basic form

/6(sa)det (gi) ,

essentially a sign-weighted counting of the number of solutions to the equations of in-

terest. This, however, can be cast into the path integral representation using the fields

introduced above; i.e.,
T 890 i
/D[Ha’ Xa7 ,(/)1] 6—2&( “H a+2xa Gut 1/} ) ’ (2'1)

where X is an arbitrary real parameter. In fact, the “action” in (2.1) can be written as

a BRST commutator, .
S=6U = 6(—§X“sa),

ensuring, as we will see presently, that nothing depends on the data entering into W.
For generalizing to the cases where the space of solutions form a manifold we need to
smooth out the above action to a nondegenerate one. This requires that we introduce a
metric on the fibers of V' to raise or lower the indices. Thus, a more suitable choice for
U is

) X*Hy + 2ix%s,),

:ﬁ(

so that the action becomes

ds* . o
W = Ry

]' 2 TTQ
S_EX/[H 2% H%s, + 2.
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This smooths the delta-function to a gaussian weight.

It is now easy to see that the theory defined by the above action is topological, in
the sense that it is formally independent of A, s and the metric. This is so because
the variation of the partition function with respect to any of these data is a BRST

commutator. For instance, if we vary the partition function Z with respect to A we have

YA

g~ en)

However, since the measure and the action are BRST invariant, this is zero by
0= [DIX]eS®u(x) - [ DX SU(X) = [ DIX]e W50

Here the fields are represented collectively by X.

Since the theory is formally independent of s and A, we may compute the parti-
tion function using different and arbitrary values for these data. If we set s = 0, the
Lagrangian simplifies and what we get for the partition function is indeed the usual

integral representation for the Euler characteristic of the bundle V

(V) = /PfF/\F/\ AF),

(27) ‘i/z d!
where d is the rank of the bundle V and the Pfaffian of a skew-symmetric matrix B,

P{(B), is defined by
det B = P(B)?.

On the other hand, upon integrating out the auxiliary fields H* and taking the limit
A — 0, the path integral localizes on the moduli space of solutions to the equations
s = 0. Let us for simplicity assume that these equations have only isolated zeroes.
Therefore in computing the partition function, we can expand the action around the
solutions of these equations keeping only the quadratic terms. Performing the gaussian
path integral then results in identical determinants for bosons and fermions (ghosts and
antighosts) which up to a sign cancel each other. The independence of the theory from
the parameters s and A thus provides a “proof” of the well-known fact that we may
compute, e.g., the Euler class of the bundle V by counting the zeroes of a section s
weighted by the appropriate signs.

As we saw above, one of the basic constituents of a topological field theory is the

existence of a suitable fermionic symmetry. Since fermionic symmetries arise naturally
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in supersymmetric theories, we may ask if a topological field theory can be realized
in that context. Clearly there is no obstruction to extending the Lagrangian of a flat
space supersymmetric theory to an arbitrary spin four-manifold *. One just replaces the
ordinary derivatives by the covariant ones. However, except on spin manifolds which
admit covariantly constant spinors, the Lagrangian will not be supersymmetric. This can
be seen as follows. Let o denote the supersymmetry parameter of the supersymmetry

transformations, which have the general form

00 = av
00 =Vad.

On euclidean space, since the action is supersymmetric, the variation of the action under

the supersymmetry transformations is by the Noether construction proportional to
./JMaMa, (2.2)

where JM is the supersymmetry current. Upon extending the Lagrangian to a curved

spin manifold by minimal coupling, the action varies to
[ 1MV ua, (2.3)

which is an obvious generalization of (2.2) (Vjy is the covariant derivative on the man-
ifold), up to terms which are proportional to the Riemann tensor of the manifold. The
Riemann tensor may appear, because one usually needs to commute the covariant deriva-
tives. This term does not include the covariant derivatives of a (the fermionic kinetic
term is first order in derivative), and hence it cannot cancel the term in (2.3). Note
that indeed if they could cancel each other then one would not recover the result for flat
space by setting the Christoffel symbols to zero. Thus the necessary condition for the
action to be supersymmetric is o to be covariantly constant. Although this argument
is more heuristic, the result is very general and we will see an explicit example of this
in section 3.4. The above constraint enforces us to consider only those spin manifolds
which admit at least one globally defined spinor which is covariantly constant. Being
covariantly constant, the spinor is in fact a scalar under the holonomy group of the

manifold.

'As long as one can define the SYM theory in an arbitrary dimension all these constructions go

through for that particular dimension.



A more general procedure which allows part of the fermionic symmetry to survive,
is called twisting [1]. Twisting basically consists of choosing a new embedding of the
holonomy group inside the whole global symmetry (space-time symmetry and the R-
symmetry) of the model such that at least one component of the supercharge, @, trans-
forms as a scalar. As it is a scalar, its global existence on an arbitrary manifold is
guaranteed, and obviously a constant scalar is covariantly constant. We note that Q?
is a scalar bosonic operator. Therefore, if there is no any scalar operator in the super-
symmetry algebra, @? must vanish (on-shell and up to a gauge transformation). Hence,
on such manifolds, Q is in fact a BRST-like symmetry as expected. Moreover, the
newly defined action turns out to be exact with respect to this scalar supercharge; i.c.,
S = {Q,V} for some gauge invariant V. Thus the energy-momentum tensor of the

twisted theory, which is the generator of the newly defined space-time symmetry group,

is also BRST exact
Tw ={Q,6V/6g"}.

Note, in particular, that, since the action is Q-exact, the supersymmetry follows imme-
diately as @ squares to zero on gauge invariant quantities.
At this point we may formally make two basic observations. Firstly, if we vary the

partition function
2= [ DIx) exp (~55(X)

with respect to coupling constant e, we obtain

67

o2 (8= @)
Assuming that supersymmetry is not spontaneously broken - i.e., there is at least one
vacuum annihilated by @ — the above equation implies 6Z/ée = 0. The second ob-
servation is that the argument can be repeated to show that Z is also independent of
the metric. These are the key properties of the model which will allow us to consider
a convenient limit of the coupling or metric in which calculations (mainly perturbative
ones around the critical points of the action) become easy or possible.

The organization of this chapter is as follows. We start our discussion with N = 2

SYM theory on flat space. We study a variety of properties of the theory such as
the global symmetries and the mass gap and compare them to those of N =1 SYM

theory. Next we define the twisting of the theory. The importance of zero modes of
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different fields present in the theory is then argued, and the conditions for their absence
is presented. The discussion of N = 2 twisted theory ends with an overview of the low
energy description of Donaldson theory.

N = 4 SYM theory is the next subject that we review. As before, the physical
theory and its global symmetries are first discussed. The different possible twistings are
then presented. We discuss the relevant equations which appear in the weak coupling
limit for a particular twisting of the theory. The analogue of Donaldson theory in higher

dimensions is the last subject that we review.

2.2 N =2SYM theory and its twisting

In [1] Witten introduced a reformulation of Donaldson theory in terms of twisted N = 2
SYM theory. He showed how different Donaldson invariants can be identified with some
observables of the twisted theory. In this section we begin with a study of the physical
theory and its symmetries. The twisted theory and the topological observables are then

discussed. At the end we concentrate on the Kahler case.

2.2.1 Physical N =2 SYM theory

In terms of N = 1 supersymmetric multiplets, the N = 2 SYM theory consists of a
gauge multiplet A = (A,, A), for 4, an SU(2) gauge field and A a chiral spinor, and a
chiral multiplet ® = (1, ¢) where 1 is again a chiral spinor and ¢ a complex scalar. A
and @ are both in the adjoint representation of the gauge group. The minimal action
for the pure - i.e., without matter multiplet (or hypermultiplet) - N = 2 SYM theory
is [12]
i = [diztr [—EF,WFW —iXgt DAY — D, 3D
e 4

Lg 12— g o 4 04 g X6
_§[¢a¢] _7_2—¢6m[)‘ 7/\a]+\/§¢ [)\az,)‘]] ’ (24)

where we have grouped A, and v, into Af, for i = 1,2. The action is invariant under

N = 2 supersymmetric transformations which read [12]

8Ay = —iX4(0,)aat™ + i€(0,)ac A"
6Ao = (0") €5 Py + 8,11, @] + iv/2(0")ais Dyup €9E%,

10



hai = (™) L85 F — iExil$y 8 — iV2(0")as Dy 1€

8¢ = V26" Nai

9= VIER
The corresponding supercharges to & and £ will be denoted by Qi and Q. re-
spectively. It is clear from the Lagrangian that the model has a global symmetry
SU(2)r x U()r. Aai (Qqi) transform as a doublet of SU(2);, and under U(1)g the

fields transform as
Aai = €7 Mg
¢ — ¢
with A, being invariant.

The U(1)r symmetry is a chiral symmetry and thus is quantum mechanically violated
by the familiar Adler-Bell-Jackiw anomaly. From the instanton calculation point of view
we can easily see how this symmetry is broken. Recall that in the k-instanton field the
Dirac equation has 4k chiral zero modes with no anti-chiral solutions, so under a U (1)r

rotation the measure in the path integral transforms as (the measure for non-zero modes
remains invariant as the spectrum is symmetric for those modes)
D[Aoi] = e D[A\si] -

Notice that as ). is fermionic, the measure transforms with the inverse Jacobian. More-
over, the result is invariant under Zg; (with group elements efr, with B, = 2nn/8k,
n=1,2,...,8k). Thus instantons explicitly break U(1)r to Zs, the smallest symmetry
left. Notice that SU(2)s rotates A and 1 into each other, and since they have the same
zero mode spectrum the measure remains invariant under this global symmetry. In fact,
the SU(2)r part of the global symmetry is believed to be an exact symmetry of the

theory [13). Hence the nonanomalous part of the global symmetry, G, on flat euclidean

space [14, 15] is a direct product of the space-time symmetry and the internal one,

G=SU(2)LXSU(2)RXSU(2)[. (2.5)

2.2.2 The twisted theory

The two supercharges Qq; and @, transform under the global symmetry group G as
(2,1,2) and (1,2,2) respectively, where 2 and 1 refer to the dimension of the repre-

11



sentations. Twisting is basically defined as follows. Instead of a trivial embedding of
the space-time symmetry group K inside the whole global symmetry, one may choose
another embedding: take SU(2)R to be a diagonal subgroup of SU(2)g and SU(2);
and declare K’ = SU(2), x SU(2)R to be the space-time symmetry. Under K’, the

supercharges now transform as

Qm’ i (2,172) - (2a2)
Qai ~ (1,2,2) — (1,3) @ (1,1).

Thus we do obtain a fermionic supercharge, @, which transforms as a scalar under the
new space-time symmetry. Note that, as argued in the introduction, Q?, on-shell and
up to a gauge transformation, vanishcs. Therefore, Q is in fact a BRST-like scalar
supercharge. Being a scalar, @) is well defined on an arbitrary smooth four-manifold.
Therefore twisting will leave us with just one BRST-like supercharge and a Lagrangian
which is invariant under it.

Moreover, it is possible to write the action, up to a topological term, in a form
which is BRST exact. This latter property is the most important characteristic of a
topological field theory, and as we saw earlier all basic properties of a TFT — such as
metric independence — follow from it. As K’ is now the new space-time symmetry of
the theory, we should decompose the field space into irreducible representations of K’
and rewrite the Lagrangian in terms of these new fields. Let us call U the corresponding
U(1)r (ghost symmetry) charge in the twisted theory. The field content of the twisted
theory consists of a gauge field A,, a (grassmann) odd field (ghost) %, to which gauge
field transforms, with U = 1 and a bosonic field ¢ with U = 2. Besides these, there are
also the Grassmann odd fields (antighosts) x,, and n with U = —1 and a bosonic field
¢ with U = —2. This gives the twisted action of N =2 SYM theory [1]

S = / d'z/gtr [LF,, P + 18D, D" — inD,ib* +iDh, x*

= §80 X*] = 5010 9] — S6ln, 7] — 319, 61°] - (2.6)

The part of supersymmetry transformations generated by the scalar supercharge Q
(@ = ¢*'Qua:) reads

A, =1ep, b6=0 §¢ = 2ien

2.7
on = %C[qﬁ, ‘%] ohy = —€eDyd Oxp = 6F:;,, 27

12



where F* = %(F ++F) and # is the Hodge duality operation. As noted earlier, although
Q-invariant, £ cannot yet be written as {@,...}. To express £ as a Q)-trivial object we

need to add a topological term
b=1[FAF=} [dar,(Fy

to the action. Note *F'** = %e’“’”"Fpa. k is the instanton number of the SU(2)-bundle
E on M, which characterizes the topological type of the bundle. Being a topological
invariant and indeed a number in a class, k is invariant under @ and its addition to the
action does not disturb the equations of motion.

Since the theory is independent of the coupling we would like to consider the limit
in which e goes to zero (notice that since the physical theory is asymptotically free this
limit corresponds to high energies, or probing short distances). In this limit, as is clear
from the bosonic part of the action, the path integral localizes around the solutions of

the following equations

FY o= 0
D,$ = 0
[6,4] = 0. (2.8)

The first equation is the instanton equation and will be our main concern in the remain-
der of this section. The fact that the main contribution to the path integral comes from
the zeros of the equations in (2.8) can also be explained by an argument due to Witten

[16] which we briefly recall in appendix A.

2.2.3 The topological observables of the twisted theory

Let M be the moduli space of solutions to the instanton equation, i.e.
M={A, € A| F}, = 0}/3,

where @ is the group of gauge transformations and A the space of all gauge connections.
Suppose A is an instanton and M has the structure of a manifold. The tangent space to
M at A is spanned by the infinitesimal variations §A such that A+ 6A is an instanton,
modulo pure gauge transformations. A first variation of the instanton equation gives

the equation for § A,
0= D(§A) 4+ +xD(6A), (2.9)

13



where D = d + [A, ]. In components this reads
0=D,6A, —D,6A, + €4,,0 D8 A°. (2.10)
Demanding that § A is orthogonal to an infinitesimal gauge transformation of A, gives
0= (Do, 6A) = 0= D,5A". (2.11)

We note that the equations (2.10) and (2.11) are exactly the equations for the zero
modes of t,. Thus 1, zero modes are in fact tangent to the moduli space of M at say
A. The real dimension of the moduli space M is hence generically equal to the number
of nontrivial % zero modes.

As is well known the number of 1 zero modes can be related to the index of an

elliptic complex. Consider the following elliptic complex

ptD

0 — 0%@g) 2 '(g) B 0**(g) 2 0, (2.12)

where as above D = d + [A, ], p* is the projector to the self-dual part and Q"(g)
is the space of all Lie-algebra valued n-forms. 7 is the inclusion map and obviously

ker o = Q%% (g). The index of this elliptic complex is defined by
3 . .
ind D = (-1)'dim H(, D),
=0
where

H'(Q, D) = kerD;/imD;_, .

In particular, note that the ¢ zero modes belong to the first cohomology group of this
complex H'(Q, D). To define d(M), the virtual dimension of M, it is more convenient
to consider the elliptic complex to which the linearized equations (2.10) and (2.11) fit

D'&p*D: Q' (g) — 0°(g) ® 0> (g).
Now d(M) is defined to be the index of this complex [17, 18],

dM) = dim {ker (D! @ p* D) — coker (D! @ p* D)}
= dimker (D' @ p* D)|ox — dimkerD|go — dimker p* DY g2+
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as cokerD! = kerD. This is indeed minus the index of the elliptic complex in (2.12).
Therefore the virtual dimension of M is equal to the number of ¢ zero modes minus

the number of x,, and 5 zero modes. Specializing to the SU(2) case, this becomes [17]
3
d(M) =8k—§(x+0'). (2.13)

Here k is the instanton number, x and o are the Euler characteristic and signature of
the manifold X. In the case that there are no n and x,, zero modes ( an example of
which will be discussed below for SU(2) bundles), the real dimension of M is given by
d(M) in (2.13).

We notice that the measure is invariant under U(1)g if there are no fermionic zero
modes. However, in the presence of fermionic zero modes, since under U(1)g %, trans-
forms with an opposite sign with respect to n and x,., the measure for the zero modes
transforms with a weight, AU, equal to the number of ¢ zero modes minus the number
of X, and 7 zero modes. Thus, from the above, AU, the net violation of U(1)z sym-
metry by the instantons at the quantum level, is indeed equal to the virtual dimension
of M.

Let us assume that there are no 7 or x,, zero modes such that the dimension of
moduli space is given by d(M) and see what sort of topological observables can be
computed. If d(M) is zero, meaning that basically there are no 1, ghost zero modes, the
moduli space is either empty (in which case there are no nontrivial invariants) or consists
of a set of discrete solutions. The measure of the path integral transforms invariantly
under U(1)g and we may compute the partition function Z. Later in this section we
will argue that in this case it is sufficient, in expanding around one isolated instanton,
to keep only the quadratic terms in the action. Since the theory is supersymmetric
there is a balance between the bosonic and fermionic degrees of freedom. Therefore,
in performing the gaussian integral over the bosonic and fermionic fields we get two
identical determinants which up to a sign exactly cancel each other [1]. Having assigned
an arbitrary sign for one isolated solution, all other signs associated to the determinants
of the remaining instantons can be consistently fixed [1]. Hence the partition function

can be written as

7= -1y

where ¢ runs over the number of instantons and n; indicates the associated sign to the
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tth instanton.

In the case d(M) > 0, because of the fermionic zero modes, the partition function
vanishes. Therefore, we need to insert some gauge invariant operators to soak up the
zero modes. However, if we are looking for quantities that are metric independent and

therefore topological, then those gauge invariant operators have to be metric indepen-

dent and BRST closed. For then

1) 88 1% oV

7 (0) = (022) = 010, ) = (1@, 0o ) =0.

On the other hand, since the vacuum is annihilated by @ by assumption, insertion of
trivial operators (BRST exact) is trivial. Hence we are led to look for cohomology classes
of the operator (). To construct these classes, it suffices just to look at the following

transformations

§A, = ic,
6 = —eDyd
5¢=0. (2.14)

Since ¢ is closed and no field directly transforms to it, we infer that a gauge invariant
operator like tr ¢(z)? is actually a nontrivial cohomology class. Next let us differentiate

it with respect to z (with § = —i{Q,---})

0

e g(e)? = 2{Q,tr (9}

This implies first that the correlation function {tr ¢(x)?) is z-independent. If {;} is a
basis for the first-homology class of the manifold, then clearly

2(Q. § tr(¢¥)} = }i d(tr ¢(z)?) = 0.

Thus just by differentiating we have constructed another class. Differentiating once

more leads to '
dir (¢4) = {Q, tr (9 A — ¢F)}

This equation implies that the quantity

(§ (o)
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depends only on the homology class of 4;. For example if 4; is a boundary; v; = 0%;
then

(f, @) =HQ, [ uGonv=emh =0,

This procedure can be repeated to build up the cohomology classes of ().

A natural question which arises is whether these are the only cohomology classes of
@ that one can construct. This question, to the best of our knowledge, has not been
clearly addressed in the literature. Thus, in the following we briefly sketch the related
existing views. First, to close the BRST transformations (2.7) off-shell, let us introduce

a self-dual auxiliary field H*¥ into the transformation laws via
OSxw =€H,,, 0H, =0.

Q? is now zero up to a gauge transformation. Namely, the cohomology of ) only makes
sense on the subspace of gauge invariant polynomials. This is a difficult constraint to
implement.

To relax this condition, we may introduce the secondary ghost ¢ into the BRST
transformations. Then ¢ (and the corresponding anti-ghost ¢) enter the Lagrangian in
the usual Faddeev-Popov gauge fixing component to completely fix the gauge [19]. We
can then define the cohomology of the new BRST charge @’ on the space of arbitrary
polynomials of fields [19, 20]. However, by a field redefinition, it is easy to see that this
cohomology is trivial. On the other hand, it was further argued [19] that this triviality
cannot happen globally. Due to the Gribov problem there are points where the Faddeev-
Popov determinant vanishes and thus the secondary ghosts ¢ are not well defined. At
most we can define the Faddeev-Popov ghosts locally. Globally, therefore, one does get
nontrivial cohomology classes. These classes are then derived by descent equations from
the second (for the gauge group SU(2)) Chern class of a generalized bundle with the
curvature F = F + ¢ + ¢. After deriving the cohomology of ()’, we must project this
cohomology to the cohomology of @) by restricting to the gauge invariant polynomials
which do not include ¢. This, however, does not seem to be a complete answer to the
question. Perhaps, to answer the question, one should phrase the problem algebraically
and apply the techniques of homological algebra.

Having determined the cohomology classes of @}, we can now start looking at their

vacuum expectation values. We saw that the dimension of the moduli space of instantons
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M equals the net violation of U(l)g symmetry by instantons. Also note that the
cohomology classes of @) (except [ F' A F' which does not concern us since it is just a
number) all carry a positive U(1)z charge. Therefore to saturate the fermionic zero

modes we should insert an operator O with the U(1)z charge equal to d(M).

2.2.4 Reducible connections

So far, we have formally shown that the partition function and the correlators of the
cohomology classes of the operator ) are independent of the metric. However, to show
that this is really the case, two conditions on the space M must hold. First of all,
the space M has to be compact [1]. Although this is not always the case, M can be
compactified if some favourable conditions hold [21]. Second and more important is
the problem of reducible connections. When there are reducible connections the space
M is not a smooth manifold and has some singularities. As we will see later, all the
statements about the topological invariance of the observables finally come down to
the intersection theory on M, therefore, for having a topological theory it is crucial to
have a smooth manifold M. Let us first discuss the reducible connections and then the
conditions under which they do not appear.

