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Abstract

Since their introduction in 1988, topological field theories have attracted a great

deal of interest from both mathematicians and physicists. Mathematically they provide

alternative formulations for certain topological invariants such as Donaldson invariants.

Physically, topological field theories are important as they may be used to test different

characteristics of their corresponding physical theory. In this thesis twisted N : 2

and .l{ : 4 SYM theories in four and six dimensions are studied. We first provide the

general background for topological field theories which can be obtained by twisting.

A supersymmetric Yang-Mills theory is then constructed on a Calabi-Yau 3-fold by

dimensional reduction. It is shown that this theory is a cohomological field theory and

the corresponding path integral, in the weak coupling limit, localizes on the moduli

space of Donaldson-Uhlenbeck-Yau equations. We also construct a partially twisted

theory on a product six-manifold X x Y. When Y is supersymmetrically embedded in

a Calabi-Yau manifold IUI , it is algued how the moduli space on rvhich the path integral

localizes can be related to the mirror manifold of. M. We also study the trvisted N : 4

SYM theory on the product four-manifold Ð x ^92. We derive the effective theory in the

limit where ^S2 shrinks. The correlators of the cohomology classes of the BRST operator

are then computed in the mass deformed effective theory.
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Chapter 1

Introduction

Topological field theories (TFT) [1] have proven to be a useful tool in the investigation of

the nonperturbative characteristics of supersymmetric gauge theories such as ly' : 2 and

N : 4 supersymmetric theories. There is an interplay between certain supersymmetric

gauge theories ancl their corresponding topological versions: one can use topological

results on smooth manifolds to learn about the underlying physical theory; conversely,

one may use physical arguments to gain new insight into the topological structure of

the manifold on which the fields are defined.

As an example of the first, in [2] Witten has shown that lV : 2 supersymmetric Yang-

Mills (SYM) theoly cannot have a mass gap using some known facts about Donaldson

invariants of Kähler manifolds. Then, as an example of the second, he shows how one can

use certain nonperturbative facts about .lú : 1 SYM theory to compute the Donaldson

invariants of Kähler manifolds. In this way, all Donaldson invariants of Kähler four-

manifoldsl are beautifully determined.

Another example of the use of TFT to learn about a physical theory is found in

,ff :4 SYM theory. This theory has been conjectured to have an exact SL(2,2)

duality [3] providing a correspondence between the weak and strong coupling limits of

the same theory. Since this relation involves strong coupling, to test the conjecture one

needs quantities such as the partition function to be computed nonperturbatively. This

is a formidable task and one actually does not know how to proceed in this direction.

This is where topological field theory comes to provide an alternative approach to the

lHowever, there is a topological restriction on these Kähler manifolds that we will discuss later
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problem. Instead of the physical theory, one considers the corresponding topological

field theory obtained by a procedure called twisting (discussed in detail later). The

basic characteristics of the theory, such as SL(2,2) invariance, remain intact under

tlvisting, so one hopes to see the realization of this symmetry ìn the tlvisted model. In

[4] it has been shown horv, using known facts about the structure of the moduli space

of instantons and the associated Euler characteristic, the partition function of N : 4

twisted theory on some specific manifolds can be computecl. So, in this way, it has

become possible to make some exact and nonperturbative statements about the theory

and its self-duality properties.

From the mathematical point of view, TFT has provided a new formulation for ex-

pressing some typical topological invariants of manifolds in terms of the observables of

the theory. In the case of Donaldson theory, this reformulation has been very fruitful

since, as we mentioned above, one can use physical arguments in determining the in-

variants. N{ore importantly, an effective field theory description of Donaldson theory

has been discovered [5]. This effective theory has its orvn invariants, however, they en-

code all the subtle informations about the Donaldson invariants. Further, as might be

expected physically, in the effective theory calculations of the new invariants are much

easier.

Although it might seem that TFT have a rather ad hoc appearance in physics, they

natulally arise as the effective field theory of some solitonic states in string theory [6].

These solitonic states (D-branes) are generically extended curved objects which appear

upon compactifying the string theory on Calabi-Yau manifolds. Since these objects have

a curved lvorldvolume, and since they preserve part of the space-time supersymmetry,

the effective field theory living on the worldvolume which describes the low energy

excitations of the D-brane is forced to be a topological field theory. Therefore, from this

perspective, topological field theories are quite physical.

Let us discuss briefly the contents of this thesis. The introduction in chapter 2

contains a review of relevant literature. The remaining chapters contain our original

work. More details on these chapters follows, but let us just state first what the main

new results are.

o A cohomological field theory on Calabi-Yau threefolds is constructed.

o It is shown that this theory is indeed a balanced topological field theory.
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o We construct a partially twisted theory on product six-manifolds. In a particular

limit we determine the moduli space on which the path integral localizes'

o We derive the effective field theory of twisted N : 4 SYM theory on X x 52 in

the limit where ,S2 shrinks.

o This theory is then perturbed by a mass term for the hypermultiplet preserving

part of the supersymmetrY.

o we compute a set of correlation functions in this effective theory.

Finaily then, let us return to an outline of the thesis. The second chapter is devoted

to a review of topological field theory. The basic construction of TFT from super-

symmetric theories, the twisted Iú : 4 SYM, and the higher dimensional analogues of

Donaldson-Witten theory are the main topics which are reviewed in this chapter. Among

these different topological field theories, twisted N :2 SYM theory has the most basic

features of a topological field theory and plays a central role in understanding the others.

Therefore, in this chapter, \/e concentrate on this theory'

In the third chapter we study the analogue of Donaldson-Witten theory in six dimen-

sions. In trying to twist the six-dimensional theory, we face a limitation; the nonanoma-

lous part of the global symmetry is not large enough to allow us to twist the theory

on an arbitrary six-manifold. Thus we are limited to consider manifolds with restricted

holonomies such as Kähler or product manifolds. This is in sharp contrast with the

Donaldson-Witten theory in four dimensions where the theory can be defined on an ar-

bitrary four-manifold, resulting in a set of genuine topological invariants. We construct

a cohomological field theory on Calabi-Yau threefolds. This theory, in some respects,

parallels the Donaldson theory in four-dimension; it is a theory independent of metric

and coupling constant and its correlation functions are topological invariants. However,

unlike Donaldson theory, we are here limited to those metric deformations which ple-

serve the holonomy structure of the manifold. In analogy with Donaldson theory, we

also write down the cohomology classes of the BRST operator which have topological

correlators. Furthermore, \rye show that there is a balanced formulation of the theory in

the sense of [7]. As noted earlier, the cohomological field theories built on Calabi-Yau

manifolds are important as they naturally arise in the low energy description of D-

branes. In the present case, they describe the low energy physics of euclidean D5-branes
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wrapping around the whole threefold. Therefore, in studying the various properties of

such branes our cohomological theory is valuable.

A partially twisted theory on product six-manifolds is also constructed in chapter

three. This theory is useful in studying the D-branes wrapping around a special La-

grangian submanifold of the Calabi-Yau manifold. We study a particular limit of the

theory and determine the moduli space on which the path integral localizes.

Motivated by the work of Vafa and Witten [4] to examine the duality properties of

N : 4 theory using topological methods, in chapter four we stucly the twisted lr/ : 4

theory on the manifold Ð x ,S2. We consider the limit where ,92 shrinks to zero size.

The effective theory in this limit is derived. Following [4], we will see that the partition
function of the reduced theory in fa,ct c.omputes the Euler characteristic of the moduli
space of flat connections over X. Perturbing by a mass term allows us to compute

a set of correlation functions in this effective theory. Although perturbing by mass

introduces some new fixed points to the original moduli space, it is possible to isolate

their contributions to the path integral. We analyze the contribution of the points where

a component of the hypermultiplet becomes massless and in particular discuss that these

points do not contribute in the case of a nontrivial SO(3) bundle. Using this fact we

are able to write down an expiicit result for the correlation functions.

In the course of the present investigations many fascinating probiems have arisen.

Some of them have been incorporated in this thesis. Some remain, and seem to be

interesting. We briefly summarizelhe latter at the end of the chapters.
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Chapter 2

Twisted Supersymmetric

Yang-Mills theories

2.L Introduction

There are basically two different ways to construct a topological field theory. One is a

mathematical construction starting from the moduli space of some interesting equations'

the other starts from a supersymmetric physical theory in flat space and tries to extend

it to a general manifold preserving part of the supersymmetry. In this thesis we are

interested in the latter, and this chapter will review the status of the field. However,

for completeness, let us briefly outline the basics of the first approach, known as the

Mathai-Quillen approach [8, 9, 10] which constructs invariants of a vector bundle V ovet

some manifold M. We will not give a mathematical discussion, but rather a physical

motivation [4].

Introduce coordinates ui on M and a basis of sections s of. V. The interesting

equations above are incorporated as s : 0. The idea is to construct quantities which

are invariant under small changes in the data ui and s. A small change in ui, 6ui, carr

be identified with a one-form on M. So, as is familiar from supersymmetric quantum

mechanics, we write

6u' : ietþi

6rþi:o,

where e is an anticommuting parameter. As 62 : 0, this immediately reminds us of
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the BRST implementation of gauge fixing, where the ry'i's are identified with the ghosts.

Indeed, let us follow this line to the resulting invariants.

Introduce antighosts Xo, which are also sections of V,in order to have a nondegen-

erate action for the ghosts. The auxiliary fields, H", then naturally enter the formalism

to close the BRST algebra, with the basic structure 6¡o : eUo , 6H" : 0. Since we

have introduced explicit coordinates and a basis of sections, we need a curvature A¿ on

I/ to covariantize the differential structure á. These transformations are then modified

to

6x": eH" -ietþiAo"uyb

6H" : ieEiAo"uTb - t|rÞorÞj rof ùb ,

where F¿¡ is the curvature of A¿. Let us initially assume that the equations so : 0 have

only isolated zeros. The invariants we are interested in have the basic form

ó (s") det
0s"

aõ
essentially a sign-weighted counting of the number of solutions to the equations of in-

terest. This, however, can be cast into the path integral representation using the fields

introduced above; i.e.,

I ,1r",x,,úil¿-*(-z;n""'t2x"es14'i¡ , Q.l)

where ì is an arbitrary real parameter. In fact, the "action" in (2.1) can be written as

a BRST commutator,

S:óü :6(*x"",),

ensuring, as rrve will see presently, that nothing depends on the data entering into ü.
For generalizing to the cases where the space of solutions form a manifold we need to

smooth out the above action to a nondegenerate one. This requires that we introduce a

metric on the fibers of I/ to raise or lower the indices. Thus, a more suitable choice for

üis
u : 

t';e"Ho | 2iyoso) ,

so that the action becomes

s : * Ilr, -2iHoso+zr,#rþo- Fojoo,þ.,Þ,x"xu].

I
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This smooths the delta-function to a gaussian weight.

It is now easy to see that the theory defined by the above action is topological, in

the sense that it is formally independent of À, s and the metric. This is so because

the variation of the partition function with respect to any of these data is a BRST

commutator. For instance, if we vary the partition functiot Z with respect to À we have

62 
- 1óiú).6)\/

However, since the measure and the action are BRST invariant, this is zero by

0 : I Dlxle-s(x)ü/(x) - I rl*'le-s(x')rl(x') : I Dlxle-s(x)au .

Here the fields are represented collectively by X.

Since the theory is formally independent of s and ), we may compute the parti-

tion function using different and arbitrary values for these data. If we set s : 0, the

Lagrangian simplifies and what we get for the partition function is indeed the usual

integral representation for the Euier characteristic of the bundle V

x(v): @;r-. lYrfr^ F 
^.. ^ 

F) ,

where d is the rank of the bundle V and the Pfaffian of a skew-symmetric matrix 8,,

Pf(B), is defined by

det B : pf(B)'.

On the other hand, upon integrating out the auxiliary fields 1/" and taking the limit

À ---+ 0, the path integral localizes on the moduli space of solutions to the equations

so : 0. Let us for simplicity assume that these equations have only isolated zeroes.

Therefore in computing the partition function, we can expand the action around the

solutions of these equations keeping only the quadratic terms. Performing the gaussian

path integral then results in identical determinants for bosons and fermions (ghosts ancl

antighosts) which up to a sign cancel each other. The independence of the theory from

the parameters s and À thus provides a "proof" of the well-known fact that we may

compute, e.g., the Euler class of the bundle V by counting the zeroes of a section s

weighted by the appropriate signs.

As we saw above, one of the basic constituents of a topological field theory is the

existence of a suitable fermionic symmetry. Since fermionic symmetries arise naturally
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in supersymmetric theories, \4¡e may ask if a topological field theory can be realized

in that context. Clearly there is no obstruction to extending the Lagrangian of a flat

space supersymmetric theory to an arbitrary spin four-manifold 1. One just replaces the

ordinary derivatives by the covariant ones. However, except on spin manifolds which

admit covariantly constant spinors, the Lagrangian will not be supersymmetric. This can

be seen as follows. Let a denote the supersymmetry parameter of the supersymmetry

transformations, which have the general form

áÕ : aiú

6ü:VaO.

On euclidean spa,ce, since the action is supersymmetric, the variation of the action under

the supersymmetry transformations is by the Noether construction proportional to

lfla*a, (2.2)

where JM is the supersymmetry current. Upon extending the Lagrangian to a curved

spin manifold by minimal coupling, the action varies to

| flv *a, (2.3)

wlriclr is an obvious generalization of (2.2) (V¡a is the covariant derivative on the man-

ifold), up to terms which are proportional to the Riemann tensor of the manifold. The

Riemann tensor may appeat, because one usually needs to commute the covariant deriva-

tives. This term does not include the covariant derivatives of o (the fermionic kinetic

term is first order in derivative), and hence it cannot cancel the term in (2.3). Note

that indeed if they could cancel each other then one would not recover the result for flat

space by setting the Christoffel symbols to zero. Thus the necessary condition fbr the

action to be supersymmetric is a to be covariantly constant. Although this argument

is more heuristic, the result is very general and we will see an explicit example of this

in section 3.4. The above constraint enforces us to consider only those spin manifolcls

which admit at least one globally defined spinor which is covariantly constant. Being

covariantly constant, the spinor is in fact a scalar under the holonomy group of the

manifold.
lAs long as one can define ihe SYM theory in an arbitrary dimension all these constructions go

through for that particular dimension.
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A more general procedure which allows part of the fermionic symmetry to survive,

is called twisting lll. Twisting basically consists of choosing a new embedding of the

holonomy group inside the whole global symmetry (space-time symmetry and the 7?-

symmetry) of the model such that at least one component of the supercharge, Q, trans-

forms as a scalar. As it is a scalar, its global existence on an arbitrary manifold is

guaranteed, and obviously a constant scalar is covariantly constant. We note that Q2

is a scalar bosonic operator. Therefore, if there is no any scalar operator in the super-

symmetry algebra, Q2 must vanish (on-shell and up to a gauge transformation). Hence,

on such manifolds, Q is in fact a BRST-like symmetry as expected. Moreover, the

newly defined action turns out to be exact with respect to this scalar supercharge; i.e',

S : {Q,7} for some gauge invariant V. Thus the energy-momentum tensor of the

twisted theory, which is the generator of the newly defined space-time symmetry group'

is also BRST exact

T,,: {Q,6V l6gP'} .

Note, in particular, that, since the action is Q-exact, the supersymmetry follows imme-

diately as Q squares to zero on Sauge invariant quantities.

At this point we may formally make two basic observations. Firstly, if we vary the

partition function

z: IDlxlexp(-ått"l)
with respect to coupling constant e, we obtain

6Z
6" - (s) : ({8,...}) .

Assuming that supersymmetry is not spontaneously broken - i."., there is at least one

vacuum annihilated bV Q - the above equation implies 6Zl6e : 0. The second ob-

servation is that the argument can be repeated to show lhat Z is also independent of

the metric. These are the key properties of the model which will allow us to consider

a convenient limit of the coupling or metric in which calculations (mainly perturbative

ones around the critical points of the action) become easy oI possible'

The organization of this chapter is as follows. We start our discussion with 1ú : 2

SYM theory on flat space. We study a variety of properties of the theory such as

the global symmetries and the mass gap and compare them to those of Iy' : 1 SYM

theory. Next we define the twisting of the theory. The importance of zero modes of
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diffelent fields present in the theory is then argued, and the conditions for their absence

is presented. The discussion of Iy' : 2 twisted theory ends with an overview of the low

energy description of Donaldson theory.

N : 4 SYM theory is the next subject that we review. As before, the physical

theory and its global symmetries are first discussed. The different possible twistings are

then presented. We discuss the relevant equations which appear in the weak coupling

limit for a particular twisting of the theory. The analogue of Donaldson theory in higher

dimensions is the last subject that we review.

2.2 ¡f - 2 SYM theory and its twisting

In [1] Witten introduced a reformulation of Donaldson theory in terms of twisted N :2
SYM theory. He showed how different Donaldson invariants can be identified with some

observables of the twisted theory. In this section we begin with a study of the physical

theory and its symmetries. The twisted theory and the topologicai observables are then

discussed. At the end we concentrate on the Kähler case.

2.2.L Physical l/ - 2 SYM theory

In terms of ly' : 1 supersymmetric multiplets, the ,^/ : 2 SYM theory consists of a
gauge multiplet A: (Ar,,À), for A, an SU(2) gauge field and ) a chiral spinor, and a

clriral multiplet Q: (rþ,/) where t/ is again a chiral spinor and / a complex scalar. ,4

and Õ are both in the adjoint representation of the gauge group. The minimal action

fol the pure - i.e., without matter multiplet (or hypermultiplet) - ¡f - 2 SYM theory

is [12]

s : + | on*u l-Ir*Ft", - i)-oo;DrÀ.0 - D,6Dr6

- t1rl.,óf 
- æör¿ilÀoi,)*il 

+ ftórutlr,I'rl] , e.4)

where we have grouped lo and $, into À*i, for i : lr2. The action is invariant under

N :2 supersymmetric transformations which read [12]

6 A, - _iÀ".(o r).à('i + i(à¿(o r).aÀ"i

6^; : ("r,)! €é Fr, + i€;ló, ól + ¿r/z(op),aD rs eii(ã,
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óÀái : (o'\ ! € BoF r, - i€a¡ló, ó) - ¿J2("') 
"a 

D r$ rni €"i

6S:1[2("i)''¡

o$:,[z("n\; '

The corresponding supercharges to {o¿ and (¿c wili be denoted by Q"¿ and Q¿t re-

spectively. It is clear from the T,¿g¡¿ngian that the model has a global symmetry

SU(z)r x U(l)n. À^¡ (Q*ò transform as a doublet of SU(2)r, and under U(1)7¿ the

fields transform as

Àoi + ei1 \o¿

Ó -t e2i'' 6

with ,4., being invariant.

The U(1)æ symmetry is a chiral symmetry and thus is quantum mechanically violated

by the familiar Adler-Betl-Jackiw anomaly. From the instanton calculation point of view

\Me can easily see how this symmetry is broken. Recall that in the k-instanton field the

Dirac equation has 4k chiral zero modes with no anti-chiral solutions, so under a U (7)n

rotation the measure in the path integral transforms as (the measure for non-zero modes

remains invariant as the spectrum is symmetric for those modes)

D[À"¿] -- 
"-i8k'v'P[À"¿] 

.

Notice that as lo¿ is fermionic, the measure transforms with the inverse Jacobian. More-

over, the result is invariant under Zsk (with group elements 
"i9',, 

with þn:Zntf 8k,

n: I,2,,...,8k). Thus instantons explicitly break U(I)" to Zs, the smailest symmetry

left. Notice that SU(z)r rotates À and tþ inlo each other, and since they have the same

zero mode spectrum the measure remains invariant under this global symmetry. In fact,

the .9tl(2)¡ part of the global symmetry is believed to be an exact symmetry of the

theory [13]. Hence the nonanomalous part of the giobal symmetry,G, on flat euclidean

space [14, 1õ] is a direct product of the space-time symmetry and the internal one,

G: Su(2)7x SU(z)nx SU(z)r. Q.5)

2.2.2 The twisted theorY

The two supercharges Qo¿ and Qj transform under the global symmetry group G as

(2,t,2) and (1,2,2) respectively, where 2 and I refer to the dimension of the repre-
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sentations. Twisting is basically defined as follows. Instead of a trivial embedding of

the space-time symmetry group 1( inside the whole global symmetry, one may choose

another embedding: take SU(2)'R to be a diagonal subgroup of SUQ)n and Su(2)r
and declare I{t : SU(2)L x SU(2)'R to be the space-time symmetry. Under Kt, the

supercharges now transform as

Qoi - (2,,I,2) --+ (2,2)

Qa¿ - (1,,2,2) - (1,3) O (1,1) .

Thus we do obtain a fermionic superchar1e, Q, which transforms as a scalar under the

new space-time symmetry. Note that, as argued in the introduction, Q2, on-shell and

up to a gauge transformation, vanishcs. Therefore, Q is in fact a BRST-like scalar

supercharge. Being a scalar, Q is well defined on an arbitrary smooth four-manifold.

Therefore twisting will leave us with just one BRST-like supercharge and a Lagrangian

which is invariant under it.

Moreover, it is possible to write the action, up to a topological term, in a form

which is BRST exact. This latter property is the most important characteristic of a

topological field theory, and as we saw earlier all basic properties of a TF T - such as

metr-ic independence - follow from it. As 1l' is now the new space-time symmetry of

the theory, we should decompose the field space into irreducible representations of K'
and rewrite the Lagrangian in terms of these new fields. Let us calltl the corresponding

U 0)" (ghost symmetry) charge in the twisted theory. The field content of the twisted

theory consists of a gauge freId A, a (grassmann) odd field (ghost) ,þr, to which gauge

fieldtransforms, with U:l and abosonicfield /with U:2. Besidesthese, there are

also the Grassmann odd fields (antighosts) X* and 7 with IJ : -I and a bosonic field

/ with U : -2. This gives the twisted action of Iy' : 2 SYM theory [1]

s : I d,arr/jtr lIr*rr, + +óDt"Dró - irtDrrþ, * iDrtþ, xW
i
äölxr,,x"l-tólrþr,,rþ'l-îólry,nl-àlO,Ol'1 . Q.6)

The part of supersymmetry transformations generated by the scalar supercharge Q
(Q : ,ãoQ^;) reads

64, - ietþ, 6ó : 0 6ó:2ien 
e.7\

6q : lelþ,$] 6úp: -rDrö 6y*, : eF[,,, \-. '/
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where F+ - å(tt + *F) and * is the Hodge duality operation. As noted eariier, although

Q-invariant,.C cannot yet be written as {8,...}. To express L as a Q-trivial object we

need to add a topological term

t :î l , np:I Iaarr,,(*F)u"
to the action. Note +Fp' - f,et'vo"Foo. kis the instanton number of the S[l(2)-bundle

E on M, which characterizes the topological type of the bundle. Being a topological

invariant and indeed a number in a class, k is invariant under Q and its addition to the

action does not disturb the equations of motion.

Since the theory is independent of the coupling we wouid like to consider the limit

in which e goes to zero (notice that since the physical theory is asymptotically free this

limit corresponds to high energies, or probing short distances). In this limit, as is clear

from the bosonic part of the action, the path integral localizes around the solutions of

the following equations

Fl,:o
DrÓ:o
ló,öl = 0. (2.8)

The first equation is the instanton equation and will be our main concern in the remain-

der of this section. The fact that the main contribution to the path integral comes from

the zeros of the equations in (2.8) can also be explained by an argument due to Witten

[16] which we briefly recall in appendix A.

2.2.3 The topological observables of the twisted theory

Let M be the moduli space of solutions to the instanton equation, i.e.

M-{AreAlFl":0}lÇ,
where I is the group of gauge transformations and Athe space of all gauge connections.

Suppose A is an instanton and M has the structure of a manifold. The tangent space to

M at A is spanned by the infinitesimal variations óA such that A * 6A is an instanton,

modulo pure gauge transformations. A first variation of the instanton equation gives

the equation for ó4,

0: D(6A) ¡ *D(6A) , (2.s)

13



where D : d + [A, ]. In components this reads

0: Dp6A, - D,6Ap* ewooDPîA (2.10)

Demanding that áA is orthogonal to an infinitesimal gauge transformation of ,4, gives

g : \Da,6A) + 0: Dp6AP . (2.11)

We note that the equations (2.10) and (2.11) are exactly the equations for the zeto

rrrodes of Iþp. Thus T/, zero modes are in fact tangent to the moduli space of M at say

A. The reai dimension of the moduli space M is hence generically equal to the number

of nontrivi aI tþ zeto modes.

