Synthetic Studies Towards Novel Annulated Porphyrins

A Thesis Submitted Towards the Degree of
Doctor of Philosophy

by

Wayne Ashley Pearce B.Sc. (Hons)

THE UNIVERSITY OF ADELAIDE

Department of Chemistry
The University of Adelaide
June 1998
Contents

Acknowledgments vii

Statement viii

Abstract ix

Abbreviations

Chapter 1 – Introduction
1.0 General Features of Porphyrin Compounds 1
1.1.1 Nomenclature of Porphyrin Compounds 2
1.2 Porphyrin Structure and Conformation 2
1.2.1 Structural Studies on Model Porphyrin Systems 3
1.2.2 Porphyrin Structural Types 3
1.2.3 Metallation of the Porphyrin Core 5
1.2.4 Substitution of the Porphyrin Core 5
1.2.5 Substitution of the Porphyrin Periphery 6
1.3 Structural Polymorphism 8
1.3.1 Structural Polymorphism in Tetracyclohexyl-meso-
tetraphenylporphyrins 8
1.3.2 Structural Polymorphism in Ni(II) Octaethylporphyrin 9
1.3.3 Conformational Exchange in Meso-Substituted Ni(II) Octaethylporphyrins 10
1.3.4 Solution Studies 11
1.4 Porphyrin Precursor Synthesis
1.4.1 Pyrrole Synthesis
1.4.2 Preparation of a Porphyrin from Kazor Pyrrole

1.5 History of the Barton and Zard Pyrrole Synthesis
1.5.1 Advantages of the Barton and Zard Synthesis
1.5.2 The Use of Vinyl Sulfones in the Barton and Zard Pyrrole Synthesis

1.6 Porphyrin Synthesis
1.6.1 Porphyrin Biosynthesis
1.6.2 Synthesis of Non-Symmetrical Porphyrins
1.6.3 Synthesis of Symmetrical Porphyrins
1.6.4 Synthesis of Porphyrins from Monopyrroles

1.7 Synthesis of Annulated Porphyrins
1.7.1 Dissection A. Annulation of a Steadily Functionalised Porphyrin Nucleus
1.7.2 Dissection B. Condensation of Annulated Pyrroles
1.7.2.1 2 + 2 Condensation
1.7.2.2 3 + 1 Condensation

1.8 Oxidation of Porphyrinoagons

1.9 Project Aims

Results and Discussion - Overview

Chapter 2 - Synthesis of Cyclic Alkenes and Vinyl Sulfones

2.6 Synthesis of Cyclic Alkenes
2.6.1 4,4-Dimethylcyclopent-1-ene
2.6.2 2,5-Dihydropyrroles
2.6.2.1 2,5-Dihydropyrrole
2.6.2.2 Substitution of 2,5-Dihydropyrrole
2.0.2.3 [4+1] Annulation of cis-2-Benzene-1,4-dimethyldiazene with Secondary Amines 44
2.0.3 1,1-Diphenyl-1-silacyclopent-3-ene 40
2.0.4 8,8-Dimethyl-6,10-dioxaspiro[4.5]dec-2-ene 47

2.1 Synthesis of Vinyl Sulfones 49

2.1.0.1 Iodosulfonation of Alkenes 50
2.1.0.2 Addition of Benzene sulfonyl chloride to Alkenes 51
2.1.1 1-(p-Toluenesulfonyl)-1-cyclohexene 52
2.1.2 1-(p-Toluenesulfonyl)-2,5-dihydrofuran 53
2.1.3 4,4-Dimethyl-1-(p-toluenesulfonyl)-1-cyclopentene 55
2.1.4 Vinyl Sulfones from N-Substituted-2,5-dihydropyrroles 55

2.1.4.1 Attempted Iodosulfonation of N-Substituted-2,5-dihydropyrroles 55
2.1.4.2 Addition of Benzene sulfonyl chloride to N-Substituted-2,5-dihydropyrroles 56