A connection A is called reducible if there exists an element g of the gauge group

which leaves A invariant, i.e.
A—glAg+g7ldg=A.
Under an infinitesimal gauge transformation by a parameter ¢, A, transforms as
A, — A, +D,é.
Therefore the connection A, remains invariant depending upon whether the equation
D,p=0 (2.15)

has nontrivial solutions. For SU(2) gauge group we can see that reducible connections
correspond to the abelian instantons. If ¢ is not identically zero then, being covariantly
constant, it never vanishes and, in particular, can be diagonalized globally such that the

bundle E splits as a sum of line bundles [18]. Now equation (2.15) reduces to
dés =0, [A 4] =0
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the second equation implies that A, is in the same sub-algebra as ¢, in particular, F),

looks like
o~ L [0
2 0 -1/
where F}" is the U(1) curvature. Now the instanton equation turns into an equation
for U(1) instantons

Ff =0. (2.16)

Note that dF5 = 0 by the Bianchi identity. Since F3 = —(*F3) by the above equation,
it follows that dfF3 = 0. Thus Fj is the representative of a class in the second de
Rham cohomology group, Fs € H?(X,R). However, the cocycle condition on transition
functions puts an extra condition on the curvature of the bundle (the Dirac quantization

law)

/ F3=2mn
by

for some integer n. ¥ is any nontrivial two-cycle in X. Thus in fact F3 € H*(X,Z).
On the other hand, as the self-dual part of F3 is zero by eq. (2.16), we have also
F3 € H?(X,R). Altogether we conclude that F3 lies in the intersection of the two

cohomology groups:

Fye H*(X,Z) N H2(X,R).

Let b denote the dimension of the space of self-dual harmonic two-forms on X. If
by = 0, then H*(X,R) = H2(X,R). So any harmonic two-form which satisfies the
Dirac quantization law is an instanton (a solution to (2.16)). On the other hand, one
can argue that on four manifolds with b = 1, there is a wall in the space of one-
parameter metrics on which abelian instantons appear [21, 22].

Therefore to get rid of the reducible connections, in the case that the gauge group
is SU(2) ?, we must restrict our attention to those manifolds with 55 > 1. Having
this condition guarantees that there are no abelian instantons (or equivalently there
are no reducible connections). On Kahler manifolds, however, this condition has more

implications as we will see in the next part.

2For other gauge groups like SU(3) one needs further restrictions on the bundle E for not having

reducible connections.
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2.2.5 Existence of zero modes on Kahler manifolds

In this part we will discuss the conditions for not having x,, zero modes. We will see
that on Kahler manifolds with 55 > 1, in the field of instantons, there are neither » nor
Xuv zero modes. This, in particular, implies that the formal dimension of M is equal to
its real dimension. Then we discuss the Feynman diagrams which survive in the scaling
limit of e — 0.

Let us first discuss the zero modes of y,, field in this setting. The equations are

Ft =0
D X =0. (2.17)

On a complex four-manifold, any two-form can be decomposed into components which
are a complex (2,0)-form, a (0,2)-form and a (1,1) form. The * operator maps an
(r,s)-form to an (2—s,2—r)-form. In fact, we can see that any (2,0)-form ((0, 2)-form)
gets mapped to itself under the * operation. Therefore, we can decompose a self-dual
two-form y as

X — X(zio) _I_ X(sz) + X(111)+ ,

where + indicates the self-dual part. On a Kéhler manifold, however, the (1,1) part of
a self-dual two-form is proportional to the Kéahler form k. This is easy to see. Let us
take the local complex coordinate system of 2%, 2%, In this local coordinate, the Kahler

form simply takes the form k.5 = ig,5 and we can write

€afyp = \/g(kaﬁk'yﬁ - k'yﬁkaﬁ) ;

therefore, (1) * can be written as

1 _ _ _
Xaff = _Eaﬁ'yﬁX’yp = (ka,@k"/ﬁ - k’yﬁkaﬁ)X’yp = kaﬁ(k’YﬁX’yp) i XBa (218)

V9

Thus, on a Kahler manifold, as k nowhere vanishes globally we can write
XU = kg,

where ¥ = 1k,;x" is a scalar of ghost number —1. Further, we learn that if (WD + ig

closed, ¥ must be a constant as the Kahler form is closed. This implies that the only
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nontrivial cohomology class of H)+(X,R) is the Kahler form. Hence, on a Kahler
manifold we have

p+ =1 (2.19)

where b))+ is the dimension of the group HOV+(X, R).
The self-dual part of F' can be decomposed similarly. Upon employing the complex
coordinate system p = (@, &), the eqs. (2.17) read

Fog=Fs5=0, k**F,5=0
D%xop + kapD%% = 0.
Squaring the last equation we get (k,5 = 19.5)
0= /tr (1D xasl? + |kap D" — iDax*® DsX + iDax“ Dgs} - (2.20)
However, using the fact that Fos = 0, we see that

1
efbp ol - _— of Ay
[ {Dax D}y = =5 [ tr {x*[Da, DI} =0,
and thus eq. (2.20) implies

Daxaﬁ =0 (2.21)
DX = Dak = 0. (2.22)

Since b > 1 there are no abelian instantons, so eq. (2.22) above implies ¥ must be
zero. The equation (2.21) and the equation F'* = 0 are invariant under a U(1) phase

transformation

Xop = €7 Xap (2.23)

A,— A, (2.24)
Thus we have to only consider those solutions which are invariant under (2.23), up to a
gauge transformation; i.e.,

exap = 9(Xap)g™"

A=gAg~ ! +igdg". (2.25)

However, the second equation implies that the gauge connection (which in turn is an

instanton by the first equation in (2.17)) is reducible ~ contradicting the fact that on
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manifolds with 85 > 1 there are no abelian instantons. Therefore x5 must be zero. We
conclude that, at least on Kahler manifolds with 63 > 1, there are no x,, zero modes.

The only fermionic zero modes are those of v, which are tangent to M.

The case d(M) =0

As was mentioned the moduli space in this case (if not empty) consists of a discrete
set of instanton solutions. The only topological invariant that can be computed is the
partition function. In the following we will see that, in the expansion around a single
instanton, we need only to keep the quadratic terms in the Lagrangian. The other
interaction terms (not present in the kinetic terms) can be ignored, since their contribu-
tions die as e — 0. For instance, we can pull down the interactions ¢[x .., x**] together
with gg[z/)u, ¥*] and contract the different fields by replacing them by their corresponding
propagators (notice that there are no zero modes). Each propagator gives a factor of
e® and since we get 1/e? for each vertex, the result scales as e? — contradicting the fact
that theory is coupling constant independent ~ thus it must vanish. Therefore all one
has to consider are the quadratic terms (expanded around an instanton), which — upon
performing the path integral — cancel each other up to a sign. The correlation functions
of any other BRST cohomology class vanish simply because there is no ghost number
anomaly in this case. So if d(M) = 0, the only topological invariant is the partition
function which can be computed by expanding the Lagrangian around instantons and

keeping only the quadratic terms.

The case d(M) > 0

In this case we have fermionic, %,, zero modes. Since these cannot be saturated
by the interaction terms already present in the action, the partition function vanishes.
Therefore, as mentioned earlier, to saturate the fermionic zero modes we need to insert
an operator O with the U(1)r charge equal to d(M).

As an example, let us assume that the dimension of the moduli space is two and try
to soak up the zero modes by the interaction terms in the Lagrangian. If we pull down
the term ¢[th,, 1h*] to soak up the two zero modes, to get a nonzero value, we need also
to pull down either ¢[x,.,,x"*] term or ¢[n,n] to replace $¢ by its propagator. But,

there is no propagator for the nm (or x,,x*") system, nor do these have zero modes to
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be soaked up. Thus the zero modes cannot be absorbed by the interaction terms and
the partition function vanishes. On the other hand, we do get a nonvanishing quantity
if we instead absorb the two zero modes by inserting the operator ¢*. Pulling down
the term @[1),,"], and replacing the ¢¢ by its propagator, we can see that this term is
both coupling constant independent and invariant under metric scaling. Moreover the

two zero modes are absorbed by the two fermions.

2.2.6 Integrating out nonzero modes and the integral over M

Putting the condition 4 > 1 on the manifold guarantees that there are no reducible
connections and thus the kinetic term for the ¢ field is nondegenerate. Therefore, in
expanding around instantons and keeping just the quadratic terms, the path integral
over ¢ can be done. In this part, we explain this idea by giving an example. Later more
general cases are studied.

To begin with, we proceed to calculate the vacuum expectation value (vev) of the
operator ¢° (index a is the Lie-algebra index). Further, as before, we assume that the
dimension of moduli space is 2; i.e., there are only two fermionic zero modes.

First introduce external sources for every fermionic and bosonic field. Take a solution
to the fixed point equations (2.8) and expand the Lagrangian around this solution up
to quadratic order. Quadratic order would be sufficient since we note that theory is
coupling independent and we may go to an arbitrary weak coupling limit. After this,
the standard techniques of perturbative quantum field theory can be applied; we pull out
the interaction terms from the path integral by simply replacing fields by the derivatives
with respect to the corresponding source and then do the gaussian path integral over

nonzero modes. This leaves us with an expression which looks like

o PfDp &
() = AT 572

where J and 7 are sources for the bosonic and fermionic fields respectively and the

exp{V(6/67,8/60)} [ dyue= (145 Ha07wtwen) - (2.9)

subscript 0 stands for zeromodes. du is the measure for zero modes
dp = daydasdiprdips ,

where ay,as are the bosonic instanton moduli parameters, while %, and 4, are the

fermionic ones. Now because of supersymmetry, the two operators Ag and Dp have
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the same nonzero spectrum. Therefore the determinants cancel against each other up
to a sign. Clearly, since there are no ¢ zero modes, the zero order in this expan-
sion (i.e., without pulling down any interaction term) gives zero and we need to go
to the next order. To get a nonzero value we have to pull down the interaction term
(in which fields are replaced by functional derivatives ) @[, "] from the Lagrangian.
In this way, ¢¢ gets replaced by the propagator Az'. Fermionic zeromodes are then

soaked up by the term [1,,¢*]. After all we will have

(6°(@)) = =i [ dud'y /g G*(a,y)[m ") (2.27)

where factors of e have canceled out indicating the coupling independence of this corre-
lator. G*(z,y) is the inverse operator of Ap. After integrating out nonzero modes of ¢
the resulting expression is an integral over the moduli space M.
So in general we start with a nontrivial cohomology class of @,
Or=[| Wy,
Q7"
where 7 is an k-cycle on M and W is an operator with ghost charge U = 4 — k. In
computing the vacuum expectation of Oy, we first integrate over the nonzero modes of

¢ as above. This leaves us with a U-form operator of the general form
O' =&y, i, (aF) gt gpin

where 1* are fermion zero mode coordinates and ® is an n-form on M. Performing
the Grassmann integrals over fermionic zero modes, we are left with the integral over

bosonic zero modes

(0)) = /M By .

Therefore, by integrating nonzero modes out in the weak coupling limit, the path integral
reduces to a finite dimensional integral over the moduli space M. However, the tangent
vectors to the space M are 1 zero modes which are in turn the variation of an instanton
under Q. Therefore, we can conclude that in the weak coupling limit @ acts on the
moduli space M as an exterior derivative. The fact that O} are BRST closed, after
integration over nonzero modes in the weak coupling limit, translates to the fact that

O, are closed forms on M. In the same manner we can see that the BRST exactness
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of O translates to the triviality of O} on M. We conclude that the integration over

nonzero modes indeed maps us from the homology of M to the cohomology of M, i.e.
Hk(M) — H4—k(M) ;

This procedure can be easily extended to compute the correlation function of n such

operators [1]
(01 On) =/M<I>1/\<I>2/\---/\<I>n

where ®; is an (4 —1)-form on M such that }7;(4 —¢) = d(M). This formula establishes
the relation between twisted N = 2 supersymmetric Yang-Mills theory on one hand and
the Donaldson theory on the other hand; probing the topology of M by studying the
intersection theory on the space M. Using standard techniques in quantum field theory
as above, the integration over nonzero modes can be done to reduce the path integral
to a finite dimensional integral over M. However, the real task in the calculation of
Donaldson invariants is the determination of zeromodes and the integration over them.
This turns out to be extremely difficult and any attempt in this direction seems hopeless.
However, the fact that these finite integrals which probe the topology of M are simply
particular correlation functions in twisted SYM theory opens a new window for attacking
the problem using some well known facts about SYM theories. To see how this comes
about we briefly discuss those features of N = 2 and N =1 SYM theories which play a

key role in the determination of Donaldson invariants.

2.2.7 Mass gap and the twisted theory on Kahler manifolds

So far we have not seriously tried to compute the Donaldson invariants. Mathematically
this is a formidable task and except on some specific manifolds Donaldson invariants
have not been calculated directly. However, in [2] Witten showed how, in a theory with
mass gap, one can compute the Donaldson invariants using physical arguments. In a
theory with mass gap, since there are no massless states quantum mechanically, it is
ensured that a local expression for the physical observables emerges if one uses the mass
of the lightest state to expand perturbatively. In this section first we discuss the absence
of a mass gap in N = 2 SYM theory. Then we look at the perturbation to N =1 5YM

theory and the corresponding twisted theory on Kéhler manifolds. The role of the mass
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gap in the computation of Donaldson theory, and the simplifications that occur in this
case, are also discussed.

The fact that N =2 SYM theory does not have a mass gap follows from the work
of Seiberg and Witten [13] who showed that the effective low energy theory is indeed
a N =2 SYM theory with the U(1) gauge group. The existence of an unbroken U(1)
gauge symmetry at low energies shows that there are massless states in the spectrum
and the theory does not have a mass gap. In contrast to N = 2 SYM theory, N =1
SYM theory is believed to have a mass gap [13] mainly because there are no exact global
symmetries preventing fermions from developing a mass.

Since the existence of mass gap is essential in computations via physical arguments
(see below), it is important to ask whether one can twist the N = 1 SYM theories,
or alternatively, whether N = 2 twisted theory can be perturbed to have a mass gap
without destroying the topological character of the theory.

Regarding the first possibility, we note that, in contrast to N = 2 theory, the N =1
SYM theory cannot be defined on a general four-manifold for two reasons. Firstly, pure
N =185YM theory has a global U(1)z symmetry which is anomalous and thus cannot be
used for twisting. Secondly, even if we try to make this U(1)z symmetry nonanomalous
(by adding more N = 1 matter multiplets) it is not large enough for twisting on a general
manifold. However, there exists a large class of manifolds on which we can define these
N =1 SYM theories by twisting. These are Kahler manifolds, for which the holonomy
group is

SUQ2) x U(D)g,
where U(1)g is a subgroup of SU(2)g in (2.5). The U(1)g part of the holonomy group
can now be twisted with the global U(1)z symmetry to produce scalar supercharges
[23].

Let us now return to the problem of perturbing the N = 2 SYM theory such that it
has a mass gap and is still topological. First let us see how twisting works in the case of
a Kahler manifold. To twist the theory, we choose a U(1); subgroup of SU(2); under

which spinors transform as

A — ef)

Y — e_iﬁl/)
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and define the new symmetry group to be
SU@)z x U(1)j,

where U(1) is obtained by adding the charges of U(1); and U(1)g global symmetries.

Therefore, on Kahler manifolds twisting has the following effect

Aot ~ (2,0,%) - (2,%)

Aoz ~ (2,0,-3) — (2,-3)

N~ 03D — O o
Asp ™~ (0’"%,%) — (0,0)

Mz ~ (0,3,-3) — (0,0)

5‘:’22 = (07_%,_%) — (0,-1).

Hence on a Kahler manifold we indeed get two scalar supercharges by twisting.

Let us now perturb the theory by giving a mass term to the ® multiplet through
m / d?zd?zZd*0 tr ®* + h.c. (2.29)

This reduces the number of supersymmetries to one (leaving one scalar supercharge
unbroken) and leaves a pure N = 1 supersymmetric effective theory (with the fields A4,
and )) at energies which are small compared to the mass of ®. Since we know that
N =1 theory has mass gap, it follows that N = 2 theory perturbed by a mass term for
the ® multiplet also has a mass gap.

The procedure of mass perturbation on a general Kéhler manifold, however, is not so
simple as it may look like. Unlike the action, which contains d*zd*6 as its measure and
thus can be defined naturally on a general manifold (i.e., without recourse to a specific
coordinate system), the measure for the mass term , d*zd?@, transforms nontrivially
under the holonomy group (note according to (2.28), though invariant before twisting,
d?0 carries one unit of U(1)g charge after twisting), if we try to generalize the above
term on a curved manifold. The remedy for this [2] is to consider that d®zd*6 has charge
zero under the holonomy group and so is defined naturally. The factor md?z then can
be interpreted as a (2,0)-form. Hence, to define the mass term on a Kahler manifold we

pick a holomorphic two-form w as a generalization of md?z on flat R* and declare
/w A d*zd%0 tr ®* + h.c.
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to be the mass term as a generalization of (2.29). Therefore, requiring that the mass
term be defined on a Kahler manifold implies H(*%(X,R) # 0. On a Kahler manifold,
we have b0 = §%2, with *° being the dimension of H(*®) and 4L+ = 1 (see eq.
(2.19)). Hence, since the * operator maps Q29 (X,R) (22 (X,R)) to itself, we will
have b3 = 1 + 2b%°, which implies that, on a Kéhler manifold, b7 > 1 — a condition
which we have seen before.

Having defined the mass term on a Kahler manifold, let us now see why the mass de-
formation and the consequent existence of a mass gap, are so important in computations
of Donaldson theory via physical arguments.

Consider, for example, the partition function of a theory which has a mass gap. In
such a theory, in principle, it is possible to write an effective action for the background
gravitational field by expanding around a flat metric. Since there is no massless state
in the spectrum of the theory, it is guaranteed that a local expression for the effective
action emerges.

Following we consider the one parameter family of metrics, g,, — #2g,, and take ¢
to be arbitrarily large. As the theory is asymptotically free, this limit corresponds to
low energies and we may use the mass of the lightest state as a perturbative expansion
parameter. Therefore. the general expression for the effective action which emerges is
an expansion in terms of successively decreasing powers of ¢ (or decreasing powers of

energy) [2]
Z = exp(—Les),

where

Leg = /d‘lm\/ﬁ(u YR+ wR 41, (2.30)

Here R is the scalar curvature. Note that /g scales as ¢*, while the Riemann tensor,
R’ ., and thus the Ricci tensor do not scale. Thus R = ¢g*” R, scales as t~2. Therefore,
terms shown in (2.30) scale as t*, t* and ¢° respectively. However, the topological
invariance of the partition function means that the only local operators that may appear
are dimension four. On a four manifold the only topological invariants which can be
written as an integral of local operators are the Fuler characteristic x and the signature

g
x=/RAR
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a:/R/\*R.

Thus
Z = exp(ax + bo),

for some universal constants @ and b. Hence, all remains is to work out the universal

coeficients a and b say by comparing to some known results.

2.2.8 Effective low energy description of Donaldson invari-

ants

Although the effective low energy description of the theories which we are going to
study does not enter in this thesis, we briefly discuss the low energy description of
the Donaldson theory as it is of current interest and has played an important role in
determining the basic structure of the Donaldson invariants via introducing some more
fundamental invariants.

Shortly after the work of Seiberg and Witten [13], Witten [5] provided an alternative
approach to the computation of Donaldson invariants using the low energy effective
description of N = 2 SYM theory. In [13] it was shown that the effective low energy
theory of minimal N = 2 SYM theory with gauge group SU(2) is an N = 2 SYM
theory with the gauge group U(1). Since the microscopic theory is asymptotically free,
this weakly coupled effective theory which emerges in the infrared corresponds to the
strongly coupled region of field space. There are two important characteristics about this
effective description. Firstly, there is no unique effective Lagrangian describing the low
energy physics in the whole region of the vacuum manifold - rather, different Lagrangian
descriptions are related to one another by SL(2,Z) transformations. Secondly, in the
moduli space of vacua, there exist two singular points where a monopole (or dyon)
becomes massless and thus the effective low energy description breaks down at these
points.

Using this picture to determine the Donaldson invariants, one sums over all contribu-
tions coming from the different parts of the moduli space of vacua (2, 24]. As mentioned
earlier, this moduli space consists of the whole complex plane with two singularities at
say 1 and —1 and it is called sometimes the u-plane. In [24] it has been argued that, upon

considering manifolds with b3 > 1, there is no contribution to the path integral from
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any region of the u-plane bounded away from the singularities. This happens mainly
because in this case (b > 1) there are too many fermionic zero modes that cannot be
lifted. Thus for manifolds with b > 1 the only contributions are coming from those
two singular points. Manifolds for which the contribution of the u-plane away from
the singularities vanishes are called simple type. So the form of the invariants for this
class of manifolds is now clear; there is a contribution coming from integrating out the
heavy fields as well as the high energy modes, there is no subtle topological information
in this part and it can simply be worked out by comparing with some known results.
The remaining part is the contribution of the massless modes at the singular points.
As discussed above, these are a dual U(1) gauge field, a monopole, and of course their

supersymmetric partners. In terms of N = 2 multiplets, these are just a gauge multiplet

A#
A b, (2.31)
¢

and a hypermultiplet in the fundamental representation of the gauge group describing

the monopole

M M. (2.32)

This is the physical field content. In order to define the theory on a general manifold,
we still need to twist the above theory. After twisting [25], we obtain from the gauge
multiplet — similar to the microscopic description of Donaldson theory — a set of ghost

and antighost fields
Yy s Xuw s 1
However, since the scalars in the hypermultiplet transform as (1,1, 2) under SU(2); x

SU(2)r x SU(2); (note that 1y and ¢y are invariant under SU(2)1), after twisting

these turn into



In summary, first we take the U(1) N = 2 SYM theory with an additional matter
multiplet on R%. Then we redefine the fields by the above twisting prescription. The
twisted Lagrangian obtained this way (albeit with adding a multiple of [ F' A F' to make
it BRST trivial) could, in principle, be defined on an arbitrary manifold preserving the
BRST symmetry. However, following the above steps, we find out that the twisted
theory is not supersymmetric (and indeed cannot be written as a BRST commutator)

on a general curved manifold unless we add an extra term proportional to

/ d*z,/gR|IM?

to the action. Doing this, it can be seen that in the weak coupling limit the path integral

localizes to the moduli space of solutions of the Seiberg-Witten (SW) equations [5)
7 —
= —§M r,.M
PM =0. (2.33)

Therefore, the effective low energy description of the microscopic theory has given a
new perspective to the computation of Donaldson invariants. Instead of considering the
nonabelian equations of instantons to obtain the Donaldson invariants, we can consider
the SW equations and derive the same invariants. Indeed, it has been shown [5] that
all the subtle topological information about Donaldson invariants are encoded into the
SW invariants.