As is well known the number of tþ zero modes can be related to the index of an

eliiptic complex. Consider the following elliptic complex

0 -5 C¿o(s) 4 c¿t(s) o*3 o2,+(s) -f'0 , (2.t2)

where as above D : d, + lA, ], p+ is the projector to the self-dual part and O"(g)

is the space of all Lie-algebra valued n-forms. i is the inclusion map and obviously

kerrp - f)''*(g). The index of this elliptic complex is defined by

t

ind D : D(-1)odim fri(0, ,) ,
i=O

where

Ho(Q,D) =kerD¿f imD¡-1 .

In particular, note that the tþ zero modes belong to the first cohomology group of this

complex f/t(ft,D). To define d,(M),the uirtual dimension of M, it is more convenient

to consider the eiliptic complex to which the linearized equations (2.10) and (2.11) fit

Dr Ø p+ D, f^¿t(g) ----- Oo(e) O ft',*(g) .

Now d(/zf ) is defined to be the index of this complex [17, 18],

d,(M) : dim {ker (rt O p+ D) - coker (rt e p+ D)}

: dimker (rt e p+ D)lç¿' - dimkerDleo - dimkerp* Drln,,*

I4



as cakerDt - kerD. This is indeed minus the index of the elliptic complex ]n (2.L2).

Therefore the virtual dimension of M is equal to the number of. tþ zerc modes minus

the number of y¡", and 17 zero modes. Specializingto the SU(z) case, this becomes [17]

d,(M): 8k - |f, * "¡ . (2.13)

Here k is the instanton number, ¡ and o are the Euler characteristic and signature of

the manifold X. In the case that there are no r7 and Xttu zero modes ( an example of

which will be discussed below for SU(2) bundles), the real dimension of M is given by

d(M) in (2.13).

We notice that the measure is invariant under U(1)n if there are no fermioniczero

modes. However, in the presence of fermionic zero modes, since under U(I)n tþ, ftans-

forms with an opposite sign with respect to 17 and Xp^ the measure for the zero mocles

transforms with a weight, AU, equal to the number ol,rþ zero modes minus the number

of y¡", and 17 zero modes. Thus, from the above, A[/, the net violation of t/(i)7¿ sym-

metry by the instantons at the quantum level, is indeed equal to the virtual dimension

of M.
Let us assume that there are no y¡ or l¡tv zero modes such that the dimension of

moduli space is given l>y d(M) and see what sort of topological observables can be

computed . If d(M) is zero, meaning that basically there are no /, ghost zero modes, the

moduli space is either empty (in which case there are no nontrivial invariants) or consists

of a set of discrete solutions. The measure of the path integral transforms invariantly

under U(I)" and we may compute the partition f:ulirclion Z. Later in this section we

will argue that in this case it is sufficient, in expanding around one isolated instanton,

to keep only the quadratic terms in the action. Since the theory is supersymmetric

there is a balance between the bosonic and fermionic degrees of freedom. Therefore,

in performing the gaussian integral over the bosonic and fermionic fields we get two

identical determinants which up to a sign exactly cancel each other [1]. Having assigned

an arbitrary sign for one isolated solution, all other signs associated to the determinants

of the remaining instantons can be consistently fixed [1]. Hence the partition function

can be written as

z : Ð(-r)"'

where i runs over the number of instantons and n¿ indicates the associated sign to the
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ith instanton.

In the case d(M) ) 0, because of the fermionic zero modes, the partition function

vanishes. Therefore, we need to insert some gauge invariant operators to soak up the

zero modes. However, if we are looking for quantities that are metric independent and

therefore topological, then those gauge invariant operators have to be metric indepen-

dent and BRST closed. For then

#,o, : p#) : (o{e,ffin: ({0, offin : o.

On the other hand, since the vacuum is annihilated by Q by assumption, insertion of

trivial operators (BRST exact) is trivial. Hence we are led to look for cohomology classes

of the operator Q. To construct thcsc classcs, it sufices just to look at the following

transformations

6 Ar : ¿rr¡,,

6tþp : -rD ró

6Ó:o' (2.t4)

Since / is closed and no field directly transforms to it, we infer that a gauge invariant

operator like tr ó(")' is actually a nontrivial cohomology class. Next iet us differentiate

it with respect to r (with 6 : -i{Q,,. . .})

a

ffir, ó(*)' :2i{Q,t, (órþr)} .

This implies,first that the correlation function (ft ó(r)'z) is r-independent. If {7¿} is a

basis for the first-homology class of the manifold, then clearly

zi{e, 1,,,t'@Ð} 
: t' aqt, ó(*)') : o.

Thus just by differentiating we have constructed another class. Differentiating once

more leads to

dtt (þg) : {Q,r' (i,l 
^ 

ú - óF)} .

This equation implies that the quantity

tf.,,u (ó,Ðl
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depends only on the homology class of 'lo. For example if 'y¿ is a boundarY) 'Y¡ - ÔE¿

then

(fur,r, (ó,þ)) : ({e, lr,r, ti+ nú - öF)}) :0.

This procedure can be repeated to build up the cohomology classes of Q.

A natural question which arises is whether these are the oniy cohomology classes of

Q that one can construct. This question, to the best of our knowledge, has not been

clearly addressed in the literature. Thus, in the following we briefly sketch the related

existing views. First, to close the BRST transformations (2.7) off-shell, let us introduce

a self-dual auxiliary freId HP' into the transformation laws via

6xpr: eH¡'r, 6Hrr:0.

Q2 is now zero up to a gauge transformation. Namely, the cohomology of Q only makes

sense on the subspace of gauge invariant polynomials. This is a difficult constraint to

implement.

To relax this condition, we may introduce the secondary ghost c into the BRST

transformations. Then c (and the corresponding anti-ghost õ) enter the Lagrangian in

the usual Faddeev-Popov gauge fixing component to completely fix the gauge [19]. We

can then define the cohomology of the new BRST charge Q' on the space of arbitrary

polynomials of fi.elds [19, 20]. However, by a field redefinition, it is easy to see that this

cohomology is trivial. On the other hand, it was further argued [t0] ttrat this triviality

cannot happen globally. Due to the Gribov problem there are points where the Faddeev-

Popov determinant vanishes and thus the secondary ghosts c are not well defined. Ai

most we can define the Faddeev-Popov ghosts locally. Globally, therefore, one does get

nontrivial cohomology ciasses. These classes are then derived by descent equations from

the second (for the gauge group SU(2)) Chern class of a generalized bundle with the

curvature F: F +ú+ /. After deriving the cohomology of Q', we must project this

cohomology to the cohomology of Q by restricting to the gauge invariant polynomiais

which do not include c. This, however, does not seem to be a complete answer to the

question. Perhaps, to answer the question, one should phrase the problem algebraically

and apply the techniques of homological algebra.

Having determined the cohomology classes of Q, vr'e can now start looking at their

vacuum expectation values. We saw that the dimension of the moduli space of instantons
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"l\l equals the net violation of t/(1)æ symmetry by instantons. Also note that the

cohomology classes of Q (except ï F A F which does not concern us since it is just a

number) all carry a positive U(1)" charge. Therefore to saturate the fermionic zero

modes we should insert an operator O with the t/(1)a charge equal to d(M).

2.2.4 Reducible connections

So far, we have formally shown that the partition function and the correlators of the

cohomology classes of the operator Q are independent of the metric. However, to show

that this is really the case, two conditions on the space "Ázf must hold. First of all,

the space M has to be compact [1]. Although this is not always the case, M can lse

compactified if some favourable conditions hold [21]. Second and more important is

the problem of reducible connections. When there are reducible connections the space

M is not a smooth manifold and has some singularities. As we will see later, all the

statements about the topological invariance of the observables finally come down to

the intersection theory on M, therefore, for having a topological theory it is crucial to

have a smooth manifold M. Let us first discuss the reducible connections and then the

conditions under which they do not appear.

A connection A is called reducible if there exists an element g of the gauge group

which leaves A invariant, i.e.

A --+ g-1Ag I g-rdg : A.

Under an infinitesimal gauge transformation by a parameter S, A, transforms as

Ar-Aþ+Dpó.

Therefore the connection A, remains invariant depending upon whether the equation

Dró : () (2.15)

has nontrivial solutions. For SU(2) gauge group we can see that reducible connections

correspond to the abelian instantons. If / is not identically zerc then, being covariantly

constant, it never vanishes and, in particular, can be diagonalized globally such that the

bundle -E splits as a sum of line bundles [18]. Now equation (2.15) reduces to

dót:0, [Ar,ó]:0
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the second equation implies that A, is in the same sub-algebra as /, in particular, F¡",

looks like

F{',Ft*
I:-
2

10
0-1

where F{' is the t/(1) curvature. Now the instanton equation turns into an equation

for [/(1) instantons

4+ : o. (2.16)

Note that dF3 - 0 by the Bianchi identity. Since Fr : -(+-F3) by the above equation,

it follows that dtFs : 0. Thus F3 is the representative of a ciass in the second de

Rham cohomology group, Fs e H2(X, R). However, the cocycle condition on transition

functions puts an extra condition on the curvature of the bundle (the Dirac quantization

law)

I Fr: zn,
JD

for some integer n. X is any nontrivial two-cycle in X. Thus in fact Fg e H2(X,Z).

On the other hand, as the self-dual part of F3 is zero by "q. (2.16), we have also

Fs e H?(X,R). Altogether we conclude that .Fs lies in the intersection of the two

cohomology groups:

Fs e H2(X,Z)n //3(X, R) .

Let b[ denote the dimension of the space of self-dual harmonic two-forms on X. If

bT :0, then HZ(X,R) : H?(X,,R). So any harmonic two-form which satisfies the

Dirac quantization law is an instanton (a solution to (2.16)). On the other hand, one

can argue that on four manifolds with bl : 1, there is a wall in the space of one-

parameter metrics on which abelian instantons appear 12L,22]'

Therefore to get rid of the reducible connections, in the case that the gauge group

is SU(2) 2, w€ must restrict our attention to those manifolds with ó2F > 1. Having

this condition guarantees that there are no abelian instantons (or equivalently there

are no reducible connections). On Kähler manifolds, however, this condition has more

implications as \/e will see in the next part.

2For other gauge groups like .9Il(3) one needs further restrictions on the bundle E for not having

reducible connections
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2.2.5 Existence of zero modes on Kähler manifolds

In this part we will discuss the conditions for not having Xpu zeto modes. We will see

that on Kähler manifolds with ó!F ) 1, in the field of instantons, there are neither rl nor

Xtu zero modes. This, in particular, implies that the formal dimension of M is equal to

its leal dimension. Then we discuss the Feynman diagrams which survive in the scaling

limit of e --+ 0.

Let us first discuss the zero modes of y¡", field in this setting. The equations are

FI,: o

DPyr, :0. (2.r7)

On a complex four-manifold, any two-form can be decomposed into components which

ate a complex (2,0)-form, a (0,2)-form and a (1, 1) form. The * operator maps an

(r, s)-form to an (2 - s,,2- r)-form. In fact, rvr/e can see that any (2,0)-form ((0,2)-form)

gets mapped to itself under the x operation. Therefore, we can decompose a self-dual

two-form X as

X - XQ,o) * y(o,z) + ¡(r,r)+,

where * indicates the self-dual part. On a Kähler manifold, however, the (1,1) part of

a self-dual two-form is proportional to the Kähler form k. This is easy to see. Let us

take the local complex coordinate system of zo , zd. In this local coordinate, the Kähler

form simply takes the form koþ: igop and we can write

eotitp: Jg(k"Bk.rp - k.røk,p) ,

therefore, X(l'1)+ can be written as

1_
*e,o.roX', 

: (koplclo - ktþk.p)X'Þ : k,þ(k-,oX'Þ) + Xp,. (2.18)

Thus, on a Kähler manifold, as k nowhere vanishes globally we can write

where * = lk.rpX?Þ is a scalar of ghost number -1. Further, \/e learn that if X(t't)+ ¡t

closed, f must be a constant as the Kähler form is closed. This implies that the only

Xoþ:

x(1 
1)+ - kfl.,
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nontrivial cohomology class of 11(1'1)*(X,R) is the Kähler form. Hence, on a Kähler

manifold we have

ó(1'1)+ - 1, (2,19)

where 6(t,1)+ is the dimension of the group g(1'1)+(X, R).

The self-dual part of F can be decomposed similarly. Upon employing the complex

coordinate system þ: (a,,d), the eqs. (2.17) read

Foþ : Fa-B :0 , lc"B FoP : 0

DoXop * lc6BD'rt: g,

Squaring the last equation we get (k.B : ig,p)

o : I tr {lD"y,Bl2 t lkrBD"ñ"|' - iDoyo7 DBrt * iDaXdo npX\ . Q.20)Jr
However, using the fact lhat F^B: 0, rve see that

I t {n.x"BDBx) : -t I t {x"olD,,DBlrt\ : 0,

and thus eq. (2.20) implies

D"yoB: Q (2.2r)

(2.22)

Since bl > I there are no abelian instantons, so eq. (2.22) above implies ! must be

zero. The equation (2.21) and the equation F+ - 0 are invariant under aU(I) phase

transformation

Xoþ + "ioxop Q.23)

Ar--+ Ar. (2.24)

Thus we have to only consider those solutions which are invariant under (2.23), up to a

gauge transformation; i.e.,

"io x.,p : g(x.B)g-r

A: gAg-t + igdg-t " (2.25)

However, the second equation implies that the gauge connection (which in turn is an

instanton by the first equation in (2.17)) is reducible - contradicting the fact that on

2L
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manifolds with ó!F ) 1 there are no abelian instantons. Therefore X.,g must be zero. We

conclude that, at least on Kähler manifolds with ó!F ) 1, there are no Xp, zecro modes.

The only fermionic zero modes are those ol lþp which are tangent to M.

The case d(M) : g

As was mentioned the moduli space in this case (if not empty) consists of a discrete

set of instanton solutions. The only topological invariant that can be computed is the

paltition function. In the following we will see that, in the expansion around a single

instanton, we need only to keep the quadratic terms in the Lagrangian. The other

interaction terms (not present in the kinetic terms) can be ignored, since their contribu-

tions die as e --+ 0. For instance, rvr/e can pull down the interactions ólxp,, ¡ø,] together

with þltþr,tþpl and contract the different fields by replacing them by their corresponding

propagators (notice that there are no zero modes). Each propagator gives a factor of

e2 and since we get If e2 for each vertex, the result scales as e2 - contradicting the fact

that theory is coupling constant independent - thus it must vanish. Therefore all one

has to consider are the quadratic terms (expanded around an instanton), which - upon

performing the path integral - cancel each other up to a sign. The correlation functions

of any other BRST cohomology class vanish simply because there is no ghost number

anomaly in this case. So if d(M) : 0, the only topological invariant is the partition

function which can be computed by expanding the Lagrangian around instantons and

keeping only the quadratic terms.

The case d(JVl) > 0

In this case we have fermionic, tþr, zero modes. Since these cannot be saturated

by the interaction terms already present in the action, the partition function vanishes.

Therefore, as mentioned earlier, to saturate the fermionic zero modes we need to insert

an operator (? with fhe U(L)v charge equal to d(M).
As an example, let us assume that the dimension of the moduli space is two and try

to soak up the zero modes by the interaction terms in the Lagrangian. If we pull down

tlre term ó[rþrrrþ'l to soak up the two zero modes, to get a nonzero value, we need also

to pull down either ó[xr,,y,'] tetm or óîq,r7] to replace óó by its propagator. But,
there is no propagator for the Tln þr Xp,Xp') system, nor do these have zero modes to
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be soaked up. Thus the zero modes cannot be absorbed by the interaction terms and

the partition function vanishes. On the other hand, we do get a nonvanishing quantity

if we instead absorb the two zero modes by inserting the operator /o. Pulling down

the term ólrþr,$Pl, and replacing the $þ by its propagator, we can see that this term is

both coupling constant independent and invariant under metric scaling. Moreover the

two zero modes are absorbed by the two fermions.

2.2.6 Integrating out nonzero modes and the integral over M

Putting the condition ól- ) 1 on the manifold guarantees that there are no reducible

connections and thus the kinetic term for the / field is nondegenerate. Therefore, in

expanding around instantons and keeping just the quadratic terms, the path integral

over / can be done. In this part, we explain this idea by giving an example. Later more

general cases are studied,

To begin with, we proceed to calculate the vacuum expectation value (vev) of the

operator /" (index ø is the Lie-algebra index). Further, as before, we assume that the

dimension of moduli space is 2; i.e., there are only two fermionic zeto modes.

First introduce external sources for every fermionic and bosonic field. Take a solution

to the fixed point equations (2.8) and expand the Lagrangian around this solution up

to quadratic order. Quadratic order would be sufficient since we note that theory is

coupling independent and we may go to an arbitrary weak coupling limit. After this,

the standard techniques of perturbative quantum field theory can be applied; we pull out

the interaction terms from the path integral by simply replacing fields by the derivatives

with respect to the corresponding source and then do the gaussian path integral over

nonzero modes. This leaves us with an expression which looks like

\ó(r)) : ffi#14."o{v(6l6J,tldrù} I or"- [(tt;1t+noiln*'t'on) , Q.26)

where J and q are sources for the bosonic and fermionic fields respectively and the

subscript 0 stands for zeromodes. dy' is the measure fot zero modes

dp: dotda2dtþ1dtþ2,

where (trr,cl2 are the bosonic instanton moduli parameters, while T/1 and tþ2 are the

fermionic ones. Now because of supersymmetry, the two operators A¿ and Dp have
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the same nonzero spectrum. Therefore the determinants cancel against each other up

to a sign. Clearly, since there are no $ zero modes, the zero order in this expan-

sion (i.e., without pulling down any interaction term) gives zero and we need to go

to the next order. To get a nonzero value we have to pull down the interaction term

(in which fields are replaced by functional derivatives ) ólrþr,t/p] from the Lagrangian.

In this way, óó gets replaced by the propagator Aþ1. Fermionic zeromodes are then

soaked up by the term lrþr,rþrl.After all we will have

þ@)l : -i I dpdna'ß G"o(*,v)lrþr,rþ'lb (2.27)

where factors of e have canceled out indicating the coupling independence of this corre-

lator. G"u(r,y) is the invcrsc opcrator of 43. After integrating out nonzero modes of /
the resulting expression is an integral over the moduli space /V.

So in general we start with a nontrivial cohomology class ol Q,

or: Wn,

where 7¡ is an lc-cycleon M andW¡ is an operator with ghost charge U :4 - k. In
computing the vacuum expectationof O¡, we first integrate over the nonzero modes of

/ as above. This leaves us with aU-form operator of the general form

O' : Q¿r',i.þ,\ çit . . . Ei'

where tþ' are fermion zero mode coordinates and O is an n-form on M. Performing

the Grassmann integrals over fermionic zero modes, ï'r'e are left with the integral over

bosonic zero modes

(o*) : l. (Þ¿

Therefore, by integrating nonzero modes out in the weak coupling limit, the path integral

reduces to a finite dimensional integral over the moduli space M. However, the tangent

vectors to the space M are rþ zerc modes which are in turn the variation of an instanton

under Q. Therefore, lrye can conclude that in the weak coupling limit Q acts on the

moduli space M as an exterior derivative. The fact that O¡ are BRST closed, after

integration over nonzero modes in the weak coupling limit, translates to the fact that
O'¡ are closed forms on Jvl. In the same manner we can see that the BRST exactness
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of. On translates to the triviality of O|, on M. We conclude that the integration over

nonzero modes indeed maps us from the homology of M Lo the cohomology of M, i.e.

Hn(M)--+ H4-k(M)

This procedure can be easily extended to compute the correlation function of n such

operators [1]

\Or"'O*) : I Q, A Qr A"' Ao,
J¡ø 

-' ' \ + 
' 

I \

where Õ¿ is an (4 - i)-form on M such that Do(a- i) : d(M). This formula establishes

the relation between twisted N : 2 supersymmetric Yang-Mills theory on one hand ancl

the Donaldson theory on the other hand; probing the topology of M by studying the

intersection theory on the space ,tlZ. Using standard techniques in quantum field theory

as above, the integration over nonzeto modes can be done to reduce the path integral

to a finite dimensional integral over M. However, the real task in the calculation of

Donaldson invariants is the determination of zeromodes and the integration over them.

This turns out to be extremely difficult and any attempt in this direction seems hopeless.

However, the fact that these finite integrals which probe the topology of M are simply

particular correlation functions in twisted SYM theory opens a new window for attacking

the problem using some well known facts about SYM theories. To see how this comes

about we briefly discuss those features of /ú : 2 and lú : 1 SYM theories which play a

key role in the determination of Donaldson invariants.

2.2.7 Mass gap and the twisted theory on Kähler manifolds

So far we have not seriously tried to compute the Donaldson invariants. Mathematically

this is a formidable task and except on some specific manifolds Donaldson invariants

have not been calculated directly. However, in [2] Witten showed how, in a theory with

mass gap, one can compute the Donaldson invariants using physical arguments. In a

theory with mass gap, since there are no massless states quantum mechanically, it is

ensured that a local expression for the physical observables emerges if one uses the mass

of the lightest state to expand perturbatively. In this section first we discuss the absence

of a mass gap in N :2 SYM theory. Then we look at the perturbation to l/ : 1 SYM

theory and the corresponding twisted theory on Kähler manifolds. The role of the mass
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gap in the computation of Donaldson theory, and the simplifications that occur in this

case, are also discussed.

The fact that I/ : 2 SYM theory does not have a mass gap follows from the work

of Seiberg and Witten [13] who showed that the effective low energy theory is indeed

a 1ú : 2 SYM theory with the U(1) gauge group. The existence of an unbroken U(1)

gauge symmetry at low energies shows that there are massless states in the spectrum

ancl the theory does not have a mass gap. In contrast to ly' : 2 SYM theory, Iy' : 1

SYM theory is believecl to have a mass gap [13] mainly because there are no exact global

symmetries preventing fermions from developing a mass.

Since the existence of mass gap is essential in computations via physical arguments

(see below), it is important to ask whether one can twist the ly' : 1 SYM theories,

or alternatively, whether N : 2 twisted theory can be perturbed to have a mass gap

without destroying the topological character of the theory.

Regarding the first possibility, we note that, in contrast to /y' : 2 theory, the /{ : 1

SYM theory cannot be defined on a general four-manifold for two reasons. Firstly, pure

Iy' : 1 SYM theory has a global U(1)" symmetry which is anomalous and thus cannot be

used for twisting. Secondly, even if we try to make this t/(l)a symmetry nonanomalous

(by adding more Iy' : 1 matter multiplets) it is not large enough for twisting on a general

manifold. However, there exists a large class of manifolds on which we can define these

/y': 1 SYM theories by twisting. These are Kähler manifolds, for which the holonomy

group is

SU(2)L x t/(1)R ,

where U(1)" is a subgroup of SU(2)R in (2.5). The t/(1)¿ part of the holonomy group

can now be twisted with the global U(1)" symmetry to produce scalar supercharges

[23].

Let us now return to the problem of perturbing the N :2 SYM theory such that it
has a mass gap and is still topological. First let us see how twisting works in the case of

a Kåhler manifold. To twist the theory, we choose au(I)t subgroup of SU(2)r undel

which spinors transform as

À -- eiþÀ

,Þ -- e-t? ç
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and define the new symmetry group to be

SU(2)L x U(r)'^,,

where U(I)'n is obtained by adding the charges of t/(1); and t/(1)n global symmetries

Therefore, on Kähler manifolds twisting has the following effect

(2.28)

Hence on a Kähler manifold we indeed get two scalar supercharges by twisting.

Let us now perturb the theory by giving a mass term to the Õ multiplet through

* [ d'rd'zd2o ftQ2 + h.c. (2.2g)
J

This reduces the number of supersymmetries to one (leaving one scalar supercharge

unbroken) and leaves a pure 1ú : 1 supersymmetric effective theory (with the fieids A,

and l) at energies which are small compared to the mass of O. Since we know that

lú : 1 theory has mass gap, it follows that l/ : 2 theory perturbed by a mass telm fol

the O multiplet also has a mass gap.

