ADAPTATION OF DECISION CRITERIA

IN VIGILANCE TASKS

James Leary

B.Sc. (Dalhousie)
M.Sc.(M.U.N.) (Halifax, Nova Scotia)

Thesis submitted to the University of Adelaide
in fulfilment of the conditions for the
Degree of Doctor of Philosophy

Department of Psychology
The University of Adelaide
South Australia

June 1983
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>(ix)</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>(xvii)</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>(xx)</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>(xxii)</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>(xxiii)</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td></td>
</tr>
<tr>
<td>A. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>B. REVIEW OF STUDIES ON VIGILANCE</td>
<td>2</td>
</tr>
<tr>
<td>1. Approaches Derived from Learning Theories</td>
<td>2</td>
</tr>
<tr>
<td>2. Expectancy Theory</td>
<td>4</td>
</tr>
<tr>
<td>3. Arousal Models</td>
<td>6</td>
</tr>
<tr>
<td>4. Approaches Based on Signal Detection Theory</td>
<td>10</td>
</tr>
<tr>
<td>(a) Assumptions of the theory</td>
<td>11</td>
</tr>
<tr>
<td>(b) Experimental findings related to signal detection measures</td>
<td>13</td>
</tr>
<tr>
<td>(c) Interpretation of β increment by the 'ideal observer' hypothesis</td>
<td>17</td>
</tr>
<tr>
<td>(d) Explanation of change in response latency and confidence during a vigil: the 'distance-from-criterion' hypothesis</td>
<td>20</td>
</tr>
<tr>
<td>(e) Problems for the ideal observer hypothesis</td>
<td>23</td>
</tr>
<tr>
<td>C. SOME GENERAL CONCLUSIONS</td>
<td>26</td>
</tr>
<tr>
<td>1. Arousal Versus a Response Optimization</td>
<td>27</td>
</tr>
<tr>
<td>Interpretation of β Increment</td>
<td></td>
</tr>
<tr>
<td>2. Change in Signal Probability from Practice to Test Conditions - Problems for a Response Optimization Model</td>
<td>30</td>
</tr>
</tbody>
</table>
CHAPTER 2

A. EXPERIMENT ONE: EFFECTS OF A STEADY DECREASE IN SIGNAL PROBABILITY

1. Method
 (a) Task and stimuli
 (b) Apparatus
 (c) Design
 (d) Procedure
 (e) Observers

2. Results
 (a) Response probability
 (b) Individual differences in the revision of response ratios
 (c) Signal detection analysis
 (d) Response latencies

3. Discussion
 (a) Adaptive response to a change in signal probability - comparisons with previous findings
 (b) Individual differences in the revision of response ratios
 (c) The 'target' of revision of response ratios - general conservatism viewed as purposeful probability matching
 (d) Individual differences in the processing of probabilistic information - the need of a further study

B. EXPERIMENT TWO: CONSISTENCY OF INDIVIDUAL DIFFERENCES IN THE ADAPTATION TO A DECREASING SIGNAL PROBABILITY

1. Method
 (a) Observers
 (b) Task design and apparatus
 (c) Procedure
2. Results
 (a) Response Probability
 (b) Individual differences in the revision of response ratios
 (c) Signal detection analysis
 (d) Response latencies

3. Discussion
 (a) Consistency in the degree of revision of response ratios
 (b) Response to a change in signal probability - a proposed target for the adaptive process
 (c) Response maintenance - a clearly inadequate interpretation of the present results

CHAPTER 3
A.1. FURTHER EVIDENCE OF NON-OPTIMAL REVISION IN β

2. AN ALTERNATIVE ADAPTIVE RESPONSE STRATEGY - MINIMIZE THE DISCREPANCY BETWEEN LOCAL AND CUMULATIVELY-BASED SIGNAL PROBABILITY (RESPONSE STABILIZATION)

3. EXPLANATION OF THE NON-OPTIMALITY OF β IN OTHER STUDIES

B. EXPERIMENT THREE: PERFORMANCE CHANGE FOLLOWING A PERIOD OF TIME-VARYING SIGNAL PROBABILITY

1. Method
 (a) Task and stimuli
 (b) Apparatus
 (c) Design
 (d) Procedure
 (e) Observers
2. Results
 (a) Response probability
 (b) Response latencies
 (c) Response confidence
 (d) Signal detection measures and theoretical decision parameters

3. Discussion
 (a) Relative support for the three models
 (b) Relevance of present findings to vigilance

C. EXPERIMENT FOUR: EVALUATION OF THE RESPONSE STABILIZATION MODEL IN A REPRESENTATIVE VIGILANCE TASK

1. Method
 (a) Task and stimuli
 (b) Apparatus
 (c) Design
 (d) Procedure
 (e) Observers

2. Results
 (a) Response probability
 (b) Response latencies
 (c) Response confidence
 (d) Signal detection measures and theoretical decision parameters

3. Discussion
 (a) Correspondence to previous results
 (b) The control of ongoing performance in vigilance
CHAPTER 4

A. ADJUSTMENT OF THE DECISION CRITERION THROUGH FEEDBACK

1. Indlin's (1976) Response Regulation Model
 (a) Main features of the model
 (b) Response regulation as probability-matching

2. Response Regulation Versus a Response Stabilization Process
 (a) Response to change in signal probability
 (b) A possible hierarchy of feedback systems

