BANKSIA FLORICULTURE
EXPORT MARKETING AND VEGETATIVE BIOLOGY
FUNDAMENTAL TO CLONAL PROPAGATION

RAELENE MIBUS

Bachelor of Agricultural Science, Melbourne University
Master of Biotechnology, Monash University

Dissertation submitted for the degree
of
Doctor of Philosophy

University of Adelaide
Department of Horticulture, Viticulture and Oenology
Faculty of Agricultural and Natural Resource Sciences
Waite Agricultural Research Institute
South Australia

June 1998
Table of Contents

LIST OF TABLE ... IV
LIST OF FIGURES .. V
LIST OF PLATES .. VI
SUMMARY ... IX
DECLARATION AND AUTHORITY OF ACCESS TO PHOTOCOPYING XI
ACKNOWLEDGMENTS .. XII

1. **GENERAL INTRODUCTION** ... 1
 - **INTRODUCTION** .. 1
 - **BANKSIA COMMERCIALISATION AND DEVELOPMENT** ... 2
 - **TAXONOMY AND BACKGROUND OF SPECIES STUDIED** .. 5
 - **THIS STUDY** ... 6

2. **RETAIL SURVEY AND CONJOINT ANALYSIS OF BANKSIA IN THE GERMAN MARKET**
 - **INTRODUCTION** .. 10
 - **MATERIALS AND METHODS** ... 17
 - **RESULTS** .. 33
 - **DISCUSSION** .. 45

3. **BANKSIA STEM ANATOMY** ... 51
 - **INTRODUCTION** .. 52
 - **MATERIALS AND METHODOLOGY** ... 67
 - **RESULTS** .. 75
 - **DISCUSSION** .. 143

4. **BANKSIA GRAFTING** .. 149
 - **INTRODUCTION** .. 150
 - **MATERIALS AND METHODOLOGY** ... 175
 - **RESULTS** .. 183
 - **DISCUSSION** .. 211

5. **LIGNOTUBERS IN BANKSIA** .. 219
 - **INTRODUCTION** .. 220
 - **MATERIALS AND METHODOLOGY** ... 239
 - **RESULTS** .. 243
 - **DISCUSSION** .. 287

6. **CONCLUDING DISCUSSION** ... 295

REFERENCES ... 301

APPENDIX 1 VIDEOPRO 32 PROGRAMS .. 317
 1. **GROSS TISSUE TYPES IMAGE ANALYSIS SET-UP PROGRAM** ... 317
 2. **GROSS TISSUE TYPES IMAGE ANALYSIS MEASUREMENT PROGRAMS** 317
 3. **VASCULAR BUNDLE IMAGE ANALYSIS SET-UP PROGRAM** ... 319
 4. **VASCULAR BUNDLE IMAGE ANALYSIS MEASUREMENT PROGRAM** 319

APPENDIX 2 RAW DATA OF CONJOINT ANALYSIS ... 321
 A. **RANKED CARD ORDERS OF RESPONDENTS, N = 30** .. 321
 B. **FREQUENCY AND CUMULATIVE PERCENTAGE OF CARD SORTING RAW DATA** 322

