HIGH RESOLUTION VACUUM ULTRA-VIOLET
PHOTOABSORPTION IN THE SCHUMANN-RUNGE
SYSTEM OF MOLECULAR OXYGEN

By

Stephen Thomas Gibson B.Sc. (Hons.)

A thesis submitted for the degree of
Doctor of Philosophy
at the
University of Adelaide
(Department of Physics)
August, 1983
CONTENTS

CHAPTER 1:
1.1 An Overview
1.2 Present Knowledge
1.3 This Study

INTRODUCTION

CHAPTER 2:
2.1 Molecular Spectra
2.1.1 Classification of States
2.1.2 Energy Levels
 Born-Oppenheimer Approximation
 Term Values
 Coupling of Angular Momenta
2.1.3 Line Intensities
 Notation
 Selection Rules
 Hoenl-London Factor
 Franck-Condon Factor
 Oscillator Strength
 Boltzmann Factor
2.2 Absorption by a Gas
2.2.1 Beer's Law
2.2.2 Line Profiles
 Doppler Broadening
 Natural Line Broadening
 Predissociation Broadening
 Collision (Pressure) Broadening
CONTENTS continued...

The Voigt Profile

2.2.3 Equivalent Width and Curve of Growth 30

2.3 Construction of a Synthetic Spectrum 34

2.3.1 Description of the Schumann-Runge Band Spectrum 35
2.3.2 Line Positions 35
2.3.3 Rotational Line Strengths 37
2.3.4 Line Selection 38
2.3.5 Calculation of Voigt Profile 40
2.3.6 The Underlying Continua 42
2.3.7 The Instrument Effect 43

2.4 Curve of Growth Analysis 44

2.4.1 Introduction 44
2.4.2 Fast Convolution 46
2.4.3 Assumptions of the Curve of Growth Method 47
2.4.4 Method 47
2.4.5 Error Analysis 48
2.4.6 Transmittance Spectrum 49

CHAPTER 3:

A SEMI-EMPIRICAL MODEL

3.1 Introduction 50

3.2 The Rydberg-Klein-Rees (RKR) Potential 52

3.2.1 Introduction 52
3.2.2 Formulation 52
3.2.3 Evaluation 55
3.2.4 Extension of RKR Potential 59
3.2.5 Higher Order WKB Corrections 62
3.2.6 The Effect of Rotation 64

3.3 The Numerical Solution of Schroedinger's Equation 65

3.3.1 Numerov Method 65
CONTENTS continued...

3.3.2 Gordon Method 66
3.3.3 Normalization 66

3.4 Construction of the RKR Potential and Wavefunctions 67
3.4.1 Introduction 67
3.4.2 The RKR Potential 68
3.4.3 Wavefunctions 69
3.4.4 Accuracy 69

3.5 Relationships to Experimentally Measureable Quantities 73
3.5.1 Bound States 73
3.5.2 Free States 75

3.6 Predissociation Line widths 76
3.6.1 Background 76
3.6.2 A Review of the Predissociation Model of Julienne and Krauss 80
3.6.3 Model 81
3.6.4 Variation of Predissociation Line Width with Rotation 82

CHAPTER 4: MEASUREMENT EQUIPMENT

4.1 General Description 84

4.2 The 6.65 metre Monochromator 85
4.2.1 Description 86
4.2.2 Control 87
4.2.3 Mechanical 88
4.2.4 Slit Rotation and Width 89

4.3 Light Detection 89
4.3.1 Historical 89
4.3.2 Visible Light Detection 91
4.3.3 Ultraviolet Light Detection 92

4.4 Light Source 93

4.5 Absorption Cells 94
CONTENTS continued...

CHAPTER 6: THE SCHUMANN-RUNGE CONTINUUM

6.1 Introduction
6.2 The Schumann-Runge Continuum Underlying the Bands
 6.2.1 Historical
 6.2.2 Experimental Method and Analysis
 6.2.3 Results
 6.2.4 An Algorithm to Calculate the Continuum Cross-Section
 6.2.5 Shape Resonances

6.3 Temperature Dependence of the Schumann-Runge Continuum above 140nm
 6.3.1 Introduction
 6.3.2 A Review of Previous Measurements
 6.3.3 Experimental Method
 6.3.4 Results
 6.3.5 Discussion

CHAPTER 7: FURTHER RESULTS AND PREDICTIONS OF THE SEMI-EMPIRICAL MODEL

7.1 Introduction
7.2 The $B^3\Sigma_u^-$ Potential
 7.2.1 Introduction
 7.2.2 Method
 7.2.3 Perturbations to the $B^3\Pi_u$ state
 7.2.4 The Final $B^3\Sigma_u^-$ Potential