The procedure of mass perturbation on a general Kähler manifold, however, is not so

simple as it may look like. Unlike the action, which contains daxda0 as its measure and

thus can be defined naturally on a general manifold (i.e., without recourse to a specific

coordinate system), the measure for the mass term , dardz0, transforms nontrivially

under the holonomy group (note according to (2.28),, though invariant before twisting,

d20 canies one unit of t/(1)¿ charge after twisting), if we try to generalize the above

term on a curved manifold. The remedy for this [2] is to consider that d2zdzd has charge

zero under the holonomy group and so is defrned naturally. The factor md2 z then can

be interpreted as a (2,O)-form. Hence, to define the mass term on a Kähler manifold we

pick a hglgmorphic two-form c, as a generalization of md2 z on flat Ra and declare

Àor N (2

À.,z N (2

ìir ru (o

À¿, ru (o

Ár, N (o

\r, N (o

(2,+)

(2,-+)
(0, 1)

(0,0)

(0,0)

(0, -1)

I w A d2zd20 trQ2 + h.c.
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to be the mass term as a generalization of (2.29). Therefore, requiring that the mass

term be defined on a Kähler manifold implies ¡¡(z,o)(X,R) 10. On a Kähler manifold,

we lrave b2,o - ó0'2, with ó2'0 being the dimension of ¡1(z'o) and ô(1'1)+ : 1 (see eq.

(2.19)). Hence, since the * operator maps f¿(2'0)(X,R) (f^¿(0'2)(X,R)) to itself, we will
have ófF : 1+ 2b2'o, which implies that, on a Kähler manifold, bI > 1- a condition

which we have seen before.

Having defined the mass term on a Kähler manifold, Iet us now see why the mass de-

forma,tion ancl the consequent existence of a mass gap, are so important in computations

of Donaldson theory via physical arguments.

Consicler, for example, the partition function of a theory which has a mass gap. In

such a theory, in principle, it is possible to write an effective action for the background

gravitational field by expanding around a flat metric. Since there is no massless state

in the spectrum of the theory, it is guaranteed that a local expression for the effective

action emerges.

f'oilowing we consider the one parameter family of metrics, gp, + t2g* and take ú

to be arbitrarily large. As the theory is asymptotically free, this limit corresponds to

low energies and we may use the mass of the lightest state as a perturbative expansion

palameter. Therefore. the general expression for the effective action which emerges is

an expansion in terms of successively decreasing powers of ú (or decreasing powers of

energy) [2]

Z : exp(-L.n) ,

where

L"n: I dn*r/s(u I uLt wR2 +...). (2.30)
.t

Here -r? is the scalar curvature. Note that 1f, scales as t4, while the Riemann tensor,

Rp p,o, and thus the Ricci tensor do not scale. Thus -B - gW R* scales as t-2 . Therefore,

terms shown in (2.30) scale as tn, t'and l0 respectively. However, the topological

invariance of the partition function means that the only local operators that may appear

are dimension four. On a four manifold the only topological invariants which carr be

written as an integral of local operators are the Euler characteristic X and the signature

o

tX R^R
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Io ,B A *.R.

Thus

Z:exp(aX*bo),

for some universal constants a and ó. Hence, all remains is to work out the universal

coeficients ø and ó say by comparing to some known results.

2.2.8 Effective low energy description of Donaldson invari-

ants

Although the effective low energy description of the theories which we are going to

study does not enter in this thesis, we briefly discuss the low energy description of

the Donaldson theory as it is of current interest and has played an important role in

determining the basic structure of the Donaldson invariants via introducing some more

fundamental invariants.

Shortly after the work of Seiberg and Witten [13], Witten [5] provided an alternative

approach to the computation of Donaldson invariants using the low energy effective

description of .lú : 2 SYM theory. In [13] it was shown that the effective low energy

theory of minimal /ú : 2 SYM theory with gauge group SU(z) is an .ð[ : 2 SYM

theory with the gauge group U(L). Since the microscopic theory is asymptotically free,

this weakly coupled effective theory which emerges in the infrared corresponds to the

strongly coupled region of field space. There are two important characteristics about this

effective description. Firstly, there is no unique effective Lagrangian describing the low

energy physics in the whole region of the vacuum manifold - rather, different Lagrangian

descriptions are related to one another by SL(2,2) transformations. Secondly, in the

mod,uli space of vacua, there exist two singular points where a monopole (or dyon)

becomes massless and thus the effective low energy description breaks down at these

points.

Using this picture to determine the Donaldson invariants, one sums over all contribu-

tions coming from the different parts of the moduli space of vacua 12,24]. As mentioned

earlier, this moduli space consists of the whole complex plane with two singularities at

say 1 and -1 and it is called sometimes the u-plane. In [2a] it has been argued that, upon

considering manifolds with bT > t, there is no contribution to the path integral from
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any region of the u-plane bounded away from the singularities. This happens mainly

because in this case (órF > 1) there are too many fermionic zero modes that cannot be

lifted. Thus for manifolds with óf > 1 the only contributions are coming from those

two singular points. Manifolds for which the contribution of the u-plane away from

the singularities vanishes are called simple type, So the form of the invariants for this

class of manifolds is now clear; there is a contribution coming from integrating out the

heavy fields as well as the high energy modes, there is no subtle topological information

in this part ancl it can simply be worked out by comparing with some known results.

The remaining part is the contribution of the massless modes at the singular points.

As discussed above, these are a dual t/(1) gauge field, a monopole, and of course their

supersymmetric partners. In terms of .fy' : 2 multiplets, these are just a gauge multiplet

Ap

lrþ (2.31)

ó

ancl a hypermultiplet in the fundamental representation of the gauge group describing

the monopole

,þ ¡t

M (2.32)

This is the physical field content. In order to define the theory on a general manifold,

we still need to twist the above theory. After twisting [25], we obtain from the gauge

multiplet - similar to the microscopic description of Donaldson theory - a set of ghost

and antighost fields

tþrrY¡",rT.

However, since the scalars in the hypermultiplet transform as (1,1,2) under SU(2)¡ x

SU(z)nx SU(z)r (note that $¡¡ and, $¡a are invariant under SU(z)r), after twisting

these turn into

M - (L,7,2) --,> (L,2)

ñI - (r,,r,2) --+ (1,2) .

M

,þm
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In summary, first we take the U(1) N : 2 SYM theory with an additional matter

multiplet on Ra. Then we redefine the fields by the above twisting prescription. The

twisted Lagrangian obtained this way (albeit wiih adding a multiple of / F A F to make

it BRST trivial) could, in principle, be defined on an arbitrary manifold preserving the

BRST symmetry. However, following the above steps, we find out that the twisted

theory is not supersymmetric (and indeed cannot be written as a BRST commutator)

on a general curved manifold uniess we add an extra term proportional to

I an*¡¡n1m1'

to the action. Doing this, it can be seen that in the weak coupling limit the path integral

localizes to the moduli space of solutions of the Seiberg-Witten (SW) equations [5]

Fr : -|mr,,u
pM :0.

Therefore, the effective low energy description of the microscopic theory has given a

new perspective to the computation of Donaldson invariants. Instead of considering the

nonabelian equations of instantons to obtain the Donaldson invariants, \4/e can consider

the SW equations and derive the same invariants. Indeed, it has been shown [5] that

all the subtle topological information about Donaldson invariants are encoded into the

S\{ invariants.

Moreover, the SW equations have much nicer properties than the self-dual instanton

equations [5]. Firstty, they have a t/(1) gauge invariance which is easier to deal with than

the SU(2) invariance of the instanton equations. Secondly, the moduli space of solutions

to the SW equations is compact in contrast to that of instantons where compactness fails

and one has to compactify the moduli space to ensure a genuine topological behavior.

However, as in Donaldson theory, one needs to restrict to manifolds with bl > I to have

a free action of the gauge group on the moduli space of SW equations'

2.3 ¡'r - 4 SYM theory and its twisting

We have already discussed in the introduction those properties of .fú : 4 theory which

can be examined through topological field theory via twisting. In this section we con-

centrate on a particular twisting of the theory which will be studied more thoroughly

(2.33)
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in chapter four for a specific product manifold X x ,S2. We start with a brief study of

the physical theory. The global symmetry of the model is so large that admits different

embeddings of the space-time symmetry and thus resulting to different twistings of the

model. Here we look at one of these possible twistings and the related equations.

2.3.L The physical theory

The fields of /y' : 4 SYM theory can be arranged in terms of 1ú : 2 multiplets. Like

N : 2 with an additional hypermultiplet, the field content of .fy' : 4 SYM theory

consists of a gauge multiplet as in (2.31) and a hypermultiplet as in (2.32) with the

difference that now the hypermultiplet is in the adjoint representation of the gauge

group. Hence, we expect to have an increased supersymmetry rotating the gauge and

hypermultiplet into each other. Moreover, the internal 7?-symmetry is also increased

lrornU(2) to SU$). Spinors, lo¿, sit in the fundamental representation a of Stl(4) and

scalars, Ó;¡,in the 6-dimensional representation. i and j are Su(4) indices and /¿¡ are

components of a real self-dual 2-form.

The l/ : 4 supersymmetric Lagrangian on flat Ra is [26]

¿ : \t l-Ir*or, - iÀo¿(or),aDp\à¿ -IDróo¡orö,¡

L¿^ol^',,öojI+ 
h^rr^ 

t,ó¡¡l* 
frw,,,ó-l'f .

The action is invariant under N : 4 supersymmetric transformations:

6 A, - -i(; (o r)"d \o¿ + i-À! (o,)"" (.¿

6À."¿ : -i(oP')f, Fr, €B¿ r i1/-z(ài ç"u).aD t"ó¡¿ - i€,*[ó¿¡, ójk]

6ó¿¡ : t/2 (€"ns,¡ - €oj\oo * e;¡rr¿(¿k\ät) .

The global symmetry of the action is

SU(z)L x SU(2)nx SU(a)

2.3.2 The twisted model

From what we saw in the I/ - 2 case, it is now clear that to twist the theory, first we

should choose a SU(2) subgroup of SU(\ and replace SU(2)p x SU(2) by its diagonal
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subgroup just as we did in the N :2 case. Depending on how one chooses this subgroup,,

one gets different topological field theories. There are three different embeddings [a] of

SU(2) x SU(2) into .9tl(4) which give rise to singlet supercharges under the twisting.

Under these embeddings of ^9tl(2) x SU(2) subgroup, spinors decompose as

i) 4--+ (2,1) O (1,2)

ii) 4 --+ (L,2) e (1,2)

iii) 4 + (1,2) O (1,1) O (1,1). (2.34)

Let us concentrate on the second case for which scalars trnsform as

6 -r (1,3) O 3(1,1) .

Replacing SU(2)R by a diagonal subgroup of SU(2)R x SU(z), spinors transform as

two scalars, two self-dual 2-forms and two vectors under the newly defined space-time

symmetry group

(1,2, ((1,2) O (1, Z))) 
- 

(1,1,2) O (1,3,2)

(2,1, ((1,2) O (1, z))) 
- 

(2,2,2)

just two copies of the fermionic (ghost and anti-ghost) field content in the twisted N :2
theory. For scalars we have

(1, 1, ((1,3) O 3(1, r))) 
- 

(1,3, L) O (1,1,3) (2.35)

transforming as three scalars, say, ó,/ and C and a self-dual 2-form B[r. Knowing

how the new fields transform under the new space-time symmetry, we can write the

Lagrangian in terms of these fields on flat Ra. Upon covariantizing the derivatives we

may extend the Lagrangian on a curved manifold. However, just as in the monopole

case, this Lagrangian cannot be written as a BRST commutator unless a curvature term

which reads [4]

# I d.ar1/ift (u* (if ppe,o - ep,e,p)R+w1,,") "o'),
is added to the Lagrangian. Here I,I/+ is the self-dual part of the Weyl tensot,

W¡"rpo
l/:tI 1*z'wI,o,
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where

W¡",po : R¡",,po +Ir{nrrs,o - R,pgpo * R,ogpp - Rrog,r) + f {l*oo,o - gpog,p)

By adding the above curvature term to the Lagrangian on flat Ra, one obtains the

twisted Lagrangian of the model 14,261,,

1.L : -t {-nr^D'ó + lurçn, - 2\/2Dt"c + 4\[2D'B,t")

+ +Ht"' (H p, - zFl, - 4i[B pp, Bo,] - 4ilB t ,, Cl)

+ 4rþrD,xr, + 4ftt"D,õr, + irDr( - rþrDrn

+ i\/rrþ*lrþr,, Àl - i{2xr'lx*,,, ó] + iz{2õr"lxr,,cl * ia{z$u'lxro, B,ol

itÆxr,[e , B"l - ¡tfzúr,[rt, B"l + !4J2rþr[ñ,,8:'] - i{2X.,lX' , ól

+ irf2rþ rlrþ, , 
^] 

- i2\/rú rlx, , cl + *6q(, ^l 
- #rl, , ol

i ,, ^l
*Cln,cl+2[ó,8'"]l^,8þ,1+21ó,,c1[À,c] -Tlø,)l'] (2.s6)

Upon integrating out the auxiliary fields, É* and. H¡",1 wE can see that the resulting

topological field theory, in the weak coupling limit, localizes on the moduli space of

solutions to the following equations (Vafa-Witten equations):

l1
FÌ, + ;lc, BI,l + ;IBL,B|"lgo" 

: o

Dt"Btr, * D,C :0.

In [a], Vafa and Witten showed that, on Kähler manifolds with r? ) 0 and gauge

group locally a product of SU(2)'s, a suitable vanishing theorem holds such that the

solutions to the above equations all have B[, : C : 0. In this case they argued that

the partition function indeed computes the Euler characteristic of the moduli space of

instantons. Further, by using the mathematical results on the structure of the moduli

space of instantons, they computed the related Euler characteristic and showed that

the partition function is in fact a modular form under ,9-duality, extending the previous

conjectures about the weak-strong coupling duality of 1ú : 4 SYM theory.

2.3.3 Twisted theory on t x C

Twisted N :2 and .A/ : 4 SYM theories on product manifolds X x C, where X and C

are both Riemann surfaces, have been studied in [27]. There it has been shown that,
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upon shrinking C Lo zero size, the effective theory which generically emerges is a two-

dimensional sigma model describing maps from X to M. In the N :2 case, M is the

moduli space of flat connections on C. For l/ : 4 theory, it turns out that M is íhe

moduli space of solutions to the Hitchin's equations [27]. In the following \4/e overview

the basic points. In chapter 4 we study the case where C is a Riemann sphere.

Let us consider the I[ : 2 case in the limit of shrinking C. We denote the indices

on E by i, j,... and those on C by a,b,.'.. Upon scaling the metricon C by gab + €gob,t

the bosonic part of the action (2.6) becomes

s : î |an,¡st leF;¡Fii 
+ F¿oFio +LF"oF"u * 2eþD¿Dnó + z6n,D"ó - |tø,øf]

This now shows that in the limit of e --+ 0, the path integral localizes on the flat connec-

tions over C. Af the level of equations, this can also be seen as follows. Consider the

instanton equation on such a manifold. This manifold has the holonomy of U(1) x U(1)

and thus is Kähler. So, as before, the self-dual two-form F+, can be decomposecl as

FI : p(2,o) + F(0,2) + 7l(1,1)+ ,

where ¡(r'1)* : lk(k,BF É). Thus the instanton equation, F* : 0, on Kähler manifolds

reduces to

p(z,o)-¡(o,z)-g

kopF"P :0,

as lcop : igoþ, the second equation is

g"þFoB:o. (2.37)

Let 2,2 and t,u,to indicate the complex coordinate on X and C respectively. Then eq.

(2.37) becomes

9"" Frz I g*- F-',7 - 0 '

Let us now shrink C by scaling its metric, guø + €guø¡ and taking the limit e -+ 0. In

this limit, the above equation reduces to the equation of flat connections over C,

F-ø:0
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To get rid of the reducible flat connections, consider those bundles which restrict

nontrivially over C. The solutions to (2.33) can be parametrized by the moduli param-

eters which in general depend on the coordinates of I. Therefore, a flat connection on

C can be written as

Ac(r,w;2,2) : Ac(w,w; X(z,Z)) ,

where XI are coordinates on the moduli space of flat connections yl4. The tangent space

to M can be found by varying Aç to a nearby flat connection

0:Fc(Ac+6Ac): Fc(Ac)+d(6Ac)-fAc A6Ac+6Ac AAc - Dc(6Ac). (2.39)

As usual, we are interested in those variations of Ac which cannot be obtained by a

gauge transformation, i.e., 6Ac I Dc/. On the other hand, Fc - 0 implies that

Db:0, therefore 6As e T¡.M belongs to the first cohomology group of the operator

Ds

6Ac e Ht(E, Dc) =ker D6 fim D6 .

As before, this is related to the virtual dimension of moduli space of flat connections.

Since Db :0, we can define the following elliptic complex

0 -+ r¿o(s) 3 c¿'(g) ?9 c¿'(s) -5 o . (2.40)

The linearized equation (2.39) fits in the two-term elliptic complex of

D @ Dt , Ot(s) ----* Clo(g) e fì'(s) .

The virtual dimension oL M is defined by the index of this complex

d(M) : dim{ker(, o rt)ler - coker(, ort)looeo,}
: dimker (A e At)lsr - dimkerDlno - dimker Dtln, .

We have chosen the bundle, ,Ð, such that there are no reducible flat connections, thus

dimkerDlço : 0. However, in two dimensions, this further implies that dimker DIIç, :
0. To see this, Iet B¡", be a two-form on C.If B is in the kernel of. Dl, then we have

DP Br, :0 .

In compiex coordinate this becomes

D-B-ú-0, D-Bú,*-0.
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Note that in two dimension \rye can write Bwø : e--b, for some scalar b. Therefore the

above equations reduce to

D¡,b:0, D-b:0.

Since there are no reducible flat connections, we conclude that ô: 0, or Br, :0.
Therefore, for such bundles the dimension qf moduli space of flat connections is given

by the virtual dimension of M, which is given by an index theorem to be

d'(M): dimG (2g - 2) 
',

where g is the genus of the two-dimensional surface and G is the gauge group.

Let a¡'s denote the bases for the first cohomology group, Ht(E,Ds), of. ihe elliptic

complex in (2.40). Now a tangent vector to the space of flat connections can in general

be written as
6Ae

6x'--- 
: a7 t DçE¡ 

'

where DcEt is a gauge transformation. Therefore, upon fixing the gange, the tangent

space to M can be represented by a¡. Notice that, since the path integral has localized

on M and since there are no reducible flat connections, \4/e can mod out the gauge

group completely by working on M where there are no gauge degrees of freedom left,

Furthermore, ignoring the terms which are order of e, Ay does not depend on the

coordinates of X and can be integrated out by its equation of motion. The only degrees

of freed.om which are left are thus the moduli parameters Xr. Therefore the problem

reduces to a path integral over X and it can be shown [27] that the effective theory

describes the maps from X to M. For 1/ : 4 theory a similar effective theory emerges.

When C is a Riemann sphere, we get a different effective description in the limit

where C shrinks. This case is the subject of chapter 4 where we discuss it in detail.

Here we point out the two main differences which arise in this case:

Firstly, if, as above, we consider bundles which restrict nontrivially over C, the

moduli space .lt'f (either in ,lú : 2 or Iy' : 4 case) is empty. This can be seen as follows.

Let us cover,92 with two patches,9..,. and,9-. Since F :0,, the gauge connection on

^9-.,r- 
can be written as g¡tdg¡. In the same \vay, let us write the gauge connection on ,9-

as g-rdg-. We may perform a gauge transformation to set A- : 0 and A+: g-rdg.

On ^9-. i S-, these two connections are related by

g-r dg : t-r dt , (2.47)
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where ú is the transition function. From this we see that g and Í have to be in the same

topological class such that ú can be smoothly extended all over ^91 to g. However, g is

a map ftom ,91 to SO(3) and thus is topologically trivial and so the transition function

ú, also must be trivial. We conclude that a flat SO(3) bundle over a sphere must be

trivial.

Since in this case the moduli space ,Ál is empty, the effective theory is trivial and the par-

tition function, for instance, vanishes. On the other hand, if we consider bundles which

restrict trivially over C, there are some gauge degrees of freedom left after shrinking C

which are effectively described by a two-dimensional SYM theory.

Secondly and more importantly, the dimension of the space of self-dual harmonic

2-forms, bf , is one in this case. Hence there exist metrics for which the connection is

reducible. It follows then that the path integral may get a contribution from the u-plane

124,281.

2.4 Higher dimensional analogues of Donaldson-

Witten theory

Extendecl supersymmetric Yang-Mills theories can, in principle, be derived from super-

symmetric theories in higher dimensions by dimensional reduction [29]. For instance,

N :2 and l/ : 4 SYM theories in four dimensions can simply be obtained by dimen-

sional recluction of I[ : 1 SYM theories in six and ten dimensions respectively. The

highest dimension in which we can define a pure SYM theory is ten with a minkowskian

signature (-1,1,...,1). As this ten-dimensional theory has a basic role in the forth-

coming discussions, let us study it in more detail.

2.4.L ¡/ - 1 SYM theory in ten dimensions

The Lagrangian of the super Yang-Mills theory in ten dimensions is

t : -lo**F** + *VrM nrv . (2.42)4"-" 2

To balance the degrees of freedom between the bosons and fermions we put the following

constraints on spinors consistent with the space-time symmetry (see appendix B for more
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detail).

ü : \[ÚC

l11V : -ü,
\Í is then called a Majorana-Weyl spinor. The supersymmetry transformations are

6Am - ialu'{t
ól[¡: f,F¡a¡¡lMMcr (2.43)

óV: -laF¡a¡¡lMN ,

where o is a constant anticommuti¡rg Majorana-Weyl spinor with the same chirality as

{/.

2.4,2 Supersymmetry of L and supercurrent

Let us quickly demonstrate the supersymmetry of the action. First note that (we allow

a : a(n) to derive the supercurrent for completeness)

6Fv¡v: iôuc-l¡¡il, - iôNoluú * ic-l¡vDmú - io'luDxÚ

dqúrr o*\,) : -t tuyFMNl" D"v + |Vr'rt 
N D^(oF¡aru) + ¿VlM[af¡4ü, rf] 

,

SO

lrCI I o'o* Fr*F**) - -i I oto* lrMN auarruv * arMNrNn*vl

d,ro x (D ¡a FMN¡ al.¡y,Ir,L I
where in the last equality we have dropped the total divergence term. Since a and \[¡

are both anticommuting Majorana-Weyl spinors and using eq. (8.5) we have

D tÚ|Ll utNd : al mxlL D t \t .

Thus

d I a'o * (VtM DMv) : I o'o *l-rlar rrr*NrL Dt'{t

1
+z D 7(a FM N ;f 

MNI¿ rlr + i-vf M 
lCIf¡a iú, iú]

dro r far,al * * F* * l" v + dD LFMNf¡a¡¡f¿l[

+iVfM[ut.ü, v]] .

I
39



Therefore up to a total divergence term, we can write

ó,s : -; t a'o* lo*o**rf¡¿ü - f,n"r**af¡¿ryf¿ü -lpww6"al,r¿rvf¿il¡

-|vr*¡arM\n, ül] . Q.44)

The first and the second term in the integrand combine to

ln"r**a(fttf' + zr¡LNIM)v : |n"rr*a(f"f' + n"*t* - rt"MlN)v

: 'f,n"r**alMN¿rl¡ : o,

the last equality follows by using the Bianchi identity. If the trilinear term is zero then

one could conclude that the action is supersymmetric for constant ats.

In appendix B we show that the trilinear term is indeed vanishing which proves the

supersyrr.rnetry of the action in 10 dimensions. Note that we can now also read the

supersymmetry current from (2.44)

(2.45)

2.4.3 Reduction to lower dimensions

We may derive the whole bunch of extended SYM theories by the dimensional reduction.

Let us briefly outline a few examples.

The ten-dimensional SYM theory can be reduced to four dimensions with euclidean

signature simply by demanding that fields do not depend on the extra six coordinates.

This breaks the space-time symmetry as follows

SO(9,1) --+ ^9O(5,1) x ^9O(a).

Thus .9O(4) is the remaining space-time symmetry and ^9O(5,1) is now the global

symmetry of the theory left from the original ten-dimensional Lorentz symmetry. This

symmetry is in fact the 7l-symmetry group of reduced N : 4 theory. In the case of

N : 2, we start with /ú : 1 in six dimensions. Putting the constraint that fields only

depend on four coordinates breaks the Lorentz symmetry as

SO(5,1) + ^9O(1,1) x.9O( )

JK : Trr*r**fKü/.
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leaving a ^9O(1,1) R-symmetry group which is the same group (after complexification)

that we called U(I)" earlier. In these derivations, scalars appear as the components of

the gauge fields in the directions normal to the reduced space-time. In thìs sense, it is

easy to see how scalars appear and how they transform under the R-symmetry group.