APPENDIX 3 RIRDC PROJECT FINAL REPORT ... 323
List of Tables

Table 1.1 Taxonomy of the species studied (George 1981, 1988; Maguire et al. 1996) .. 7
Table 2.1 A key to questions and the type of data collect from each and the location of the results in the appended Report .. 24
Table 2.2 Features and levels for each, used in the conjoint analysis ... 25
Table 2.3 Photo-cards used in the sorting tasks, showing the different level defined for each of the three features, colour (or flower type: small or large), stem length and price ... 25
Table 2.4 Summary of frequency analysis of the results of questionnaire conducted in February 1996. Note: Cum. % = Cumulative %. .. 36
Table 2.5 A comparison of five alternative models resulting from the analysis data for the card sorting exercise .. 41
Table 2.6 Summary of the distribution of ‘preferred levels’ for the three models with the highest predictive accuracy ... 43
Table 2.7 Summary of frequency analysis of the preferences for each card in the sorting task 44
Table 3.1 The taxonomy of species studied, based on George (1981, 1988) and Maguire et al. (1996)......... 65
Table 3.2 Species and planting codes of trees used for image analyses: Part I, Gross tissue types of six species, Part II, Gross tissue types of B. coccinea and B. menziesii, Part III, Vascular bundle microanalysis; GW = Geoff Watton; A = Alverstone, Waite Campus orchard; other bushes from Happy Valley Reservoir plantings .. 68
Table 3.3 Summary of the main effects in gross tissue type analysis of six species (*** = significant at P ≤ 0.01, nsd = no significant different) .. 78
Table 3.4 Image analysis of gross tissue types of six species’ branches collected in spring 1994 and autumn 1995. Where species show a seasonal difference between the spring and autumn, seasonal means (± s. e.) are presented; otherwise new estimated means (± s. e.) from both the spring and autumn means are given. CSI and PSI were analysed separately. Adopting Bonferroni-like principles for multiple comparisons, a critical z value ≥ 3 was chosen to correspond to an approximate significance level (P ≤ 0.01); means followed by the same letter are not significantly different; (-) indicates insufficient variation in the data to return a meaningful result; n = 15 ... 79
Table 3.5 Summary of main effects in gross tissue type analysis of B. coccinea and B. menziesii (** = significant at P ≤ 0.01; *** = significant at P ≤ 0.001; nsd = not significantly different) ... 80
Table 3.6 Gross tissue type analysis of B. coccinea and B. menziesii; CSI and PSI analysed separately; means followed by the same letters are not significantly different; species pair-wise comparison is indicated by a, b, c, d; age (CSI or PSI) pair-wise comparison is indicated by I, II, III IV; n = 15; critical z value ≥ 3; P ≤ 0.01 ... 81
Table 3.7 Summary of vascular bundle analysis of the CSI and PSI collected in spring, 1995 (nsd = not significantly different, **: P ≤ 0.01, ***: P ≤ 0.001) .. 82
Table 3.8 Vascular bundle analysis of six species (25.10.95), CSI and PSI from the same branch. Means (± s. e.) of different species followed by the same letters are not significantly different (CSI: a, b, c, d and PSI: v, w, x, y, z); underlined means indicate a significant difference between the means from the CSI and PSI in that species (age effect). (n = 15; critical z value ≥ 3; P ≤ 0.01) .. 83
Table 3.9 Vascular ray mean length (μm) and count for CSI and PSI collected in spring 1994 and the following autumn, 1995. Means of different species followed by the same letter are not significantly different (CSI: a, b, c, d; PSI: w, x, y, z); * = means of CSI and PSI of B. ericifolia in spring are not significantly different; all other species have significantly different means for the CSI and PSI for spring and autumn (critical z value ≥ 3, P ≤ 0.05) .. 87
Table 4.1 Successful grafts of non-proteaceous native plants and source literature ... 155
Table 4.2 Overview of literature on grafting in Banksia ... 159
Table 4.3 Graft combinations ... 180
Table 4.4 Scoring scale used for assessing graft union ... 181
Table 4.5 Scion mean length, diameter and bud number for each of the graft combinations on two rootstocks. Means followed by the same letter are not significantly different - each rootstock is analysed independently. P ≤ 0.05, critical z-value = 2.5 .. 184

Table 4.6 Number and percentage of graft survivals at nine and 21 weeks, and 12 months post-grafting. The numbers in parenthesis [] are the mode of the rootstock and scion scores (refer to Table 4.4) ... 185

Table 4.7 Microscopy observations of ten features in rootstocks and scions at two, four and 12 weeks. 189

Table 5.1 Lignotuberous species of Banksia ... 224

Table 5.2 Bud location and numbers in B. menziesii at eight and 26 weeks, and B. serrata at 15 weeks 255

List of Figures

Figure 2.1 Utilities of price, colour and stem length for the top three models .. 40

Figure 3.1 Meteorological data for the duration of study period. Source: Waite Institute (latitude 34°58' S., longitude 138°38' E.), continuous meteorological records ... 68

Figure 4.1 Glasshouse maxima, minima and average daily temperature for the duration of the grafting trial (time axis not to scale) .. 180

Figure 5.1 Seedling height (mean ± s. e.; P ≤ 0.05) .. 244

Figure 5.2 Maximum leaf length (mean ± s. e.; P ≤ 0.05) ... 244

Figure 5.3 Leaf number (mean ± s. e.; P ≤ 0.05) .. 244

Figure 5.4 Cotyledonary node width, (mean ± s. e.; P ≤ 0.05) ... 245

Figure 5.5 Cotyledonary node breadth (mean ± s. e.; P ≤ 0.05) ... 245

Figure 5.6 Hypocotyl length (mean ± s. e.; P ≤ 0.05) ... 245

Figure 5.7 Median longitudinal aspect of B. menziesii at 26 weeks showing the location of the low power photomicrographs of transverse sections presented on the LHS of Plates 5.12 to 5.17 .. 267