B. EXPERIMENT FIVE: DECISION CRITERION ADJUSTMENTS DURING A PROGRESSIVE DECLINE IN SIGNAL DETECTABILITY

1. Predictions of Three Models
 (a) Fixed sensory cutoff model
 (b) Response regulation
 (c) Response stabilization

2. Method
 (a) Task and stimuli
 (b) Apparatus
 (c) Design
 (d) Procedure
 (e) Observers

3. Results
 (a) Response probability
 (b) Response latencies
 (c) Response confidence
 (d) Differences between instruction groups
 (e) Signal detection measures and theoretical decision parameters
4. Discussion

(a) Relative support for the three models 201
(b) Relationships among performance measures 203
(c) Relevance to previous studies in which detectability varied 207

CHAPTER 5

A. A CONFIDENCE-BASED FEEDBACK MODEL 209

1. General Properties of the Model 209

2. Determination of Mean Observation Distances 211

3. Response to Variation in Signal Probability 213
 (a) Ramp change in signal probability 213
 (b) Step change in signal probability 217

4. Vigilance Decrement 223

5. Response to Variation in Signal Detectability 225

6. A Limitation of Response Bias as a Mediator in Feedback Control 230

B. EXPERIMENT SIX: PILOT INVESTIGATION OF THE EFFECTS OF A RAMP CHANGE IN DISCRIMINABILITY 234

1. Method 234
 (a) Task and stimuli 234
 (b) Apparatus 235
 (c) Design 236
 (d) Procedure 237
 (e) Observers 238

2. Results 238
 (a) Pre-test differences between experimental groups 238
 (b) Effects of variation in discriminability on overall performance 241
 (c) Performance at the constant stimulus difference 248
3. Discussion

(a) Sensitivity of overall performance to the variation in discriminability 254

(b) Evidence of adaptation to variation in discriminability 255

(c) The possibility that caution had been adjusted 256

CHAPTER 6

A. CRITERION REGULATION AND GENERAL CAUTION IN RESPONDING 262

1. The Adaptive Accumulator Model 262

(a) The primary decision process 263

(b) The secondary control process 266

(c) Influence of stimulus discriminability and probability on decision criteria 269

2. Previous Results: Sensory Adaptation Versus Higher-Order Control 273

(a) Intervention by other control processes 273

(b) Change in point of sensory indifference 274

(c) Sensory bias in a data accumulation model of signal detection 280

3. A Dual-Criterion Self-Regulating Signal Detection Model 283

(a) The decision process 283

(b) Response probability, latency and confidence 285

(c) Regulation of response bias and caution 289

B. EXPERIMENT SEVEN: CRITERION ADJUSTMENTS FOLLOWING A STEP CHANGE IN STIMULUS DISCRIMINABILITY 294

1. Method 295

(a) Task and stimuli 295

(b) Apparatus 297

(c) Design 297
(d) Procedure
(e) Observers

2. Results
(a) Performance across all line length differences
(b) Performance at line length difference 3
(c) Early trends in performance

3. Discussion
(a) The effects of variation in caution - an anomaly
(b) A parallel-control model
(c) Previous results and the principle of 'least variation'
(d) Vigilance performance as affected by ISI location
(e) Vigilance performance as affected by ISI width

C. SOME GENERAL CONCLUSIONS
1. The Nature of Vigilance Decrement
2. The Proposed Model of Performance

REFERENCES
SUMMARY

Adaptation of decision criteria in vigilance tasks

Decrements in performance during vigilance tasks are usually associated with an increased strictness in the criterion for a signal response. In order to determine whether this can be attributed to a drop in signal probability between training and testing, in Experiments 1 and 2 signal probability was reduced in a ramp fashion during the trial sequence of a discrimination task. Contrary to the predictions of signal detection theory, bias increased toward making signal responses in a manner which also disconfirmed an alternative hypothesis that observers will maintain an initial proportion of signal responses. Instead, observers appeared to adjust their decision criteria so as to maintain the local probability of a signal response at the level of cumulatively-based signal probability. This response stabilization model received further support in Experiment 3 in which signal probability was held constant following a ramp decline during a discrimination task. These results were replicated in a task more appropriate to vigilance in Experiment 4.

In Experiment 5 signal detectability was varied, while a priori probabilities were held constant. Observers did not maintain a fixed sensory cutoff, in order to satisfy the Neyman-Pearson objective, nor vary the cutoff according to a continual regulation process, in order to match
response and stimulus probabilities. Instead they appeared initially to maintain a fixed cutoff, which varied afterward, according to a stabilization process. A confidence-based model was introduced, incorporating response stabilization, and according to which observers adjust their decision criteria so as to maintain observations at some constant average distance from the decision criterion. As in the previous single-criterion detection models, control is mediated through variation in response bias, with the result that no compensation would be predicted when symmetrical effects occur for the two response alternatives. In Experiment 6, such effects were produced by a ramp decline in stimulus discriminability. Changes in latency to a constant amount of stimulus difference indicated that there had been adaptation consistent with a change in the general level of response caution. In Experiment 7 stimulus discriminability was varied in a recurring step fashion. In agreement with the adaptive accumulator model of Vickers (1979), caution was inversely related to the level of discriminability. While a reformulation of a sequential decision model of signal detection can also account for this relationship, neither model can explain the direct relationship between speed and accuracy which followed a step change in discriminability. A model is presented in which sensory boundaries are adjusted to maintain the rate at which information enters the decision process, while control accumulators ensure that decisions are made at target levels of confidence. The model can account for a number of seemingly contradictory trends found to occur over time in vigilance tasks.