As we noticed earlier, the essential ingredient in the twisting of SYM theories is the

existence of a suitable global 7?-symmetry which of course must be anomaly free. Let

'us see what sort of supersymmetric Yang-Mills theories can be constructed by reduction

from ten to lower dimensions, and what sort of global 7l-symmetry in this \May are

produced. First consider the dimensional reduction to eight dimensions. The space-

time symmetry breaks as

SO(e,1) --+ SO(1,1) x SO(B).

The 7?-symmetry SO(1,,1) (or equivalently t/(1)) for this theory turns out to be anoma-

lous, therefore, it cannot be used to twist the theory (at least on eight-dimensional

Kähler manifolds which have SU(4) x U(t) as their holonomy group). Hence, the only

manifolds on which one may hope to construct a topological field theory are those with a

reduced holonomy such that they admit globally defined covariant spinors. For instance,

Calabi-Yau four folds with the SU( ) holonomy are in this category. In fact, topological

field theories of this type have been constructed in [30, 31, 32] where it is shown that

the corresponding theory is invariant under the metric deformations which preserve the

holonomy structure of the manifold (note that the holonomy is uniquely characterized

by the metric).

The above cohomological field theories, obtained from the dimensional reduction of

lú : 1, d : l0 SYM theory, also arise in the effective description of D-branes.

D-branes are intrinsically nonperturbative objects in string theory. They have played

an important role in unraveling the nonperturbative behavior of string theory in recent

years (for an introductory review of D-branes see [33]). Roughly speaking, D-branes

are extended geometrical objects on which open strings can end. The dynamics of a

D-brane is thus inherited from that of the open strings attached to it. There exist

different types of D-branes depending on their dimension, orientation, topology and so

on. Let us denote a p-dimensional D-brane by Dp-brane. To describe a D-brane, first

one defines the coordinates which are embeddings of the D-brane into the l0-dimensional

target space-time. Moreover, a D-brane carries gauge degrees of freedom associated with
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the open strings attached to it. A D-brane can be described by the Born-Infeld action

which is obtained at the tree level of string theory by requiring the anomaly cancelations.

However, if we restrict ourselves to low energies, we may expand the Born-Infeld action

to derive an effetive theory for low energy excitations of a D-brane. Thus the effective

theory is nothing but a SYM theory living on the worldvolume of the D-brane. For

flat Dp-branes, this SYM theory can be obtained by dimensional reduction of d : 10

SYM theory down to p+ 1 dimensions [34]. One rnay also study curved D-branes which

naturally arise in the compactification of string theory on curved manifolds. In [6] it has

been argued that the effective theory of such curved branes is a topological field theory

which lives on the worldvolume of the brane.

The eight-dimensional cohomological field theory that we just mentioned above, for

example, can be thought of as the effective field theory of an euclidean D7-brane. The

D-brane in this case is wrapping around the whole eight-manifold M. The two scalars

left from the reduction of ten-dimensional SYM theory simply specify the location of

the D-brane in the ambient ten-dimensional space. There are some examples where the

D-brane is wrapping around a supersymmetric submanifold [35] Y of M. In these cases,

the effective field theory living on the worldvolume of the brane can again be obtained

by the dimensional reduction of the ten-dimensional SYM theory. However, since the

ambient space of the brane is now curved, scalars turn out to be sections of the normal

bunclle of )' [6]. This could be understood if we recall how the scalars appear in the

reduced theory. They are indeed components of the gauge field in the normal directions.

Take p to be a point on Y,, then the tangent bundle at p decomposes as

TpM - ToY Ø NrY .

This equation then tells us that scalars must transform as sections of ,lf(}/).
Next we move to consider the dimensional reduction to six dimensions [29, 36]. The

Lorentz symmetry group in this case breaks as

SO(9,1) + .9O(3, 1) x .90(6)

The global ß-symmetr¡', ,9O(3,1), is again anomalous. In fact there is a subgroup,

SU(2)v, of this SO(3,1) which is anomaly free and thus can be used in twisting. For

example, on Kähler manifolds we may choose a U(1) subgroup of SU(2)v to twist with
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the t/(1) part of the holonomy group (Kähler manifolds have a Stl(3) x U(1) holonomy

in six dimensions). Another type of manifolds on which twisting is possible are product

manifolds of X x Y, where X and Y arc both three manifolds. However, since the

holonomy group in this case is SU(2)x x SU(2)v, twisting can be done on just one of the

two manifolds. The latter example is specially interesting when we are considering D5-

branes wrapping around say Y supersymmetrically embedded in a Calabi-Yau manifold.

We will discuss this particular case in detail in chapter 3.

As in eight dimensions, we may also construct cohomological field theories on man-

ifolds with a reduced holonomy without a need for twisting. These theories turn out

to describe the effective theory of the euclidean D5-branes wrapping around the whole

manifold.
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Chapter 3

S,rpersymmetric Gauge Theory on

Calabi-Yau 3-folds

3.1- Introduction

Extended supersymmetric Yang-Mills theories in various dimensions have been inten-

sively studied by both physicists and mathematicians. From the mathematical point

of view, these theories are interesting since they can give rise to a physical formulation

of topological invariants of manifolds in different dimensions. As in four dimensions,

where one reformulates the Donaldson theory in terms of twisted N : 2 SYM theory,

one may hope that a similar construction exists in higher dimensions, by which topo-

logical invariants are expressed in terms of physical observables of a supersymmetric

Yang-Mills theory. Of course, this reformulation crucially depends on the existence of a

suitable global symmetry to be able to twist the theory. For instance, as we discussed

in the second chapter, SYM theory in eight dimensions does not have a nonanomalous

global symmetry and thus its existence is limited to those manifolds which admit glob-

ally defined covariant spinors. In this chapter we will see that a similar restriction arises

for twisting the SYM theory on a general six-manifold. However, there is a class of

manifolds (Kähler six-manifolds) for which twisting is possible. Partial twisting [27] is

another option which can be considered on product six-manifolds. We will discuss this

case in detail in section five.

From the physical point of view, extended supersymmetric Yang-Mills theories -
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which arise from the reduction of SYM theory in ten dimensions - have become a major

field of research as they describe the low energy effective theory of D-branes [34]. As

mentioned in the second chapter, the low energy effective worldvolume theory of a Dp-

brane (where p indicates the spatial dimension of the brane) is described by the SYM

theory obtained from the dimensional reduction of SYM theory in ten dimensions down

top* l dimensions.

We start this chapter by reducing the ten-dimensional SYM theory down to six

climensions a,nd deriving the Lagrangian on flat R6, Since the nonanomalous part of

the global symmetry is not large enough, we are led to consider those manifolds with

reduced holonomy. In section four, we define the theory on a Calabi-Yau 3-fold [37]. The

Lagrangian is clerivecl and it is shown that the resultant theory is cohomological in the

sense that it is invariant under the metric deformations which preserve the holonomy

structure of the manifold. This cohomological field theory in fact describes the low

energy degrees of freedom of euclidean D5-branes wrapping around the whole manifold.

A balanced formulation [7] of the theory is also presented in this section. In section five,

we consider the product six-manifold X xY, where X and Y are both three-manifolds.

We partiaily twist the theory on one of the three-manifolds and study the limit where

that particular manifold shrinks to zero size.

3.2 The reduced G-dimensional theory

Constructing lower dimensional theories through dimensional reduction of theories in

higher dimensions goes back to the idea of Kaluza [38] and Klein [39] of unifying general

relativity and electromagnetism (see [a0] for further reference). To explain the idea, let

us start from a five-dimensional theory of gravity defined on the space-time X x St,

where X is a Lorentz four-manifold. Let M,Iy': 0,L,2,3,5 indicate the coordinate

indices on the whole manifold, and ¡.t,u : 0,I,2,3 indicate the indices on X. The

metric now decomposes as

9p, t T¡rs = Ar, 9ss = Ó

Assuming the periodicity in the fifth direction, ,ffe can Fourier expand the fields. Then

it is easy to see that the nonzero modes in this expansion have a mass proportional
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to If r,, where r is the radius of ,91. Therefore, in the limit of very small r) nonzeto

modes decouple from the zero modes. Keeping only the zero modes, the five-dimensional

Einstein-Hilbert action reduces to the corresponding Einstein-Hilbert action in four

dimensions plus the Maxwell action for the Ar. Moreover, in this setting, the gauge

invariance can be recognized as part of the general coordinate transformations invariance

of the five-dimensional theory.

Aithough the Kaluza-Klein idea was not successful in achieving its goal of unifying

gravity with electromagnetism, it emphasized the role of higher dimensional theories in

the understanding of the physical theories in four dimensions. In this section we will

derive a six-dimensional theory by the dimensional reduction of the SYM theory in ten

dimensions. Along the way, we will see how the different fields, transforming differently

under the reduced Lorentz symmetry, appear and how the extra global symmetries,left

from the original space-time symmetry, emerge.

3.2.L Field decomposition

The reduction can be achieved conveniently by spiitting the coordinates as M : (I , p + 3),

where I :0,...,3 and. ¡t, - 1,...,6. Assumingfields to be independenlof rI coordi-

nates breaks the part of the Lorcntz symmetry which rotates rP and rr into each other

and thus reduces it to
SO(9,1) --+ SO(3,1) x 50(6),

where .90(6) acts on øp coordinate. Since fields do not depend on nI coordinates but

transform as irreducible representations of SO(3,1), this subgroup plays the role of

an internal global symmetry. A tensor field like A¡4 now decomposes to the scalars

A¡ transforming as a vector under SO(3,1) and the gauge fields A, which are scalar

under ^9O(3,1). Since A¡ components of the gauge field are scalar under tþe space-time

symmetry 50(6), it is more convenient to introduce the notation ót = At. Thus A¡¿

decomposes as

Au: (Ar,ó,).

To see how spinors decompose, let us choose the representation of the f¡a's to be

fr : lrØ 1z

fp+3 : l+ Ø.lp , (3.i)
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where ]1 generate a [3 * 1] Clifiord algebra and 1P a [6 f 0] one. Using the defrnitions

of ]5 and 17;

1z : i'lo' ' '1s , 7s : i7o' ' '7" ,

we find that

lrr:1sØ17.

Further, if we take

"f) - -olu) - -1
"5n) 

: -'ola) :t,
then we can take

C:ÕØC,

where Õ and C arc the unitary charge conjugation matrices in 4 and 6 dimensions

respectively. For the sake of explicitness, we choose the chiral representation for the 4d

.y's. In terms of Pauli matrices, these are

io :7, Ø (ioz)

7i:oiØo' i:7,213,
ot

,': (:,
oI

0

with

7s:IzØo3

Õ:io2ga3.

Let eo, a, : 1,2 denote the eigen-basis of a3. Then a 10d spinor in this representation

can be written most generally as

ü: eo8 eoØrþ"b,

where ,þ"b i" a 6d spinor. Imposing the Weyl condition on ü yields

frrü : (1s S .y)þo I e¿ I ,,þ"u) : Izeo Ø oseaØ .'lzrþ"b

: eo I er8 ^lzrþ"r - eo Ø e2Ø -17ú"2

: -iI/ - -(",8 et Ø ú"1* eo8 ez Ø rþ"2) , (J.2)
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therefore,

.lztþ"L : -rþo7, 
.yzrþ"2 : ,þ"2 .

Hence ,þ"t = þ"¡ and ,þ"' = tþft arc left and right handed 6d spinors respectively and ü

can be written as

rlr : eo8 erØ úro * e¿8 ezØ úh. (3.3)

Note that

V : ütfo -(ru8 etØ (tþt ")t * eo8 
"rø þþh)t)(LzØ io2Ø lz)

("uØ 
"rØ 

(rþ"")t * eo8 "ts (úå)t) , (3.4)

and

ü" : ![¡rC : ("'g 
"16l 

,þ'r,+ eaØ ezØ çt;)(io'zØ o3Ø C)

: e"(io2)Ø eto3Ø ,þ'r,C ¡ e¿(io2)Ø 
"ro"Ø 

,þ'åC

: ,"b"tØ eß úï,"c - eateùØ ezø úßC .

(rþ"a)t : rþrb: -çtfr.Ceu5

þþ'")t : ,þo^ - tþt"oC eob . (3.5)

3.2.2 Lagrangian and the supersymmetry transformations

In the last part we deduced how the 10d spinors can be decomposed in terms of spinor

representation of .9O(6), i..., ,þ"0 and, $bp. In this subsection we show that the resulting

6d Lagrangian is

L : Lyv- * Ls ,, (3'6)

where

So, if we define (rþ")r = tþ¿ and (rþu)l = $", the 10d Majorana condition implies

1
Lvw¡ Fp,Ft"

4
D rótD' óI - 

tnllø,, 
órl)',

1

,

Lp : |ú raf D ,rþh + 
|rÞh'r' 

n ,rÞ r." + i$i¡6,"',5 , ,Þo*) .

and
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We also show that the action is invariant under the supersymmetry transformations,

which read

64, :
6ö, :

6rþu :

6rþk :

ioh1 rrþ"" I ia¡¿1¡¡ti

- i d Laoib ú a, * i c:þ(o t) 
"i,rþbn

f,t" F*o", * f DrSpl"¡,.,bn-l lót,ótl(oIr),br,76
r;" 

F *oh -'l' D ró p'uu o"o * ïö r, ó rl(a" )u rru^ (3. 7)

Further we derive the global SO(3,1) symmetry of the reduced theory. These are

uirrþh

6rþto:i(u¿*ia¿) ) "'rþ"u

6rþk: i(u¿ - ia;

6öo: -o¿ó'

6Óo:-a¿öole¿¡nu*Ó¡ (3.8)

The derivations of these results is straightforward. The bosonic part of the action is

easily derived, if we just note that

Ft", : ðrA, - ArAp + lA, Ar]

Fpr : ïrót * lAr, órl : Drót

Ftt: lót,ótl. (3.9)

The fermionic part of the action can also simply be obtained by replacing the decom-

posed spinors in the 10d action. Substituting (3.4), (3.1) and (3.3) into Lp we obtain

Lp : |Vr* n*v
i.,: 
|(""ø ezØ tþta * eo8 els 1¿å)(1+Ø f)D, (r'8 .rE úru -f eß ezø úh)

(ruø "r8 ,þta* eo6 er6 'úk)6'ø ùlü ,("0Ø etØ úu+ eå8 "rø rþhDl

("uØ 
"rØ 

,þt a t eo6 er6 {th) [ór, ("u8 iozetØ .,tzúa, f e¿8 iozezØ Trþb")]

("uØ 
"rØ,þta-r 

eo8 er8 únllO, ,(oo"uØ o7e'tØ .yzúu, ¡ oie¿Ø o1ezØ Trþ'")l

,þ ut' D,rþk + ;úk^t, 
D rrþ 

" " 
+ |,þ mlóo(oo )uo, rþ nl * l,úklø r{"' ) "t, 

rþu^l

.o'(-,2
tri"l
2'X

L+z
: 

|ú"n'D,,þk+ ;,þk't' 
D,,þt o

z+2
i+,
¿

2
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AS

and

iúrulón(on)uo ,,þ"ol + 
iøntø,ton)":o ,,þo*l

;_: 
|rÞrn'Drrþk+ f,rÞh','nrrÞr" 

+ iSi¡6,ot"¡, ,rÞu^),

The last equality follows by noticing that

f 
ot" 

ú!,u@o)uurþ""u : - Ío"" rþrfiAC e¿¿(oo)"b.þ"^ : fo"" ,þßC'erb(oo)^atÞ'Ê

: -1ABCrþB^"(oo)"d;"î : fo""rþ"#(oo).arÞ"Ê ,

,uu(oo)uo : e"b(oo)o¿

- lot" rþtu@n)uurþ"^ - - f 
ABC gtfiAC e¿¿(on)uurþ""u : f 

o"" ,þ'foCtrþ'! e¿6(oi)ãb

: I 
o" 

" rþ'r"o C 
t {"} eb" oi¿ : - T 

AB 
" rþ"Ê rþ'# 

"Lu 
: I 

o" 
" rþ'î rþ'Ê o'"u,

where we used the reality condition (3.5) and ,uu(on)u': -e¿¿"eb'éuùo'.ù: ru"olu'

The supersymmetry transformations of the reduced 6-dimensional theory can be ob-

tained similariy from the field decomposition. First we note that, in this decomposition,

the supersymmetry transformations (2.43) read

6A, : i(eãø ezØ am* eo8 e18 a!,)(148 1p)(eö8 etØ úta+ eå8 
"rØ 

,þb¿)

: iohlrrþ", t i,a1qrçi

6óo : i(eàØ ezØ ara* eo6 er6 oi¿)(ø;8 ø16¡ lz)(ebø etØ úu+ eåE "rø 
,þbn)

: -idLäoîbúnu * iahir,o),i,rþu*

6óo : -i(eàØ ezØ ara* eo8 er8 aä)(12Ø iozØ lz)(eåø erØ úna+ et8 
"rØ 

,þbn)

: -iat aatbúu, * iaft(oo)¿rþu^, (3.10)

6 ó t : -ia¡¿aib $ ¡6 ¡ iaþ(o ò 
"¿,rþbn.

For the 10d spinor transformation, using the definition of f¡.r and (3.1), it is easy to see

lt-L+3,u+s : IaØ .yp,

lr,p+s _irØ.yz^y,

flr:1IrØLa,

or
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where

oIJ o:,IJ 
- 

q
I -þ o alr

So, the spinor transformation reads

ó("'8 etØ tþto + eaØ ezØ tþi)

'¡{or,{t^* 't") + 2Dt"ór(71Ø {r) -r lót drl(rttø ru¡}

("uE "r8 aru * e6Ø e2Ø clb¡") . (3. 1 1)

Therefore, equating the similar terms in this equation we get the spinor transformations

in (3.7).

ln verifying the supersymmetry of the action one may proceed directly, using the

above supersymmetry transformations laws. However, this can also be proved using

the fact that the higher 10d action is supersymmetric. In reducing to 6 dimensions we

assumed that fields do not depend on the (compactified) coordinates rr. Hence one

can see that the variation of the 6-dimensional Lagrangian under the supersymmetry

transformations is exactly the equation (2.44) where now fields depend only on the

coordinates Íp, þ : 1,...,6. One uses the same proof to show that the fermionic

trilinear term in (2.44) is zero. However, the term D¡F¡a¡¡(attt'*), which is the sum

of the first two terms, now splits to

DLFMN(dltt'v) : D rF,r(alp'o.üt) + lóN,[ót,¿r111atur{v¡

+ Dr[ót,þ¡l(arlrug) + zlót, Dpór]@lIrpv)

+ 2DpD,ór(o"lp'Irú) -f [ót, Ft",](dlþ"IV).

The first and the second term vanish by Bianchi and Jacobi identities respectively. The

third and the fourth term combine to

([öt, Drót] + lót, Dpórl)(o.ltt'ú)

which is zero since llrp is antisymmetric in 1 and ,I. And finally it is obvious that

the two last terms cancel each other. This proves the supersymmetry of the reduced

6-dimensional action on flat R6.

As a comment, note that the supercurrent of the 6-dimensional theory can be read

fuorr' (2,45), the corresponding expression for the supersymmetric current in 10 dimen-

:

X
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sions, just by replacing the decomposed field expressions (3.3) and (3.9) into (2.45),,

t, : (ior,(lnø 1,,) - iD,þ¡(lIØ tzt\ + |10,,óì6"Ø ru¡) 1rnø 7,;v

)(

(3.12)

In components this becomes

4.,
rPoJp

10
01

oI -'þ ¡'o0

oI

* ilót,ótlto
oIJ o

0 oIJ

i(D rót)t'to d0 ,þR

Thus the expression for the supercurrent in 6 dimensions reads

Fr,1"1orÞt, * ilÓt, Ótllo("")oorþ"u - i(DrÓòl'{"la,þ"n

F r,1 "'t' rÞk + iló,, ó rll' @I 
r 

)u *þu^ + i (D ró r)l' ^t' (a' )u" rþ 

", 
. ( 3. 1 3)

Finally, Iet us see how different fieids in the reduced theory transform under the

SO(3,1) global symmetry. This subgroup is generated by the l¡¡ matrices. Thus,

under this subgroup, spinors transform as

áü : Lrrrl"v .2'"
Writing this in terms of spinor representation of 50(6) we have

6'þno : 
'rr(o")"0'þ"0

d'þk :' ¡ ¡ (aI r )à 6'l'bn'

/¡ is a vector under SO(3,1), so it transforms as

6ót :2r¡rturK órc .

If we define o,; : 2w¡sru¿ : e¡¡¡ru¡t and write all this in components, we obtain the

transformations in (3.S). Upon taking the complex conjugate of the transformations

(3.8), we get

o'
6@Ðt : 6rþk: -i(u¿ + iQ$b"ç

4.
Jff

x

-2
i:- t

6(rþ",)t : 6rþt a : -i(u¡ - on)ú 
"¿,(T)ù 

u
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one can clearly see the invariance of the action under SO(3,1). One may also check the

consistency of the SO(3,1) symmetry with the reality conditions (3.5):

6(rþ'år¡,) : i(r, - ;o)r¡,';ç!¡u"r5u

;t 
îi: ,(u¿ _ ia¿)(rþ,fie¿¿)( 
,)"i,

oi: -i(uo - ¡a¿)rþra(T)"i,: 6rþt¿,

using (o")uuroü: -e¿a(oi)¿r. Ta,king ø¿ ancl o¿ to be c-clepenclent, the associated Noether

currents are found to be

JLv : -Trþ 
"ul 

r@o)u ¡,rþoo - Irþhl r@o) 
"o 

rþ 

"u
JLo: irþ"utr@o)uurþh- îrþklr@o)"urþ"6. (8.14)

Ol, more concisely,

J'rY: -Ú1rÐ;Ú
JLo: i,ú1r17Ðiú ,

where

z,:l(oo o I-'\o 
"')

Later olr, we will exploit the .9O(3)v subgroup for partial twisting on 6-dimensional

product manifolds.

3.3 Reduction to manifolds with SU(3) holonomy

Having derived the 6-dimensional supersymmetric theory on euclidean space, the natural

question which arises is whether the theory can be defined on an arbitrary six-manifold.

Unfortunately, in contrast with l/ : 2 SYM in four dimensions, the nonanomalous

part of the R-symmetry group (SU(2)v above) is not large enough to allow us to

twist the theory on a general six-manifold. However, there are some special manifolds

with reduced holonomy for which twisting is possible or even trivial. 'l'he case that is

considered here is a Calabi-Yau manifold with the Sy(3) holonomy. We also comment

on twisting on the Kähler manifolds.
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First of all, Let us point out the main characteristcs of a Calabi-Yau manifold 147,42]

(see [43, 44] for application to physics) . Let M be an even dimensional manifold. Let p

be an arbitrary point on M . Define the tensor J , the almost compler structure, by

Jr.0l7rP : ðl0u' Jo'01ôyP: -0l}nP.

We can now decompose the complexified tangent space on p into the holomorphic and

antiholomorphic parts by diagonalizing the tensor ,/. In this basis, the complexified

tangent space splits as

ToM" : TpM+ Ø TpM- ,

where ToM+ andToM- are spannedby 0lïzp and ðlïzu respectively, and J becomes

J"B : i6oB ,, J^þ : -i6tB. (3.15)

Therefore, at the level of tangent space, we can always diagonalize the tensor ,/ and

decompose the tangent space accordingly. However, to patch ,I across charts and define

it globally as in the form of (3.15), ihe Nijenhuis tensor

NPr,: J"p(AoJP, - ð,J'") - J",(ïoJor- }rJoo)

must vanish [45]. This is the criteriotlor M to be a complexmanifold. If, in addition,

.I happens to be covariantly constant, M is said to be Kähler. A Kähler rz-fold has a

reduced holonomy group of U(n) c SO(zn). On the other hand, Calabi-Yau manifolcls

have an even more restricted holonomy group. These are the Kähler manifolds which

admit a covariantly constant holomorphic n-form. This, in particular, implies that the

canonical line bundle of the manifold is trivial and the holonomy group is thus contained

in .9tl(rz) cU(n).
In the next subsection we will see how all these structures follow from the existence of

a covariantly constant spinor. Next we show how fields in the different representations

of ^90(6) decompose under the .9tl(3), the structure group of the manifold. This is

similar to what we did in reducing from ten to six dimensions; i.e., determining the

SO(6) irreducible representations embedded in SO(9,1).