Figure 5.8 Total number of shoots and buds from B. spinulosa var. spinulosa pruned in September 1995 (P ≤ 0.05) ... 284

Figure 5.9 Average length of shoots from B. spinulosa var. spinulosa pruned in September 1995 (P ≤ 0.05) .. 284

Figure 5.10 Percentage of bud (< 5 mm) and shoot lengths from the lignotuber of B. spinulosa var. spinulosa pruned in September 1995. C, control; H, high prune, L, low prune 285

Figure 5.11 Air and soil temperatures for the duration of pruning trial; actual mean maximum air temperature given for sampling times; source: Waite Institute meteorological data 285

Figure 6.1 Market and production selection criteria of the varietal improvement of Banksia 297

Figure 6.2 Strategic varietal improvement of Banksia based on production and market linked selection criteria ... 298
List of Plates

Plate 2.1 Three examples of photo-cards 26
Plate 2.2 German and Italian cemeteries and end-uses of *Banksia* 28
Plate 3.1 Delineation of tissues measured in image analysis 88
Plate 3.2 *B. serrata* CSI and PSI, TS 90
Plate 3.3 *B. serrata* collected in spring 1994, tangential LS 92
Plate 3.4 *B. menziesii* CSI collected in autumn 1994, TS 94
Plate 3.5 *B. menziesii* PSI collected in autumn 1994, TS 96
Plate 3.6 *B. menziesii* PSI collected in autumn 1995, LS 98
Plate 3.7 *B. menziesii* PSI collected in autumn 1995, LS 100
Plate 3.8 *B. baxteri* CSI and PSI collected in autumn 1994, TS 102
Plate 3.9 *B. speciosa* CSI collected in autumn 1994, TS 104
Plate 3.10 *B. speciosa* PSI collected in autumn 1994, TS 106
Plate 3.11 *B. burdettii* CSI and PSI collected in autumn 1994, TS 108
Plate 3.12 *B. burdettii* PSI collected in autumn 1995, LS 110
Plate 3.13 *B. hookeriana* CSI and PSI collected in autumn 1994, TS 112
Plate 3.14 *B. prionotes* CSI and PSI collected in autumn 1994, TS 114
Plate 3.15 Comparison of *B. coccinea* CSI and PSI collected in autumn 1995, TS 116
Plate 3.16 *B. coccinea* CSI, TS 118
Plate 3.17 Stem anatomy in *B. coccinea* PSI collected in autumn 1995, LS 120
Plate 3.18 *B. coccinea* PSI collected in autumn 1995, LS 122
Plate 3.19 Comparison of CSI and PSI of *B. spinulosa* var. *spinulosa* stem collected in spring 1994, TS 124
Plate 3.20 Comparison of the CSI and PSI of *B. spinulosa* var. *cunninghamii* stem collected in spring 1994, TS 126
Plate 3.21 *B. spinulosa* var. *collina* PSI collected in autumn 1994, TS 128
Plate 3.22 Comparison of the CSI and PSI of *B. ericifolia* stem collected in spring 1994, TS 130
Plate 3.23 *B. ericifolia* stem from PSI of bush-house grown potted plants collected in autumn 1994, TS 132
Plate 3.24 Comparison of the CSI and PSI of *M. integrifolia* stem collected in autumn 1994, TS 134
Plate 3.25 Differential staining of *Banksia* stem stained with PAS - TBO 136
Plate 3.26 *Banksia* stems 138
Plate 3.27 Sudan Black B staining of superficial cork (phellem) in *Banksia* stems collected in autumn 1995 140
Plate 4.1 *Banksia* grafting 190
Plate 4.2 Rootstock cultivation 192
Plate 4.3 Light micrographs of ungrafted *Banksia* stems, TS 194
Plate 4.4 Light micrographs of ungrafted *Banksia* stem, TS 196
Plate 4.5 Light micrographs of transverse sections taken mid-way along the graft union 198
Plate 4.6 Light micrographs of transverse sections taken mid-way along the graft union 200
Plate 4.7 *B. ericifolia* grafted onto *B. serrata*, 12 weeks post-graft 202
Plate 4.8 Light micrographs of transverse sections taken mid-way along the graft union 204
Plate 4.9 Grafting technique and bud burst 206
Plate 4.10 Intraspecific graft of *B. serrata* 18 months post-graft 208
Plate 5.1 Superficial lignotuber buds in *B. robur* and *B. spinulosa* 230
Plate 5.2 *B. serrata* and *B. marginata* 232
Plate 5.3 Horticultural application of lignotubers 234
Plate 5.4 Seedling habit of four *Banksia* species 246
Plate 5.5 *B. spinulosa* and *B. menziesii* 248
Plate 5.6 Basal sprouting in *Banksia* 250
Plate 5.7 Cotyledonary node anatomy in non-lignotuberous *B. serrata* at 15 weeks 256
Plate 5.8 Cotyledonary node anatomy in non-lignotuberous *B. serrata* at 15 weeks 258
Plate 5.9 Cotyledonary node anatomy in non-lignotuberous *B. serrata* at 15 weeks 260
Plate 5.10 Cotyledonary node anatomy in lignotuberous *B. menziesii* at eight weeks 262
Plate 5.11 Cotyledonary node anatomy in lignotuberous *B. menziesii* at eight weeks 264
Plate 5.12 Cotyledonary node anatomy in *B. menziesii* at 26 weeks after sowing. TS 268
Plate 5.13 Cotyledonary node anatomy in *B. menziesii* at 26 weeks 270
Plate 5.14 Cotyledonary node anatomy in *B. menziesii* at 26 weeks 272
Plate 5.15 Adventitious bud series in the lumen adjacent to the cotyledonary ligule 274
Plate 5.16 Cotyledonary node anatomy in *B. menziesii* at 26 weeks 276
Plate 5.17 Cotyledonary node anatomy in *B. menziesii* at 26 weeks 278
Plate 5.18 Cotyledonary node anatomy in *B. menziesii* at 26 weeks 280
Summary