7.3 Electronic Transition Moment
 7.3.1 The r-Centroid Approximation
 7.3.2 Empirical Calculations
 7.3.3 Ab Initio Calculations
 7.3.4 An Empirical Transition Moment ($B^3\Sigma_u^- - X^3\Sigma_g^-$)

7.4 Oscillator strengths
CONTENTS continued...

7.5 Predissociation Line Widths
 7.5.1 Introduction
 7.5.2 On the States Causing Predissociation
 7.5.3 Variation of Predissociation Line Widths with Rotation

7.6 Continuum
 7.6.1 Underlying the Bands
 7.6.2 Wavelengths less than 175nm

CHAPTER 8: APPLICATION TO ATMOSPHERIC PHOTOABSORPTION

8.1 Introduction
 8.1.1 Definitions
 8.1.2 The Model Atmosphere

8.2 Atmospheric Transmittance

8.3 Dissociation Rates
 8.3.1 Introduction
 8.3.2 Previous Calculations
 8.3.3 Photoabsorption Cross Sections for the Schumann-Runge System

8.3.4 Solar Irradiance

8.3.5 Calculations and Results

CHAPTER 9: DISCUSSION AND SUGGESTIONS FOR FUTURE WORK

9.1 The Schumann-Runge Bands

9.2 Underlying Continua

9.3 The Schumann-Runge Continuum
 9.3.1 Above 140nm
 9.3.2 Below 140nm

9.4 Atmospheric Photoabsorption
Extensive measurements of the photoabsorption spectrum of the Schumann-Runge system ($B^3\Sigma_u^- - X^3\Sigma_g^-$) of molecular oxygen have been made in the wavelength region from 140 nm to 200 nm. This region includes the complex vibrational-rotational line structure of the Schumann-Runge bands and extends to the comparatively featureless, Schumann-Runge continuum. The measurements were performed using a 6.65 metre vacuum ultraviolet monochromator with light intensity recorded by photoelectric detectors. A variety of thermodynamic conditions for the gas were selected to reveal the maximum information concerning the absorption process. These include absorption cells of various path lengths and gas temperatures in the range 90K to 600K.

In the Schumann-Runge bands the equivalent widths of more than 200 rotational lines of the ($v'-0$) band progression ($v' = 2, 3, 11$ to 19) were measured with an instrument resolution of 0.006 nm. The high v' bands have been measured line by line for the first time. A detailed curve of growth analysis was developed and applied to each rotational line to obtain the equivalent band oscillator strength and predissociation line width parameters necessary for the construction of an accurate synthetic spectrum. It is found the line parameters exhibit a significant rotational variation arising from the centrifugal distortion of the molecule.

The variation of the rotational line parameters with both band (vibrational quantum number) and centrifugal distortion (rotational quantum number) is accurately reproduced by an empirical model. This model involves the calculation of the overlap between wavefunctions that
describe the initial and final vibrational rotational states of the molecule. The wavefunctions are the solutions of the Schrödinger equation describing the vibrational motion of the nuclei, under the influence of the centrifugal distortion. The ground \(X^3\Pi_g\) and upper \(B^3\Sigma_u^-\) potential states being calculated from a Rydberg-Klein-Rees procedure.

The photoabsorption spectrum in the Schumann-Runge continuum varies uniformly with wavelength, showing some weak structure due to contributions to the continuum transitions to other electronic states. The continuum is temperature dependent because of the relative ground state populations for the molecule. This temperature dependence has been carefully measured, for the first time, for various wavelengths down to 140 nm and temperatures between 90K and 600K. With the empirical wavefunction model extended into the continuum, these measurements enable the separate determination of the repulsive part of the \(B^3\Sigma_u^-\) potential and the transition moment.

The Schumann-Runge continuum extends above the 175 nm dissociation limit, underlying the high Schumann-Runge bands. Measurements of the absorption at several window regions between rotational lines has enabled the underlying continuum to be estimated by subtraction of the band wing contribution to the cross-section. These measurements are reproduced by the wavefunction model that reveals more clearly the step-like structure of this continuum.

The model calculations are used to deduce a full set of parameters suitable for the construction of a synthetic absorption spectrum. This is applied to the absorption of solar radiation in the Earth's atmosphere. Excellent agreement is found with rocket and balloon
measurements of the solar transmittance. Dissociation rates for molecular oxygen are calculated.