Fermions transform in the fundamental representations of SU(4), the universal cov-

ering group of .90(6). Under Stl(3) x U(l) these branch as follows

4: 1-3 + 31

4: 13 + g-1 , (8.16)
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where the superscripts indicate the I/(1) charges. Introduce the commuting c-number

spinor d, which is the left-handed S¿l(3) singlet, normalized by

olo : r.
In six dimensions we can choose a representation of the Clifford aigebra for which the

generators are all antisymmetric. In this case we may take C: 1r so 1l: -.12, and d*

is a right handed singlet spinor

ll0 : -0 + ^È0* : -0* + .170* : 0* .

3.3.1 A Fierz identity and covariantly constant tensors

The projector 00t can be expanded using the complete set of bases

L , .yp , .lz.fp , .lpr , .12.,/t , 1 J¡rv\ t

fbr the 8-dimensional matrices. Since d and 0l are both left handed, the only matrices

that can appear in this expansion are (1 - ?z) and (l - f)lr"

oot : oQ - lz) -r bp,(\ -.yz)-t," .

Using the orthogonality of the bases with respect to trace, and the fact that

fr(lrl") :8Tp, (3.17)

ft(1uvyo¡ : 8(r¡¡"or¡,p - TppT,o), (3.1S)

we see that

oot : å,t - y) - fi@t,,o)(r - y)t,'. (3.1e)

Multiplying this identity by gt from left and I from right we learn that

(0ty'9¡ç6t1r,0) : -(TIy' g¡r0t1r,0*) - -6 . (8.20)

Also using the relations

.l^"yr.lx - _'4^1, , j^.lp,1s :21¡", 
,

where the last one follows from

11 p,, 1 ¡l : 2(T,s^l p - \ p^1,),,
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1^oot1^:

Upon taking the complex conjugate we get

13

4
(1 +'v') (011r,0)(t +.y7)-yt" .

8

we see that

First note that

and that

'lz (0\r,0")(I -'yr)'tr' ,^t^o*i,t.t^: l,t
1

)
8

where we used Lhat 1i: -^ltr.Therefore, these two equations and (3.19) imply

o" o''Y^
1

,
1

2
0'+

1
00t + I

2
(1 - r')

1
0* 'Y^rot'^ (i +.yz)

2

lcrrlcþ' : 6 ,

(3.21)

This shows the decomposition of the projectors å(t + 7z) into the pieces projecting to

the singlet and the triplet of SU(S) respectively.

Since d is an SU(3) singlet it is invariant under parallel transport around a loop,

and it follows that d is in fact covariantly constant. Using 0, we may define further

covariantly constant tensors; e.g., introduce

kr, = iïI1r,0

^, k*
and

JpI I

Jþ^J^' g\, g'" k rrlr^o : - g^P g"" (0t l ro0)(01 1¡r1)

-s^os'o (ltt-l (f tr - r) - fr{ettu,Ð(r - r)f') ('r.,"4)

(ot ^t rr-tr' o) + | {etru, o)(ot t rrtonll' o)

- 0t -t rt' 0 - Iu ; -'¡{tr ^," u)(01 t rtrl) + 
rr{eI 

t r' e)Qt tr{ 0)

1

-4

So,

J^JIr
) v

I,L
óv

- Jr'Jr',

õI

(3.22)



showing that Jr^ in fact defines the almost complex structure. Notice thal ler, l}re

Kähler form, (or equivalently ,/rÀ) is covariantly constant by construction. As noted

earlier, this is the necessary and suficient condition for a complex manifold to be Kähler

(or having a I/(3) holonomy).

We can still define one more covariantly constant tensor; i.e., the 3-form

dÌ¡"rs - 0l1rrs0* .

Being a 3-form, f)¡,rr is cerl,airrly invariant under ^9tl(3), however, the fact that it is
covariantly constant implies that it nowhere vanishes and thus the canonical line bundle

is trivial, the specific characteristic of Calabi-Yau manifolds which distinguishes them

from Kähler rnaniftrlds. There ate no more covariant tensors that one can construct.

Consider for example the tensor 0r-1s0". This vanishes by

011^0* : (011¡0.)t : -0Í-ls0* , (3.23)

where we used that the generators are chosen to be antisymmetric (1t, : _.lpr.l,r, :

-1pu and f,rx: ^lprx).

At this point it is useful to make a special choice of d which corresponds to the

standard choice of complex coordinates. This reduces the problem to the standard

construction of the spinor representation of SO(6) via linear combinations of the Clifford

algebra generators which obey the algebra of fermionic oscillators. First introduce the

combinations (taking þ: (d,a) in flat (local frame) coordinates)

1
I_ \/,

(1" + i'r"+t)

t":ftÌo_i.to+").
Then 7' satisfy the algebra of fermionic harmonic oscillators; i.e.,

{i" 'iB} 
:26oþ 

,

(3.24)

with all other anticommutators being zero. The generators of SO(6) in this representa-

i.,þ : Tll",iBl: ioil ,

fap : Tlt.,iBl: iaiB ,

tion are
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and their complex conjugate. Among these, X6B form the generators of t/(3) subgroup

of ^90(6). Thus subtracting the trace part, SIl(3) generators are

foo: i"iB -ruil6 t"i.,.

To simplify the notation from now on we drop the hat sign and remember that we

are in the representation defined by (3.2a). Requiring that d is an ^9Il(3) singlet (with

appropriate U(1) charge -3) then fixes

1.-0 :0, (3.25 )

so that

lcoþ : kaø :0

Itoþ : 
Tt' r,ru, : ¿il' elrtþ't, t 6.8)0 - i6,p .

Moreover, the only nonvanishing components of f)¡,,) are

{Ioþt : 0I1oP^,0* '

3.3.2 Field content and the Lagrangian

In this part the Lagrangian and the supersymmetry transformations on a Calabi-Yau

3-fold are derived. As implied by equations (3.21) d and 0* carr be used to project

out the spinor representations of SU(4) to the irreducible representations (singlet and

triplet) of .9U(3). In terms of these irreducible spinor representations, defined in (3.27)

and (3.28), the result is

L : -|F,BF"P -ïF,BF"þ - D.órD"ó'

T(ó r, ó rl)' + ie"b $ oD o$u' + iràù r¡, uD' rþ i,*

t}'B-,r"o rþ oo Dþ ,þu' - tgah ,ä'ù rþu,D Brþ¿,.,

io'uoúulór,rþrl - ia'u'rþu.lór,rþa"1, (3.26)

which is invariant, upon using the equations of motion, under the following supersym-

metry transformations

6A, - ie¿ràùrþ6,

6A" - ieoe"btþ65,
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6ó, : -ie¿oib $6 - ie6oibtþ¿

6rþo : eo6opF"B * lór, öfl(olr)"b16

6úoa : -IQ.prFol ro - 2ë¿e6ooIàb D6þ7

6rþu : -e¿6o-BFoB - lór, órl(att)6 uet

6rþao : -IQ*B^,FPIe6 - 2e6e"uo',uD.,ó, .

To begin with, first we show how spinors decompose under Stl(3) x t/(1). Equation

(3.21) implies

,þro : iO - tz)úu : 0(0T út") + f,i,0. 
(0,.y"rþ"") ,

so we recognize the components 0Irþ"" and 0t1¡þ7a as a singlet and triplet under SU(3)

respectively. Similarly t/$ decomposes as

.1 1,þh: ,0 + tòrþh: 0.(|'rþk) + 
,t"0(01-y"rþk) 

.

However, note that the reality condition (3.5) reads (with C : l)

''þh: 
'bu'þ'"¡''

Therefore, defining ,þ, = |lrþto or tþa:- (rþ,)l : rþt¡,0 : ï'rþL¡,, we see that

0'rþk: ,bue'rþL¿, : ,6urþ6.

Likewise, defining rþoa:0'.1.rþ"o or lþao = (rþ,")T : tþta1o0* : -0f UrþLo, we have

oI ru'þh : gt ', o ,ùà 
'¡'r"t 

: ,uù ''þ u .

Hence, by imposing the reality conditions we can write

,þ¡,o: orþ" + f,'yto*rÞ". (3.27)

and

,þk: -f*eä6rþù+ll"oräùrÞu. (3.28)

Upon replacing the above decomposed fields in (3.6) and using e"beäùoIo¿: -oIùb, *"
arrive at the Lagrangian in (3.26). As an example, let us iook at the following term in

detail

i't''r ar D 

"Þk 

: fr:# í! # r;;í *)i' 
o"'""r:;':"i 

"i' 

l;)'ub'þ'¡')
(3.2e)
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where we repeatedly used (3.23) and (3.25). Also note that since 7, are hermitian and

antisymmetric then 1å: -'ya and therefore dl"p- : -0t1a1þ1t0.

Choosing the singlet supersymmetry parameters as

d,Lo : \eo , oh: -.0*räù16,

let us look at the supersymmetry transformations in (3.7). For the gauge field A, we

will have

6 A, : i(e6eb" 0t)1,(0rþ, + IlB0. rþf) + çeuet¡',.(-l* eäb E6 + f,tP 0 räb rÞi,o)

: îeu(0I1^l"0)r"i'úi : i¿aeäbútu. (3.30)

Similarly

6A. - ieoe"btþ65,

6ó, : -iêàoTbúb - ie6oib$¿. (3.31)

Next consider the fermions. From

6(0',þ" + ltal.rÞf) : (Tl*p")\ro I 1¡,Dþ þ¡ol"rç_.0. r6äeu) + lór, órl(o")"00(e6) ,(3.32)

we have

6úo : eo|opFo? t lór, ótl(oIr),b 16

6rþoa : -lTrp-Fþ1 ,o - z¿àei'äo:i,D.ót : -TQrp-Fo1ro - 2e¿e6ooIäb D6$¡ ,

and. so, ,ir"" .u;.åu(a")ui: -(ott)u¿,

6rþu : -è¿6opFo7 - lót, órl(att)ù u¿¿

6rþuo : -TQ.B^,F?Iêa 2e6e"bolouDoþy .

To close the supersymmetry algebra off-shell - i."., without using the equations of

motion - we introduce the following auxiliary fields into the supersymmetry transfor-

mations,

H : i6oþFoþ and Ho: tQ.,BrFþ' .

As we will see, these definitions are consistent with the fieid equations for H and .I/"

in (3.36). The transformations of these auxiliary fields are obtained by demanding the

off-shell closure of the supersymmetry transformations up to a gauge transformation.
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Tlre two successive supersymmetry transformations ó1 and 62, acl on Ao as

(6t6, - 6261)A, :2i(e!e! - lr|)n"ó, ,

which is an infinitesimal pure gauge transformation. However, an infinitesimal gallge

transformation of the gauge freld, Ar - Ar j iaDrþ, induces the gauge transformation

of tþ --+ ,þ - i"ló,r/] o" the frelds. Therefore, the above operator should act on spinors

as (for the two successive transformations give a gauge transformation)

(6, 6 

" - 
6 16 r) rþ " 

: -Zi (e!e?u - ele[) a I bb 
ló t, rþ,]

(6, 6, - 6 16 r) rþ a. : -z¿ (¿Tel - e!e[) a 
I Lb 

[ó r, rþ u,] .

Consequently the supersymmetry transformations of the auxiliary fields are worked out

to be

6 H : eoolä"|ó t, rþ ul - ¿aalà"[ö t, rþ 
"]

6 Ho - -4e6e"b D otþo + 2et oIàbló t, úu.l .

Introduce the generators, Ç and Q, by

6:ièaQ"-ieoQ" (3.33)

Then Q and Q act by commutator (anticommutator) on bosonic (fermionic) fields; i.e.,

6A: ira{Qä, A} - ie"{Q", A}

The sign is such that ó is hermitian. This enables us to rewrite all the above supersym-

metry transformations more succinctly as:
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F ield Qà Q"

,þ¿,*

Ao

Ad

ót

H

Ho

Hõ,

,þt

,þ¿,

bd,þ

0

H6i + io"u¡,1ó,,ót]

2iD aþ ¡oIù" eo6

H"6i

,äå rþù,

0

-oio'þo

io'ublÓ,,tþol

0

4ieà6 D.$6 * 2ialàu¡6t,rþu.l

H6i + iolr"alót,ót)

0

Hr6i

2iD.þ¡e"bolu5

0

-e"b'þa.-

-^^ 
t

oi-Ip6

i'a'ù"1Öt"þi

4ie"b Do$6 * 2ialù"¡6,,rþ¿,]

0

3.3.3 The cohomology classes of the BRST operator

In this subsection, first we show that the theory defined by the Lagrangian (3.26) is in

fact a cohomological theory. This is done by showing that the action, up to a topological

term, can be written in a BRST exact way. The BRST cohomology classes are then

obtained.

The following definitions will break the explicif SO(3,1) covariance; however, they

are useful in constructing the cohomology classes of the BRST operator. Introduce

n : -ú1, ( :'þ¡,'þ.:'þt,, x, :'þ"
g:óo-ós,g':óo*ó",ó+:S1I|S2. (3.34)

Further, define

Q=i}i- i8', Õ=¿Q'-¿8'

V
tg{*"f-ouo 

- ('LoBl Fpr) + 2y" D.ó+ - 2v'Dorþ" - zp'ló+,n]}

'ne {0, + zik\o F,, + 
l1tø 

-, ó+l - 
t 
fr, r'l\

Let
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a{

then, noticitg {8t, V} :0, we have that

- f,v'ln,n) + 
r¡v'tó+,,1p, 

ó-ll+ 
|e 

n.rl," - f,v'lrÞ,,rþ"1 - 
rrv'D.D" 

v + |40+,

na" nprÞ*)

f1, and 11 have no dynamics and can be solved algebraically

Qop-rFþ'L,

Substituting these solutions back to Z we obtain

+ ló-,nl -
- Lr¡" -L4' 2

* ;e (tr, el

1

,
i

ó-, ó+

nl

1

,
1

ló-,ó+l + [v,ç'])(iH + Zikþ" F.B +

Adcling the complex conjugate part, we define

L = {Q,V +v)}.

Ho H : lcoþF"o

E L - +F"BF"P + f,F.-oF'þ - LUfþ F.þ)' ,

lç,p'l)2

(3.36)

(3.37)

where use has been made of

{lop.,Qopt:8(k.,pkB1 - k.,tkBù .

Interestingly, the integral of the extra terms in (3.37) turns out to be a topological

invariant [46] 
1

-+ lk A tr(r A r') : + I ft (F,BF"P - FopFoþ + (kÞtr,u¡2¡

which only depends on the topological class of the vector bundle -E and the Kähler class2

of the metric. If we change the metric in its class, fr at most changes by an exact form

lThere is a typographical mistake in the equation (16.7.14) page 539 of the above reference.
2civen a Kähler metric a on the manifold X, the corresponding Kähler form, since it is a closed

2-form, defines an element of H2(X,R). This element is called the Kähler class of the Kähler metric a

[46].
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and thus the integral remains invariant. It is straightforward to show the above identity.

Let us write k and F in complex coordinates

t^ 
- 

lt^tú - ttuttu drPAdr'- lcr-p dr"Adrþ

p : f,F,,, d,xP Ad,r' : F,,þ d,ro 
^d,rþ 

-f TF*B d,ro Adrg + TFrp d,xd Ad,rþ .

Hence

F AF : FopFpad,r'^dxþ A,drp /\drõ + f,F.BFuadr" Adrþ lrdrÞ Adrõ '

The integrand now can be written as

kAF AF : (krçF.pFpa) drn ndrc A,dno 
^drþ 

Adnp Adrd

I i',i::i::' 
-',Ï, 

)'Ï r:::;'::;::;,i"- "
: 

{ien"o egeu çigr¿)F.BFru r lren'B ecuu (igre,)F,BFeu) du *

{G"a s'u - g'u goþ)F,þFou - TØ"u gBu - god g7Þ)FooFuu} tßdu"

: {{r,or"ø) - (F,BF'þ) - (k0 F,ò') ,/sau*, (3.38)

using the shorthand notation d6r fot drl\dr2\dr3\dx4\dxs\dr6. This proves the

identity of (3.37), and shows that on a compact Calabi-Yau manifold the Lagrangian,

up to a topological term, can be written in a BRST exact form

L + tk A tr (F 
^ 

F) : {Q,v + v)} . (3.3e)

Using the supercharges Q2 and, Qi , we now show that V itself can also be written

as a BRST commutator. In fact we can write

v : {(iQt - iQr),,w} : {g,w},

where

w : lB{x^r|," 
- ió+(H + zilf' F,B - îlç,rp'l) + t g"Þ'tç5ç¡),Br),

with

CS(A),^ : AoFp., - tA"lAp, A;

V : -{Q,W}.

(3.40)

Similarly,
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By this, we have been able to write the action quadratic in BRST charges. Although

this is not still in a balanced form (see the next part for the definition), it is interesting

to note that there are different ways of writing the action quadratic in Q's.

Suppose the gauge group has rank r. Since {Q,V} : 0, we can write the first obvious

BRST and gauge invariant operator which is just trcp'. In the following, we use the

language of forms for clarity and compactness.

First note that

2Dg : 2(D"pdn" ! D69rl,rd) : -i{Q',rÞ,}d.r' + i{Qi,rþ.d*t} : {Q,rþ} .

Likewise, since

{Qt, F"B} : D¡'tÞo)

{Q', Fra} : -DþtþBl

{Qt,F,B} - -D"rþB

{Qi, P,p} : -Dorþo ,

we find that

{Q,F} : f,D¡*rÞa1d,'o 
A,d,rþ *Tor.rþ^dr. Adrþ

+ (iD"rþB - iDB$)dxo A drß

: 
|n¡rç,ya*p 

A dr, : iDú .

tr'or the example of SUQ) gauge group we have the familiar BRST cohomology classes.

We start with the BRST and gauge invariant operator ftg2(n). Differentiating this

operator with respect to r we obtain

d(ir e2(x)) : {Q,prþ}

Repeating this procedure results in a set of BRST invariant operators,

g(t) : I Wr_,
J1

where 1 is a k.,, dimensional homology cycle on the six-manifold, and W¡-, are differential

forms of degree k,, defined by

: lftszWo
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Wt - t (prþ)

Wz:t (f,rÞ'-iVF)

Ws - tr (tþF)

Wa: -ltr F2 .

Here we have omitted the wedge product sign, so for example F2 stands for F A F. As

in the second chapter, it is easy to see that (2e's are indeed BRST invariant

{e,o*}: l,,r{Q,wr} -- I.,rd,w¡,-y - Q.

For gauge groups of higher rank one can construct more BRST invariant operators.

For instance, for S¿l(3) there is an additional gauge and BRST invariant operator, that

is $tr V"@).One can construct these operators just by successive differentiating of this

operator:

tdtr es(r) : l,{Q,,t'(e'rþ)}
dtr (e2$) : {Q,Itt (vrþ' - i,p'F)}

atr (lvrþ2 - ;v'F) : +{Q,t' (frú3 - iplF,rþl)}

dtr (!3Þs - iplF,rþ)) : -{Q,tr (;$2 F + çF',)}

dtt (itÞ2 F * çF') : +{Q,tr (tþF2)}

dtr (tþF) : -t{8,tr (F3)} ,

note that lF,rþ]: F A1þ+rþ AF. Thus for .9tl(3) gauge group we have additional BRST

invariant operators

wi.

with

WÅ : $tr p3(ø)

W!,: t (p'rþ)

Wl:t (prþ" -ip'F)
Wl: t' (frú' - içlF,rþl)

Wl: tr (!þ2 F + pF')

W!: ft (tþFz)

wl: -åt'(F') .

1O : 
1.,
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Clearly WIis just the third Chern class of the Stl(3) bundle

3.3.4 A balanced cohomological field theory

A balanced topological field theory [7] has the properties of being invariant under the

two topological symmetries as well as having a global s/2 sfmmetry. The two BRST

supercharges, d1 and d2, transform as a doublet under this global symmetry. The

important fact about these topological theories is that the action can be obtained from

an action potential I4l

such that rhe critical poinrs of this 
j-.Ïj^'t 

;"identicat to rhe fixed points of the

BRST transformations.

In this subsection we will show that our theory is indeed a balanced topological field

theoly. To write the action in balanced form, we first choose the supercharges such that

they transform as doublets under the SO(2,1) subgroup of SO(3,1). Under SO(3, 1),

the spinors transform as

6úo : 'rr(o") "u'þø 
,

where a7¡ ð.re the rotation parameters. Under the SO(2,1) subgroup generated by

ool : Lotroo' : To'and ø12 : io",

6rþo: I(roro' I uozo2 { iupos)ob{6.

Or', introducing u)+ : å(ror + ius2) and uo : Tan,

6'þt:u-'þzliuotþt

6'þr:a+th-iuotþr'

Upon conjugation we get

6rþt:u+tþz-iuotþl

6rþr: u-th * iuotþ;.

(r;")-(rr',)

Hence, under SO(2,I)
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Using ,þo : ,"brþa and working similarly, we get

Therefore, the spinorial charge

-a

also transfoïms as a doublet of SO(2,1). In the following we show that the action can

be written in an SO(2,,1) invariant way,

,rs+å JTnFAF:f,eo"dAdBw,

where

: 
f,ó"nø" 

r,e +lnrne+ (t) -!@,",t. * x,x')

+ !-s"Êt(AoFp., - !o,[oo, 
A.,]) - ha.'-,Øa 

ph - Io"roo , A''l) .

such that the critical points of W are identical to the fixed points of the BRST action

First note that, apart from those topological terms, action can be written as

S : drv, : i(Qí - er)v, ,

where V'is

{x.Qn" - dl"þ'Fp^,) + ,þ"(iH, + Qop.,Fe') + 2y'D,ó+ * 2tþ.D" ó*}

{-ó'n*rÞ' - óD" x, - ó'ló+,ry1 + dtd*, d}

Lþ' + Iø-,ó+l - 
tuto, 

ol)

klo -Tw-,ó+l -f,rø,ol)

Now V' in turn can be written as a BRST exact term

v, : d2w -- i@' - et)w .

In the variation of the Chern-Simons term we note that

{8t, o"u", A.FB., -!o,loo, Arl)} : o,
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ancl

{i}t, e*Þ, çA,Fo^, - 
t¡o-¡oB, 

A.,])}

: Q'qt (iyoFB", - iyrDBAo I ixBDrA* - iy^lAB, A.,])

: Q"Þt (iy.FB^, * ix.' {DBA., - D.,AB - lAB,Ar]})

: 2idl"B1yoFB., . (3.41)

It now can be seen that the critical points o1 W are the same as the fixed points

of the supersymmetry transformations. DifferentiatingW with respect to $s and Ao

respectively yields

k1o Fop - g

Ieorro.,*D.ós:o.
4

For a compact Calabi-Yau manifold, the second equation, after squaring, reduces to

Fop : 0. Together with the complex conjugate equations we have the Kähler-Yang-

Milis (Donaldson-Uhlenbeck-Yau) equations:

lc?" Fop - g

Foþ: FaF :0 (3.42)

of course with D,þs: D"óz:0.

3.3.5 N-2reduction
The theory defined by the Lagrangian (3.26) admits a truncation consistent with some

of the supersymmetry. If we want just to keep the Ql supersymmetry then we may set

n:n:ö+:ó_-_0
which is consistent with Ql symmetry but destroys Q2 symmetry. From equation (3.39)

it is clear that I/:2 reduced Lagrangian still can be written in a BRST exact form

L + +kA tr(F 
^ 

F) : {Q,,V + V)}

'where l/ is now

v : [s{x.çm" - çtoþ1 FBt) - zp' D,rþ"} - I, {t,n + 2itcþ' F.p - Trr,r'l} (s.48)
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Therefore, the truncated 1ú - 2 theory is still a cohomological one; i.e. it is independent

of the metric deformations which preserves the holonomy structure of the manifold. To

see the fixed point equations of this cohomological theory, we write out the supersym-

metry transformations in the table below.

Field a Q'

C

(

Xo

Xa

,þ,

,þ"

Ao

Ad

I

9'

H

Ho

Hd

H - tlP,v'l
0

-Ho

0

0

-2iD69
,þ.