Moreover, the SW equations have much nicer properties than the self-dual instanton
equations [5]. Firstly, they have a U(1) gauge invariance which is easier to deal with than
the SU(2) invariance of the instanton equations. Secondly, the moduli space of solutions
to the SW equations is compact in contrast to that of instantons where compactness fails
and one has to compactify the moduli space to ensure a genuine topological behavior.
However, as in Donaldson theory, one needs to restrict to manifolds with 4 > 1 to have

a free action of the gauge group on the moduli space of SW equations.

2.3 N =4 SYM theory and its twisting

We have already discussed in the introduction those properties of N = 4 theory which
can be examined through topological field theory via twisting. In this section we con-

centrate on a particular twisting of the theory which will be studied more thoroughly
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in chapter four for a specific product manifold ¥ x S%. We start with a brief study of
the physical theory. The global symmetry of the model is so large that admits different
embeddings of the space-time symmetry and thus resulting to different twistings of the

model. Here we look at one of these possible twistings and the related equations.

2.3.1 The physical theory

The fields of N = 4 SYM theory can be arranged in terms of N = 2 multiplets. Like
N = 2 with an additional hypermultiplet, the field content of N = 4 SYM theory
consists of a gauge multiplet as in (2.31) and a hypermultiplet as in (2.32) with the
difference that now the hypermultiplet is in the adjoint representation of the gauge
group. Hence, we expect to have an increased supersymmetry rotating the gauge and
hypermultiplet into each other. Moreover, the internal R-symmetry is also increased
from U(2) to SU(4). Spinors, A, sit in the fundamental representation 4 of SU(4) and
scalars, ¢;;, in the 6-dimensional representation. ¢ and j are SU(4) indices and ¢;; are
components of a real self-dual 2-form.

The N = 4 supersymmetric Lagrangian on flat R* is [26]

1 1 T )
£ = St |~ Fu P —iXy(0,)aa DA — 2D, ;D4

L oyary . gl b Y ied 41 L 4 12
- %)\ i[)\on’¢ ]+\/§)\a[)\ ’¢1J]+16[¢1J’¢k1]:l :

The action is invariant under N = 4 supersymmetric transformations:

514” = —ig&i(o.u)a&)\ai + ij‘éj(au)adfai
8ai = =i(0™) L i + ivV2E4 (0")aa Dutsi — iakldijy ')
691 = V2 (go;"\“i = % Aai + Eijklgdkj\dl) :

The global symmetry of the action is

SU2)L x SU(2)r x SU(4).

2.3.2 The twisted model

From what we saw in the N = 2 case, it is now clear that to twist the theory, first we

should choose a SU(2) subgroup of SU(4) and replace SU(2)r x SU(2) by its diagonal
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subgroup just as we did in the N = 2 case. Depending on how one chooses this subgroup,
one gets different topological field theories. There are three different embeddings [4] of
SU(2) x SU(2) into SU(4) which give rise to singlet supercharges under the twisting.
Under these embeddings of SU(2) x SU(2) subgroup, spinors decompose as

i) 4—(2,1)(1,2)
i) 4— (1,2)®(1,2)
i) 4—(1,2)® (1,1) @ (1,1). (2.34)

Let us concentrate on the second case for which scalars trnsform as
6 — (1,3)® 3(1,1).

Replacing SU(2)g by a diagonal subgroup of SU(2)r x SU(2), spinors transform as
two scalars, two self-dual 2-forms and two vectors under the newly defined space-time

symmetry group

just two copies of the fermionic (ghost and anti-ghost) field content in the twisted V = 2

theory. For scalars we have
(1717((1’3)693(1,1))) = (1,3,1)@(1,1,3) (235)

transforming as three scalars, say, ¢,¢ and C and a self-dual 2-form BY,. Knowing
how the new fields transform under the new space-time symmetry, we can write the
Lagrangian in terms of these fields on flat R*. Upon covariantizing the derivatives we
may extend the Lagrangian on a curved manifold. However, just as in the monopole

case, this Lagrangian cannot be written as a BRST commutator unless a curvature term

which reads [4]

I ! o
é?/d‘l:c\/gtr <B“ (g(gppgua - guogup)R+ W:;po) B* ) ’

is added to the Lagrangian. Here W is the self-dual part of the Weyl tensor,

1 1
W/j:'pa - 9 (Wuw’a + _Q_EMVWSWWSPa) ’
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where

R
Ruo9ve — RupGuo + Ruo9up — Buo9up) + = (GuoGve — Guoup) -

il
Wuupa e Rp,upa =5 6 (

5 (
By adding the above curvature term to the Lagrangian on flat R*, one obtains the

twisted Lagrangian of the model [4, 26],

L

—tr{ D,AD*¢ + LH*(H, — 2v/2D,C + 4v/2D"B,,)

TH"(H,, — 2F}, — 4[B,,, B",] — 4i[B,., C])

4, Dy X" + 4%, Dy + X, D"¢ — Dy

V2P [Py A = 52X [X s B + 12v20% [X s C) + 14V2" [X o, B,]
= V2Xwl(, BY] — ivV2 [, B + i4V2,[%, B — iVERIX, 6]

+ V2P, N - 12v29, %, O] + fc [¢,A] - \/—77[77 , 4]

+ + +

— —Cln,C1-+ 219, B¥ID, Bl + 206, CI03, 0~ 314, A]?} . (2.36)

Upon integrating out the auxiliary fields, H . and H,,, we can see that the resulting
topological field theory, in the weak coupling limit, localizes on the moduli space of

solutions to the following equations (Vafa-Witten equations):

—[C BLl+ —[BI,,,B+ lg”” =0
D"B;;, +D,C =0.

In [4], Vafa and Witten showed that, on Kahler manifolds with & > 0 and gauge
group locally a product of SU(2)’s, a suitable vanishing theorem holds such that the
solutions to the above equations all have B}, = C' = 0. In this case they argued that
the partition function indeed computes the Euler characteristic of the moduli space of
instantons. Further, by using the mathematical results on the structure of the moduli
space of instantons, they computed the related Euler characteristic and showed that
the partition function is in fact a modular form under S-duality, extending the previous

conjectures about the weak-strong coupling duality of N =4 SYM theory.

2.3.3 Twisted theory on ¥ x C

Twisted N =2 and N =4 SYM theories on product manifolds ¥ x C, where ¥ and C

are both Riemann surfaces, have been studied in [27]. There it has been shown that,
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upon shrinking C to zero size, the effective theory which generically emerges is a two-
dimensional sigma model describing maps from ¥ to M. In the N = 2 case, M is the
moduli space of flat connections on C. For N = 4 theory, it turns out that M is the
moduli space of solutions to the Hitchin’s equations [27]. In the following we overview
the basic points. In chapter 4 we study the case where C is a Riemann sphere.

Let us consider the N = 2 case in the limit of shrinking C'. We denote the indices
on ¥ by ¢, 7, - and those on C by a,b,---. Upon scaling the metricon C by g — €gas,

the bosonic part of the action (2.6) becomes
.. . 1 . - -
§=1 /d4:v\/§tr [eFijF” + F F* + ZFabF“b +2¢¢pD;D'¢ + 20D, D* ¢ — §[¢, P .

This now shows that in the limit of ¢ — 0, the path integral localizes on the flat connec-
tions over C. At the level of equations, this can also be seen as follows. Consider the
instanton equation on such a manifold. This manifold has the holonomy of U(1) x U(1)

and thus is Kahler. So, as before, the self-dual two-form F'*, can be decomposed as
F+ . F(2,0) i F(0,2) + F(1’1)+,

where FOD+ = %k(kaﬂ-F“'@). Thus the instanton equation, F'* = 0, on Kihler manifolds

reduces to

F20) — p02) —
kosF? =0,

as k.5 = 19,5, the second equation is
gPF.5=0. (2.37)

Let 2,z and w,w indicate the complex coordinate on ¥ and C respectively. Then eq.
(2.37) becomes
gzzeE + gwawu‘; =0.

Let us now shrink C' by scaling its metric, gws — €guww, and taking the limit ¢ — 0. In

this limit, the above equation reduces to the equation of flat connections over C,
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To get rid of the reducible flat connections, consider those bundles which restrict
nontrivially over C'. The solutions to (2.38) can be parametrized by the moduli param-
eters which in general depend on the coordinates of ¥. Therefore, a flat connection on
C' can be written as

AC(w,"I);Zag) = AC(IU,LT);X(Z,E)),

where X! are coordinates on the moduli space of flat connections M. The tangent space

to M can be found by varying A¢ to a nearby flat connection
0= FC(AC -+ 5Ao) = FC(Ac) + d((SAC) + Ac A §Ac + A N Ac = Dc((SA(;) . (2.39)

As usual, we are interested in those variations of Ac which cannot be obtained by a
gauge transformation, i.e., éAc # D¢fB. On the other hand, Fz = 0 implies that
D% =0, therefore §A¢ € Ta.M belongs to the first cohomology group of the operator
D¢

§Ac € H'(E, D¢) = ker D¢ /im Dg .

As before, this is related to the virtual dimension of moduli space of flat connections.

Since D% = 0, we can define the following elliptic complex
0 - 0%g) 2% 0'(g) 2% 0%(g) % 0. (2.40)
The linearized equation (2.39) fits in the two-term elliptic complex of
D@ D': 0'(g) — 0°(g) & 2(g).
The virtual dimension of M is defined by the index of this complex

d(M) = dim{ker(D @ D")|g1 — coker (D & D")|qogaz }
= dimker (D @ D")|q: — dimker D|go — dimker Df|g. .

We have chosen the bundle, F, such that there are no reducible flat connections, thus
dimker D|go = 0. However, in two dimensions, this further implies that dim ker Df|q2 =

0. To see this, let B,, be a two-form on C. If B is in the kernel of D!, then we have
D'B,, =0.

In complex coordinate this becomes



Note that in two dimension we can write Byg = €yb, for some scalar b. Therefore the

above equations reduce to

Dab=0, Dyb=0.

Since there are no reducible flat connections, we conclude that & = 0, or B,, = 0.
Therefore, for such bundles the dimension of moduli space of flat connections is given

by the virtual dimension of M, which is given by an index theorem to be
d(M) = dimG (29 — 2),

where g is the genus of the two-dimensional surface and G is the gauge group.

Let a;’s denote the bases for the first cohomology group, H*(E, D¢), of the elliptic
complex in (2.40). Now a tangent vector to the space of flat connections can in general
be written as

dAc

6—X7=aI+DcEI,

where D¢ Ey is a gauge transformation. Therefore, upon fixing the gauge, the tangent
space to M can be represented by ar. Notice that, since the path integral has localized
on M and since there are no reducible flat connections, we can mod out the gauge
group completely by working on M where there are no gauge degrees of freedom left.
Furthermore, ignoring the terms which are order of ¢, Ay does not depend on the
coordinates of ¥ and can be integrated out by its equation of motion. The only degrees
of freedom which are left are thus the moduli parameters XI. Therefore the problem
reduces to a path integral over X and it can be shown [27] that the effective theory
describes the maps from ¥ to M. For N = 4 theory a similar effective theory emerges.

When C is a Riemann sphere, we get a different effective description in the limit
where C shrinks. This case is the subject of chapter 4 where we discuss it in detail.
Here we point out the two main differences which arise in this case:

Firstly, if, as above, we consider bundles which restrict nontrivially over C, the
moduli space M (either in N = 2 or N = 4 case) is empty. This can be seen as follows.

Let us cover S? with two patches S, and S_. Since F' = 0, the gauge connection on
S can be written as g7'dgy. In the same way, let us write the gauge connection on S_
as ¢g-'dg_. We may perform a gauge transformation to set A_ = 0 and A4 = g~ 'dy.

On Sy NS_, these two connections are related by
g ldg =t7'dt, (2.41)
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where ¢ is the transition function. From this we see that ¢ and ¢ have to be in the same
topological class such that ¢ can be smoothly extended all over S; to g. However, g is
a map from Sy to SO(3) and thus is topologically trivial and so the transition function
t, also must be trivial. We conclude that a flat SO(3) bundle over a sphere must be
trivial.
Since in this case the moduli space M is empty, the effective theory is trivial and the par-
tition function, for instance, vanishes. On the other hand, if we consider bundles which
restrict trivially over C, there are some gauge degrees of freedom left after shrinking C
which are effectively described by a two-dimensional SYM theory.

Secondly and more importantly, the dimension of the space of self-dual harmonic
2-forms, b§, is one in this case. Hence there exist metrics for which the connection is

reducible. It follows then that the path integral may get a contribution from the u-plane

[24, 28].

2.4 Higher dimensional analogues of Donaldson-

Witten theory

Extended supersymmetric Yang-Mills theories can, in principle, be derived from super-
symmetric theories in higher dimensions by dimensional reduction [29]. For instance,
N =2 and N =4 SYM theories in four dimensions can simply be obtained by dimen-
sional reduction of N = 1 SYM theories in six and ten dimensions respectively. The
highest dimension in which we can define a pure SYM theory is ten with a minkowskian
signature (—1,1,---,1). As this ten-dimensional theory has a basic role in the forth-

coming discussions, let us study it in more detail.

2.4.1 N =1SYM theory in ten dimensions

The Lagrangian of the super Yang-Mills theory in ten dimensions is
ll =
L= —FynFV 4 %\III‘MDM\II. (2.42)

To balance the degrees of freedom between the bosons and fermions we put the following

constraints on spinors consistent with the space-time symmetry (see appendix B for more
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detail).
U = ¥iC

Ty0 =1,

U is then called a Majorana-Weyl spinor. The supersymmetry transformations are

6Ay = tal'p ¥
U = %FMNI‘MNO& (2.43)
U = —%@FMNI‘MN,

where « is a constant anticommuting Majorana-Weyl spinor with the same chirality as

v,

2.4.2 Supersymmetry of £ and supercurrent

Let us quickly demonstrate the supersymmetry of the action. First note that (we allow

a = afz) to derive the supercurrent for completeness)
§Fyin = i0yal' NV — i0yaTy ¥ + ial y DU — ialpr Dy U
§(TTM Dy V) = —%aI‘MNFMNFLDL\IJ + %WFLFMNDL(aFMN) + UM [l T, 9],
SO
5(—2 / d'% Fyn FMN) = — / Pz [FMN9yaT N T + &FMNTy Days ]
=i / 4% (Dp FMN)aT N0

where in the last equality we have dropped the total divergence term. Since o and ¥

are both anticommuting Majorana-Weyl spinors and using eq. (B.5) we have
DiUT T ynva = al'ynTEDL Y.
Thus
§ / 40 (TTM Dy ) = / o [—%aFMNFMNFLDL\II
+%DL(6¢FMN JTMNTLY 4 (T [al'y 0, U]
= / 4% [9,GTan FMVTHY + DL FMNTynTE Y
+TTM[aly ¥, 1] .
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Therefore up to a total divergence term, we can write
68 = —i / d'z [DNFMNdFM\I! — -;-DLFMNaFMNFLq; — %FMNaLaFMNFL\II
—%TI‘M (60T, T} . (2.44)

The first and the second term in the integrand combine to

%DLFMNa(rMNPL + 2N TMYY = %DLFMNa(PMNFL 4 pENTM _ LMYy
= %DLFMNdI‘MNL\II =0,
the last equality follows by using the Bianchi identity. If the trilinear term is zero then
one could conclude that the action is supersymmetric for constant a’s.
In appendix B we show that the trilinear term is indeed vanishing which proves the
supersyminetry of the action in 10 dimensions. Note that we can now also read the
supersymmetry current from (2.44)

JK = %FMNFMNI‘K\II. (2.45)

2.4.3 Reduction to lower dimensions

We may derive the whole bunch of extended SYM theories by the dimensional reduction.
Let us briefly outline a few examples.

The ten-dimensional SYM theory can be reduced to four dimensions with euclidean
signature simply by demanding that fields do not depend on the extra six coordinates.

This breaks the space-time symmetry as follows
S0(9,1) —» S0(5,1) x SO(4).

Thus SO(4) is the remaining space-time symmetry and SO(5,1) is now the global
symmetry of the theory left from the original ten-dimensional Lorentz symmetry. This
symmetry is in fact the R-symmetry group of reduced N = 4 theory. In the case of
N =2, we start with N =1 in six dimensions. Putting the constraint that fields only

depend on four coordinates breaks the Lorentz symmetry as

SO(5,1) — SO(1,1) x SO(4)
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leaving a SO(1,1) R-symmetry group which is the same group (after complexification)
that we called U(1)r earlier. In these derivations, scalars appear as the components of
the gauge fields in the directions normal to the reduced space-time. In this sense, it is
easy to see how scalars appear and how they transform under the R-symmetry group.

As we noticed earlier, the essential ingredient in the twisting of SYM theories is the
existence of a suitable global R-symmetry which of course must be anomaly free. Let
‘us see what sort of supersymmetric Yang-Mills theories can be constructed by reduction
from ten to lower dimensions, and what sort of global R-symmetry in this way are
produced. First consider the dimensional reduction to eight dimensions. The space-

time symmetry breaks as
S0(9,1) — SO(1,1) x SO(8).

The R-symmetry SO(1,1) (or equivalently U(1)) for this theory turns out to be anoma-
lous, therefore, it cannot be used to twist the theory (at least on eight-dimensional
Kshler manifolds which have SU(4) x U(1) as their holonomy group). Hence, the only
manifolds on which one may hope to construct a topological field theory are those with a
reduced holonomy such that they admit globally defined covariant spinors. For instance,
Calabi-Yau four folds with the SU(4) holonomy are in this category. In fact, topological
field theories of this type have been constructed in [30, 31, 32] where it is shown that
the corresponding theory is invariant under the metric deformations which preserve the
holonomy structure of the manifold (note that the holonomy is uniquely characterized
by the metric).

The above cohomological field theories, obtained from the dimensional reduction of
N =1, d =10 SYM theory, also arise in the effective description of D-branes.

D-branes are intrinsically nonperturbative objects in string theory. They have played
an important role in unraveling the nonperturbative behavior of string theory in recent
years (for an introductory review of D-branes see [33]). Roughly speaking, D-branes
are extended geometrical objects on which open strings can end. The dynamics of a
D-brane is thus inherited from that of the open strings attached to it. There exist
different types of D-branes depending on their dimension, orientation, topology and so
on. Let us denote a p-dimensional D-brane by Dp-brane. To describe a D-brane, first
one defines the coordinates which are embeddings of the D-brane into the 10-dimensional

target space-time. Moreover, a D-brane carries gauge degrees of freedom associated with
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the open strings attached to it. A D-brane can be described by the Born-Infeld action
which is obtained at the tree level of string theory by requiring the anomaly cancelations.
However, if we restrict ourselves to low energies, we may expand the Born-Infeld action
to derive an effetive theory for low energy excitations of a D-brane. Thus the effective
theory is nothing but a SYM theory living on the worldvolume of the D-brane. For
flat Dp-branes, this SYM theory can be obtained by dimensional reduction of d = 10
SYM theory down to p+ 1 dimensions [34]. One may also study curved D-branes which
naturally arise in the compactification of string theory on curved manifolds. In [6] it has
been argued that the effective theory of such curved branes is a topological field theory
which lives on the worldvolume of the brane.

The eight-dimensional cohomological field theory that we just mentioned above, for
example, can be thought of as the effective field theory of an euclidean D7-brane. The
D-brane in this case is wrapping around the whole eight-manifold M. The two scalars
left from the reduction of ten-dimensional SYM theory simply specify the location of
the D-brane in the ambient ten-dimensional space. There are some examples where the
D-brane is wrapping around a supersymmetric submanifold [35] Y of M. In these cases,
the effective field theory living on the worldvolume of the brane can again be obtained
by the dimensional reduction of the ten-dimensional SYM theory. However, since the
ambient space of the brane is now curved, scalars turn out to be sections of the normal
bundle of ¥ [6]. This could be understood if we recall how the scalars appear in the
reduced theory. They are indeed components of the gauge field in the normal directions.

Take p to be a point on Y, then the tangent bundle at p decomposes as
T,M=TY & N,Y.

This equation then tells us that scalars must transform as sections of N(Y).
Next we move to consider the dimensional reduction to six dimensions [29, 36]. The

Lorentz symmetry group in this case breaks as
S0(9,1) — SO(3,1) x SO(6).

The global R-symmetry, SO(3,1), is again anomalous. In fact there is a subgroup,
SU(2)v, of this SO(3,1) which is anomaly free and thus can be used in twisting. For
example, on Kahler manifolds we may choose a U(1) subgroup of SU(2)y to twist with
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the U(1) part of the holonomy group (Kéhler manifolds have a SU(3) x U(1) holonomy
in six dimensions). Another type of manifolds on which twisting is possible are product
manifolds of X x Y, where X and Y are both three manifolds. However, since the
holonomy group in this case is SU(2)x x SU(2)y, twisting can be done on just one of the
two manifolds. The latter example is specially interesting when we are considering D5-
branes wrapping around say Y supersymmetrically embedded in a Calabi-Yau manifold.
We will discuss this particular case in detail in chapter 3.

As in eight dimensions, we may also construct cohomological field theories on man-
ifolds with a reduced holonomy without a need for twisting. These theories turn out
to describe the effective theory of the euclidean D5-branes wrapping around the whole

manifold.
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Chapter 3

Supersymmetric Gauge Theory on

,Calabi—Yau 3-folds

3.1 Introduction

Extended supersymmetric Yang-Mills theories in various dimensions have been inten-
sively studied by both physicists and mathematicians. From the mathematical point
of view, these theories are interesting since they can give rise to a physical formulation
of topological invariants of manifolds in different dimensions. As in four dimensions,
where one reformulates the Donaldson theory in terms of twisted N = 2 SYM theory,
one may hope that a similar construction exists in higher dimensions, by which topo-
logical invariants are expressed in terms of physical observables of a supersymmetric
Yang-Mills theory. Of course, this reformulation crucially depends on the existence of a
suitable global symmetry to be able to twist the theory. For instance, as we discussed
in the second chapter, SYM theory in eight dimensions does not have a nonanomalous
global symmetry and thus its existence is limited to those manifolds which admit glob-
ally defined covariant spinors. In this chapter we will see that a similar restriction arises
for twisting the SYM theory on a general six-manifold. However, there is a class of
manifolds (Kahler six-manifolds) for which twisting is possible. Partial twisting [27] is
another option which can be considered on product six-manifolds. We will discuss this
case in detail in section five.