2.1.5 Attempted Formation of 1,1-Diphenyl-1-silacyclopent-3-(phenylsulfonyl)-ene 60

2.1.5.1 Alternative One-Pot Synthesis of 1,1-Diphenyl-1-silacyclopent-3-(phenylsulfonyl)-ene 55

2.1.6 2,2-Dimethyl-4,7,10,13-dioxapentadec-4-enylmethylphenylsulfone 66
2.1.7 3-(p-Toluenesulfonyl)-3-oxododec-1,1-dioxide 68
2.1.8 Attempted Iodosulfonation of 8,8-Dimethyl-6,10-dioxaspiro[4,5]dec-2-ene 68

2.2 One-pot Synthesis of Vinyl Sulfones 69

2.2.1 4,4-Bis(methoxycarbonyl)-1-(phenylsulfonyl)-1-cyclopentene 69
2.2.2 4,4-Dicyano-1-(phenylsulfonyl)-1-cyclopentene 70
2.2.3 Condensation of Primary Amines with 2,3-Bis(phenylsulfonyl)-1,3-butadiene 70

2.3 Alternative Routes to Vinyl Sulfoxides of 2,4-Dihydropyrole Systems 72

2.4 Summary 73

Chapter 3 – Formation of Annulated[2,4-c]pyrroles 76

3.0 Synthetic Rationale 76

3.1 Synthesis of Isocyanides 76

3.1.1 Synthesis of N,N-Dialkyl isocyanoacetamides 78

3.1.2 Synthesis of Ester isocyanoacetates 81

3.2 Pyrrole Forming Reactions 83

3.3 Investigation of Alternate Pyrrole Forming Reactions 86

3.4 Summary 88

Chapter 4 – Synthesis of Porphyrins 91

4.1 Conversion of Pyrrole to Porphyrins 91

4.1.1 Introduction 91

4.2 Porphyrin Forming Reactions 94

4.2.1 Porphyrins from 2,5-Substituted Pyrroles 94

4.2.2 Porphyrins from Bis(dimethylamino)pyrroles 98

4.2.3 Porphyrins from Pyrrole Amides 100

4.3 Porphyrins From Pyrrole-2-carboxylates 102

4.3.1 Porphyrins from α-Hydroxymethyl Pyrroles 102

4.3.2 Attempted Porphyrin Formation from Ethyl 2,2-dioxide

4.3.3 Krebs Demechylolation-Decarboxylation of carboxylate
Abstract

The synthesis of annulated porphyrins by the condensation of annulated monopyroles and dipyromethanes under a variety of conditions was investigated, with the aim to prepare model porphyrins for the investigation of conformational exchange of non-planar porphyrins in solution.

Cyclic alkenes incorporating oxygen, sulfur, silicon and nitrogen atoms were prepared as the primary starting materials for this study. Cyclopentene derivatives were also prepared. Carbon, oxygen, sulfur and nitrogen based cyclic vinyl sulfones were prepared by addition of benzene-sulfonyl chloride, oxidation of the intermediate α-chlorosulfide, followed by elimination of HCl or alternatively by the addition of iodine and p-toluene sulfonate followed by elimination of HI. A silicon based cyclic vinyl sulfone could not be prepared due to the preference of the precursor molecules to give cyclic siloxanes or siloxane dimers during functionalisation to vinyl sulfones. Vinyl sulfones were also prepared directly by the condensation of malononitrile or dimethyl malonate with 2,3-bis(phenylsulfonyl)-1,3-benadione.

A total of sixteen annulated 2,4-cyclopyrole 2-carboxylates were formed using a modified Barton and Zard condensation of vinyl sulfones and an isocyanate/acrylonitrile. The conditions for this procedure were shown to be general for the formation of annulated pyroles. Annulated dipyromethanes were prepared from the corresponding pyrole 2-carboxylates.

Only one porphyrin was prepared, namely 22,25,27,29,122,172,177-octamethyl-2,3,7,8,12,13,17,18-cyclopentakorophyrin which was synthesised in 6-10% yield by acid catalysed condensation of 5,5-dimethyl tetrahydrocyclopenta[ε]pyrole with formaldehyde or acid catalysed condensation of 2-hydroxymethyl-5,5-dimethyl-2,4,5,6-tetrahydrocyclopenta[ε]pyrole. Black polymeric material was the only product isolated from attempts to form heteroannulated porphyrins by condensation of annulated monopyroles or annulated dipyromethanes.