0

0

-2(

-ilv,4
0

2ilP,x.l

H + ilç,v'l

0

0

-Hd

2iD,p

0

0

-rþ,

0

2e

-ilç, d
2ilv,x"l

0

The fixed points of the action of Q' on fermionic fields are obtained by setting

{0i,(}: {oi, xo}: {Qi,rþ,}:0,

together with the complex conjugate variations, and upon using the equations of motion

for H and f/. the fixed point equations are found to be

Foþ: FaF :0

¡"8 FoF : ilv,p,l
Dog : Daq:0 '

Therefore we conclude that the truncated lú : 2 theory, like the unreduced ly' : 4

theory, localizes on the moduli space of solutions to Kähler-Yang-Mills (Donaldson-

Uhlenbeck-Yau) equations'
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3.3.6 The case of Kähler 3-fold

Before ending this section let us briefly discuss the twisting procedure on Kähler mani-

folds. Twisting on Kähler 3-folds has also been outlined in [a7] from a group theoretical

point of view without explicit derivation of the Lagrangian. A Kähler 3-fold has the

hoionomy of ^9tl(3) x t/(1) under which spinors transform as in (3.16). Recall that our

six-dimensional theory has a global nonanomalous .9[l(2)v ry--"try. Let us choose a

U(I)v subgroup of this global symmetry with the transformations derived from (3.S) by

setting ai : j¡ur : 'u2: 0. With a normalization of the charges, the spinors in (3.27)

transform under {/(1)v as

(rf4,t/"') - 1-3 , (rl,r,rþ2") - 1+z '

Similarly the two complex scalars ó+ = û * ió, and /- = ót - i/2 transform as

ó+-]-+6, ó--1-6,

with Ao, /s and /3 being invariant. Now we twist the t/(1) part of the holonomy group

with t/(l)v (simply by adding the t/(1) charges). Under the new holonomy group, fields

transform as

,þt - (1-t,1-:) r 1-6

,þ, - (1-t,1+a) ------+ 10

,þr" - (g+1,1-3) -----+ B-2

,þr. - (B+1,1+s; -- B*a

úi -(1*t,1+a) >1+6

,þ, - (1*t,1-3) ----* 10

,þío - (B-1, t+s¡ -r B+2

,þio - (g-t, r-t) -- B-a

ó+ -(10,1+a) >1+6

ö_ -(10,1-o¡ >1-o

with all other fields being invariant under twisting. Since we have only changed the U(1)

charges of the fields, the Lagrangian is the same as (3.26) with the difference that now

the covariant derivatives have the appropriate U(1) connection. Notice that, instead of
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four scalar supercharges in the Calabi-Yau case, we now have two scalar supercharges

Q1 and Qi after twisting. This still allows us to write the Lagrangian as a BRST

commutator just as in section 3.3.3,

L: {Q,V +V)}.

Therefore, the twisted theory on Kähler manifold is a cohomological one.

3.4 Partial twistittg on product six manifolds

Consider the product six manifold M : X xY, where X and Y are both three manifolds.

We choose the metric to be diagonal g : gx Ø gv, thus the holonomy of M is just

SO(3) x ^9O(3). Spinors sit in the 4 of SU(a) the universal covering group of 50(6).

Under the SU(2) x SU(z) subgroup of SU@) this representation decomposes as

4:2Ø2.

Therefore under the nonanomalous part of the global symmetry SU(z)x x SU(z)v x

SU (2)v , the spinor s, ?þt o and tþþ, will transform as

,þt o - (2,2,2)

,þh - (2,2,2).

Obviously there is no twisting which leaves a scalar supercharge on the whole manifold.

However, one may still twist partially l27l on one of the three manifolds, say Y, to get

a scalar supercharge in the Y direction. Let i,j, " . and rn)n)" ' indicate the indices

on X and Y respectively. Let us choose the following representation for the Gamma

matrices

l'*:J- '**t:;' "' '

so that

1z : -].Ø 18 o3, and C : io2Ø io2&t or .

Now a spinor can be decomposed in general as

,þ : rþ"^ eo8 e¿8 et * À"à eo@ e6@ e2,
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where a and a indicate the two dimensional representations of SU(2)x and StJ(Z)y

respectively. Moreover

^lzú : -rþo' e*8 ea8 er * À"â e.,@ e6@ e2.

Thus ry''d is a left-handed spinor while À"á is a right-handed one.

Our starting point is the Lagrangian (3.6), where now tþ¡o and rþft are both bispinors.

In the following we use the reality conditions (3.5) to write down the Lagrangian only

in terms of úoa. The fermionic part of the Lagrangian then reads

Lp : tru"rþr"ucl, D rrþ"" * h.c.

+ ieb"Et"uc ol"ulö r, C-t rþ'"e6ul .

Twisting on the Y component of the manifold essentially consists of promoting the

gÌobal SU(2)v index ato a dot index a and decomposing the resultant tensor product

representation under SU(2)'y, the diagonal subgroup of SUQ)v x SU(2)y. Hence, by

twisting we simply mean

1þooo --* tþ.aB .

This in turn decomposes to a singlet and a triplet (in the Y direction) under the new

space time symmefry SU(2)y x SU(z)'r,

úoaB: €aBúo ¡ e6io[ix*..

Note that ,à+oii : ,Bio|l, thus we have

,þorþ : eþirþoa+ : a!rþ* - oTþx*, .

Let us see how the Lagrangian looks like in terms of these new fields. The fermionic

kinetic terms becorne

Lp : i {rþ' (r^prlt. + ,a+oil X^o)eo1 oi BD¿eàþ (e ¡¡rÞP + , ¡toiò xf)}
+ ; {lr0'çr^Oú. -l eaioffi x*o)roB rãþ o;ò D*(r6rl;B -f e¿,6oi'x,B)] I h.c.

: -itþ"o',oD¿rþP + iyfl o'.oD¿x^B - 2rþ" D*XT - ie^"'XlDnx,o I h.c. .

-irþualà"lót, rþt ,] : i(ú" rd7 - r^+ oîþf*)lþ, (e6¡ú. + e ãñoiù x,ò]

The potential is

V
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i (E" ra o - r', oîþ ffi) of,' ló *, (, 
^+rþ ^ ¡ e 6¡ o\ñ x,ò]

2irþ"1ó,rþ"1 - zi4iló,x|l - 2irþ"\ó*,x}) + ziN:^ló ,rþ,1

2e*"'f^lÓ*,x,o] ,

where we defined ó = óo. The bosonic part of the Lagrangian is of course much easier

to write

Ln -T{F,¡Poi * F*,F^" ¡zF¿*Fi^}

T {nnó*oo ó^ + Dnó*D" ó* - D¿öD'ó - D^óD^ ó

lló^,ó*l'-ló*,ól'\ .+ (3.44)

Let us now work out the supersymmetry transformations of the decomposed fields.

Like rþ7¡,, the supersymmetry parameter c-7þ1car be decomposed as

otB: doa\ eoØ 
"^Ø "t '

Since we are only interested in the singlet part of the supersymmetry, we set d..àþ :
eoþeo. The supersymmetry transformations (3.10) now look like

6 A' : -2ie" o! g B + 2i$" o! eo

6A*: -4e'xT -4¿"1:
6Ó :2ie'tþo - 2ieotþo

6ó^: -2iëoyo^ ¡ 2ie"yo^.

For spinors, note that by reality condition we have dk: o'taCe"b. Thus

and the transformation laws (3.7) become

6rþr, = O (Gaprlt' I oii r"+x*,) "'8 ,'8 "t)
: {;roir rni{"¡,8 18 1)6/ + tr^"'F*n(18 4"8 1)ó/

+ F¿*(oiØ o*6 io3)61 * tr^,,|ó ,ó"1"î -ló*,ól"i')eoe6i(e"@ "ô8 
rt)

{{noór^ø - D¿ó^oii ei6)(oiØ lE ø1)

+ (D^óraþ - D*ó,oåleia)(lø o*ø o2)) eo (e"8 
"tØ "') 

.

oap: -€aþêo eoØ eàØ e2 ,
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Multiptying first by eaÞ and then by e7i(o"¡rä we conclude

6rþ* : ie¿¡¡,F;i olB eB - D¿ó o'! rB - iD^ó*eo

6X^o : -Tr*n,F"'€-o - iF¿^o'f; eB - D¿ó^o!èB - iD^$ ê.

e^n Dn þ'eo I (le*n,ló" , ó'l - ló^, ó])r" .

Supersymmetry

It is not clear whether the action is invariant under the supersymmetry transforma-

tions we just wrote down. Supersymmetry transformations require the existence of a

globally defined spinor eo on X. On the other hand, to have an invariant action un-

der these transformations, the supersymmetry parameter must be covariantly constant.

Thus the holonomy of X must be such to admit a covariantly constant spinor. For

instance, one may consider 3-manifolds with t/(1) holonomy. For simplicit¡ let us take

X to be flat R3 so that the above supersymmetry transformations make sense. Even so,

in verifying the supersymmetry of the action, one may meet commutators of covariant

clerivatives and the Riemann tensor of Y might appear. In our case this happens in the

variation of the following terms

6(-ie^"'yhDnx,.) :2ix^"(DnD"ó^ - DnD*ó")e" +

6(ró^D"D"ó*) : -2ivftD,D"ó ro + ".
6(2y*' D*rÞ.¡ : 2iy*o D^Dnóèo *' . .

thus

2iy^olD^, D"ló" eo I h.c.

-2(i&^"ynLa ón - ix^oÍF*n, ól)¿" I h.c.

ó.9N T
t

.t

AS

lD^, D*]ó : R^nó I lF^^,ó 1.

But the action is supersymmetric on flat R6, so to make it supersymmetric on R3 x Y
we just need to add the term

1 IR^nó ó"
2
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to the action. Now the bosonic part of the action in the Y direction reads

i | {r^"r^" tló^,ó,1'-zF^^ló*,ó"1

I-1^"iîîÏ:,T;i,i|,ï:lî{,'},óa,,}
Thus if we scale down the metric on Y, the path integral will localize on the moduli

space of the following equations

F*n : ló^, ó"1

D¡^ón1:0

D^ó* :0 . (3'45)

3.4.L Discussron

To finish this chapter, we briefly discuss the case of U(1) gauge group, its relation to

D-brane physics and a number of related conjectures. We follow the work of [6] in four

dimensions and the discussion of Calabi-Yau mirror manifolds in [ B].

If the gauge group is U(1) then equations (3.45), in the language of forms, simply

reduce to

F : 0, dÕ : 0, dto : 0, (3.46)

where F : TF^ndn^ /\ dn" and Q - þ^dr^. That is a flat U(1) connection and

a harmonic one-form (Þ. The moduli space of flat U(1) bundles can be described as

follows. Let us perturb aflat connection Ato a nearby connection A': A*óA and ask

whether it is flat. Flatness of A' requires

d,A':d(A+óA) :9.

Since A is flat then we get

d6A:0.

Moreover, we demand that áA cannot be derived by a gauge transformation, i.e.

(da,6A) : s,

for an arbitrary gauge parameter a. This implies dt6A:0. Therefore, f.ot A'to be

a flat connection, áA must be a harmonic one-form. Hence the tangent space to the
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moduli space of flat connections aL A is f11(y,R). However, there are still some gauge

degrees of freedom among these har-monic one-forms áA that must be removed. These

are the non-trivial global gauge transformations which map non-trivial one-cycles to

U(1).Such a gauge transformations fall in different isomorphism classes characterized

by integers. Let us represent a flat connection A gauge invariantly by a Wilson loop

$çA (with C¿ a oîe-cfcle in Y), then a non-trivial global gauge transformation acts like

{ ¿'--' { 'q + zn'Jc, Jc,

for n an integer. Therefore, if we mod out this global gauge symmetry, then ór4. is a

harmonic one-form with values in [0,1] and we end up with a torus 7o' (with ó1 the

flrst Betti number of I/) as the moduli space of flat [/(1) connections. Thus the moduli

space of solutions to the eqs. (3.46) is

M ¡t x flt (Y, R) , (3.47)

where M¡t, as \¡r'e saw, is parametrized by the torus ?åt. Notice that the moduli param-

etels ate in fact arbitrary functions of the coordinates on R3, i.e., they are maps from

R3 to M.
Now let us consider a variant of the above problem. Take / to be an embedding of

Y into a Calabi-Yau 3-fold M which has a mirror manifold M. t¡" concept of mirror

manifolds is not important for us (see [a9] for details). What we really need here is

lhat M ur'd M locally look like T3 x T3 1481. f V) is said to be a special Lagrangian

subrnanifold of M (or sometimes yr'e say Y is supersymmetrically embedded in M) [50]

if the following conditions on / hoid

l*1, :0 and /.(ImO) : g (3.48)

Here k is the Kähler form, and 0 the Calabi-Yau form,on M, and * indicates the pull-

back operation. We denote the moduli space of all special Lagrangian submanifolds

insicle M by M"t. The tangent space of M"t at Y can be found as follows [51, 4S].

Suppose / is a map which satisfies the special Lagrangian condition (3.a8). Consider

a one-parameter family /(t) of / : /(0) parametrized by ú. Under what conditions

cloes /(ú1) preserve the special Lagrangian condition? If 11 is infinitesimally small then

obviously we must have

fir.r: o and
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However, in [51] it has been shown that these conditions are equivalent to

d0 : dtï :0,

where d- : l?krB}*lo is a one-form on Y. Therefore, TvM"t is isomorphic to

H'(Y,R); any harmonic one-form on Y corresponds to an infinitesimal deformation

of f (Y) to a nearby special Lagrangian submanifold. Hence if Y is a special Lagrangian

submanifold of M, the moduli space of solutions to dÕ : dtÕ : 0 is equivalent to

TvMa and the moduli space M in (3.47) becomes

Mp x TvMa

The partial twisted theory discussed above in fact arises in the effective low energy

description of a D3-brane (or a D5-brane after compactifying two directions in R3 and

using T-duality operations) wrapping around the Y (or ,91 x ,S1 x Y f.or a D5-brane)

supersymmetrically embedded in M. Consider type II string theory with the target

space Mq x M, where Ma is the four-dimensional flat Minkowski space-time and M is

a Calabi-Yau 3-fold. In string theory the structure of the target space is partly frxed

by demanding the vacuum of the theory preserves part of the supersymmetry. In the

compactification of type IIB string theory on Calabi-Yau 3-folds, there are BPS states

(i.e. solitonic states which preserve part of the supersymmetry) corresponding to D5-

branes wrapping around,91 x,91 x Y, where Y is a 3-cycles in M and S1's are thetwo

compactified directions in M4 However, the fact that these configurations preserve part

of the supersymmetry requires Y to be a special Lagrangian submanifold of M and the

I/(1) connection on the brane to be a flat one [35]. The bosonic degrees of freedom of a

D5-brane consists of a I/(1) gauge field and 4 scalars which specify the location of brane

in the ambient space. Clearly, scalars have to be in the normal direction to the brane.

If we decompose the tangent bundle to R x M on Y, we have

"(Rx 
M):TYØNv,

where /[y indicates the normal bundle of Y. Hence, the scalars are sections of l/y. Out

of these 4 scalars, one of them is a section of R and we may call it the real scalar /.
The remaining three 'scalarst are then sections of the normal bundle of Y inside M.

In fact, as Y is a Lagrangian submanifold, any normal vector to Y can be converted
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to a one-form on Y by the Kähler form on M. This is exactly the bosonic spectrum

which appears in the partially twisted Lagrangian in (3.aa); a gauge freId A*, a one-

f.otm þ^ and a scalar /. Therefore, following [34, 6], the partial twisted theory that we

constructed in the last subsection is conjectured to describe the low energy excitations

of D5-branes in the type IIB string theory.

As we saw earlier, this effective field theory, which lives on the worldvolume of a

D5-brane, localizes, in the limit of small Y, to Mp x TvMa which is conjectured to

be thc local dcscription of the mirror manifold U ¡+A1. As in [6], this could be used

to derive the moduli space of wrapped branes or to discuss the existence of the bound

states of branes. Furthermore, \¡e may derive, following l27l,f,he effective theory which

arises in this limit. There are indications that the effective theory which erlelges is

a sigma model with the target discussed above. In this way, one should be able to

construct a relation between the invariants of the six-dimensional product manifold and

the invariants associated to the three-dimensional sigma model.
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Chapter 4

¡r 4SYMontx52and its

Topological Reduction

4.L Introduction

In this chapter, we will study the twisted N : 4 SYM theory on a product four-manifold

X x ^92, 
where Ð is a Riemann surface of genus g ¡52]. We derive the effective theory in

the limit where ,92 shrinks and then perturb the effective theory by a mass term fol the

hypermultiplet. In principle, one should get the same effective theory perturbed by mass,

if one instead first perturbs the N : 4 theory by a mass term for the hypermultiplet 1

and then takes the limit where .92 shrinks.

Although the mass term reduces the number of supersymmetries to two, the massive

theory is still believed to be ^9-dual [11]. ^9-duality relates the behaviour of the theory,

with gauge group G, in the strong coupling region to the behaviour of the same theory,

with the dual gauge group ê, itr th" weak coupling region. Here we take the gauge group

to be SU(2) and hence its dual is SO(3). Therefore, to probe the duality properties of

the massive theory, we need to compute quantities like the partition function nonper-

turbatively - and for both gauge groups SU(2) and SO(3). With this aim in mind, we

will compute, in the limit where ,S2 shrinks to zero size, the correlation functions of a

set of specific operators in the twisted theory and for the gauge group SO(3). In our

lThe hypermultiplet is the same as the one in (2.32), however, note that for N = 4 theory the gauge

multiplet and the hypermultiplet are both in the adjoint representation of the gauge group.
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case, there are three different types of .9O(3) bundles to be considered. To see this, let

us first discuss the classification of bundles on X x ,92.

SU(2) bundles on a four-manifold are simply characterized by the instanton number

k. In contrast, ^9O(3) bundles are classified by two topological invariants: k,the instan-

ton number, and wz(E), the second Stieffel-Whitney class [a5] of the bundle. w2(E)

takes values in Z2 telling us whether the restriction of the bundle to a specific two-

dimensional cycle is trivial or not (notice that .9O(3) bundles over a two-dimensional

surface are classificd by zr1(^9o(3)) : Zz). Therefore, for a fixed instanton number Æ,

there exisl2b' different types of .9O(3) bundies. Here we consider the manifold X x 52.

Since in this case b2 : 2 (see the next section), there are two independent two-cycles

and we may take them to be X and ,S2. Therefore we have four different types of SO(3)

bundles depending on how the bundle restricts over Ð or ^92. SO(3) bundles which

restrict trivially over both X and ^92 are identical wiih Su(2) bundles.

We consider SO(3) bundles such that the restricted bundle over ^92 is trivial. As was

argued in section 2.3.3, bundles which restrict nontrivially over ,92 give zero contribution

to the path integral. Therefore, we are left to consider two types of ^9O(3) bundles which

lestrict trivially over ^92; bundles which restrict nontrivially over X and bundles which

are trivial over X and hence are identical with SU(2) bundles.

The organization of this chapter is as follows: In section 2 we consider the twistecl

N : 4 Lagrangian on X x ,92. In the limit where ^92 shrinks it is shown how the

four-dimensional theory reduces to an effective two dimensional theory. The fixed point

equations imply, in the case of a nontrivial SO(3) bundle over !, that the partition

function of this reduced theory is in fact the Euler characteristic of the moduli space of

flat connections on E. A mass perturbation makes the path integral calculation more

tractable - particularly for the limiting two-dimensional theory. In section 3, we show

how this comes about. Perturbing by the mass allows most fields to be integrated

out, and reduces the path integral to a finite dimensional integral which can be easily

pelformed. In section 4 we discuss the result. Although we have not given an explicit

check of .9-duality, we have isolated the problems involved.
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4.2 Twisted ¡\r - 4 or:' D x ,S2 and its reduction

As was discussed in the second chapter, the key point in twisting [i] is to redefine

the global space-time symmetry such that at least one component of the supercharge

becomes scalar under the new defined space-time symmetry. This procedure crucially

depends on the existence of a suitable global R-symmetry. ¡ú : 4 SYM theory in four

dimensions has a large global 7l-symmetry, SU(4), and thus there are different possible

nontrivial embedding of space-time symmetry in the global symmetry of the theory. As

in [4] we will consider the embedding (ii) in (2.34) where, after twisting, two components

of the supercharges turn out to be singlets and therefore square lo zero. The scalar fields

of the physical theory, which transform under the 6 of SU(4), now transform under the

new rotation group, SU(2)Lx SU(2)'R, as 3(1,1)O(1,3), three singlets and one self-dual

2-form.

Having determined how the new fields transform under the new symmetry group)

what remains is to rewrite the Lagrangian in terms of these new fields on flat Ra. This

Lagrangian can then be defined on an arbitrary smooth four-manifold while preserving

those two BRST like symmetries.

Let us start our discussion with the twisted N : 4 Lagrangianz in 4 dimensions

14,261,

L : )r, |-nr^Dró + lurçn, - z\fzDt c + AJLD' B,t")
e'2 t

+ +Ht"" (Hþ, - zFl" - 4ilgpp, Br,l - 4ilBp,,cl)

+ 4úrD,xr, + 4it,D,úr" * ñt"Dr( - rþrDrrt

+ i{2rþr'[õr,, 
^] 

- irÆxr'[xr,, ó] + iz'nõ"lxr,,cf -f iat[z$u'[xro, B,o]

i{2x*l(, B"l - ¡{2ú r,[n, Bt""] + i4\f2rþ rlx,, B"l - i{2*.,1X' , ól

i'nrþ rlrþ, , 
^l 

- i2\f2ú rlx, , C) * #erc, ^l

ftetn,cl 
+ 2Ló, Br'llÀ, B t",l + 2ló, cl[À, c] (4.1)

As mentioned, the action is invariant under two BRST transformations. However, for

2The Lagrangian that we use is actually different from the one in (2.36) by a BRST exact term

- h6(nló, 
^l).
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us it is enough to consider one of them, which reads [26]

6A, - -2rþ, 6( : 4il1,ól

6úp: -tfznró 6^: {2n
6ö:0 6n:2i[\,ó]
68r, : t/ùúr, 6*"r: iI,
6$ ,, : 2ilB t", , ó] 6 iI t" : zt/rilL r, ó]

6C : Ja( 6yr,: H¡",
\/2 "

6Fr, : -2(Drrþ, - D,rþr) 6Hr, : Z{Z¿ïXr",ó].

Here we choose / and À to be two independent real scalars. This will render the La-

grangian to be hermitian and allow us to treat / and À independently. The generators

of the SU(z) group are chosen to be hermitian f" : 
lZoo 

with ir(T"Tb):6ob.

The theory enjoys an exact t/(1) ghost symmetry under which ,þr,õr,,( have charge

I, l¡",,r¡,rt, charge -1, while / and À have charges 2 and -2 respectively. All other

fields have ghost number zero.

Take the underlying manifold to be X x,S2. Let us denote the indices on X by i, j,...
and those on ,92 by arbr' ... We define

F¿J: ft,"r
B¿j:ft,,,u

1xij: ¡n;ix
1: 

2¡n,oúo¡ ø, (4,2)

and the same for indices on ,92

Bob: 
=7=-r,06' ¡ Xab - Ir,u*' , õ*z{92 {92

1B¡i: *B;¡ è Z¡neut

1: 
2¡*'"0

ftr,,"u " "u 
: 

fi¡rit 
r"b (¡ft;r,au')

ftrne¿¡b':ftro,u' ,

eob €.o¡, : eob eo'b' goo, gbb, : 2gz

,þ (4.3)

Here 91 and 92 denote the determinant of the metric on I and 52 respectively

The fields H,"r,, Br,, Xpv aîd. õt, arc all self-dual. Note that

where we have used
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and

9oo'gbb'eo'6' : eob '

Also we chose eL2 : 1 and so €12 : 92; thus, for example, we have B"b - ,h""0
Hence we conclude that

b:bt,, x:xt, ú:ú,.

For the manifold X x ,92, by the Künneth formula \rye can write

H'(Ð x^9') : [H2(E) 8f/0(s'?)] o [ä1(t) sr/1(s'?)] o [H0(Ð) Ø H'z6\]

Since Ht(S') is trivial, H'(Ð x.9') is spanned by two generators; ø1 which generates

H'(E) and is dual to X and ø2 which generates H'(S') and is dual to ,S2. Thus in this

case b2 : 2. at and a2 are normalized such that

b'

I ø'1Au2:l

so the intersection form looks like

(l;)
The Hodge star operator maps ûJ1 and ø2 into each other such that we can define (note

+2:1)

*A1 : q¡¡,

1
*LDZ- -UIta

where a is some real coeficient depending on the metric. One may choose another basis

for ff2(Ð x .9') by introducing

(q { au2)a
g¿t :

In this basis the intersection form is diagonal

10
0-1
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So ot spans the group HiQ x ^9') and thus bI : t.