From the physical point of view, extended supersymmetric Yang-Mills theories ~
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which arise from the reduction of SYM theory in ten dimensions — have become a major
field of research as they describe the low energy effective theory of D-branes [34]. As
mentioned in the second chapter, the low energy effective worldvolume theory of a Dp-
brane (where p indicates the spatial dimension of the brane) is described by the SYM
theory obtained from the dimensional reduction of SYM theory in ten dimensions down
to p + 1 dimensions.

We start this chapter by reducing the ten-dimensional SYM theory down to six
dimensions and deriving the Lagrangian on flat R®. Since the nonanomalous part of
the global symmetry is not large enough, we are led to consider those manifolds with
reduced holonomy. In section four, we define the theory on a Calabi-Yau 3-fold [37]. The
Lagrangian is derived and it is shown that the resultant theory is cohomological in the
sense that it is invariant under the metric deformations which preserve the holonomy
structure of the manifold. This cohomological field theory in fact describes the low
energy degrees of freedom of euclidean D5-branes wrapping around the whole manifold.
A balanced formulation [7] of the theory is also presented in this section. In section five,
we consider the product six-manifold X x Y, where X and Y are both three-manifolds.
We partially twist the theory on one of the three-manifolds and study the limit where

that particular manifold shrinks to zero size.

3.2 The reduced 6-dimensional theory

Constructing lower dimensional theories through dimensional reduction of theories in
higher dimensions goes back to the idea of Kaluza [38] and Klein [39] of unifying general
relativity and electromagnetism (see [40] for further reference). To explain the idea, let
us start from a five-dimensional theory of gravity defined on the space-time X x St,
where X is a Lorentz four-manifold. Let M, N = 0,1,2,3,5 indicate the coordinate
indices on the whole manifold, and x,v = 0,1,2,3 indicate the indices on X. The

metric now decomposes as

Gpv g,u5EAu7 g555¢'

Assuming the periodicity in the fifth direction, we can Fourier expand the fields. Then

it is easy to see that the nonzero modes in this expansion have a mass proportional
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to 1/r, where r is the radius of S'. Therefore, in the limit of very small r, nonzero
modes decouple from the zero modes. Keeping only the zero modes, the five-dimensional
Einstein-Hilbert action reduces to the corresponding Einstein-Hilbert action in four
dimensions plus the Maxwell action for the A,. Moreover, in this setting, the gauge
invariance can be recognized as part of the general coordinate transformations invariance
of the five-dimensional theory.

Although the Kaluza-Klein idea was not successful in achieving its goal of unifying
gravity with electromagnetism, it emphasized the role of higher dimensional theories in
the understanding of the physical theories in four dimensions. In this section we will
derive a six-dimensional theory by the dimensional reduction of the SYM theory in ten
dimensions. Along the way, we will see how the different fields, transforming differently
under the reduced Lorentz symmetry, appear and how the extra global symmetries, left

from the original space-time symmetry, emerge.

3.2.1 Field decomposition

The reduction can be achieved conveniently by splitting the coordinates as M = (I, 4 + 3),
where I = 0,...,3 and p = 1,...,6. Assuming fields to be independent of z’ coordi-
nates breaks the part of the Lorentz symmetry which rotates z* and 2! into each other
and thus reduces it to

S0(9,1) — S0O(3,1) x SO(6),

I coordinates but

where SO(6) acts on z* coordinate. Since fields do not depend on z
transform as irreducible representations of SO(3,1), this subgroup plays the role of
an internal global symmetry. A tensor field like Ay now decomposes to the scalars
A; transforming as a vector under SO(3,1) and the gauge fields A, which are scalar
under SO(3,1). Since A; components of the gauge field are scalar under the space-time
symmetry SO(6), it is more convenient to introduce the notation ¢; = A;. Thus Ay

decomposes as
Ay = (Ay, 1) -

To see how spinors decompose, let us choose the representation of the I'as’s to be

FI - ,"77I® 77
I‘H+3 =1, ® 7# , (31)
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where 77 generate a [3 4 1] Clifford algebra and 4* a [6 + 0] one. Using the definitions
of 45 and ~y7;

"~ ~

Ve =1 Vs, Vs =10 " Va,

we find that
Fri=%Q7v.
Further, if we take
056) = —O't(6) = -1
034) e —0,54) =1,
then we can take
C=CgC,

where C' and C arc the unitary charge conjugation matrices in 4 and 6 dimensions
respectively. For the sake of explicitness, we choose the chiral representation for the 4d

v’s. In terms of Pauli matrices, these are

?0 = 12 ® (i02)
F¥=0'®c i=1,23,

or
S = 0 of
al 0

with
Y5 =1, ® 0®
C=ic"®a°.

Let e,, @ = 1,2 denote the eigen-basis of o°. Then a 10d spinor in this representation

can be written most generally as
Y = €,® eb®¢ab,
where 1% is a 6d spinor. Imposing the Weyl condition on ¥ yields

Tn¥ = (35 @1)(es ® € ® ™) = lyea ® c°es® 7™
= e, ®e1® Y™ — ey ®@ e3® Yrp*?
= -U= _(ea® e1® 'l,bal +e® e ® ¢a2) ) (32)
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therefore,
771’[)(11 — _¢a1, 7711)0,2 — ,lz)aZ .

Hence 1%*! = ¥? and ¢*? = ¢}, are left and right handed 6d spinors respectively and ¥

can be written as

U =e"® e1® Yra + i® €2Q V. (3.3)
Note that
T=UT, = —(e*® e1® (Y1a)T + €® €2® (¥H))(12® i@ 77)
= (e"® e2® (Yra)! + €® e1® ()1, (3.4)
and

T =UC = (°® e1® Y, + ea® e:® Pie)(10°® o°® C)
= e(i0?)® ,0°® P, C + es(i0%)® e0°® Pla
= R e® P, C — edéei’® es® 1/)}?
So, if we define (,)f = s and (%)t = %, the 10d Majorana condition implies
()" = b = —YrCey

(o)t = P = YL, Ce. (3.5)

3.2.2 Lagrangian and the supersymmetry transformations

In the last part we deduced how the 10d spinors can be decomposed in terms of spinor
representation of SO(6), i.e., ¥, and 1/)%. In this subsection we show that the resulting
6d Lagrangian is

L=Lym+Lr, (3.6)

where

1 1 1
LYM — ——ZF;U/FNU —= EDMQSIDIJQSI - Z([¢I’ ¢J])2’

and ) ;
7 - . 1 - s Ta .
Le = 5%y Dudr + 5¥RY" Dybra + i3[6105; , R]-
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We also show that the action is invariant under the supersymmetry transformations,

which read

§Au = 1aRVuLe +iarsTuth

b¢pr = —iap,a¥er, + i&‘fg(w)aiﬂ/)%
1 .
6";[)La = §7uqu.uaLa + 7“D”¢1055a$} + [¢I? ¢J](UIJ)abaLb
oYy = 5’7’“'Fuu0¢?z — D16 ary + [¢1, 5] (67) %k . (3.7)

Further we derive the global SO(3,1) symmetry of the reduced theory. These are

8L, = 1(v; + iai)(%z)ablbLb

it = i(oi — i00) (5t
6¢o = _ai¢i
0¢i = —a;do + €ijkVkP; - (3.8)

The derivations of these results is straightforward. The bosonic part of the action is

easily derived, if we just note that

Fu = 0,A, — 8,A, + [An, A
FuI . au¢1 + [Am ¢I] - DM¢I
Fry = [¢1,¢4]. (3.9)

The fermionic part of the action can also simply be obtained by replacing the decom-

posed spinors in the 10d action. Substituting (3.4), (3.1) and (3.3) into L we obtain

Lr

%EPM Dy U

i _ ) )
5(6'® €2® Pra + €a® e1® P)(1a ® 1) Dy (e"® e1® hrs + ;@ ea® V)

A B o .
5(€°® €@ Pri + e® e1® PR)(F'® 7) [$1,(¢°® €1® Y1 + 6 €20 P3))]
- s

SPui Dt + S0t D

L ) . | _ )
5(6“@ €2® Yrs + €.® e1® ¥§) [¢o ,(£°® 10261® Vo1 + €® i0262® Wﬁ?z)]

7 . _ _ . ) ,
5(6“@ e2® Yrs + €.® e1® ) [¢i ,(0'e°® o'er® vrbrs + 0'e® oler® 771#?1)}
i - i ; i -
§¢La7“Du¢R + §¢R7“Du¢La + §¢La[¢0(00) b ] + §¢R[¢o(00)ai,a N
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- %J’La[@(‘fi)db , Y1) + %J’%[@(Gi)aé "P%%]
= SPur" Duth + 597 Dubra + ibRl610% U,

The last equality follows by noticing that

fABC,‘Z)fd(o_O)de/)Eb — fABC’(/)tCAOGC'd(O'O)db’I)/)B — fABO’l/)tBCtéab(O'o)aé Ié%A
= —APOPEN (0 )usti = [APOUH (0%)acth

as

Géd(do)db - eab(a_O)a'é
and

— fABOGA (o) B, = — fABOYEAC ey (0f) g, = fAPCYIEC I e (o)

ABC ;tB Ab ABC A ABC
= fABOYIBCH ol = — [APCPPPRlol = fAPOPRYR oL
where we used the reality condition (3.5) and €z (%)% = —¢; aebce“ba“b = €0,

The supersymmetry transformations of the reduced 6-dimensional theory can be ob-
tained similarly from the field decomposition. First we note that, in this decomposition,

the supersymmetry transformations (2.43) read
§A, = 1(*Q® e2® ars + e® e1® a%)(14® 7,)(e'® e1® Yy + €@ €2® %\)
= {GRYuPLe + iGLaYuPR
§di = i(*® e2® ars + ea® e1® aR)(0:® 0'® 1) (’® e1® Y + ;@ €® )

= —ialLaa'?b'QbLb i iatll%(o-i)al;d)??

Sdo = —i(ed® €2® ars + €.® e1® a%)(1.® i0*® ’)’7)(6b® e1® Yy + ;@ €2® ‘/’2‘:)
S —i@Ld5'gbI/)Lb + idf%(do)aﬂb%, (3.10)
or
§ér = —iaraPepry +ia%(07) bk -

For the 10d spinor transformation, using the definition of I'7y and (3.1), it is easy to see

Iw+3,u+3 = 14® ,),uv
Dhet? = 519 oy
FI ~IJ® 16 ,
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where

?IJ=2

So, the spinor transformation reads

5('® e1® Yra + €a® ex® V)
1 ~ ~
= 5 {F,U.V(14® 'Yl“’) + 2D#¢I(71® 7“77) + [¢I, ¢J](’YIJ® 16)}

X (8@ e1® apy 4 ¢® e® a%). (3.11)

Therefore, equating the similar terms in this equation we get the spinor transformations
in (3.7).

In verifying the supersymmetry of the action one may proceed directly, using the
above supersymmetry transformations laws. However, this can also be proved using
the fact that the higher 10d action is supersymmetric. In reducing to 6 dimensions we
assumed that fields do not depend on the (compactified) coordinates zf. Hence one
can see that the variation of the 6-dimensional Lagrangian under the supersymmetry
transformations is exactly the equation (2.44) where now fields depend only on the
coordinates z*, u = 1,...,6. One uses the same proof to show that the fermionic

trilinear term in (2.44) is zero. However, the term Dy Fyn(aI'™MNEW), which is the sum

of the first two terms, now splits to

DpFun(al™Ni®) = D,F,,(al**) + [¢x, [¢1, $,]/(aT""* ©)
+ Dulér,$,1(al""* W) + 2[¢;, Dugr](al'* W)
+ 2D,D,¢r(al*™ W) + (41, F.)(aT*1T).

The first and the second term vanish by Bianchi and Jacobi identities respectively. The

third and the fourth term combine to

(I¢s, Dud1l + b1, Dyuds)) (@l )

which is zero since ['"/# is antisymmetric in I and J. And finally it is obvious that
the two last terms cancel each other. This proves the supersymmetry of the reduced
6-dimensional action on flat RS.

As a comment, note that the supercurrent of the 6-dimensional theory can be read

from (2.45), the corresponding expression for the supersymmetric current in 10 dimen-
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sions, just by replacing the decomposed field expressions (3.3) and (3.9) into (2.45),

77 = (2F(1@ 1) = iDub1(31® 77 + 3161, 621378 10)) (140 7). (312

In components this becomes

Jfa ] O'I‘] 0 ’t/)[,a
5 }‘_ub' et [l b .
( o ) ( g e o ) + i[é1, daly ( - )) ( i )
— i | 00| [T
' 61 o J\ vt )

Thus the expression for the supercurrent in 6 dimensions reads

—

Il

(o=

Lo = 5 Fou" 7P ra + i[é1, 617 (077) Sbre — 1(Dudr)y v ol

T = SEar™ 1P + iln, 02 (0" b + D)1 (0" e (313)

Finally, let us see how different fields in the reduced theory transform under the
S0O(3,1) global symmetry. This subgroup is generated by the I';; matrices. Thus,

under this subgroup, spinors transform as

8T = %wIJI‘”\II.

Writing this in terms of spinor representation of SO(6) we have

&wLa = wIJ(aIJ)ab¢Lb
5, = wra (51 )bl

é1 is a vector under SO(3,1), so it transforms as
51 = 2w’ % i .

If we define a; = 2wio,v; = €kwjr and write all this in components, we obtain the
transformations in (3.8). Upon taking the complex conjugate of the transformations

(3.8), we get
5zt = 1a = —iles ~ a3 Vs
()" = 69 = —i(vi + ia) ("
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one can clearly see the invariance of the action under SO(3,1). One may also check the

consistency of the SO(3,1) symmetry with the reality conditions (3.5):

o.zt

(%Z’R €y) = (v — iaz‘)ﬁ’ﬁé(?)c‘d%
= Z( - zaz)(’wbReca)( 9 ) b

i

= —i(vi - iai)lha(%)di, = %y

s.

using (o) fe,; = —Eéd(ai)di). Taking a; and v; to be z-dependent, the associated Noether

currents are found to be

by = =2y (0)) 49k — 10%v.(0h) s

ZLA = %J)Ld')’u(ai)diﬂ/’% - %1/_’}1%7u(0i)ab¢Lb- (3.14)
Or, more concisely,
[iV - _E’YMEZ.\IJ

JiA - iﬁ'ﬁﬁ?xi\p )

7

where

=1
2_2

Later on, we will exploit the SO(3)y subgroup for partial twisting on 6-dimensional

product manifolds.

3.3 Reduction to manifolds with SU(3) holonomy

Having derived the 6-dimensional supersymmetric theory on euclidean space, the natural
question which arises is whether the theory can be defined on an arbitrary six-manifold.
Unfortunately, in contrast with N = 2 SYM in four dimensions, the nonanomalous
part of the R-symmetry group (SU(2)y above) is not large enough to allow us to
twist the theory on a general six-manifold. However, there are some special manifolds
with reduced holonomy for which twisting is possible or even trivial. ‘I'he case that is
considered here is a Calabi-Yau manifold with the SU(3) holonomy. We also comment

on twisting on the Kahler manifolds.
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First of all, Let us point out the main characteristcs of a Calabi-Yau manifold [41, 42]
(see [43, 44] for application to physics). Let M be an even dimensional manifold. Let p

be an arbitrary point on M. Define the tensor J, the almost complex structure, by
Jp-0/0z* = 0/oy* J,-0/0y* = —-0/0z".

We can now decompose the complexified tangent space on p into the holomorphic and
antiholomorphic parts by diagonalizing the tensor J. In this basis, the complexified
tangent space splits as
T,M% = T,M* @ T,M",
where T,M™* and T, M~ are spanned by 0/0z* and 0/0z* respectively, and J becomes
% =16%, J% = —z'6°—‘ﬁ. (3.15)

Therefore, at the level of tangent space, we can always diagonalize the tensor J and
decompose the tangent space accordingly. However, to patch J across charts and define

it globally as in the form of (3.15), the Nijenhuis tensor

N*,, = J°(8,J°%, — 8,J%,) — J°, (8, J%, — 8,J%,)

v
must vanish [45]. This is the criterion for M to be a complex manifold. If, in addition,
J happens to be covariantly constant, M is said to be Kahler. A Kahler n-fold has a
reduced holonomy group of U(n) C SO(2n). On the other hand, Calabi-Yau manifolds
have an even more restricted holonomy group. These are the Kahler manifolds which
admit a covariantly constant holomorphic n-form. This, in particular, implies that the
canonical line bundle of the manifold is trivial and the holonomy group is thus contained
in SU(n) C U(n).

In the next subsection we will see how all these structures follow from the existence of
a covariantly constant spinor. Next we show how fields in the different representations
of SO(6) decompose under the SU(3), the structure group of the manifold. This is
similar to what we did in reducing from ten to six dimensions; i.e., determining the
SO(6) irreducible representations embedded in SO(9,1).

Fermions transform in the fundamental representations of SU(4), the universal cov-

ering group of SO(6). Under SU(3) x U(1) these branch as follows
4=17°+3
4=1"437"1, (3.16)
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where the superscripts indicate the U(1) charges. Introduce the commuting c-number

spinor ), which is the left-handed SU(3) singlet, normalized by
010=1.

In six dimensions we can choose a representation of the Clifford algebra for which the
generators are all antisymmetric. In this case we may take C = 1, so 44 = —v7, and 6*

is a right handed singlet spinor

O = —0 = 0" = —0" = 4,0 = 0",

3.3.1 A Fierz identity and covariantly constant tensors

The projector 88t can be expanded using the complete set of bases

1, % s Y70 5 Auvns, ToVow 3 Tk

for the 8-dimensional matrices. Since § and 8! are both left handed, the only matrices

that can appear in this expansion are (1 — ;) and (1 — 7).
00 = a1 — r) + b (L = )7

Using the orthogonality of the bases with respect to trace, and the fact that

br(7 %) = 8nuy (3.17)
tr(,.),;w,),pa) . 8(77ua77up - np.p'r]mr) 3 (318)
we see that
1 1
00" = 2(1 = 71) = 75 (6" O) (L —y)7™ . (3.19)

Multiplying this identity by 81 from left and # from right we learn that
(0790)(077,,0) = —(0"7*6)(6"7,.6*) = —6. (3.20)
Also using the relations

’Y)"Yp.')’)\ = _4%1 ’ 7)\7/.&1/7)\ = 2’)’uu ,

where the last one follows from

['7#1/,'7/\] . 2(771/)\7# - nuA’Yu),
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we see that

3 1
Y001y, = (L +71) = g(mmé’)(l + )

Upon taking the complex conjugate we get

1

3
7}‘0*9t7)\ = Z(l —77) 8(0’57“,,9*)(1 - '77)7#‘/ )

where we used that v% = —,. Therefore, these two equations and (3.19) imply
t 1 Apx ot 1

1
0*6* + 5’7’\00T7,\ ==(14v). (3.21)

1
2
This shows the decomposition of the projectors 1(1 & v7) into the pieces projecting to
the singlet and the triplet of SU(3) respectively.

Since 6 is an SU(3) singlet it is invariant under parallel transport around a loop,

and it follows that 0 is in fact covariantly constant. Using , we may define further

covariantly constant tensors; e.g., introduce
ku, = im'yw,ﬂ

and

A Av
J=9"ku .

First note that
k, k" =6,

and that

Ju/\Jx\V = gkpgwkupk/\a = —g*g"’ (0*7#‘,0)(9*7)\00)
1 1
= —¢*g" (01,,) (g(l — ) — E(é’*’mﬁ)(l - 77)7‘”’) (120 0)
1 i
= —1(9*%,»7”"0) + g(mv&”@)(@*wﬂm"”‘?)

1 v v 3 14 1 14 1 v
= -—-15“ — (QT’)’,[)/ 0 — Z(Su - 5(0T’)’ 779)(‘9)[7“%79) + E(aTvune)(aT’hV 9)

= -2 —J 7.

So,
J Y ==68), (3.22)

u
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showing that J,* in fact defines the almost complex structure. Notice that k,,, the
Kéhler form, (or equivalently JMA) is covariantly constant by construction. As noted
earlier, this is the necessary and sufficient condition for a complex manifold to be Kihler
(or having a U(3) holonomy).

We can still define one more covariantly constant tensor; i.e., the 3-form
Q,“,)\ == HT’)’“,,)\H* .

Being a 3-form, §,,, is certainly invariant under SU(3), however, the fact that it is
covariantly constant implies that it nowhere vanishes and thus the canonical line bundle
is trivial, the specific characteristic of Calabi-Yau manifolds which distinguishes them
from Kahler manilolds. There are no more covariant tensors that one can construct.

Consider for example the tensor 87y,0*. This vanishes by
01y, 0* = (017,6%) = —0ty,0*, (3.23)

where we used that the generators are chosen to be antisymmetric (v = =, =
—Yuw a0d Y0 = YVr)-

At this point it is useful to make a special choice of § which corresponds to the
standard choice of complex coordinates. This reduces the problem to the standard
construction of the spinor representation of SO(6) via linear combinations of the Clifford
algebra generators which obey the algebra of fermionic oscillators. First introduce the

combinations (taking u = (a, &) in flat (local frame) coordinates)

ane e

4% = ( a+i,ya+3)

Sl

¥ = == (" — iy ™). (3.24)

Sl

Then 4¢ satisfy the algebra of fermionic harmonic oscillators; i.e.,
{3%,4°} = 26°7,

with all other anticommutators being zero. The generators of SO(6) in this representa-

tion are

Eaﬂ = %[’Ayaa%l,@] = FAYO/?,@’
Yap = 5[4 48] = Fas »
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A

and their complex conjugate. Among these, Y55 form the generators of U(3) subgroup

of SO(6). Thus subtracting the trace part, SU(3) generators are

A

Eaﬁ . ’A)’a’AYﬂ - 53 ’A)’A”A)"y-

W =

To simplify the notation from now on we drop the hat sign and remember that we
are in the representation defined by (3.24). Requiring that 8 is an SU(3) singlet (with
appropriate U(1) charge —3) then fixes

Y0 =0, (3.25)

so that
kap =ksz5 =10
?