A survey of retailers and conjoint analysis (card-sorting task), normally applied to general merchandise products, was applied to the floricultural product, Banksia, in the German market. The main market access points for Banksia (international wholesalers, dried flower importers, regional wholesalers and Dutch auctions), separate market channels and end-uses for dried and fresh Banksia were identified. Low levels of customer satisfaction for quality attributes (flower size to stem length, grading uniformity and the number of blooms packed per carton) and a lack of promotional information exits. Research showed a negative linear relationship between price and preference, a greater utility for lime and red blooms, and higher utilities for shorter stem lengths, (eg. 30 cm). The criticism of this lack of uniformity supports further research on the vegetative biology underlying clonal propagation.

Quantitative assessment of CSI (current season’s internode) and PSI (previous season’s internode) of Banksia stems using image analysis identified interspecific and seasonal differences in anatomy. Significant differences in parameters such as the percentage of cortex and the distance from the cambium to the stem surface were found between the CSI and PSI of stems collected in autumn, whereas fewer significant differences in tissues were found in spring. Microscopic observations of the CSI and PSI sections were useful in identifying anatomical features that may influence successful vegetative propagation. Structures observed in Banksia which are likely to impair vegetative propagation are the presence of cork and cell occlusions in aging stem internodes, and the fibrous nature of young wood: pericyclic phloem fibres and leaf traces surrounded by fibrous zones in the cortex.

Self-, intra- and interspecific whip grafts between five species of Banksia from across the genus were conducted using B. serrata and B. spinulosa, var. cunninghamii as rootstocks, and B. coccinea, B. ericifolia and B. menziesii as scions. Histological sections of graft unions of two, four and 12 weeks post-graft were examined to assess the key events occurring in unions of Banksia.

Serial sectioning through cotyledonary nodes of post-emergent seedlings of non-lignotuberous B. serrata and lignotuberous B. menziesii was undertaken. In B. serrata sampled at 15 weeks exogenous axillary buds are present in the cotyledon and leaf axils, the base of the cotyledons were not fused, and accessory and adventitious buds were not observed. In B. menziesii sampled at eight and 26 weeks the fused base of the cotyledons forms a thick sheath of parenchymatous tissue around the stem, creating a narrow encircling lumen between the protective sheath and the stem in which three types of buds arise. Exogenous axillary buds arise in the axils of the each cotyledon and first true leaves. Endogenous accessory buds arise in the cortical tissue at either side of the axillary buds. Exogenous adventitious buds develop on the adaxial surface of the protective sheath, along the fusion line of the bases of the cotyledons at either side of the stem axis. In addition, adventitious buds occur singly on the adaxial wall of the sheath.