It 127) it was shown that upon shrinking the metric on X, one gets an effective 2-

dimensional sigma model governing the maps from ^92 to M, where M is the moduli

space of solutions to the Hitchin's equations. Although the twisted theory is supposed to

be metric independent, one may not get the same effective theory if one instead shrinks

,92. In this case we will see that the effective theory which emerges is a 2-dimensional

twisted SYM theory. This happens mainly because of the following reason: recall that

a topological theory is independent of the metric as long as, in varying the metric, the

Lagrangian remains nondegenerate. Here this fails to be the case because the space

of self-dual harmonic 2-forms is one-dimensional and thus there are metrics for which

abelian instantons exist and the Lagarangian degenerates.

Thereto, we now scale the metric on ,92 by a factor of e. Notice that the defini-

tions (4.2) and (a.3) are consistent with this scaling, since both sides of the self-duality

constraints scale with the same power of e.

After integrating out the auxiliary fields, the bosonic part of the Lagrangian reads

1r
Ln : \t {- nr^Dró - (Drc - 2D'B,t)' - +(Fl, + zilBt p,, Br,l + 2ilBt",,cl)'} ,

(4.5)

where F+ - i@ + +f') and * is the Hodge duality operation. Thus we can write

-+ | '/sFl,F'"* 
: -l I t/nr,,ot" -L | 'rc 

(*F)r,Fp'.

The iast term is the instanton number and is metric independent. Using this, and the

fact that B* is self-dual, we write the last term in (4.5) as

f,F * F r" - 2i F r' (B ro, Bo,f + lB t,,,C] ) + 2(B ro, B o,l + IB r,,, Cl), - f,(* F) r, F r"

: -I {Fo¡ 
poi + si4ii (B¡¡, Cl + [B¿", B"¡)) - 8(lB¿¡, C] * lB¿,, B"¡))' -l (*F)r¡Fii

+ FotF"b +giF'"b(B,a,ClllB*o,Bo.,l) - g([B,u, C]+lB,¿,Bool)" + (*F'),aF"ó]

(FJ + 2ilB"¡, Binl * 2ilB"6, Bool + zilB.i,Cl)2

: -1@u + 4i[Bij,,C])' - I@"u ] 4ilB"¿, Bool)' - zipij[B¿o, B"j] - 2iF"blB,6,Cl

+ 4lBii ,cllB^, B" jl + 4lB"u,cllB"¿, Bnol - f,(*F);¡F¿i - f,(xP),aP"b)

@J + 2ilB"¡, Bto] -f2i18,6,, Buo] + zilB"i,Cl)2.

ln the last equality we noted that for a self-dual antisymmetric tensor ,9, we have
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S?¡ : Sir. Thus, in Particular, we have

The proof of this is as follows. Since ,5,¡ is self-dual, we have

1
S¿¡ : *S¿'

'Jn-"

ob 
Sob .

Therefore

lB"a,Cl' : lB¿¡,C12

ft qB"¿, Bu ull?"i , a¡ul) : tr (B¿", B" jllBib, Bbil)

Vþ¡'ni'"u 
s'u ' fi¡'oi 

e"d,s"d

fir"ur"osobS"d 
: SouSob ,

S'JS¿j

where we used

eob e"¿ : g2(6""6b d - 6"06u 
") 

.

After scaling the metric, then, the Lagrangian splits to three parts;

L:Lt-fLo*L-t,

where .4r, scales as €'. Specifically,

Lt :

+

e

att {-n,¡noó- D¿cDic - D¡bDib* l-rotnibDjc- ltr +zilb,cl),t t/e, '2"

4

Js,
e'rtþ¿D¡y I

, ..
-'-rtt
,/s,

x¿D¡rþ+x¿D¿(-rþ;Dorl

j" 
{-r,^Do 

ó - (D"c + 
ftr"tnbb - 

2Di B¿")2 t 4(D'B"i)(Dic - 2Di Bii)

@J + 2ilB 
"¡, 

Bi ol * 2ilB 
"6, 

Bo ol * 2ilB,¿, cD' - f,(x F) ;¡ F¿i - f,(* F) 
"aF"b

2i(F¿¡ j 2ilB¿¡,cl)lB^, B"jl - 2i(F"b ! 2ilB"¿, B¿;)lB"b,cl

(4.6)

(4.7)

Lo
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+ 4rþl;D"lxi" * 4rt¡¡D,1ú0" + ñ."D"( - rþ,D"n *  ú^DuX"b + 4rt"Duõ"b

+ 2irf2,,þ"'lrþoo, Àl - z¡tf2x"àlx"¿,ól I ¿+t/zú"olx,¿,cl I ¿+tfzõ"ulxo*, Bøil

+ t+t[z$t"ly¿u, Bob) + il\/rõ"ilx"r, Boo] + i4\Æ,õ"ilx,¡, Bnil + i4\/21þt"lxt¡, B"i1

+ iyrt$t'i¡r¿,, B j"l - 2it/2x,¿l(,, B"il - zitfzõ"¿ln, B"i] + ia{zE"¡Xø, B"bl

+ t+1fzr¡'"¡yo, B"ol I i4\núilx", Bo") - itnft,[ñ", ó] + ¿{zrþ"Írþ", Àl

iz{zrþ"lx",Cl + 4ló, B"olh, B,,l} , (4.s)

and

L-t : årt { -4(D. B"¿), - 
tn{r"u | AilB,¿, noul)r}, (4.9)

Now, in sending e to zero path integral localizes around the solutions of the following

equations

Fot I  ilB,¿, B'u]: 0

D" Bo¿ - 0. (4.10)

In appendix C we show that these equations imply

Fob: Boi:0,

and that from Fo¿ : 0 it follows that the instanton number vanishes. A flat connection

on sphere can be written globally as

Ao: g-rôog

for some gauge group element g. Therefore, the connection .,4. is

A: A¿dx' + (g-rï"g)dr" .

We gauge transform L such that it lies in X direction

A --+ gAg-' + gdg-' : g(A¿d,ri)g-r + g(ô¿g-t)dri : A'td*i .

Setting Ao:0 and Bo¡:0,, Lo greatly simplifies. However, because of the zero modes

of the operator ôo, one has to still keep the order e terms in L1. We expand all fields in

terms of eigenfunctions of ô" and denote the zero modes by a 0 superscript. Effectively

we do the following substitution

Q(z,Z;u,u) --+ Qo(2,,2) + Q(z,Z;w,w)
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where Q(2,2;u,ú) on the RHS stands for the nonzero modes. The kinetic part of Lo

then reads

4o u'
1

-treo {-a"s,a" 6 - (o"c ¡ e"6obb)2 - (ô"A¿)'

4rþl¿Y 
"jxi" *  ñ.t¿Y ^lõ0" 

+ X.ov" ( - ,þ"V"rl -l 4ú"Y *"b + +i"v o$"bj

(4.11)

Since lo¿ and 1þo¡ are self-dual and since there are no holomorphic one-forms on the

sphere (see appendix C), lo u,, is nondegenerate. Thus in doing the integral over nonzero

modes, one may drop the terms which are order of e. Keeping terms of order one, the

integral over ri , ( , X, ú ,, {¿ and !¿ results in a set of delta functions imposing the following

constraints

YoX"i:0, Yoõ"i:0

Y o'þ" : 0, eobV o1þa : 0

v oX : o, eoöVo *.a : 0. (4.12)

As was mentioned, these equations have no nontrivial solutions on sphere. Setting these

fields Lo zero,C¡ reduces to

Lr: \t {-a"m"6 - (0"c)' - (a"b)2 - (a"An)"}

where the fields are all nonzero modes. Using the equation of motion lor A¿ we obtain

dtdA¿ * terms proportional to e : 0

as A¿ is a nonzero mode this equation implies that, up to e order, A¿ : 0. The same

happens for þ,ó and C fields, So in the limit e --+ 0 all nonzero modes can be set to

zero and one is left with a copy of. Lt in which fields now depend only on coordinates

on Ð. From no\/ on we call this reduced Lagrangian L and drop the 0 superscript on

zero modes.

The reduced Lagrangian, L, which now describes a two-dimensional TFT, can be

obtained by the BRST variation of I/, where

r/ : I {,, {ixo@n - 2\/zDic +2$r¡niÐ + xet - 2l - 4ilb,cl)v - 
", 

l" -xv ' l/gr'txu 
vl

1

ffi sQnn,þo rztfz¿lØ,bl+ \f2il(,cl)j, (4'13)
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and the BRST transformations of the two-dimensional fields are (ó = {8,.' .})

6A¿: -2r¡t. 6b: tfzú 6C : h(
6rþ¿ : -tÆ¿ooó d$ : -z¡u,61 6( : -41C, ól

6fr";: iiI; 6x: iH 6À: tÆry 6ó:0
6iIi:z\/rilxt,ól 6H :2\/2ilx,ól 6n : -21À,ó1.

The fixed points around which path integral localizes are those configurations that are

BRST invariant. Thus, setting 6X: H:0 and 6*,r: iI¿:0 and using theequation

of motion for H and iI¿ we find the fixed point equations

I +2ilb,cl : o

D¿C t l-r,oPi6: g,

{9t
(4.r4)

After squaring, these imply

f :o , [b,Cl:g
D¿C : D¿b:o. (4.15)

Requirirrg lha[ there are no reducible connections (as is the case for flat non-trivial

SO(3) bundles) it follows that the only solutions are C:b:0. Let us see in this case

what topological invariant the partition function corresponds to. First recall that, in

Witten-type topological field theories, the partition function computes the Euler number

of thebundleof antighostszeromodes(here¡andf¿) overX [4]. However,asthereare

no reducible connections, there are no X zeto modes and we need only to consider the

zero modes of f¿ which are in fact cotangent to the moduli space of flat connections,4zl.

Therefore, the bundle of antighost zero modes is really the cotangent bundle of M which

lras the same Euler characteristic as the space M. We conclude that, when there are

no reducibie connections, the partition function is nothing but the Euler characteristic

of the moduli space of flat connections over X.

4.3 Perturbing by mass term

The theory discussed so far does not have a mass gap [3a]. To make the calculations

more feasible we perturb the theory such that it has a mass gap. This enables us to

integrate out most fields and reduce the path integral to a finite dimensional one.
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The reduced 2-dimensional theory has a t/(1) ghost number symmetry coming directly

from the nonanomalous I/(1) symmetry of the underlying 4-dimensional 1/ : 4 SYM

theory. Because of supersymmetry, the measure for nonzero modes is invariant under the

t/(1) action. The ghost and the antighost zero modes, on the other hand, obey the same

equations of motion such that there are equal number of ghost and antighost zero modes.

This renders the measure invariant under the ghost symmetry of the action. Therefore

the ghost symmetry is anomaly free. As the measure is invariant under this symmetry,

the correlation function of any operator that has a ghost charge is zero. Therefore, this

symmetry allows us to perturb the Lagrangian, by adding gauge invariant terms with

nonzero ghost number, without changing the partition function.

Thus, for example, since the mass term for the hypermultiplet,

-ftrntXofri - 2imÀlb,cl + f,n6*v" ,

where V" is given in (4.18), consists of a term with negative ghost number and a term

which is BRST exact, one expects that the partition function is invariant under perturb-

ing the Lagrangian by a mass term for the hypermultiplet. In [a] and [53] it has been

argued that even an additional mass term for the chiral multiplet Õ (which contains the

fields tþ, and / in (2.31) ) still leaves the partition function invariant.

However, in the following we are interested in the correlation functions of a set of

BRST cohomology classes of the form

I (r) l,- (iróF +'rr ^r) + # I,r,ó'
1

412
(4.16)

Notice that, since \rye are not concetned with the partition function, the above mass

independency argument does not apply here. This can be seen roughly as follows. The

,þ Arþ factor in (a.16) contains part of the mass termfor the chiralfields Ào and ,1," (i,
the notation of (2.31)). One can easily complete the mass term for the tþ. component

with an extra BRST exact term, which at the same time gives a mass to the / field

[2]. The remaining part of (4.16), which are not contributing to the mass term of the Q

multiplet, will in general have a nonvanishing expectation value in the mass deformed

theory. This, in particular, implies that - in contrast to the partition function - the

correlation functions of 1(e) (in the theory perturbed by mass for the hypermultiplet)

may depend on the mass parameter.
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The next problem is to give a mass \o X,n,,l,t/ and (. This can be achieved by

adding V' and Vt' Lo I/, where

v' : -1 lro, tr {xÀ} @.tT)

v": u l, d¡t tt {$c - Leu¡. (4.18)

Notice that no field transforms lo C,,b or f¿ under ó*. Therefore, a mass term for these

fields cannot be obtained simply by adding the BRST exact terms to the Lagrangian.

Alternatively, to produce the mass terms, one may think of changing the BRST trans-

formation rules, keeping the BRST symmetry of the action. In our case, this is possible

if we change the BRST transformation rules lor iI¿,$ anð, ( to the following ones

6 * ir ¿ - z {zilñi, ó) + $*ro¡ii
{9t

6^ú : -21b, ól -l imc

6*( : -4lC , $l - 2imb. (4.19)

As we will see shortly, this perturbation will give a mass to the fields C,b and rt¿.

The coeflcients in V" and those of the above deformed transformations are all fixed by

demanding invariance under the new supersymmetry transformations á-. Even though

the metric is explicitly introduced via the above first BRST transformation rule, note

that the extra term is still invariant under metricrescaling (rr¡ - gt).

Thus, in the following we will consider the theory defined by the deformed action

.9 :1(e) + i6*(v+tv'+f,nv")

: 1(e) + i lro, tt{D¿ÀDig+ D¿cDic + D¿bDib- }-roip¿bD¡c{e,
+ iU + zilb,cl + ù)2 * zitfztyr¡ - Tl*l'Ct - Lrl*l'b"

im ': - ? ,,,úiçj +),irnölb,Cl-zimÀlb,Cl+ ,/rerþ 
-E^e 

"X'tzt

+ !!-roiçoo¡x + 4eoj*"on¡õ i irt¿D'( - iú¿D'rt
t/9t {9t

'/2õtõ, ^l 
+ atÆxIx, ól - +rfzrþlx, cl + zt[z,xÍ(, b]

+ {zrþ1,t, bl -'#r, i rþolñ¡, bl + \/2xtl7o, ól - r/hrþolrþn, 
^l 

+ zJrú,W,, cl

7 ,,, 1

zJrçl(,sl+ JZ(t\'cl-21ö'bl[)'ó] - 2lÓ'cll^'cl]. e.20)
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Notice that although the new BRST charge does not square to a gauge transformation

(because of those new terms proportional to rn), Lagrangian remains BRST invariant.

This can be understood if we notice that 62* acting on fields generates (up to a gauge

transformation) a t/(1) action. Let 6, = h62* 
and, þ:- b+iC, ,þ = rþ + i(, th"tt

U(1) group acts as

610:-iþ, 6rrþ--iuþ
1-16r*l: fta,i' , 6rH; : 

fta,Ut
thus the fields 13, ,þ, rt2 and. iI, allhave charge -1, with their complex conjugate having

charge +1. All other fields have zero charge under this tr(l) group. The fact that 
^9 

is

invariant under ó- then follows since I/,V' andV" aII have zero t/(1) charge.

Before continuing the analysis, it is important to understand the relation between

the perturbed and unperturbed theories. Since the perturbing terms proportional to

f and m are BRST exact, one may expect that correlation functions are going to be

independent of these two parameters, but actually this is not true in general: adding

6*V' and 6^V" to the Lagrangian may result in some new set of fixed points flowing in

from infinity and deforming the original moduli space of solutions [54] such that the path

integral gets contribution from these new fixed points. The theory will be independent

of f and zn if in varying these parameters Lagrangian remains nondegenerate and the

perturbation does not introduce nerff components to the moduli space of fixed points.

We first discuss the situation for t : 0 with arbitrary n't, and rn. The fixed point

equations are those of (a.14) together with (setting6^ø:6*(:6*T:6*tþ¿:0)

lþ,ól:l*þ , [,d] :0 , Doþ:Q. (4.21)

If / is not identically zero then, being covariantly constant, it never vanishes and, in

particular, can be diagonalized globally such that the bundle E splits as a sum of line

bundles [18]. Moreover, if P +0, the first equation in(a.2I) fixes / (up to a sign)

ó
10n'I

4
(4.22)

0 1

00
10

with B as

0:þ
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Now the equations (4.I4) become

i +zlol':o
Dþ:(6,-iA)þ:s

(notice ¡ : f,io",where / h"r" is the t/(1) curvature). Note that 6: f,mos corresponds

to a point, in the classical moduli space of vacua, where a component of the hypermul-

tiplet becomes massless3. The relevant fixed points are then determined by the above

equations. Clearly one can then argue that the path integral over massless modes com-

putes the Euler characteristic of the moduli space of U(1) flat connections M¡t, over

X. A similar argument to the one in chapter 3 shows that M¡t is parametrized by the

torus 7å'. Here h:29 and ?ö' is identical to X, thus

x(T"n) :2 - 29 '

To evaluate the contribution of this singular point to the path integral, however, one

still has to do the integral over the massive modes.

This is not an easy task, but there is a special case where this point ($ : f,moz) does not

make any contribution. This occurs upon restricting to the nontrivial .9O(3) bundles.

As discussed above, a nonzero / breaks the gauge group down to t/(1). In particular,

SO(3) bundles split as

E:LØOØL-|,, (4.24)

where -[ is the t/(1) line bundle and O is a trivial line bundle. In this case, w2(E), which

measures the nontriviality of the bundle B, turns out to be the mod two reduction of

q(L), the first Chern class of L l4l.Thus if f :0, as is required by eqs. (4.14) , wz(E)

has to be zero - implying that flat nontrivial SO(3) bundles do not admit reducible

connections. Therefore, in this case, the point 6 : f,mos does not contribute to the

path integral.

Let us now discuss the case that ú I 0. The fixed point equations (a.la) turn into

the following equatio"r (B = ó+ iC with e"r: i1/gr7"r)

f+lP,0l+t¡:o
D0 :0 , Dþ :0. (4.25)

3As eq. (4.21) fixes { up to a sign, there are indeed two such singular points in the classical moduli

space of vacua.
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The vanishing argument now fails; / : 0 :0 (and ) : 0) are not the only solutions,

there are nevr' fixed points with f + 0 contributing to the partition function. Since the

connection is not bounded to be flat any more, a set of [/(1) connections, in all classes of

t/(1) bundles, appear in the moduli space of solutions. Moreover, the point S : f,mos
may contribute to the path integral even for nontrivial bundles. In the foliowing we

single out this point from our discussion and treat it independently.

4.3.L Integrating ),, r¡ and y

Perturbing by V'now allows us to integrate out the fields À, 7 and ¡. Using the equations

of motion for À and 17 we get

f^ : D'ó - tu + zilb,cl) * Zimlb,cl + t/1lrl';,rÞt)

+ '/rl,þ,øl+ fit(,fl + 2[b,ló,b]l+2[c,ló,c]l @.26)

and

*: #r{-o,r' + i\/zlb,,ll + Otc,rl}
Putting these back into the Lagrangian yields

s : /(e) ++ t a¡, tr{nocDiC + D¿bDib- }-/io¡bD¡c ¡ l-rui¡D¡rþ+iñ;DiÇez JE ' t ,/9, ß, 
/\'- r

- ff " 
rl¿lx¡, bl + zt/\rþ¿lxo,, cl +,fzxnl7o, ó] - +l*l' c' - ll*l'b' + Znert

ft,;¡vt'j +ztn6¡ø,cl+i { t, +zilb,c))

/r\x lr,, * 2imlb,c) + ,Æ\,þ¿,,þil + ,/zlú,rti + ftl(, (l + zlb,Ló,bll + zlc,tó,cll)

+ #(-"n,þo r 
iJrlb,ll + Otc',,) (# ,ktDt,þt - i4\/rlc,$1- z;Jlt(, ór))

+ # (r,, t 2imlb, cl + Jr¡,þ;,,þul * lõ, {,1+ f te, fl ) + z[¿, [d, ó]l + 2[c,ló, t]l)

+\/z(-oo,t'+i\/z([b,õl+rrtc,efl)l(-a,,l,t+t,/zç¡b,õ]+f,V,A),r]]] .@.27)

Using

6*(l + zilb,cl) - -zeij D¿ú¡ + 2i{zl;[,c] + \fzilb,(1,
/\

6* 
l-oo,pi 

+ t,/z¡u,,øl + -V,a)
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: ;O(n,oj2imlb,cl+Jzi,þn,,þol+,/rl,þ,,il+ftt(,fl+ 2lb,ló,bll+zlc,td,cll) ,

/-r\
6* 

ln, 
ó -t 2imlb,cl + Jùlrt o,,þol-r ,/zlrþ,rl,l + ful(, fl + 2lb,ló,bll + zlc,lö,cll)

: -rnl(-o^r'+;,/z¡u,,il+ Urc,et) ,ø] ,

it is easy to see tha,t terms proportional to lft are indeed BRST trivial, and can be

wlitten

ftu{ tt * 2ilb, cD (- o,r' + iJrtb,úl + 
Urc,,,) }

Terms proportional to If t2 are also combining into

#u{(-o,r' + i\/rlb,,il+ 
Utc,r,) 

,.

/-1
(r, f * 2imlb, c1 + Jzl,Þ,,,þ,1 + ^/rl,þ,,il + ftt(, fl + zlb, ló, bll + 2lc,f ø, cf f 

) )

and

In the effective Lagrangian (4.27), the kinetic terms are nondegenerate for all values of f

and since those terms proportional to f are still in a BRST exact form, the path integrai

does not depend on ú.

4.3.2 Large ú Limit and The Integration over b, C, er rþ

As argued above, for nontrivial SO(3) bundles the point ó -- f,*o" does not contribute.

Fot t f 0, because of the supersymmetry, even after integrating out À, r¡ and X the

singularity still persists at tr ó' : ä*'. As we have chosen þ to be a real scalar field,

reality of the action requires that rn to be a real parameter. However, to regulate the

contribution of the points in the neighborhood of ft S2 : lm2, we allow rn to have a

small imaginary part. If there is going to be any singularity when / approaches rn,

it has to show up in the final result when we take the limit Im zn --+ 0. This can be

thought of as a kind of regularization by analytic continuation.

Now let us consider the large limit of f . Since the kinetic terms remain nondegenerate

we can actually take ú --+ oo. This amounts to droping a BRST exact term from the

Lagrangian and we are arguing that this is allowed since the remaining part of the
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Lagrangian is nondegenerate. Using the auxiliary field Ê¿,inthis limit we are left wiih

the action

-Tnnflto - z\/zDic +zff no,, * 
he¿i 

xiDiú + ixiDi(

Il*l'C' - Tlml'b' + fte,l - ftro¡oxi + 2irnólb, Cl

2\,/r,r,,- ,r ^ 17,¡-ì ì

ff&úro¡' 
ál + zt/1'þ¿lxi,cl+ tf2x;[xo,Ó]] + l1t¡'

L can still be written as a sum of BRST exact term

ou*{"!," ,îxo@, - z{2Ds +zff ,0n'Ð +l*(õc -å(ó)}}

and /(e). The integral over C gives a factor of (U", (# l*l\)-å und leaves

.s : i lr" {-iu'u, + ,fzxi[x¿,ö] - ft,, 1o', * 
#,/,x¿D¡õ 

+ iiiDi(

1 - ^ rn. ^ ).i"/)+ - ,.,-(D¿Ho -zl1"n,rþol), - 2ylb,øf +zif lb,ól(DiH, -21ñ¿,rþ,))w¿r n'¿ n'L

ê o,,irinib - îl*lrb2 + 
fte4,-zffr,tEnlx¡,bl)* 

r,r,.
ß, "'

Next we would like to integrate out ó, ( and ,/. It ir easy to integrate out ( and, $ using

their equations of motion. In the evaluation of determinants, which appear in doing the

integral over ó and finally over Xi) we always assume that þ is a constant field. This can

be justified finally when the integral over the gauge fields constrains / to be constant.

The equation of motion for ó yields

u^ : ffio^" (-ä,iiD¡ir¿ + 
ä,'i\ft,,,þ¡l -']Konn' - 2lñ¿,,/nl), dl)' , $.28)

where we have defined (A and B are Lie-algebra indices)

r(AB : (r - #,, 6z¡-r¡6an - frO^0"1.