. 1 :
bap = 5072750 = i0'(= 5% + 6ap)0 = ibap-

Moreover, the only nonvanishing components of {2, are

Qaﬁ,), =S HT’yaﬁ,yH* .

3.3.2 Field content and the Lagrangian

In this part the Lagrangian and the supersymmetry transformations on a Calabi-Yau
3-fold are derived. As implied by equations (3.21) § and 6* can be used to project
out the spinor representations of SU(4) to the irreducible representations (singlet and
triplet) of SU(3). In terms of these irreducible spinor representations, defined in (3.27)
and (3.28), the result is

L = —1FF® _1F ;F*® _ D.¢ D"
— Y([gr, 1) + i€pa Dty + i€ D4hy,
— Qe DOy — 0Py, Doy,
— i Py [br, ) — £67Paaldr, 7], (3.26)

which is invariant, upon using the equations of motion, under the following supersym-

metry transformations
= 5880
6Ay = 16,6y,
§As = 1€, o
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61 = —1E.0 Y, — 160 s
0%a = €ad ﬂFaﬂ [¢1,65)(a™),e
§oa = — 10455 FPe, — 26,007 bDa¢I
§ips = —&8,gF P — [¢1,65)(5™)
6tia = —2Qap, FP7e, — 2ebe“baidDa¢1.
To begin with, first we show how spinors decompose under SU(3) x U(1). Equation

(3.21) implies

S0 = 0)e = 00hbr) + 576" (P ethna),

so we recognize the components 81t r, and 8'yy1, as a singlet and triplet under SU(3)

Yo =

respectively. Similarly 1% decomposes as

: 1 ‘ * a 1 o a

i = 5L+ )ik = 07 (0¢R) + 57°0(0Mratbie)
However, note that the reality condition (3.5) reads (with C' = 1)
$hm g
Therefore, defining 1, = 07,4 or 1, = () = ¢,;0 = 6 t j» We see that
atd)}i{ _ 6136,07:1])26 _ fbd‘/_)i,-
Likewise, defining thea = 0'va%re OF Ysa = (ea)! = ¥rava0* = —0M7410%,, we have
9*'70,7,/)}.13 . 0f7a€6d1/;25 = 6di,1/_)l'>a :

Hence, by imposing the reality conditions we can write

Yra = 0%a + 27°0 us (3.27)

and
ph = 0%t + Ly*0etbep; | (3.28)
Upon replacing the above decomposed fields in (3.6) and using e*’e ab Op = —&Ii’b, we

arrive at the Lagrangian in (3.26). As an example, let us look at the following term in

detail
L' Dy = §(Pab" + Laabv*) (Y2 Dy + AP D) (=07 Py + 1y70e¥ ;)
= (a0 Dy + 3p0' DP + Libyo 0y *y” Dﬂ)(—ﬂ*e“bd)a + Ly20ebep; )
= iédi’l/_)aDa’Zz;a - %Qaﬁ’yfdb'&dal}ﬁd—)]}y , (3.29)
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where we repeatedly used (3.23) and (3.25). Also note that since «, are hermitian and
antisymmetric then v% = —v5 and therefore 0,5, = —0*y575759.

Choosing the singlet supersymmetry parameters as
o = 0e, , o= —O*eabEb,

let us look at the supersymmetry transformations in (3.7). For the gauge field A, we

will have

5hn = i 0 a0 + 1p80E) + (8T 7a(—0" P, + 11900,
% (0T7a'7a )ﬁdbizf . igdfdqul}a- (330)

Similarly
§Aa = i€ae™Ppa
§pr = —i&soih, — ieo  Ps - (3.31)
Next consider the fermions. From
600 + 116079E) = (2o F™)0eq + 4, D" 1013 (=07 @) + (b1, 84)(077), 0(cs) (3.32)
we have

b, = Ea(salaFaB + [¢Ia ¢J](O-IJ)abeb

6tpuc = ~5Qaga I €0 — 2€a€ba0I Dagr = —3Q FPe, — %8;60,5' Daghr,

By

and so, since eade ¢(517)e, ) = —(5”)&,p

61; —€ oz,GFaﬂ [¢I7¢J]( )
51/)aa = _E)"Qa,@fyF TE; — 26, aadDaqﬁI.

To close the supersymmetry algebra off-shell - i.e., without using the equations of
motion — we introduce the following auxiliary fields into the supersymmetry transfor-

mations,

H=16,5F" and H, = iQup,F*".

As we will see, these definitions are consistent with the field equations for H and H,
in (3.36). The transformations of these auxiliary fields are obtained by demanding the

off-shell closure of the supersymmetry transformations up to a gauge transformation.
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The two successive supersymmetry transformations é; and &,, act on A, as
(6162 . 6261)Aa = QZ(Etllﬁg — EZE;)DQ¢I,

which is an infinitesimal pure gauge transformation. However, an infinitesimal gauge
transformation of the gauge field, A, — A, +iaD,d, induces the gauge transformation
of ¥ — 1 —ia[¢, ] on the fields. Therefore, the above operator should act on spinors

as (for the two successive transformations give a gauge transformation)

(6185 — 6261 )0ba = —2i(E) €2 — E€})5 ™ (b1, b
(6185 — 6281 )haa = —2i(Er& — E2e1)5™ (61, Pia]

Consequently the supersymmetry transformations of the auxiliary fields are worked out

to be

0H = 6a61ha[¢1> J)d] - Ed&Ida[¢I’ I(/)a]
5Ho, = —46b€abDa1/)a + 26b5'ﬂlb[¢1a J)fm] E

Introduce the generators, @ and Q, by
6 =6, Q% — i, Q. (3.33)
Then @ and ) act by commutator (anticommutator) on bosonic (fermionic) fields; i.e.,
§A = ie{Q", A} —ie.{Q", A}.

The sign is such that é is hermitian. This enables us to rewrite all the above supersym-

metry transformations more succinctly as:
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Field Q¢ Q°

Yy 0 H&¢ + 1017, [ér1, 6]
O | HE e[ 4] 0
P 2 Dad 15" €qp Hy6}
by H, 6 2 Do pre?al;

A, fdbd—’ba 0

As 0 —e®ihyg

¢1 —5 by 55,

H i51%[$1, i) i1 (g1, 5]
H, 0 i€ Doy, + 267y, b; ]
Ha | 4ie® Dathy + 26574 ¢y, ] 0

3.3.3 The cohomology classes of the BRST operator

In this subsection, first we show that the theory defined by the Lagrangian (3.26) is in

fact a cohomological theory. This is done by showing that the action, up to a topological

term, can be written in a BRST exact way. The BRST cohomology classes are then

obtained.

The following definitions will break the explicit SO(3,1) covariance; however, they

are useful in constructing the cohomology classes of the BRST operator. Introduce

Further, define

Let

1 - o o ! o
V o= g{xa(—zH — Q*FFg.) + 2x* Doty — 2¢' Do) —290’[¢+,n]}

n :_'J)Q,C :’lw/_)i>1/)a=—civaXa :'17[_)3(
o =¢o—d3, ¢ =do+ s, ¢+ =1 £ids.

Q=iQ' —iQ', @

=iQ? - iQ®.

= 1 1
o[ ok R+ 516,84 - o)}
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then, noticing {Q*',V} = 0, we have that

{@,V} = {Q" - iQ"),V} = {iQ},V}
= l {—iH — s H — QaﬁwFﬁ’y) _ Xa(_2[907on] + 4Dan + 2[1/)01, ¢_] _ QaﬁﬁyD[ﬁd)’y])}

- —;—D“aﬁ Day = 5Dl = pralter ]
+ 20D — S/ t"] — 2o DuDp + <[¢+,n] Lo, 1 19146
1

— JUH = {8,641+ Lo, NGH + 2% Fap + 1, 641 — Sl 01)

+ 2¢ (I, + [6or ] = iK7 D)

Adding the complex conjugate part, we define

H, and H have no dynamics and can be solved algebraically
Hy = iQup FPY | H =k 5FP. (3.36)
Substituting these solutions back to £ we obtain
L = L-1FF*f+1F;F°f — L(}kPF 5)?, (3.37)
where use has been made of
Qapy 2%y = 8(Rygkps — kvykpp) -

Interestingly, the integral of the extra terms in (3.37) turns out to be a topological

invariant [46] 1
——/k/\tr FAF) /tr (FapF* — FF* + (k°PF,5)%)

which only depends on the topological class of the vector bundle F and the Kahler class?

of the metric. If we change the metric in its class, k£ at most changes by an exact form

1There is a typographical mistake in the equation (16.7.14) page 539 of the above reference.
2Given a Kahler metric g on the manifold X, the corresponding Kahler form, since it is a closed

2-form, defines an element of H%(X,R). This element is called the Kahler class of the Kahler metric g
[46].
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and thus the integral remains invariant. It is straightforward to show the above identity.

Let us write k and F' in complex coordinates

k= Lk, datAde” = kyy dz®Ada”
F= %F,w deNdz" = F,p dz*AdzP + Faﬁ dz*Ndz® + lF—ﬁ dz® Adz”

Hence

FAF = Fc,lglfj,ﬁdac“/\dacﬁ/\d:zc”/\d:z:‘7 + %FaﬁFp(—,da:“/\dmﬁ/\dwﬁ/\d:ca .

The integrand now can be written as

EANFAF (ke FapFys) dz"AdzAde® AdzP Adz Az

%(k O,ﬂF——) da" Az Adz® AdzP Adz” Ndz®

{07k e F g F s + 1™ PPk e g Frg } d®n

{ En ps,@Ca Zgn( aﬁFPU + 67]01,3 Cpo(’&gnc ﬁFﬁa}dGl'

B {(gaﬂ ¥ — g7 G FogF s — L(g*7 9" — §°79%) FapFis § \/3d°

= {(Faﬁpaﬁ) = (FaﬁF“ﬁ) (kP F,5)*} /gd°z, (3.38)

using the shorthand notation d®z for dz'Adz?Adz’Adz*Adz®Adz®. This proves the
identity of (3.37), and shows that on a compact Calabi-Yau manifold the Lagrangian,

up to a topological term, can be written in a BRST exact form
LHientr(FAF)={Q,(V+V)}. (3.39)

Using the supercharges @* and Qé, we now show that V itself can also be written

as a BRST commutator. In fact we can write

= {(6Q* —iQ%), W} = {Q, W},

where
1 i .1 Ba ’ e Y]
W = g {Xoﬂz)a - 7’¢+(H + 2ik" Fozﬁ_ - %[90"/9 ]) + EQ ﬁ’YCS(A)OIﬁ’Y} ’
with
CS(A)apy = Aakpy — %Aa[Aﬁa Ayl (3.40)
Similarly,
V= —{0,W}.
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By this, we have been able to write the action quadratic in BRST charges. Although
this is not still in a balanced form (see the next part for the definition), it is interesting
to note that there are different ways of writing the action quadratic in Q’s.

Suppose the gauge group has rank r. Since {Q), v} = 0, we can write the first obvious
BRST and gauge invariant operator which is just tro”. In the following, we use the
language of forms for clarity and compactness.

First note that

2D = 2(Dypdz® + Dapdz®) = —i{Q', . }dz™ + i{Qi>¢adwa} ={Q,v¥}.

Likewise, since

{QY, Fap} = Diuthyy

{Q', Fap} = ~Dpaty
{Q', Fu5} = —Dathp
{Q, Fug} = — Dgtpa,

we find that

%D[ad)ﬁ]d:l:a AdzP + %D[ad)ﬁ]dw& A de
+ (iDoths — iDgtha)dz™ A da’

? .

§D[Mw,,]dx“ ANdz” =1Dv.

{Q, F}

For the example of SU(2) gauge group we have the familiar BRST cohomology classes.
We start with the BRST and gauge invariant operator tr?(z). Differentiating this

operator with respect to z we obtain
d(tr*(z)) = {Q, v¥} .
Repeating this procedure results in a set of BRST invariant operators,
oM = / Wk, ,
,,

where 7 is a k, dimensional homology cycle on the six-manifold, and Wy, are differential

forms of degree k., defined by

Wy = %tr 902
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Here we have omitted the wedge product sign, so for example F? stands for ' A F'. As

in the second chapter, it is easy to see that O*’s are indeed BRST invariant

Q0% =[{Qwi}=[ W =0.

For gauge groups of higher rank one can construct more BRST invariant operators.

For instance, for SU(3) there is an additional gauge and BRST invariant operator, that

is 2tr®(z). One can construct these operators just by successive differentiating of this

operator:

note that [F) 1]

invariant operators

with

Latr o*(z) = 1{Q, tr (¥°¥)}

dir (%) = {Q, 3tr (w9® — ip*F)}

dir (Lpyp? — ip?F) = 1{Q, tr (3¢° — ip[F,4])}
dir (F9° — ip[F,9]) = —{Q, tr (;9°F + o)}
dir (°F + oF?) = 1{Q,tr (¥ F?)}

dir (pF) = —5{Q, tr (F?)},

= F A+ AF. Thus for SU(3) gauge group we have additional BRST

O'0 = / Wlév
7

Wo = gitre’(z)

Wi = tr (¢*))

W; = tr (o9 — i’ F)
Wy = tr (59° — ip[F, ¢])
Wy = tr (39*F + o F?)
Wy = tr (F?)

We = —gitr (F7).
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Clearly Wy is just the third Chern class of the SU(3) bundle.

3.3.4 A balanced cohomological field theory

A balanced topological field theory [7] has the properties of being invariant under the
two topological symmetries as well as having a global sl; symmetry. The two BRST
supercharges, d' and d?, transform as a doublet under this global symmetry. The
important fact about these topological theories is that the action can be obtained from

an action potential W

S = d' W,

such that the critical points of this potential are identical to the fixed points of the
BRST transformations.
In this subsection we will show that our theory is indeed a balanced topological field

theory. To write the action in balanced form, we first choose the supercharges such that
they transform as doublets under the SO(2,1) subgroup of SO(3,1). Under SO(3,1),

the spinors transform as
§1ha = wrs (o) My,

where wy; are the rotation parameters. Under the SO(2,1) subgroup generated by

0% = 10',0% = 16? and ¢0'% = {0?,

6thy = %(wmal + wo20? + twi203) 9y .

- . _1 : ol
Or, introducing wy = 5(wo1 £ fwoz) and wy = Fwis,

6th1 = w_1hy + tworhy
62 = wythy — twoths .

Upon conjugation we get

i = wyths — twoth;
btpy = w_thi + twoths .

(2)-(%)
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Using %° = €9, and working similarly, we get

_w? 1/;i
! - w?/;é '

Therefore, the spinorial charge

also transforms as a doublet of SO(2,1). In the following we show that the action can

be written in an SO(2,1) invariant way,
S+§/k/\F/\F= leapdd®W

where

1, 4. il SN N

W = §¢3k Faﬁ"’Z(UC"‘CT])—g(d) Yo + XaX”)

1 1 7 1

— QP A Fyy — =Ax[Ag, A)]) = — Qg (A“FPT — ZA%[AP A7),
such that the critical points of W are identical to the fixed points of the BRST action.

First note that, apart from those topological terms, action can be written as
S =dV =i(Q - Q)V',
where V' is
V= 2 {xeliH = Q) + 7 (iHo + QapoF™7) + 24" Dty + 200061 )
b 3 {8 Db — 400 — #[17] + ¢l 1}
— %Gﬂ+mﬂﬁ@+gﬁwﬂ—g¢w>
— L (it 2B Sl 641 - 518,8))
Now V' in turn can be written as a BRST exact term
V' = d*W =i(Q — QW .

In the variation of the Chern-Simons term we note that

1
(@, 0% (AaFiy — 5 AulAg, )} = 0,
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and
LR o 1
{zQ2 , Q ﬁ"/(AaFﬁ’y - §Aa[Aﬁa A’Y])}
= 0 (ixaFpy — ixyDpAa + ixpDrAa — iXal A, A))
e Qaﬁ7 (iXaFﬁ’Y + ion {D,@A’Y - D’YA/G - [Aﬂ’ A'y]})
— QiQaﬁ’YXaFﬁ'y ) (341)

It now can be seen that the critical points of W are the same as the fixed points
of the supersymmetry transformations. Differentiating W with respect to ¢s and A,

respectively yields

kP F 5 =

%mﬁwﬁ7 + D%p3 =0.

For a compact Calabi-Yau manifold, the second equation, after squaring, reduces to
Fop = 0. Together with the complex conjugate equations we have the Kahler-Yang-
Mills (Donaldson-Uhlenbeck-Yau) equations:

kP F, 5 =
Fap=Fy5=0 (3.42)

of course with D,¢3 = Dgygpz = 0.

3.3.5 N =2 reduction

The theory defined by the Lagrangian (3.26) admits a truncation consistent with some

of the supersymmetry. If we want just to keep the Q' supersymmetry then we may set
n=i=dr = =0

which is consistent with Q! symmetry but destroys Q? symmetry. From equation (3.39)

it is clear that N = 2 reduced Lagrangian still can be written in a BRST exact form
LALAtt(FAF)={Q,(V+V)}
where V' is now
il CTrO of / o 1 . .7 3 1 /
V = 5 {xa(~iH" = Q2"Fy,) ~ 26 Dop} — 1¢ {zH + 20 Fo — o0 ]} . (3.43)
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Therefore, the truncated N = 2 theory is still a cohomological one; i.e. it is independent
of the metric deformations which preserves the holonomy structure of the manifold. To
see the fixed point equations of this cohomological theory, we write out the supersym-

metry transformations in the table below.

Field Qi Q!
¢ | H~3les¢] 0
¢ 0 H+ 3lp, ¢
Xa —H, 0
Xa 0 —Hjy
Ya 0 21D a0
Vs —21Dgep 0
Aa P 0
Ag 0 —a
® 0 0
¢ —2( 2(
H —i[ip, ] —i[e, (]
H, 0 2i[ip, Xa]
Hy | 2i[p,xs] 0

The fixed points of the action of Qi on fermionic fields are obtained by setting
{Ql)g} = {Qlaxa} . {Q1a¢a} =0,
together with the complex conjugate variations, and upon using the equations of motion

for H and H, the fixed point equations are found to be

Fap=Fa5 =0
¥PF,5 = ile, ¢
DOAO = D&SO =0.

Therefore we conclude that the truncated N = 2 theory, like the unreduced N = 4
theory, localizes on the moduli space of solutions to Kéhler-Yang-Mills (Donaldson-

Uhlenbeck-Yau) equations.
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3.3.6 The case of Kahler 3-fold

Before ending this section let us briefly discuss the twisting procedure on Kahler mani-
folds. Twisting on Kahler 3-folds has also been outlined in [47] from a group theoretical
point of view without explicit derivation of the Lagrangian. A Kahler 3-fold has the
holonomy of SU(3) x U(1) under which spinors transform as in (3.16). Recall that our
six-dimensional theory has a global nonanomalous SU(2)y symmetry. Let us choose a
U(1)v subgroup of this global symmetry with the transformations derived from (3.8) by
setting a; = 0,v; = vy = 0. With a normalization of the charges, the spinors in (3.27)

transform under U(1l)y as
(th1,%1a) ~ 172, (1ha, 1hag) ~ 112,
Similarly the two complex scalars ¢4 = ¢1 + i1¢y and ¢_ = ¢y — 1d; transform as
¢y ~ 170, G~ 170,

with Ay, ¢o and ¢3 being invariant. Now we twist the U(1) part of the holonomy group
with U(1)y (simply by adding the U(1) charges). Under the new holonomy group, fields

transform as

with all other fields being invariant under twisting. Since we have only changed the U(1)
charges of the fields, the Lagrangian is the same as (3.26) with the difference that now

the covariant derivatives have the appropriate U(1) connection. Notice that, instead of
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four scalar supercharges in the Calabi-Yau case, we now have two scalar supercharges
Q! and Q' after twisting. This still allows us to write the Lagrangian as a BRST

commutator just as in section 3.3.3,
L={Q,(V+V)}.

Therefore, the twisted theory on Kahler manifold is a cohomological one.

3.4 Partial twisting on product six manifolds

Consider the product six manifold M = X xY', where X and Y are both three manifolds.
We choose the metric to be diagonal ¢ = gx @ gy, thus the holonomy of M is just
S0(3) x SO(3). Spinors sit in the 4 of SU(4) the universal covering group of SO(6).
Under the SU(2) x SU(2) subgroup of SU(4) this representation decomposes as

4=202.

Therefore under the nonanomalous part of the global symmetry SU(2)x x SU(2)y X
SU(2)v, the spinors, ¥, and 1%, will transform as

d)La e (272a2)
g ~(2,2,2).

Obviously there is no twisting which leaves a scalar supercharge on the whole manifold.
However, one may still twist partially [27] on one of the three manifolds, say Y, to get
a scalar supercharge in the Y direction. Let ¢,j, - and m,n,--- indicate the indices
on X and Y respectively. Let us choose the following representation for the Gamma

matrices
’Yi —0i® 1® o
,ym - 1® O_m® 0_2,

so that
vr=—-1@ 1® ¢°, and C =i0’Q® i0°Q ol.

Now a spinor can be decomposed in general as
=9 €a® esx® €1+ A" €a® ea® €2,

73



where « and & indicate the two dimensional representations of SU(2)x and SU(2)y

respectively. Moreover
Yoth = —h%% €,® es® €1 + N e,® ea® €.

Thus ¢** is a left-handed spinor while A*¢ is a right-handed one.
Our starting point is the Lagrangian (3.6), where now 11, and 1% are both bispinors.
In the following we use the reality conditions (3.5) to write down the Lagrangian only

in terms of 1. The fermionic part of the Lagrangian then reads

Lr = %eba¢iva“Du¢La + h.c.
+ iYL Cokldr, O

Twisting on the Y component of the manifold essentially consists of promoting the
global SU(2)y index a to a dot index & and decomposing the resultant tensor product
representation under SU(2)y, the diagonal subgroup of SU(2)y x SU(2)y. Hence, by
twisting we simply mean

Vada = Vs -

This in turn decomposes to a singlet and a triplet (in the Y direction) under the new

space time symmetry SU(2)x x SU(2)y,
Vas = €sptPa+ €430 Xma -
Note that eM-JZW = eﬁ-,.yazﬂ, thus we have

'(/)ao'zﬂ . 6ﬁ;¥¢ad’y . 6&ﬁ¢a . UzlﬂXma .

Let us see how the Lagrangian looks like in terms of these new fields. The fermionic

kinetic terms become

Ly = —;— {6ﬁﬁ(edﬁ'¢a + fc'v"yUZrmea)ea’YU};ﬁDiGdﬁ(Ci,,‘]’l,bﬂ + eﬁgagsxff)}
+ % {ieﬂﬁ(edglf)a + Ea:yU;-nﬁXma)eaﬁed’sagasDn(et;ﬁzpﬁ Ik eg&agéxrﬁ)} + h.c.
= —itp%0t s Dity? +ixZ ol s Dix™ — 2Dy X — 4™ X% Dy Xro + hec..

The potential is
V = _i"/_}Lda'Ida[¢I, 'l/)La,] = z'(qzaedﬁ - ed’?o-’fynﬂyfn)w, (ed[;’t,/)a + 65”-,027'7)(”0[)]
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— (P — 07X 0T (b, (€ai o + €605 Xna)]
= 29°%[¢, bal — 20X [ds X0'] — 209 [bm, X&' + 21X (6™, %al]
- 26mnrm[¢n, Xra] )

where we defined ¢ = ¢o. The bosonic part of the Lagrangian is of course much easier

to write
Lo = —3{FF"+ FpuF™ + 2F,, ™}
— 31{Di4nD'¢" + DognD"¢" — DigD'¢ — DngD™ ¢
+ b, $nl* = [, 81} - (3.44)

Let us now work out the supersymmetry transformations of the decomposed fields.

Like 95, the supersymmetry parameter oy, can be decomposed as
Qrp = Quup €7@ ef® el
Since we are only interested in the singlet part of the supersymmietry, we set o .4 =
€43€a- The supersymmetry transformations (3.10) now look like
§A = =210 Ppg + 210 eg
SA™ = —4e*XT — 4EX,
§¢ = 2%y — 21€%2h,
6bm = —21€% X am + 21€ X g, -
For spinors, note that by reality condition we have a% = af,Ce®. Thus
apg = —€s4€a €7@ e ® e?,
and the transformation laws (3.7) become
6¢La = ¢ ((G&ﬁ'ﬂba + O'gwed,'yxma) e*® ed® el)
= {L67*Fy(01® 18 1)8;" + L™ Frn(10 0,® 1)8
£ Fin(0'8 0™® i0)8) + femur 87, 67107 — [bm, 81077} caces(e”® €0 €')
— {(Digess — Digmoyy e3a)(0'0 18 o)
+ (qused[i - Dm¢nag"yf~'yd)(1® o™ ® 0'2)} € (e°® e“® 62) 5
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Multiplying first by ¢*? and then by e'é’j(as) ,f‘ we conclude

§ho = iexFioiPes— D¢ 0es — iDyo™e,
§Xma = —temm I eq —iFnoles — Dipn0Pes — iDm €

- emnTDn¢r€a + (%emnr[¢n’ ¢r] - [¢ma ¢])601 N

Supersymmetry

It is not clear whether the action is invariant under the supersymmetry transforma-
tions we just wrote down. Supersymmetry transformations require the existence of a
globally defined spinor ¢, on X. On the other hand, to have an invariant action un-
der these transformations, the supersymmetry parameter must be covariantly constant.
Thus the holonomy of X must be such to admit a covariantly constant spinor. For
instance, one may consider 3-manifolds with U(1) holonomy. For simplicity, let us take
X to be flat R3 so that the above supersymmetry transformations make sense. Even so,
in verifying the supersymmetry of the action, one may meet commutators of covariant
derivatives and the Riemann tensor of ¥ might appear. In our case this happens in the

variation of the following terms
8(—2€™" X DyuXra) = 20X ( Dy D" ¢y — Dy Dy @™o + -+ -
6(3¢mDpD"¢™) = —2ix% D, D™ " Es + - - -
8(2X™ Dyptby) = 20X Dy Dy@p™eq + - -+

thus
55 ~ /Qixm“[Dm,Dn]qﬁ” Eo+ hoc.
- / —2(i R X ™" — iX™[ Fryum, ¢"])Ea + hr.c.

[DmaDn]¢m . Rmn¢m + [ana ¢m] .

But the action is supersymmetric on flat R, so to make it supersymmetric on R® x Y

we just need to add the term

Ry
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to the action. Now the bosonic part of the action in the Y direction reads

= 3 [{FunF™ 4 [, 6] = 247, 6
+ 2D ¢m D" ¢™ + 2R d™ " + 2Fnn[6™, 6"}
. —}1_ / {(an — [fm, ¢n])2 + Q(qubm)z + (D[m¢"])2} :

Thus if we scale down the metric on Y, the path integral will localize on the moduli

space of the following equations

an - [¢m, ¢n]
D[m¢n] =0
Dpd™ =0. (3.45)

3.4.1 Discussion

To finish this chapter, we briefly discuss the case of U(1) gauge group, its relation to
D-brane physics and a number of related conjectures. We follow the work of [6] in four
dimensions and the discussion of Calabi-Yau mirror manifolds in [48].

If the gauge group is U(1) then equations (3.45), in the language of forms, simply
reduce to

F=0, db=0, d'®=0, (3.46)

where F = %andwm A dz™ and ® = ¢, dz™. That is a flat U(1) connection and
a harmonic one-form ®. The moduli space of flat U(1) bundles can be described as
follows. Let us perturb a flat connection A to a nearby connection A’ = A+ éA and ask

whether it is flat. Flatness of A’ requires
dA'=d(A+6A)=0.

Since A is flat then we get
d6A=0.

Moreover, we demand that §A cannot be derived by a gauge transformation, i.e.
(da,6A) =0,

for an arbitrary gauge parameter . This implies d'6A = 0. Therefore, for A’ to be

a flat connection, §A must be a harmonic one-form. Hence the tangent space to the
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moduli space of flat connections at A is H*(Y,R). However, there are still some gauge
degrees of freedom among these harmonic one-forms §A that must be removed. These
are the non-trivial global gauge transformations which map non-trivial one-cycles to
U(1). Such a gauge transformations fall in different isomorphism classes characterized
by integers. Let us represent a flat connection A gauge invariantly by a Wilson loop

$oA (with Cj a one-cycle in Y'), then a non-trivial global gauge transformation acts like
A— j{ A+ 2mn
C; (6]

for n an integer. Therefore, if we mod out this global gauge symmetry, then §A4 is a
harmonic one-form with values in [0,1] and we end up with a torus 7% (with b; the
first Betti number of Y') as the moduli space of flat /(1) connections. Thus the moduli
space of solutions to the eqs. (3.46) is

Mﬂ X Hl(Y, R) 5 (3.47)

where M y;, as we saw, is parametrized by the torus 7% . Notice that the moduli param-
eters are in fact arbitrary functions of the coordinates on R3, i.e., they are maps from
R3? to M.

Now let us consider a variant of the above problem. Take f to be an embedding of
Y into a Calabi-Yau 3-fold M which has a mirror manifold M. The concept of mirror
manifolds is not important for us (see [49] for details). What we really need here is
that M and M locally look like T x T° [48]. f(Y) is said to be a special Lagrangian
submanifold of M (or sometimes we say Y is supersymmetrically embedded in M) [50]

if the following conditions on f hold
[Tk=0 and f*(ImQ)=0. (3.48)

Here k is the Kahler form, and Q the Calabi-Yau form, on M, and * indicates the pull-
back operation. We denote the moduli space of all special Lagrangian submanifolds
inside M by M. The tangent space of My at Y can be found as follows (51, 48].
Suppose [ is a map which satisfies the special Lagrangian condition (3.48). Consider
a one-parameter family f(¢) of f = f(0) parametrized by ¢. Under what conditions
does f(t1) preserve the special Lagrangian condition? If ¢; is infinitesimally small then

obviously we must have

d .., d . _
7 k=0 and Ef(lmﬂ)—o.
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However, in [51] it has been shown that these conditions are equivalent to
dd=d'6=0,

where 0,, = fﬁ koapOm f* is a one-form on Y. Therefore, Ty M, is isomorphic to
H'(Y,R); any harmonic one-form on Y corresponds to an infinitesimal deformation
of f(Y) to a nearby special Lagrangian submanifold. Hence if Y is a special Lagrangian
submanifold of M, the moduli space of solutions to d® = df® = 0 is equivalent to
Ty Mg and the moduli space M in (3.47) becomes

Mfl X Ty./\/fsl z

The partial twisted theory discussed above in fact arises in the effective low energy
description of a D3-brane (or a D5-brane after compactifying two directions in R® and
using T-duality operations) wrapping around the ¥ (or S x S' x Y for a D5-brane)
supersymmetrically embedded in M. Consider type II string theory with the target
space My x M, where M, is the four-dimensional flat Minkowski space-time and M is
a Calabi-Yau 3-fold. In string theory the structure of the target space is partly fixed
by demanding the vacuum of the theory preserves part of the supersymmetry. In the
compactification of type IIB string theory on Calabi-Yau 3-folds, there are BPS states
(i.e. solitonic states which preserve part of the supersymmetry) corresponding to D5-
branes wrapping around S* x S x Y, where Y is a 3-cycles in M and S'’s are the two
compactified directions in My. However, the fact that these configurations preserve part
of the supersymmetry requires Y to be a special Lagrangian submanifold of M and the
U(1) connection on the brane to be a flat one [35]. The bosonic degrees of freedom of a
D5-brane consists of a U(1) gauge field and 4 scalars which specify the location of brane
in the ambient space. Clearly, scalars have to be in the normal direction to the brane.

If we decompose the tangent bundle to R x M on Y, we have
T(RxM)=TY & Ny,

where Ny indicates the normal bundle of Y. Hence, the scalars are sections of Ny. Out
of these 4 scalars, one of them is a section of R and we may call it the real scalar ¢.
The remaining three ‘scalars’ are then sections of the normal bundle of YV inside M.

In fact, as Y is a Lagrangian submanifold, any normal vector to Y can be converted
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to a one-form on Y by the Kéhler form on M. This is exactly the bosonic spectrum
which appears in the partially twisted Lagrangian in (3.44); a gauge field A,,, a one-
form ¢,, and a scalar ¢. Therefore, following [34, 6], the partial twisted theory that we
constructed in the last subsection is conjectured to describe the low energy excitations
of D5-branes in the type IIB string theory.

As we saw earlier, this effective field theory, which lives on the worldvolume of a
D5-brane, localizes, in the limit of small Y, to M, x Ty M which is conjectured to
be the local description of the mirror manifold M [48]. As in [6], this could be used
to derive the moduli space of wrapped branes or to discuss the existence of the bound
states of branes. Furthermore, we may derive, following [27], the effective theory which
arises in this limit. There are indications that the effective theory which emerges is
a sigma model with the target discussed above. In this way, one should be able to
construct a relation between the invariants of the six-dimensional product manifold and

the invariants associated to the three-dimensional sigma model.
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Chapter 4

N=4SYM on ¥ x 52 and its
Topological Reduction

4.1 Introduction

In this chapter, we will study the twisted N = 4 SYM theory on a product four-manifold
¥ x 52, where ¥ is a Riemann surface of genus g [52]. We derive the effective theory in
the limit where S? shrinks and then perturb the effective theory by a mass term for the
hypermultiplet. In principle, one should get the same effective theory perturbed by mass,
if one instead first perturbs the N = 4 theory by a mass term for the hypermultiplet
and then takes the limit where $? shrinks.

Although the mass term reduces the number of supersymmetries to two, the massive
theory is still believed to be S-dual [11]. S-duality relates the behaviour of the theory,
with gauge group G, in the strong coupling region to the behaviour of the same theory,
with the dual gauge group @G, in the weak coupling region. Here we take the gauge group
to be SU(2) and hence its dual is SO(3). Therefore, to probe the duality properties of
the massive theory, we need to compute quantities like the partition function nonper-
turbatively — and for both gauge groups SU(2) and SO(3). With this aim in mind, we
will compute, in the limit where S? shrinks to zero size, the correlation functions of a

set of specific operators in the twisted theory and for the gauge group SO(3). In our

1The hypermultiplet is the same as the one in (2.32), however, note that for N = 4 theory the gauge
multiplet and the hypermultiplet are both in the adjoint representation of the gauge group.
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case, there are three different types of SO(3) bundles to be considered. To see this, let
us first discuss the classification of bundles on ¥ x S2.

SU(2) bundles on a four-manifold are simply characterized by the instanton number
k. In contrast, SO(3) bundles are classified by two topological invariants: k, the instan-
ton number, and w;(E), the second Stieffel-Whitney class [45] of the bundle. wy(E)
takes values in Z, telling us whether the restriction of the bundle to a specific two-
dimensional cycle is trivial or not (notice that SO(3) bundles over a two-dimensional
surface are classified by m1(SO(3)) = Z,). Therefore, for a fixed instanton number k,
there exist 22 different types of SO(3) bundles. Here we consider the manifold £ x $2.
Since in this case by = 2 (see the next section), there are two independent two-cycles
and we may take them to be ¥ and 52. Therefore we have four different types of SO(3)
bundles depending on how the bundle restricts over ¥ or $2. SO(3) bundles which
restrict trivially over both ¥ and S? are identical with SU(2) bundles.

We consider SO(3) bundles such that the restricted bundle over S? is trivial. As was
argued in section 2.3.3, bundles which restrict nontrivially over S? give zero contribution
to the path integral. Therefore, we are left to consider two types of SO(3) bundles which
restrict trivially over $?; bundles which restrict nontrivially over ¥ and bundles which
are trivial over ¥ and hence are identical with SU(2) bundles.

The organization of this chapter is as follows: In section 2 we consider the twisted
N = 4 Lagrangian on ¥ x S?. In the limit where S? shrinks it is shown how the
four-dimensional theory reduces to an effective two dimensional theory. The fixed point
equations imply, in the case of a nontrivial SO(3) bundle over X, that the partition
function of this reduced theory is in fact the Euler characteristic of the moduli space of
flat connections on ¥. A mass perturbation makes the path integral calculation more
tractable — particularly for the limiting two-dimensional theory. In section 3, we show
how this comes about. Perturbing by the mass allows most fields to be integrated
out, and reduces the path integral to a finite dimensional integral which can be easily
performed. In section 4 we discuss the result. Although we have not given an explicit

check of S-duality, we have isolated the problems involved.
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4.2 Twisted N =4 on X x S? and its reduction

As was discussed in the second chapter, the key point in twisting [1] is to redefine
the global space-time symmetry such that at least one component of the supercharge
becomes scalar under the new defined space-time symmetry. This procedure crucially
depends on the existence of a suitable global R-symmetry. N =4 SYM theory in four
dimensions has a large global R-symmetry, SU(4), and thus there are different possible
nontrivial embedding of space-time symmetry in the global symmetry of the theory. As
in [4] we will consider the embedding (ii) in (2.34) where, after twisting, two components
of the supercharges turn out to be singlets and therefore square to zero. The scalar fields
of the physical theory, which transform under the 6 of SU(4), now transform under the
new rotation group, SU(2)L x SU(2)k, as 3(1,1)® (1, 3), three singlets and one self-dual
2-form.

Having determined how the new fields transform under the new symmetry group,
what remains is to rewrite the Lagrangian in terms of these new fields on flat R*. This
Lagrangian can then be defined on an arbitrary smooth four-manifold while preserving
those two BRST like symmetries.

Let us start our discussion with the twisted N = 4 Lagrangian® in 4 dimensions

[4, 26],

C —tr{ —D,AD*¢ + Li*(H, — 2/2D,C +4v2D*B,,)

Lam™(H,, — 2F}, — 4i[B,,, B,)] — 4By, C])

44, Dy x* + 4%, Dy + %uD"C — YuD*

IV [ By A — VX [X s D] + 528V2 X C + 4328 [X s B,
~ iV2Xwl(, B — iv2u 1, B + i4V24u[%0, B*] - iV2RIX", 6]

V20", N — i2v29,[%", O] + \fc €, Al

+ + +

~ <Dl O+ 28, B Bl + 26, 01}. (4.1)

As mentioned, the action is invariant under two BRST transformations. However, for

2The Lagrangian that we use is actually different from the one in (2.36) by a BRST exact term
—$6(n[g, X)-
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us it is enough to consider one of them, which reads [26]

84, = -2, 6¢ = 4i[C, ¢]

§tpy = —/2D,¢ §X =+/2p

§¢ =0 on = 2i[A, 4]

8By = V2, 6% = H,

8P = 2By, 9] §H, = 2V/2i[%,, 0]
6C = ﬁ( Oxp = Hp,

6Fpu e "'2(D;ﬂ/)u . Dr/lybu) 5H;w = 2\/§i[X;w’ ¢]

Here we choose ¢ and A to be two independent real scalars. This will render the La-
grangian to be hermitian and allow us to treat ¢ and A independently. The generators

of the SU(2) group are chosen to be hermitian 7% = %a“ with tr (T°T°) = §°.

The theory enjoys an exact U(1) ghost symmetry under which v,,, 1/~)W, ¢ have charge
1, Xuv, M, Xu charge —1, while ¢ and A have charges 2 and —2 respectively. All other
fields have ghost number zero.

Take the underlying manifold to be ¥ x S2. Let us denote the indices on ¥ by 2,7, - -
and those on S? by a,b,---. We define

1 1
Fy=—eif  Xij = ——€isX
Va, RV
1 ~ 1 ~
By=——esb = ——esP, 4.2
J 2\/51 J J 2\/51 J ( )

and the same for indices on S2

1 1 ~ 1 ~
Bab = _6abb’ s Xab = _ea.bX, 3 'Qbab = —Cab¢,. (43)

2\/9, VY, 23,
Here ¢; and g, denote the determinant of the metric on ¥ and S? respectively.

The fields H,,, Bu,, Xu and 12;,“, are all self-dual. Note that
1 il 1
Bi' — *Bi' = ——Gi‘b — 6i.ab b = ez,,ea.b
TR T g T T e g

1 1
= ———92¢y ;b = ——¢;;0 4.4
2 Sy 2\/51 J ( )

4\/ 992

( 6abb,)

where we have used

b b

1311
eeay = €€ guargiy = 292
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and
] t
gaa gbb oty = eab .

1 1

2 = 1 and so €5 = go; thus, for example, we have B* = 2—6‘”’6’.
V9,

Also we chose €

Hence we conclude that
b=V, x=x, v=9"
For the manifold ¥ x .52, by the Kiinneth formula we can write

H*(Z x 8%) = [H(Z) @ B°(S™)] @ [H'(Z) @ H'(S")] @ [H'(Z) ® H*(S5%)].

Since H'(S5?) is trivial, H%(X x S?) is spanned by two generators; w; which generates
H?(X) and is dual to ¥ and w, which generates H?(S5?) and is dual to S2. Thus in this

case by = 2. w; and w, are normalized such that

/wl/\ng:l

1)

The Hodge star operator maps wy and w, into each other such that we can define (note

*? = 1)

so the intersection form looks like

*W = XWwo

1

* Wy = awl,

where « is some real coeficient depending on the metric. One may choose another basis

for H?(X x S?) by introducing

w"’ = v/%(wl + OéLUz)
"= (o~ aw)
W =W —ws).

S 1 2

In this basis the intersection form is diagonal

[£5)
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So wt spans the group H? (X x S?) and thus b5 = 1.

In [27] it was shown that upon shrinking the metric on X, one gets an effective 2-
dimensional sigma model governing the maps from S? to M, where M is the moduli
space of solutions to the Hitchin’s equations. Although the twisted theory is supposed to
be metric independent, one may not get the same effective theory if one instead shrinks
S2. In this case we will see that the effective theory which emerges is a 2-dimensional
twisted SYM theory. This happens mainly because of the following reason: recall that
a topological theory is independent of the metric as long as, in varying the metric, the
Lagrangian remains nondegenerate. Here this fails to be the case because the space
of self-dual harmonic 2-forms is one-dimensional and thus there are metrics for which
abelian instantons exist and the Lagarangian degenerates.

Thereto, we now scale the metric on S? by a factor of . Notice that the defini-
tions (4.2) and (4.3) are consistent with this scaling, since both sides of the self-duality
constraints scale with the same power of e.

After integrating out the auxiliary fields, the bosonic part of the Lagrangian reads

il . .
Lp = —tr {~DuAD*¢ — (D,C — 2D*B,,)* = }(E}h + 2[B,y, B4 + 2i[ B, 1)’}
(4.5)
where F'* = 2(F + *F) and * is the Hodge duality operation. Thus we can write

~§ [ VIELF = =k [ aFLE = [ VG P

The last term is the instanton number and is metric independent. Using this, and the

fact that By, is self-dual, we write the last term in (4.5) as

— 3 Fw " = 20F"([By,, BY] + [Buvy C1) + 2([Byp, B%,] + [Bu, C1)* — §(+F) I
= —Y{F,;Fi 1 8iFi([By;,C + [Bia, B]) — 8([Bij, C] + [Bia, B4])* + (+F)i;;

+ FupF™ + 8iF([Bay, O]+ [Bui, BY)) — 8([Bas, C] + [Bai, BY))? + (+F)apFt}

— (FJ + 2i[Baj, B'] + 2i[Bu, B%] + 2i[Ba;, C))*

= —1(Fij + 4[Bij, C])* — 3(Fay + 4i[Bui, B,))* — 2iF¥[By,, B%] — 2iF*[Bay, C]

+ A[BY,C][Bia, B%] + 4[B®, O][Bai, B'y) — L(+F)i; FY — L(+F) g F'*)

— (F} 4 2i[B,j, BY,] + 2i[Ba, B%] + 2i[Ba:, C))2.

In the last equality we noted that for a self-dual antisymmetric tensor S, we have
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St = S%,. Thus, in particular, we have

[Bab, C]* = [Bi;, C]?
tr ([Bai, BY,][BY, B,%]) = tr ([Bia, B%]|B®, By]).

The proof of this is as follows. Since S;; is self-dual, we have

Sz'j = *Si' = abSab .