Replacing ó in the action, we obtain

s - 1(e) + i |ror,, {-f,n,u,+ \/rxclxi,ól

ft'oit\i - ffio'x'onxi) 
+ fu','' - 2[x¿,'þ1Y]
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1
I-' l*l' (-à"t '¡iI¿ 

+ 
ft'o'l1o"þ¡l -']tto''' - 2li;"l'ol)' ol)o ro"

(-àu'rtHt" r ft,r'l;rr,,t,l -']uo,Ê' - zlñ,,,þ'l),ól)
B

X

and a factor of (det (fu*fl,det þlml2)-3(det (1 - Str ó')t)-
The following are easily derived,

6^(D¿fti) : ;çooÊi - zl*.t,rþtl)

6^lDoiri - zlxi,rþ¿D : zrÆ¿lno7i , öl + fi r" n i

6^ {@tñ')(noun - zl4o,rþol)) : 4nou¿ - 2lx¿,rþnl)' - zt/2¿(oo*t)lDtft', ól

+ fu¿, po*.¡Dxt 
,

{9t

I

and
( t \pox',øl)u^ 
\r[nr: 

D¡i¿ * m )

u'^{ 4 ,', D.,*.0 *4poxo,ól\
I t/9t Trt' )

: #o,ro - 4/ lx¿,,þ¡l - TUo,Ê' -rlxo,,þtl),ölt/9t t/9t

: it/imD,ñ' - 
on;f 

lln,x' , ó1, ól .

Using these, the action can be written as

äo,0,+\lnnî,øl)^ 
,r*

ftrr,nr - 
2[x¡,,þt]) +']uo,n' - 2lñ,,,þ\,ól)

(4.2e)

+(

X(
B

Note that the integration over b, C, ( and, $ has not destroyed the manifest BRST

exactness of the action, in particular, the variation of ,9 with respect to rn is still a

BRST commutator.

4.3.3 Large ñ, Lirnít and The Final Reduction

We note the partition function is formally independent of ø (since the variation of the

partition function with respect to m gives an BRST exact expression) and is really
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independent of rn if in varying m lhe Lagrangian remains nondegenerate with a good

behaviour at infinity in field space. The mass term for rt¿, the herm Êi iI¿, and the form

of the cohomology classes that we have added by hand, guarantee that this is actually

the case. Having this freedom in the value of m, we simply sel m: oo. This leaves us

wiih the action

s : 1(e) * J l,or{-tu,oÊno - rt,^ (
1

,/mme¿¡6¡B - 2il¿,BcÓcg¿¡ xju

and partition function reads

Zle, ml : I oç,l.o, rþ¿,, ó, H¿, x¿)

det ( *)"

(det þlml2)3(det (t - fitr þ'z)'z)

-se
t

Q0

where Í-)0 indicates the determinant has to be evaluated in the space of zero-forms. The

explicit appearance of m on the LHS reminds us that, although independent of m, Z does

depend or n1. This is so because ?7¿ was introduced through the BRST transformation

laws. This is reminiscent of holomorphicity of /{ : 1 theories in four dimensions.

Doing the integral over fi gives a similar determinant, but this time over the space

of one-forms. Putting all pieces together one gets

Zle,ml: D(An,rþ¿, ó)
[a"t -'1t - #t, O')]

"(* 
L u (irr r + i'r' ^'') - --- ¡, tr ø')

det rn3(1 - #tt ó') o0

(4.30)

Notice that, as expected, rn cancels out between the fermionic and bosonic determi-

nants. The integral over ty'¿ provides a symplectic measure for the gauge fields Ai 154].

Performing the path integrai over þ atd A¿ is now straightforward. Indeed, apart from

the determinant factor of the integrand, (4.30) is the path integral of a two-dimentional

Yang-Mills theory. In appendix D, using the Faddeev-Popov gauge fixing technique,

we show that the integral over the gauge fields constrains / to be constant and hence

the path integral calculation reduces to a finite dimensional integral over constant /.
Explicitly, for ^9O(3) gauge group we have

zfe,ml - rnr(s-t) 
Ð"1 

dó ö2-2s(r - #r'r'-' .*v (-;J2!þ#Ð - #). (4 81)

I
1

2
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We have reduced the calcuiation of the correlation functions in the mass deformed theory

to a finite dimensional integral in (a.31). In the case that X is a Riemann sphere, the

integrancl has a singularity when / approaches rn as the imaginary part of m is removed.

However, for higher genus surfaces the integrand is regular. Using

(1 +')N : å ¡¡¿j*1 '"-"n.=tt \ /

the eq. (4.31) can be written as

g-7
zfe,ml: (-8m)s-' t (s - 1)! ( -t\'-'-' ''"\',=o(g-1-r)! r! \ 8 ) 

Lr\çt)

4.4 Discussron

where

(r+'-g)

Herc Z,(e) is actually the partition function of

surface of genus g - r [55]. For the ^9O(3) gauge

z,(r):t [oøo'
neZ"

.*,(-trz!þP-#)

1-
z,(e) : ,@"zls-t- U,r

(-1

the Yang-Mills theory on a Riemann

group this is known to be [54]

)"+1"*p(- er2n2)

I "*p

(4.32)

(4.34)

,2(s-7-r)

So the final expression is

z le, n.l: ( - 8rn)o-' ErAg+, ( #)'-' 
-' 

Ë 
(-')"*: -erg;:"" "' ) 

.

(4.33)

To this one still has to add the contribution of the point þ : f,mos. However, note

that from the discussion we had in section 3, for nontrivial SO(3) bundles, this point

contributes only if we perturb to , I 04. Thus if we are interested in the limit of f : 0,

we can just ignore the contribution of this point.

Differentiating (a.32) g -l- r times with respect to e we get

6s-1-, z,(€) _
[6s-L-r

g-7-r 32r2
l6tr2

1

n€Z

upon integrating up with respect to e we get a polynomial in e and terms which are

exponentially small.

aAs is discussed in [54], the contribution of the original modulispace is invariant under perturbing

totl0.
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Finally let us discuss the origin of these exponential terms. Recall that if the equation

D¿ó :0 has nontrivial solutions, then bundle splits to a sum of line bundles. Moreover,

theperturbed eqs. (4.25) show that, lort f 0 and þ:0 (P + 0 in this case corresponds

to the point 6: f,mos), / is not zero. This implies that the corresponding line bundles

are not necessarily trivial. Indeed for a bundle E as in (4.24), .r(E) is the mod two

reduction of the first Chern class of -[. Thus the nontrivial part of / is (if we choose /
in the 3rd direction)

f :zr(n + T)
10
0-1

(4.35)

where n is an integer. The classical action for such a configuration is

_"',(L)' : + [ a¡, t ¡, _ _(" -r I)' 
,e 8r2e Jy e

where q(L) is the first Chern class of the bundle L. We note that these are the same

exponents appearing in (a.3a).

We conclude that the perturbation by V'introduces a ne\4¡ component to the moduli

space of fixed points where I + 0 and the gauge fieid is a U(1) connection. Thus

the exponentially small terms in the final result can be recognized as the contribution

of this new component of moduli space to the partition function. Apart from these

exponentially small terms, there are polynomial terms in e coming from the original

moduli space with ú : 0. In this sense, we have been able to compute (in a chamber

where ,S2 shrinks) some specific correlation functions for the N : 4 SYM theory broken

to Iy' : 2 by the mass term for the hypermultiplet.

In conclusion we note two observations. Firstly, the result is rn-dependent as might

be expected from the discussion in section 3. Note in particular that the expression

(4.31) has the right behavior when n'¿ --+ æ; in this limit the kinetic terms of the heavy

fields are negligible compared to their mass terms meaning that these fields are so heavy

that do not propagate and all interactions between the heavy and light fields can be

ignored. Therefore in this limit the heavy fields decouple from the light ones such that

we are left with the corresponding correlation functions in the say pure N : 2 theory.

The remaining factor, m3(s-r), is left from the integration over the heavy fields in that

limit. Notice that the power of zn is in accord with the dimension of the moduli space

of flat connections which is

dim(,'tz) :69 - 6'
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Any two zero modes of ¡¿ are absorbed by the corresponding mass term in the La-

grangian and gives a power o1m.

Secondly, we recall that ^9-duality relates the strong and weak couplings and swaps

the gauge group with its dual group. Thus to provide an explicit check on ^9-duality,

one still needs to do the calculations for the .9Il(2) case. As noted earlier, the main

difficulty which arises in this case is due to the contribution of the singular points where

a component of the hypermultiplet becomes massless. Although \4/e recognized the

contribution of thc masslcss modcs on thesc points, the integral over the massive modes

lernains to be done. Turning around the problem, a better understanding of the 
^9-

duality action in this particular case will allow us to infer properties of this contribution

by demanding,S-duality.

The problem that we considered in this chapter is also useful in studying the low

energy description of D-branes wrapping around spheres which are holomorphically em-

bedded in a Calabi-Yau 2-fold [6]. This configuration arises when one studies the soli-

tonic states (D-branes) upon compactifying the string theory on a Calabi-Yau 2-fold.

The low energy physics of such D-branes wrapping around the sphere (holomorphically

embedded in the Calabi-Yau 2-folcl) is described by the same twisted theory that we

studied in chapter four, however, the four-manifold is now R x 51 x .92 where ^92 is

holomorphically embedded in the Calabi-Yau manifold.

Another route for further investigation is to establish the wall crossing formula in

this particular case. In [27] it was shown that upon shrinking X, instead of 52, one gets

a two-dimensional sigma model governing maps from ,92 to M, where M is the moduli

space of solutions to Hitchin's equations on X. Having the results for the two extreme

limits, one should, in principle, be able to work out the wall crossing formula.
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Appendix A

The Fixed Point Theorem

In this appendix, Witten's fixed point theorem [16] is discussed. This is a general

theorem about theories with a fermionic symmetry, so its application is not limited to

topological field theories.

Let t denote the space of fields on which we wish to integrate and F a symmetry

group which acts freely on the space of fields. Thus, instead of t, we can consider the

fibered space tlF and perform the integral over it. The integral over the fibers simply

gives the volume of F. Upon considering F-invariant observables we have

lruto: vol(F) lr¡r"-to. (4.1)

Now let ,F be the BRST symmetry of Q. Since Q has a fermionic character, its volume

vanishes

t d0 'L :0.

Thus, if Q acts freely then (4.1) implies that the correlation function of any operator o
vanishes. However, Q does not, in general, act freely and there is a subspace ts invariant

under the action of Q. Take a small tubular neighbourhood of to and call its complement

t'. Since Q acts freely on t', it gives no contribution to the path integral by the above

argument. The whole contribution thus comes from ts and its close neighbourhood, such

that one can expand the action around the fixed points to up to the second order and

does the path integral. Note, however, the integral over to must be done exactly. In the

light of the fixed point theorem, the origin of eqs. (2.8) now becomes clear. They simply

arise by looking for the fixed point action of Q in (2.7). Setting 6Xp, : 6tþr: 6n :0,
we arrive at the same equations in (2.8).
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Appendix B

M.jorana-'Weyl spinors in ten

dimensions

Let the Minkowski signature be (-1, 1, 1, . . . , 1) in D spacetime dimensions. The Clifford

algebra generators arclM such that

{ft, ft} :2qMN ,,

for M -0,...,9. Introducelll
frt : fo "'fs

which anticommutes with all fM and satisfies

f 11r f?,:1

The unitary charge conjugation matrix C is defined by

f1

Cf¡¿C-1 - od,l'M

C¿:otC.

(B.1)

(8.2)

where cd, ot € {+1}, also note that CfrrC-t - -lL. Further, define the Dirac conju-

gate

{¡ : ütfo,

V" : \[tC,

and Majorana conjugate
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ü is Majorana if

or \[t : -ü¿Cfo. This implies üúfð : ütC* : -\I/¿C|oC. and therefore

få : -o,Ctt6c: -o¿o¿ls

concluding that f[f6 : odot. Thus having Majorana spinors requires that o¿o¡ - !.

Weyl spinors are defined using the projector f11i frrü : ti[. In 10 dimensions it is

corrsisLerrt [o constrairr a spinor l,o be sirlrul[aneously Weyl and Majorana

frr{/ : frrfoC-lü* : -lolrrC-t\[* : loC-lflrü* : +f.C-lir* : ttlr

where ü was assumed to be Weyl (flrV* : *iÍ*). A spinor in ten dimensions has 32

independent complex components. The Majorana-Weyl condition reduces this repre-

sentation to the one with.16 independent real components. As the fermionic equations

of motion are first order, there are in fact 8 degrees of freedom on the representation

space (on-shell). This is the same number of degrees of freedom of a gauge field (on-

shell). Thus in a system of gauge fields and fermions in 10 dimensions, one can balance

the number of degrees of freedom between bosons and fermions by simply putting the

Majorana-Weyl condition.

8.1- A 1-0d Eierz identity and the proof of super-

symmetry

In the following we show that the last term in Q.a\ vanishes. Writing out the Lie-

algebra indices of this term explicitly we have

i tob.,- rf"'" (alMvå¡ 1V"t uú") .

We can expand üuVo, a 32 x 32 matrix, using the complete set of independent matrices

L,lm ,l¡w¡,t ,luyr,l¡ø¡vtx ,lm¡v¡,t<t, f¡¿lrr ,

lrr¿¡,¡frr, l¡¿¡r¿frr, I u¡vtxllr, llr,,

spanning a 32 x 32-dimensional vector space. This basis is orthogonal with respect to

the inner product defined by trace. Since ü is Weyl, ftrü - -ü , üf11 : ü, the most
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general form of this expansion is

våìf-":bibutM(1 *frr) +bibMNKltøNx(7+lrr) *bä,0**orrrtr'rNxrt(t1frr). (B.B)

Notice that

ç;¡(u)E: g , for lMl even.

Multiplying (B.3) by lm,luxr and l¡a¡¡¿Kr respectively and using the orthogonality

of the bases, one finds out that

übür" : -þV'fMübfM(l l frr)* ,rhV"f¡a¡¡6rrbl/urxx(r+ frr)

- 
"lVol¡o¡,¡xt¡úb¡MNKlr. 

(8.4)

This is the Fierz rearrangement formula in 10 dimensions. Let us choose otto) : ojto) :

-1 in (8.1) and (8.2), then we have

l'nrw:-Cf¡¿rC-1 . (8,5)

Now, since

f¡¿¡,r¡< : lm¡'tlrc - qNxlu * rluxltr ,

(8.1) and (8.5) imply

fio"t : Cl¡¿ry¡<C-l '

Therefore, the second term in (B.a) is symmetric in ø and ó

üol¡a¡y6üb : -üä'f 'r*oC'ú": ilråf¡¿ru¡riúo .

As this term gets contracted by l"u" in the trilinear term, it gives no contribution.

Finally since lMf¡,rl¡¿: -8f¡r and f¿lMNKIJy":0, we conclude that the trilinear

term is indeed zero.

8.2 Conventions

For the spinor representations of SO(3,1) we use notation along the lines of Wess and

Bagger [12],

oI : (1, ai)

oI : (_Iroi),
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such that

oIàa - -,e"beãboIu¡.

We choose e72 :1 and eobe6.: -$o. The dot distinguishes between the two spinor

representations, ty'o and ,þà,for which the SO(3,1) generators are

oIJ

oIJ

: 
f,(oI or - ot o')

: 
f,(aI or - ar oI)

It is straightforward to see that with

(rþ.)t = úu, (úu)I = rþ" ,

we have, eg,

ú' : ,uoúù

The following identities will be useful

oro6õ'uo : zá!6i,, aioo'èd - -2eäðebd, oni,ol.,i- -2eo"€úà,

(a'ot)\ : ntt 6i * 2aIrär, (o'ot)! : n" 62 * 2oI"rb

oIoJoK - -ieIJKLot-,lIKot +,1"?o +ntuu'
tt (olr oKLl : -f,rrrKnrL - nr"nto) * Tr,r*" 

. (8.6)
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Appendix C

The Vanishing Argument

In this appendix we want to discuss the solutions to eqs. (a.10):

k : Fou ¡ 4ilB"¿, B't) :0
s : Do Boi :0.

Let first analyze the second equation. After squaring we get

I t' 1n" a"¡' 
: l,',',";:::;!o * u"n,o,, D,tBun)

t (1n,abn)(DuB"o) + RotBoi Bbo - iB"i¡Fou, Buo])

tr ({n,ab¿ * Db Bo; - Db B"¿¡lDoB'o) * f,R B"i B,¿ - iB"i¡F"6, gu))

tr ((DaB";)' - T@øButn)' + ,R B"i Bo¿ - iB"i[F"6, p'ì) (c.1)

where we used the fact that in two dimensions, Ricci tensor takes a simple form

Rob: Tg"oR

and

lD", D6lB"' : R" dobBdi ¡ ilF"6, B'il

lD",D6lB"i: RobB"i ¡ilF"6,B"il. (C.2)

Since B* is self-dual, we have B-z: B*":0, hence

(D¡"Bq;)(Dla Btlt¡ : (DúB-")(D' B-") + (D-BúE)(D* B*')
/)\Ð. B*")(D*B-") + (Dú Búz)(DrBrr)

: (D" B"i)(DuBoo). (c.3)
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Putting this back into (C.1) we get

t I " 
(D" 8,¿)2 : l t' ({nua"ò' + +R BoiBo¿ - iB"¿1F,6, 3u)). (c.4)

Upon adding the squares of the sections k and s, we have

I t' çit"* 3s2) : I u {îfr"a)' - 4¡8"0, Bool" * 2iF"ull"o, Buul -l 2(D68,¿)2

+ R B"i Bo¿ - ziB"ilF,o,, Buol\

: I u {ïtr")' - 4¡8"0, Bo ul' r 2(DoB,;)' + a t"o B,n\

the right hand side vanishes if and only if k : s : 0. However, for sphere (r? > 0)

all terms on the RHS are positive definite so a solution to Ic : s : 0 has necessarily

Bo' :0. This leaves us with the equation

Fou :0

this equation implies that the connection is locally a pure gauge Ao: u-rdou for some

SU(2) matrix u. However, as the transition functions for SU(2) bundles on sphere are

trivial, the connection can be written globally as a pure gauge and be gauged away.

Moreover, one can argue that this can be done continuously all over I. Thus we can set

Ao :0 everywhere.

More rigorously if. {U"} is an open covering of Ð by contractible sets and {I{} is an open

covering of 
^92 

by such sets, the sets U. xV give an open cover of X x S' by contractible

sets. On the intersection of two patches, the connection A now satisfies

. _1 -1Aai: g"¿B¡Apjgo¿B¡ * g,iB¡dgaiþi¡

OI

dgo¡Bi * AB¡To¿Bi - Ta¿BiAa¿ : 0.

Since the 
^92 

component of the curvature is zero we have that (,4,), i : u;l douo¿. Putting

this in the above equation yields

do(uo¿go¿pj"BÐ : O.

Therefore gaiB¡ : u,¿go¡þjuþi does not depend on the coordinates of ,92. This implies

that g"¿p.is are a set of locally constant transition functions equivalent to go¿pj and for
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a fixed point on E define a map from,91 to SU(z). This map is trivial so gaiaj belongs

to the conjugacy class of identity

__1 _1gaiaj : 9"igoi : uaigoioiuo,i

or (g;lu,¿)o*n¡(g;]uoi)-1 :1. Now consider (g;|u"o)g"oB¡ØB|rB)-t.This is a con-

stant matrix in the 52 direction. Since gaiBj : gaipigpipj it is equal to (g;lu"¿)g"¿Bt(gpluþ¿)-r,,

and since gaiBj: gaiajga¡B¡ it is equal to (g;|u"¡)g"¡B¡Øplupj)-r.Thus it is in fact in-

dependent of the index i and therefore defines a matrix froB depending only on r e UoB

and satisfying the cocycle conditionl.

Since the transition functions are independent of i, therefore (Ar)"0 do not depend

on i index and Ao can be gauged away.

It is now easy to see that the flatness condition ¡ Fob : 0, necessarily requires the

instanton number to be zero. The curvature locally takes the form

F:d,A+AAA

therefore locally we can write

tr(f'A F):d tr(AA dA+SAAAAA),

but since Ao : 0, instanton number reads

k : # lr*r,trr A F : # Ir,r,d'ç tr(Ar n d'cA>)

where the subindex C indicates differentiating witþ respect to the coordinates on ,S2.

Note that the integrand is still a local one. However, we showed that the transition

functions are independent of the local coordinates on ,S2. Therefore, for a fixed point

on X, A> is globally defined on 52. This means that the integral over 52 is a total

divergence and gives zero for the instanton number. In summary, \4¡e have learned that

if the bundle -E admits a flat connection in 52 direction then it has to be trivial (for those

bundles that are classified only by instanton number) and k, the instanton number, is

zero.

lThe proof of this part was provided by Nicholas Buchdahl.
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Faddeev-Popov gauge fixing

Appendix D

In this appendix we want to show how the eq. (a.31) is obtained starting from (4.30).

To evaluate the path integral over gauge fields and $, following [55], we choose the so

called unitary gauge in which one rotates the lie algebra valued field /" to the Cartan

subalgebra by conjugation, i.e. we choose ó+:0, where

ó:ózrz*ó+r++ó_r_.

This gauge can always be achieved at least locally, but there might be some topological

obstruction to impose it globally [55]. Implementing this gauge in the path integral

requires to introduce the Faddeev-Popov ghosts c and antighosts c together with a

bosonic auxiliary field ó. These fields transform under a BRST operator ó like

6ó+: Iic¡Ss, 6ós:0, óc1 - 0,

6c¡ - b¡, óóa : g. (D.1)

The Faddeev-Popov prescription consists of adding a BRST-trivial term

i6(e-þ* + ¿+ó-) : ib-ó+ * ib*$- * õ-ó" c¡ - c¡þs c_

to the action in (a.30). It is now clear that the integration over ó will impose the gauge

condition; d+ : 0. We have

tr $F : ósFs: h(dA3 + (A n A)s) : óz(d,+" + iJzh A Az) ,,

therefore, defining ó = ó", A: As and F : Fz, the action in (a.30) turns into

ó d,A - óh A ,q, + 98ó'
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Integration over Faddeev-Popov ghosts gives

[det /2]eo1r,¡,

while over A1 and A2 tesults in

ld"t ó'l-tl'L ' l01 (Dn)

Using the Hodge decomposition theorem rwe can express the product of these two

determinants as

[det /2]¡¡01r,¡

ldet S,l!?p,i
Note that the reduced U(1) bundie is not necessarily trivial (see eq. (4.35)), so we write

the curvature as

F :2r(n + T), + dA,

where ø is the volume form (/" ø : 1) and

nr!:! [ pt 2- 2rl>-

is the first Chern class which characterizes the U(1) bundle. To gauge fix the resiclual

[/(1) symmetry

A--+ Alda,

we again appeal to the Faddeev-Popov prescription. We demand that a selected slice

be normal to the gauge orbit,

(da, A) : s,

which implies that dI A: 0. Imposing this gauge, the action is

h l,(;ø-t' +f,lo' *'ró' + fttoat * 
bd' * A + cd- o"))

The kinetic term for A vanishes for A a harmonic one-form, i.e. when d,A : 0 ancl

dt A:0. Hence there is still a residual symmetry under

A--+ A¡1
b--+b*constant

c--+ clconstant,
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where 7 is a harmonic one-form. Integration over the zero modes of ó and c and over the

harmonic one-forms gives an unspecified constant factor that can be simply absorbed

in the normalization. Therefore we need only be concerned about the nonzero modes.

Dropping the harmonic part of A, it can be written globally and uniquely as

A: da + *dþ,

for some zero-forms o and B. The action then looks like

I rl 1 -.\
# Il'i''Æ"t" + ilø, * ió' + 

h(ód 
* d0 + bd * da * cd + ¿ù),

and the measure is

DA: DaDB det [ddl]e,. (D.2)

Note that *2 : (-1)p when acting on a p-form and ilt : - * d,*. The integral over ó

and o results in a determinant, det [ddt];.1, which cancels the jacobian in (D.2). Also

the integral over B gives a delta function

6@dtÐ: det lddtlo: 6(ó). (D.3)

Notice that since we are integrating over nonzero modes the delta function on the right

hand side is a delta function on nonconstant /'s. The determinant in eq. (D.3) gets

cancelled against the determinant coming from the ghosts. At the end we are left with

a finite dimensional integral over const arú $ fields

1

2

nCZIZfe,ml: Ð dó
det rn3(1 - #ó')
det rn3(1 - #ø,) Ho

-i\n,

Using the defenition of Euler characteristic of a Riemann surface X(En) : 2bo - br :
2 -2g, where ói is the dimension of the H' i-Lh de Rham cohomology group, g is the

genus of the Riemann surface X, and since / is now a constant, \lre can write the partition

function as

zle,ml - ms@-t) 
Ð" I 

dg 62-2s çr - #r'r'-' .*v (-t",Æ

which is the equation (4.31)
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