1
Therefore

¥ 1 1
SijS” - 6,'j6ab5'ab X

2V9 2V

1
= %e“becdSabSCd = S5, (4.6)

e ecdSCd

where we used
6abecd - 92(5ac6bd - 6ad6bc) )

After scaling the metric, then, the Lagrangian splits to three parts;
L :£1 +£0+£—17

where L, scales as ¢". Specifically,

L = —tr {—DMD% — D;CD'C — D;bD'b + \/_ieijDibDjC’ — %(f + 24[b, C])?

2
€ gl

4 .. 2 - . .
e Dix + e x: Db + x: D¢ — ;D'
VT g 1

+ V2P, ] — i4v2x[x, ¢ + i4v/29x, C] — 2iv/2x[¢, b]

— /2P, b + if/?e""zm[xj, B — iV23:[X', 4] + iv2 [, A
— 2VERIE, O]+ ﬁqc, A - %ﬁ[n, ]
+ 208, b][N, B + 2[4, )\, Ol (47)

Lo = —tr {_Da)\D“¢ — (DsC + \%eabD”b ~2D"Bi)* + 4(D* Bu)(D'C — 2D By')
e
2

— (F 4 2i[Baj, B%] 4 2i[Bay, B%] + 2i[Ba;, €))% ~ L F)i FY9 — L(xF) g
— 2i(Fy; + 2i[Bij, C))[B™, B,’] — 2i(Fay + 2i[Bai, B,])[B*, C]
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+ AP Dax™ + 4K D™ + XaD*¢ — D + 4ha Dyx™ + 4% Dytp™

+ 2V2P% (i, Al — 26V/2X [Xair B + 4v/20% [Xas, O] + i4v/20% [Xas By ]

+ 14v20[xi, B,'] + i4V/2* [Xab, B;*] + 14V 2% [Xaj, Bi’] + i4v/20" x5, B,]]

+ i4v20Y [Xia, B,%] — 2iv/2Xail(, B*] — 2iv/24uiln, BY] + 14724 X0, B

+ V2[R, B + 14v24i[Xa, B*] — iV2%a[X%, 8] + V20907, A]

— i2V2¢a[%%, C] + 4]¢, B¥[\, Buil}, (4.8)
and

L= itr {-4(17@31“-)2 - i(Fab + 4¢[B,”-,Bi,,])2} : (4.9)

Now, in sending € to zero path integral localizes around the solutions of the following

equations

Fab + 47:[Ba/[, Bib] =0
D*B,; = 0. (4.10)

In appendix C we show that these equations imply
Fab = Bai = 0,

and that from Fy; = 0 it follows that the instanton number vanishes. A flat connection

on sphere can be written globally as
As=g7'0ug
for some gauge group element g. Therefore, the connection A is
A= Az’ + (g7 0.g)dz" .
We gauge transform A such that it lies in ¥ direction
A— gAgT + gdg™! = g(Aida’)g™! + g(Big!)dat = Ajda’ .

Setting A, = 0 and B,; = 0, Lo greatly simplifies. However, because of the zero modes
of the operator d,, one has to still keep the order ¢ terms in £;. We expand all fields in
terms of eigenfunctions of d, and denote the zero modes by a 0 superscript. Effectively

we do the following substitution
®(z,z;w,w) — 0°(z,2) + (2, z; w, @)
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where ®(z, z; w,w) on the RHS stands for the nonzero modes. The kinetic part of Lo

then reads

1
Lown = —tr {020 — (uC + €a"b)* — (DaA;)*
+ APV + ARV + Xa VO — 62V + 4 Vex™ + 4%a Vi) .
(4.11)

Since yai and t,; are self-dual and since there are no holomorphic one-forms on the
sphere (see appendix C), Lo kin is nondegenerate. Thus in doing the integral over nonzero
modes, one may drop the terms which are order of e. Keeping terms of order one, the
integral over n, ¢, X, 1, ; and ¥; results in a set of delta functions imposing the following

constraints

Vaxai =0, V,ﬂ;ai —
Val/)a = 0, Eabva'l,/)b =0
VX =0, eV, = 0. (4.12)

As was mentioned, these equations have no nontrivial solutions on sphere. Setting these

fields to zero, Ly reduces to
Lo= ~tr {~80,08°6 — (8.0 — (8:5)* — (9uA)°
0 = i1 {~0:00"6 — (8.0)" — (ub)* ~ (8u4:)"}
where the fields are all nonzero modes. Using the equation of motion for A; we obtain
d'dA; + terms proportional to € = 0

as A; is a nonzero mode this equation implies that, up to € order, A; = 0. The same
happens for ¢,b and C fields. So in the limit € — 0 all nonzero modes can be set to
zero and one is left with a copy of £; in which fields now depend only on coordinates
on Y. From now on we call this reduced Lagrangian £ and drop the 0 superscript on
zero modes.

The reduced Lagrangian, £, which now describes a two-dimensional TFT, can be
obtained by the BRST variation of V, where

2v2

1

1 STV T ] y
V = gz—/):tr{%x (I{1 —2\/§D,C-|- GjiDJb) +X(2H_2f_4l[ba C])

1 ; T :
- 575 \@D +2v/2i[3, ] + V2i[¢, C])}, (4.13)
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and the BRST transformations of the two-dimensional fields are (6 = {@,--})

§A; = —2; §b = /24 §C = ﬁc
§i = —V2D;i¢p 6 =-2[b,¢] 6 =—4[C,¢|
§%i = 1H; §x =1H 6\ =2n §¢=0

§H; = 2v/2i[%:,¢] SH = 2V2i[x, 4] &n = —2[), ¢).

The fixed points around which path integral localizes are those configurations that are

BRST invariant. Thus, setting §x = H = 0 and éy; = H; = 0 and using the equation
of motion for H and H; we find the fixed point equations

f+2ib,C]=0
il :
D;C 4+ —¢; Db = 0. (4.14)
VA
After squaring, these imply
f=0, [ba O] =0
D,C = D;b=0. (4.15)

Requiring thal there are no reducible connections (as is the case for flat non-trivial
SO(3) bundles) it follows that the only solutions are C' = b = 0. Let us see in this case
what topological invariant the partition function corresponds to. First recall that, in
Witten-type topological field theories, the partition function computes the Euler number
of the bundle of antighosts zero modes (here x and ¥;) over ¥ [4]. However, as there are
no reducible connections, there are no y zero modes and we need only to consider the
zero modes of ¥; which are in fact cotangent to the moduli space of flat connections M.
Therefore, the bundle of antighost zero modes is really the cotangent bundle of M which
has the same Euler characteristic as the space M. We conclude that, when there are
no reducible connections, the partition function is nothing but the Euler characteristic

of the moduli space of flat connections over X.

4.3 Perturbing by mass term

The theory discussed so far does not have a mass gap [34]. To make the calculations
more feasible we perturb the theory such that it has a mass gap. This enables us to

integrate out most fields and reduce the path integral to a finite dimensional one.
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The reduced 2-dimensional theory has a U(1) ghost number symmetry coming directly
from the nonanomalous U(1) symmetry of the underlying 4-dimensional N = 4 SYM
theory. Because of supersymmetry, the measure for nonzero modes is invariant under the
U(1) action. The ghost and the antighost zero modes, on the other hand, obey the same
equations of motion such that there are equal number of ghost and antighost zero modes.
This renders the measure invariant under the ghost symmetry of the action. Therefore
the ghost symmetry is anomaly free. As the measure is invariant under this symmetry,
the correlation function of any operator that has a ghost charge is zero. Therefore, this
symmetry allows us to perturb the Lagrangian, by adding gauge invariant terms with
nonzero ghost number, without changing the partition function.

Thus, for example, since the mass term for the hypermultiplet,

—\/%e,-jgiy(i — 24mA[b, C] + %m&mv",
1

where V" is given in (4.18), consists of a term with negative ghost number and a term
which is BRST exact, one expects that the partition function is invariant under perturb-
ing the Lagrangian by a mass term for the hypermultiplet. In [4] and [53} it has been
argued that even an additional mass term for the chiral multiplet ® (which contains the
fields 1), and ¢ in (2.31) ) still leaves the partition function invariant.

However, in the following we are interested in the correlation functions of a set of

BRST cohomology classes of the form

1 i 1
I(e) = Ez—/ztr (EM + 5% A d;) + 3;2 /Etr #2. (4.16)

Notice that, since we are not concerned with the partition function, the above mass

independency argument does not apply here. This can be seen roughly as follows. The
1 A factor in (4.16) contains part of the mass term for the chiral fields A, and ¥, (in
the notation of (2.31)). One can easily complete the mass term for the 1, component
with an extra BRST exact term, which at the same time gives a mass to the ¢ field
[2]. The remaining part of (4.16), which are not contributing to the mass term of the ®
multiplet, will in general have a nonvanishing expectation value in the mass deformed
theory. This, in particular, implies that — in contrast to the partition function — the
correlation functions of I(¢) (in the theory perturbed by mass for the hypermultiplet)

may depend on the mass parameter.
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The next problem is to give a mass to x,n,)\,gz and (. This can be achieved by
adding V' and V" to V, where

2
W = —g/zdu tr{xA} (4.17)

1 =

V' = 6—2/2du tr {$C — Lcb}. (4.18)
Notice that no field transforms to C, b or ¥; under 6,,. Therefore, a mass term for these
fields cannot be obtained simply by adding the BRST exact terms to the Lagrangian.
Alternatively, to produce the mass terms, one may think of changing the BRST trans-
formation rules, keeping the BRST symmetry of the action. In our case, this is possible
if we change the BRST transformation rules for H;, 1/~) and ( to the following ones

. 2 .
8 H; = 2v/2i[%:, ] + igmew?”
1
Smth = —2[b, ¢ + imC
6 = —4[C, @] — 2tmb. (4.19)

As we will see shortly, this perturbation will give a mass to the fields C,b and ¥;.
The coeficients in V' and those of the above deformed transformations are all fixed by
demanding invariance under the new supersymmetry transformations é,,. Even though
the metric is explicitly introduced via the above first BRST transformation rule, note
that the extra term is still invariant under metric rescaling (€;; ~ ¢1).

Thus, in the following we will consider the theory defined by the deformed action
S = Ie)+i6n(V +tV' + %mv”)
= I(e)+ 61—2/2@ tr {D;AD'¢ + D;CD'C + D;bD'b — igleiﬂ'pibpjc
+ l(f + 21[b, C] +tA)? + 20/2txn — $|m|*C? — Lim|*p?
\/_(2/; ﬁewx %+ 2ima[b, C] — 2imA[b, C)

¥ :
+ €/4;D; 2 gig, Djt + ix:D'¢ — i D’
\/_1~~¢ ><+\/_1 Xi Q/)+~>< ¢ —uwpD'y
— V29[, Al + 4v2x[x, 8] — 4290 [x, C] + 2v/2x[¢, B]
+ ﬁl/:[n,b] f”“/’z[XJ,b]‘F\/_Xz[X ¢| — \/iibi[’/)i’)‘]+2\/§¢i[>~<i’c]

- 2\/—C[C,A]+\/— [, C1 2[4, b][\, 6] — 2[¢, C][}, CT}. (4.20)
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Notice that although the new BRST charge does not square to a gauge transformation
(because of those new terms proportional to m), Lagrangian remains BRST invariant.
This can be understood if we notice that §Z, acting on fields generates (up to a gauge

transformation) a U(1) action. Let ér = \/15 §2 and B =b+iC, P =9 + ;—{, then

U(1) group acts as

616 = —if , brip=—it

1 - . 1 oy
orXi = —(—¢€iiX’ 5 orHi = —e€; H’

V9, 91
thus the fields 8, ¥, %> and H; all have charge —1, with their complex conjugate having
charge +1. All other fields have zero charge under this U(1) group. The fact that S is
invariant under §,, then follows since V, V' and V" all have zero U(1) charge.

Before continuing the analysis, it is important to understand the relation between
the perturbed and unperturbed theories. Since the perturbing terms proportional to
t and m are BRST exact, one may expect that correlation functions are going to be
independent of these two parameters, but actually this is not true in general: adding
6, V' and 8,,V" to the Lagrangian may result in some new set of fixed points flowing in
from infinity and deforming the original moduli space of solutions [54] such that the path
integral gets contribution from these new fixed points. The theory will be independent
of t and m if in varying these parameters Lagrangian remains nondegenerate and the
perturbation does not introduce new components to the moduli space of fixed points.

We first discuss the situation for ¢ = 0 with arbitrary m and m. The fixed point
equations are those of (4.14) together with (setting Smth = 6mC = 6mn = pmip; = 0)

[8,¢] = 3mB, [A,¢]=0, Dip=0. (4.21)

If ¢ is not identically zero then, being covariantly constant, it never vanishes and, in
particular, can be diagonalized globally such that the bundle E splits as a sum of line
bundles [18]. Moreover, if 8 # 0, the first equation in (4.21) fixes ¢ (up to a sign)

b= — (4.22)

~[ 0 0

with £ as



Now the equations (4.14) become

F+2182 =0
DB = (6: —iAz) =0

(notice f = %fag,, where f here is the U(1) curvature). Note that ¢ = %mag, corresponds
to a point, in the classical moduli space of vacua, where a component of the hypermul-
tiplet becomes massless®. The relevant fixed points are then determined by the above
equations. Clearly one can then argue that the path integral over massless modes com-
putes the Euler characteristic of the moduli space of U(1) flat connections My, over
2. A similar argument to the one in chapter 3 shows that M is parametrized by the
torus T%. Here b, = 2¢ and T" is identical to X, thus

X(T*)=2-2g.

To evaluate the contribution of this singular point to the path integral, however, one
still has to do the integral over the massive modes.
This is not an easy task, but there is a special case where this point (¢ = imag) does not
make any contribution. This occurs upon restricting to the nontrivial SO(3) bundles.
As discussed above, a nonzero ¢ breaks the gauge group down to U(1). In particular,
SO(3) bundles split as

E=LoOaL™, (4.24)

where L is the U(1) line bundle and O is a trivial line bundle. In this case, wy(E), which
measures the nontriviality of the bundle E, turns out to be the mod two reduction of
c1(L), the first Chern class of L [4]. Thus if f = 0, as is required by eqs. (4.14), wz(E)
has to be zero — implying that flat nontrivial SO(3) bundles do not admit reducible
connections. Therefore, in this case, the point ¢ = %mag does not contribute to the
path integral.

Let us now discuss the case that t # 0. The fixed point equations (4.14) turn into
the following equations (8 = b+ iC with €,z = 1,/9, 9.z)

F+1B,8]+tr=0
D=0, DA=0. (4.25)

3As eq. (4.21) fixes ¢ up to a sign, there are indeed two such singular points in the classical moduli

space of vacua.
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The vanishing argument now fails; f = 8 = 0 (and A = 0) are not the only solutions,
there are new fixed points with f # 0 contributing to the partition function. Since the
connection is not bounded to be flat any more, a set of U(1) connections, in all classes of
U(1) bundles, appear in the moduli space of solutions. Moreover, the point ¢ = imag
may contribute to the path integral even for nontrivial bundles. In the following we

single out this point from our discussion and treat it independently.

4.3.1 Integrating A\, n and y

Perturbing by V' now allows us to integrate out the fields A, 5 and x. Using the equations

of motion for A and 5 we get

2\ = D2¢_t(f+21[b,0])+22m[b,0]+\/i["wbud)i]

+ VIR T+ 55001+ 200 16,5+ 2(0,14,C) (4.26)
and
1 e
Putting these back into the Lagrangian yields
S = Ie / du tr{D CDiC + D;bD'b — \/251 fl D + i D¢
- f/*g:e%m -+ 2VEB{E, O]+ VLR, 6] = §imP0% = Hm ¥+ 2205
— e + 2imalb, €] + L{ (r+2,0)
2 : ot v, 1
x (D b+ 2im, €1+ Va1 + VI, 8]+ 510,01+ 20 6,8+ 20, 19,1
525 (-t vam i1+ 510,01 (—f—ek’Dm /20, 9] - 2L, |
+ % {(D26-+ 2imt 1+ VB3 91+ 13,31+ 16,6+ 2, e 8]+ 210,16,

+VE (=Dt + V(b 31+ 510,0)[(~Dus + V318, T1 + 510,0D) ]} (420
Using
8m(f +2i[b, C1) = =269 Digp; + 20v/2[¢, C] + V2i[b, (],
m (—Dﬂ/)i +iv/2[b, ] + W[Ca C])
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= V2 (m + 2imlb, C] + V2, %] + V2[h, 9] + 21%[4, ¢]+ 206, [¢, B]] + 2[C, [#, O]]) :
and
8 (quﬁ + 2im[b, C] + V2[ti, '] + V2[4, P + 5%[4, ¢] + 26, [¢, 8] + 2[C, [¢, 0]])
= —2 l:(_Di'Iwbi i 1\/5[5,72;] + \/_5[0, C]) a¢l )

it is easy to see thatf terms proportional to 1/t are indeed BRST trivial, and can be
written ’ _

—1 : ~ i

—=bm 2i[b,C)) | —=Ds2p* 4 ¢/2[b —|[C, .

i { (o 2i10,CD) (~D V08 01+ 51,01 |

Terms proportional to 1/t? are also combining into
Wém { <_Di1/)z + Z\/i[ba d’] + '\75[0, C]) X
(D -+ 2imls, 01+ VBl w1+ VLB, T+ 3500,61+ 28 6.6 + 20,6, .

In the effective Lagrangian (4.27), the kinetic terms are nondegenerate for all values of ¢
and since those terms proportional to t are still in a BRST exact form, the path integral

does not depend on t.

o~

4.3.2 Large t Limit and The Integration over b, C, (, ¢

As argued above, for nontrivial SO(3) bundles the point ¢ = %mag does not contribute.
For ¢ # 0, because of the supersymmetry, even after integrating out A,n and x the
1

singularity still persists at tr ¢ = gm?. As we have chosen ¢ to be a real scalar field,

reality of the action requires that m to be a real parameter. However, to regulate the

2 we allow m to have a

contribution of the points in the neighborhood of tr¢? = im
small imaginary part. If there is going to be any singularity when ¢ approaches m,
it has to show up in the final result when we take the limit Im m — 0. This can be
thought of as a kind of regularization by analytic continuation.

Now let us consider the large limit of ¢. Since the kinetic terms remain nondegenerate

we can actually take ¢ — oo. This amounts to droping a BRST exact term from the

Lagrangian and we are arguing that this is allowed since the remaining part of the
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Lagrangian is nondegenerate. Using the auxiliary field H;, in this limit we are left with

the action
1 22 2% . - .
S = —/d tr{ LA (H; — 2¢/2D;C + —=¢;; D’} WD b + 1%, D
62 5 H ( \/gl J ) \/‘a-l J¢ X C
— LmfPC? - }m|** + (P — UK+ 2imglb, O]

A ek
5,8+ 2V O] + VIR ¢]} +1(6).

2v2
V9

L can still be written as a sum of BRST exact term

iém{ltr{ Y(H; — 22D;C + \/‘feﬂD b)+l (JO—%Cb)}}

1

[\D

_3
2

and I(g). The integral over C gives a factor of (det (33 |m|? and leaves
2e

1 2 .
S = 5 [ tr $—YH'H + V2% [%, 8] — —e=eii¥' X + —=€%:Dj + ix: D¢
et Js V29 9

1
1 21\/—

(D - 2[>zz-,w]>2—2@[b,¢12

— \/—eﬂHiD]b 3lm 1262 + Cz/)— \/_

v f v

Next we would like to integrate out b,( and P. Tt is easy to integrate out ¢ and ¢ using

[6, (DI — 2(%:, %))

”%[xa,b]} + 1)

their equations of motion. In the evaluation of determinants, which appear in doing the
integral over b and finally over x;, we always assume that ¢ is a constant field. This can
be justified finally when the integral over the gauge fields constrains ¢ to be constant.

The equation of motion for b yields

K49 (D ) - SO - 2 4. 41) (429

where we have defined (A and B are Lie-algebra indices)

8 8
I(AB ] (]. - ;n—2t1‘ ¢2)—1(5AB . _H?¢A¢B)

Replacing b in the action, we obtain

1 1~ - i
Ol = ](€)+e_2/2d'u tr {—§H Hi + V2% [%:, 4]

wing 4:1, - ] 1 rri ~ 7
— \/27%0( X - m PDIXID X))+ I—m—lz(DiH —2[xi, % ])2}

97



+

% . A
D 4+ — [ ] — (DT 205, ]), 4]) KA
Dy ] — SUDE 2, 6,4

54 B
y (— = “D,HH—g—le [ ] — 2D~ 203,87, ¢1) ,

1
and a factor of (det(\/l§ 2m)?’)(det oz |m|?)73(det (1 — S;tr ¢%)?) 72

The following are easily derived,

Sm(Di%)) = (D — 2[%:,97)

Sm(D:H' = 2[%:,9']) = 2\/52'[Di>”<ia¢]+ﬁm

1

6m { D) (D:H = 2[x:, 0" ])} i(D:H — 2[%:,%'])* — 2v2i(Dix)) [ Di%', 4]

19 ~
e’ DX

\/imfij Dix;Dix'
91
and
| G 2 : '
Om, 6”Dj~i—|-—-Di~l, DH———G“ iy W; DHZ—2 85
{Sentor 2D A} = T2 D~ Tl i) DA =205 ), 9
57211{\/1— ¢/ Dyxi + %[Diii,¢]} v/2mDif! “4“/— (D', 41, 4]

Using these, the action can be written as

1 17 m '
Sl = I(e)+—-/d,u tr (—5 +\/_ [Xi, ] \/‘{EEUXX)
~ o fyt on{x (DOODI - 2 0) (429
+ (f Dj>~<,-+é[Di>z",¢]) K47
2 ( \/'f (D 2150, ) + (D — 2050, 9'), ¢]) }

Note that the integration over b, C', ( and ¥ has not destroyed the manifest BRST
exactness of the action, in particular, the variation of S with respect to m is still a

BRST commutator.

4.3.3 Large m Limit and The Final Reduction

We note the partition function is formally independent of m (since the variation of the

partition function with respect to m gives an BRST exact expression) and is really
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independent of /m if in varying m the Lagrangian remains nondegenerate with a good
behaviour at infinity in field space. The mass term for ¥;, the term HH;, and the form
of the cohomology classes that we have added by hand, guarantee that this is actually
the case. Having this freedom in the value of m, we simply set m = co. This leaves us

with the action

1 FriA o 1 : o
S=1I(e)+ = /z du {—%H AHA — 34 (\/Tgl-meijé‘AB = QZfABcﬁﬁogij) X’B} ;
and partition function reads
det (—=—m)?
Zle,m] = /D(Ai,¢i,¢, H, %) V2 e,

(det L5 |m|2)2(det (1 — Str ¢2)2)2 N

where Q° indicates the determinant has to be evaluated in the space of zero-forms. The
explicit appearance of m on the LHS reminds us that, although independent of m, Z does
depend on m. This is so because m was introduced through the BRST transformation
laws. This is reminiscent of holomorphicity of N = 1 theories in four dimensions.
Doing the integral over %’ gives a similar determinant, but this time over the space

of one-forms. Putting all pieces together one gets

1
[det m3(1 — Str ¢2)];2;1 e(ﬁlf Iy tr(—\)—§¢F+%¢A¢)—¢2—fE trq&?).
[det m3(1 — Zrtr ¢2)]

Zle,m] = [D(Aiy i, ¢)
Qo

(4.30)

Notice that, as expected, m cancels out between the fermionic and bosonic determi-
nants. The integral over 1; provides a symplectic measure for the gauge fields A; [54].
Performing the path integral over ¢ and A; is now straightforward. Indeed, apart from
the determinant factor of the integrand, (4.30) is the path integral of a two-dimentional
Yang-Mills theory. In appendix D, using the Faddeev-Popov gauge fixing technique,
we show that the integral over the gauge fields constrains ¢ to be constant and hence
the path integral calculation reduces to a finite dimensional integral over constant ¢.

Explicitly, for SO(3) gauge group we have

Zle,m} =m0} /d¢ $>2(1 — i¢2)9—1 exp (—i\/ﬁfﬁ(n;r- 3) 3529?:2) . (4.31)

2
nez m
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4.4 Discussion

We have reduced the calculation of the correlation functions in the mass deformed theory
to a finite dimensional integral in (4.31). In the case that ¥ is a Riemann sphere, the
integrand has a singularity when ¢ approaches m as the imaginary part of m is removed.

However, for higher genus surfaces the integrand is regular. Using

(142" = Y e e
VTt

the eq. (4.31) can be written as

Zle,m] = (—8m)s! Z g1 (—Ti)g_H Z(e),

(g—1—=r)r! 8

where

Z/d¢ $20+7=9) oxpy (_Z\/—fﬁ(n'*‘ )_ ¢’ ) (4.32)

ez 4w 327?
Here Z,(¢) is actually the partition function of the Yang-Mills theory on a Riemann
surface of genus g — r [55]. For the SO(3) gauge group this is known to be [54]

_ 1 & (=1)"*lexp(—enin?)
Z,«(e) - 2(87r2)g—1—r 7; n2(g—1-r) :

So the final expression is

—1-r o n 2,2
, (g—1)! m? \? (—1)™*! exp(—en’n?)
Z[E, m] 8m . Z g _ 1 . T) r' <_ 6471-2 Z n2(g—1—7‘) ’
(4.33)

To this one still has to add the contribution of the point ¢ = —ma3 However, note

n=1

that from the discussion we had in section 3, for nontrivial SO(3) bundles, this point
contributes only if we perturb to t # 0*. Thus if we are interested in the limit of ¢ = 0,
we can just ignore the contribution of this point.

Differentiating (4.32) g — 1 — r times with respect to £ we get

> ex ( #) (4.34)

nez

691" 7.(e) _ ( —1 )Q—H 3272
beg—1-1 \ 1672

upon integrating up with respect to € we get a polynomial in € and terms which are

exponentially small.

“As is discussed in [54], the contribution of the original moduli space is invariant under perturbing
tot # 0.
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Finally let us discuss the origin of these exponential terms. Recall that if the equation
D;¢$ = 0 has nontrivial solutions, then bundle splits to a sum of line bundles. Moreover,
the perturbed egs. (4.25) show that, for ¢ # 0 and # = 0 (8 # 0 in this case corresponds
to the point ¢ = imag,), f is not zero. This implies that the corresponding line bundles
are not necessarily trivial. Indeed for a bundle E as in (4.24), wy(E) is the mod two
reduction of the first Chern class of L. Thus the nontrivial part of f is (if we choose ¢
in the 3rd direction)

f=amman| D (4.35)
0 -1
where n is an integer. The classical action for such a configuration is

a(L)? —1/ 2 (n+3)°
= = du t = 27
> 82 Jx pirf € ’

where ¢;(L) is the first Chern class of the bundle L. We note that these are the same

exponents appearing in (4.34).

We conclude that the perturbation by V' introduces a new component to the moduli
space of fixed points where f # 0 and the gauge field is a U(1) connection. Thus
the exponentially small terms in the final result can be recognized as the contribution
of this new component of moduli space to the partition function. Apart from these
exponentially small terms, there are polynomial terms in € coming from the original
moduli space with ¢ = 0. In this sense, we have been able to compute (in a chamber
where 52 shrinks) some specific correlation functions for the N = 4 SYM theory broken
to N = 2 by the mass term for the hypermultiplet.

In conclusion we note two observations. Firstly, the result is m-dependent as might
be expected from the discussion in section 3. Note in particular that the expression
(4.31) has the right behavior when m — oo; in this limit the kinetic terms of the heavy
fields are negligible compared to their mass terms meaning that these fields are so heavy
that do not propagate and all interactions between the heavy and light fields can be
ignored. Therefore in this limit the heavy fields decouple from the light ones such that
we are left with the corresponding correlation functions in the say pure N = 2 theory.
The remaining factor, m3@=1), is left from the integration over the heavy fields in that
limit. Notice that the power of m is in accord with the dimension of the moduli space

of flat connections which is
dim(M) = 6g — 6.
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Any two zero modes of x; are absorbed by the corresponding mass term in the La-
grangian and gives a power of m.

Secondly, we recall that S-duality relates the strong and weak couplings and swaps
the gauge group with its dual group. Thus to provide an explicit check on S-duality,
one still needs to do the calculations for the SU(2) case. As noted earlier, the main
difficulty which arises in this case is due to the contribution of the singular points where
a component of the hypermultiplet becomes massless. Although we recognized the
contribution of the masslcss modcs on these points, the integral over the massive modes
remains to be done. Turning around the problem, a better understanding of the S-
duality action in this particular case will allow us to infer properties of this contribution
by demanding S-duality.

The problem that we considered in this chapter is also useful in studying the low
energy description of D-branes wrapping around spheres which are holomorphically em-
bedded in a Calabi-Yau 2-fold [6]. This configuration arises when one studies the soli-
tonic states (D-branes) upon compactifying the string theory on a Calabi-Yau 2-fold.
The low energy physics of such D-branes wrapping around the sphere (holomorphically
embedded in the Calabi-Yau 2-fold) is described by the same twisted theory that we
studied in chapter four, however, the four-manifold is now R x S! x §% where S? is
holomorphically embedded in the Calabi-Yau manifold.

Another route for further investigation is to establish the wall crossing formula in
this particular case. In [27] it was shown that upon shrinking %, instead of 52, one gets
a two-dimensional sigma model governing maps from S? to M, where M is the moduli
space of solutions to Hitchin’s equations on ¥. Having the results for the two extreme

limits, one should, in principle, be able to work out the wall crossing formula.
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Appendix A

The Fixed Point Theorem

In this appendix, Witten’s fixed point theorem [16] is discussed. This is a general
theorem about theories with a fermionic symmetry, so its application is not limited to
topological field theories.

Let £ denote the space of fields on which we wish to integrate and F' a symmetry
group which acts freely on the space of fields. Thus, instead of £, we can consider the
fibered space £/F and perform the integral over it. The integral over the fibers simply

gives the volume of F'. Upon considering F-invariant observables we have

/5 =50 = vol(F) /5 50 (A1)

Now let F' be the BRST symmetry of Q). Since () has a fermionic character, its volume

/da-1=o.

Thus, if @ acts freely then (A.1) implies that the correlation function of any operator O

vanishes

vanishes. However, () does not, in general, act freely and there is a subspace & invariant
under the action of (). Take a small tubular neighbourhood of & and call its complement
£'. Since @ acts freely on &', it gives no contribution to the path integral by the above
argument. The whole contribution thus comes from & and its close neighbourhood, such
that one can expand the action around the fixed points & up to the second order and
does the path integral. Note, however, the integral over & must be done exactly. In the
light of the fixed point theorem, the origin of egs. (2.8) now becomes clear. They simply
arise by looking for the fixed point action of @ in (2.7). Setting dx,, = 6, = én =0,

we arrive at the same equations in (2.8).
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Appendix B

Majorana-Weyl spinors in ten

dimensions

Let the Minkowski signature be (—1,1,1,...,1) in D spacetime dimensions. The Clifford

algebra generators are I'™ such that
{TM, TV} = 29g™M¥,

for M =0,...,9. Introduce I'y4
'y =Tp--- T

which anticommutes with all T'™ and satisfies
FL =T, F%l = 1.
The unitary charge conjugation matrix C is defined by

CFMC_I = O'drfw (B.l)
Ct = O'tC . (B2)

where oy, 0y € {£1}, also note that CI';;C~! = —I'},. Further, define the Dirac conju-

gate
U = Uil

and Majorana conjugate
v, = UiC,
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¥ is Majorana if

U=,
or ¥t = —W!CTy. This implies I’y = UIC* = —W!CT,C* and therefore
FI, = —atCTFEC = —0q0:lg
concluding that 1“2,1“0 = 040;. Thus having Majorana spinors requires that o4oy = 1.

Weyl spinors are defined using the projector I'y;3; I''3 ¥ = £V, In 10 dimensions it is

consisbent to constrain a spinor Lo be simultaneously Weyl and Majorana
[0 =T ToC0* = =Dl CT1* = ToCITE, U* = 4T,CT1 0% = 40

where ¥ was assumed to be Weyl (I'}, U* = £¥*). A spinor in ten dimensions has 32
independent complex components. The Majorana-Weyl condition reduces this repre-
sentation to the one with.16 independent real components. As the fermionic equations
of motion are first order, there are in fact 8 degrees of freedom on the representation
space (on-shell). This is the same number of degrees of freedom of a gauge field (on-
shell). Thus in a system of gauge fields and fermions in 10 dimensions, one can balance
the number of degrees of freedom between bosons and fermions by simply putting the

Majorana-Weyl condition.

B.1 A 10d Fierz identity and the proof of super-

symmetry

In the following we show that the last term in (2.44) vanishes. Writing out the Lie-

algebra indices of this term explicitly we have
_%fabc(@FM\I/b)(WuFM\DC) )
We can expand WP¥°, a 32 x 32 matrix, using the complete set of independent matrices

1, s, Pun, Tunve s Tk , Tunvexr s Tl

PunTi, Tyncli s TrwvexTia, T

spanning a 32 X 32-dimensional vector space. This basis is orthogonal with respect to

the inner product defined by trace. Since ¥ is Weyl, I';;¥ = —¥ , UTy; = ¥, the most
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general form of this expansion is
U = 083, TM (1 + Tur) + 033w TV E (1 + D) 4 85 wac g TV (1 4+ Ta) . (B.3)
Notice that
UMy =0, for | M| even.

Multiplying (B.3) by I'ar, Imnz and Ty respectively and using the orthogonality
of the bases, one finds out that

==a 1 =a 1 T e
P = ~557 Ty UTM(1 4+ T) + T Ty UTMVE (1 4 1y))

I —
N 32.5!\11 Ty WTMNELT (B.4)

This is the Fierz rearrangement formula in 10 dimensions. Let us choose ac(llo) = at(lo) =

—1in (B.1) and (B.2), then we have
Ty = —ClunCt. (B.5)

Now, since

'mnk =TunTx — 9velym + ol

(B.1) and (B.5) imply

FR/INK = CI‘MNKC—_1 .

Therefore, the second term in (B.4) is symmetric in ¢ and b
T Tang T = — T, C0° = BT vk T°.

As this term gets contracted by f%° in the trilinear term, it gives no contribution.
Finally since TMT'yI'ps = —8T'y and [LTMNELIT, — (0, we conclude that the trilinear

term is indeed zero.

B.2 Conventions

For the spinor representations of SO(3,1) we use notation along the lines of Wess and

Bagger [12],

ol =(1,0%

6-1 = (_l,ai)a

107



such that

~Téa _ _ _abab I
0% = —e?e?ay; .
We choose €12 = 1 and e*’e;, = —62. The dot distinguishes between the two spinor

representations, 1, and %, for which the SO(3,1) generators are
o =1ole’ - o'5T)

~IJ _ 1¢(=I_J =
bl =Z(aa—a

It is straightforward to see that with
W)=, () =y°,

we have, eg,

Pt = eaé%_
The following identities will be useful
0 = 26555, gibgled = _9eheh? aIa,-,acId- = —2€40€44
(Fo"ye = n7sk + 25774, (0157)} = n176b 4 2517
510758 = _jelIKLg, _ pIKgT L plUGK 4 JK Gl
tr (o7 oKL = _%(nIKnJL —pllyIK) 4 ;_'GIJKL. (B.6)
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Appendix C
The Vanishing Argument

In this appendix we want to discuss the solutions to egs. (4.10):
k = Fyy + 4i[B,;, BY,] =0
s = D*By; = 0.

Let first analyze the second equation. After squaring we get

[t(D*Buy = - [tB¥(D.D.BY)

_ / tr (B*DyDo B, + B[ D,, Dy BY)
- / tr ((DaB")(DsB¥) + Ry B BY; — iB*[Fy, BY))

= / tr (Do B’ + D" Byi — D" Byi)(DyB*) + 1R B*B,; — iB*[Fay, BY))

/ tr ((DsBai)® — 3(DioBuyp)* + 1R B%Boi — iB%[Fu, BY])  (C.1)
where we used the fact that in two dimensions, Ricci tensor takes a simple form
Rop = 39aR
and
[Dq, Dy)B® = R°,,, B +i[F,;, BY]
[Da, Dy)B* = Ry, B* + i[Fyy, B*]. (C.2)
Since By, is self-dual, we have B,; = By, = 0, hence
(DBy)(DEBY) = (DgB..)(D?B*)+ (DyBas)(DB)
= (DYBu:)(DwB") + (D” Baz)(Da B™)
= (D"B.)(DyB"). (C.3)
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Putting this back into (C.1) we get
/ tr (D Ba;) / tr ((DsBai)? + LR BBy —iB%(Fu, BY)).  (C.4)

Upon adding the squares of the sections k and s, we have

/ tr (L2 +3s%) = / tr { — 4[Bui, B, + 2iFo[B¥, B.*] + 2(Dy Bai)?
+ R B%B,; — 2zB‘”[Fab, B}
- / tr { — 4[Bai, B2 + 2(DyBai)? + R B“Ba;

the right hand side vanishes if and only if k = s = 0. However, for sphere (R > 0)
all terms on the RHS are positive definite so a solution to k¥ = s = 0 has necessarily

B% = (. This leaves us with the equation
Fop=0

this equation implies that the connection is locally a pure gauge A, = u~'d,u for some
SU(2) matrix u. However, as the transition functions for SU(2) bundles on sphere are
trivial, the connection can be written globally as a pure gauge and be gauged away.
Moreover, one can argue that this can be done continuously all over ¥. Thus we can set
A, = 0 everywhere.

More rigorously if {U,} is an open covering of ¥ by contractible sets and {V;} is an open
covering of S? by such sets, the sets U, x V; give an open cover of ¥ x S? by contractible

sets. On the intersection of two patches, the connection A now satisfies

-1 -1
Avi = 93ip; Apiaisi + Inis;49aisi,

or
dgaiﬁj + Aﬂjgoziﬁj = gaiﬂjAozi =0.

Since the S? component of the curvature is zero we have that (A,)a: = u_}d,uqi. Putting

this in the above equation yields
dq (Uaigaigivg) ) = 0.

Therefore goig; = uaigamjugjl does not depend on the coordinates of S2. This implies

that gaig;’s are a set of locally constant transition functions equivalent to guig; and for
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a fixed point on ¥ define a map from S* to SU(2). This map is trivial so Juia; belongs

to the conjugacy class of identity

Jaiaj = ﬁai?];jl = uaz’gaiaju;}

or (i Uai)aiaj(Fa; tiaj)” = 1. Now consider (§5; vai)9aipi(95; ug;) . This is a con-
stant matrix in the S? direction. Since gaig; = gaipigpip; it is equal to (g;}uai)gawi(ggf ugi) L,
and since gaig; = JoiajJajg; it s equal to (g;jluaj)gajﬁj(f]Ejluﬁj)“l. Thus it is in fact in-
dependent of the index ¢ and therefore defines a matrix §os depending only on & € Uyg
and satisfying the cocycle condition?.

Since the transition functions are independent of ¢, therefore (Ax)as; do not depend
on 7 index and A, can be gauged away.

It is now easy to see that the flatness condition, Fy, = 0, necessarily requires the

instanton number to be zero. The curvature locally takes the form
F=dA+ANA
therefore locally we can write
tr(FAF)=dtr(ANdA+2ANANA),

but since A, = 0, instanton number reads

1

1
k=-——/ tF/\F:———/ do tr(As A d
872 Juxs? ' 8712 Joxs? c tr(As AdoAs)

where the subindex C indicates differentiating with respect to the coordinates on S2.
Note that the integrand is still a local one. However, we showed that the transition
functions are independent of the local coordinates on S%. Therefore, for a fixed point
on X, Ay is globally defined on S2. This means that the integral over S% is a total
divergence and gives zero for the instanton number. In summary, we have learned that
if the bundle £ admits a flat connection in S? direction then it has to be trivial (for those
bundles that are classified only by instanton number) and k, the instanton number, is

Zero.

1The proof of this part was provided by Nicholas Buchdahl.
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Appendix D
Faddeev-Popov gauge fixing

In this appendix we want to show how the eq. (4.31) is obtained starting from (4.30).
To evaluate the path integral over gauge fields and ¢, following [55], we choose the so
called unitary gauge in which one rotates the lie algebra valued field ¢* to the Cartan

subalgebra by conjugation, i.e. we choose ¢4 = 0, where

¢ = ¢33+ P47y + $-7-.

This gauge can always be achieved at least locally, but there might be some topological
obstruction to impose it globally [55]. Implementing this gauge in the path integral
requires to introduce the Faddeev-Popov ghosts ¢ and antighosts ¢ together with a

bosonic auxiliary field b. These fields transform under a BRST operator § like

6¢:l: = :I:’L'Cj:(bg, 6¢3 = 07 6C:E = 0,
0cy = by, by =0. (Dl)

The Faddeev-Popov prescription consists of adding a BRST-trivial term

16(C-dy +C40-) = tb_¢y +ibrd +C 3 cy —Crgs

to the action in (4.30). It is now clear that the integration over b will impose the gauge

condition; ¢+ = 0. We have
tr (,ZSF == ¢3F3 = ¢3(dA3 -|- (A /\ A)g) == ¢3(dA3 -I- ’L\/iAl /\ A2) )

therefore, defining ¢ = ¢3, A = As and F = Fj3, the action in (4.30) turns into

1 7 € N _
szﬁé(%¢dA—¢AlAAz+g¢2)+/Edﬂ(c_¢c+—c+¢ c).
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Integration over Faddeev-Popov ghosts gives

[det ¢2]Q° (Zg)»

while over A; and Aj results in
-1/2

[det ¢2] Qi (g,

Using the Hodge decomposition theorem we can express the product of these two

determinants as

[det %] zro(s,)

[det ¢2]2{12(2g) .
Note that the reduced U(1) bundle is not necessarily trivial (see eq. (4.35)), so we write
the curvature as

F =2r(n+ J)w+ dA,

where w is the volume form (fzw = 1) and

1

is the first Chern class which characterizes the U(1) bundle. To gauge fix the residual
U(1) symmetry
A — A+ do,

we again appeal to the Faddeev-Popov prescription. We demand that a selected slice

be normal to the gauge orbit,

(day, AY =0,

which implies that dfA = 0. Imposing this gauge, the action is

1 . 1 €., 1 B
m/z (Z\/Q—Tl'(n + §)¢w + §¢ als W(qﬁlA + bd*x A+ ed * dc)) .
The kinetic term for A vanishes for A a harmonic one-form, i.e. when dA = 0 and

d'A = 0. Hence there is still a residual symmetry under

A—o A+~
b — b+ constant

¢ — ¢+ constant,

114



where ~ is a harmonic one-form. Integration over the zero modes of b and ¢ and over the
harmonic one-forms gives an unspecified constant factor that can be simply absorbed
in the normalization. Therefore we need only be concerned about the nonzero modes.

Dropping the harmonic part of A, it can be written globally and uniquely as
A = da + *df,

for some zero-forms « and 3. The action then looks like

L/E (i\/§W(n + %)(bw + §¢2 +

47?2

-\;—§(¢d*dﬂ+bd*da+éd*dc)),

and the measure is
DA = DaDp det [dd']q,. (D.2)

Note that > = (—1)? when acting on a p-form and df = — * dx. The integral over b
and o results in a determinant, det [ddT]ag, which cancels the jacobian in (D.2). Also

the integral over 3 gives a delta function
6(dd'¢) = det [dd']5] 6(¢). (D.3)

Notice that since we are integrating over nonzero modes the delta function on the right
hand side is a delta function on nonconstant ¢’s. The determinant in eq. (D.3) gets
cancelled against the determinant coming from the ghosts. At the end we are left with

a finite dimensional integral over constant ¢ fields

1
[det m3(1 — %qﬁ)] 2 [det ¢2] 0 dnk Y e
VA = d ! m H1 B 2) |
e, m] 7;/ ¢ [det ma(1 - %qp)]m det 7] 2 exp( iv2 = 327:-2)

Using the defenition of Euler characteristic of a Riemann surface x(X,) = 26° — b! =
2 — 2g, where b is the dimension of the H* i-th de Rham cohomology group, ¢ is the
genus of the Riemann surface 3, and since ¢ is now a constant, we can write the partition
function as

Z[e,m] = m¥eD T / dp $2-%9(1 — %&)g-l exp (—i\/i “T 1) _ & ) (D.4)

- 2
ne? T 327

which is the equation (4.31).
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