MEDIUM POWER STABLE LASERS
FOR HIGH PRECISION METROLOGY

by

David Ottaway

Thesis submitted for the degree of
Doctor of Philosophy
in
The University of Adelaide
(Department of Physics and Mathematical Physics)
December, 1998
Abstract

Medium power (5-10W) single frequency lasers with low intensity and frequency noise, plus good beam quality are required for a range of high precision metrology applications. Examples of such applications include laser interferometric detection of gravitational waves and long range vibrometry. In this thesis I will describe the development of a compact and efficient, single frequency, injection-locked, 5 W Nd:YAG laser. The laser output is close to diffraction limited with M^2 values of 1.0 and 1.2 in the horizontal and vertical planes respectively.

The slave laser is a diode pumped slab laser based on the co-planar pumped folded zig-zag slab laser geometry. The slab is side pumped using a single twenty watt laser diode array collimated by a Doric fibre lens. The slab is transversely cooled using Peltier cells that are air cooled.

We use injection-locking to force single frequency operation and to transfer the frequency stability of the monolithic Non Planar Ring Oscillator (NPRO) master laser to the output of our slave laser. The inherent stability of the slave laser allows injection-locking for periods of up to 30 s without the use of servo control. We achieve long term injection-locking by controlling the slave laser resonator using a Pound Drever Hall frequency control servo system.

A heterodyne technique is used to study the phase fidelity of our injection-locked laser compared to that of our master laser. We show that the slave laser contribution to the frequency noise of our injection-locked laser is negligible compared with the frequency noise of the free running master laser. This is in good agreement with theory.

The relative intensity noise of the injection-locked slave has also been measured and is less than $10^{-5}/\sqrt{Hz}$ at low frequencies. Further intensity noise reduction, in excess of an order of magnitude at low frequencies, has been achieved by electronic feedback to the slave laser pump source (a high power multi-emitter diode linear array). The laser is shot-noise limited above 5 MHz for 6 mA of detected photocurrent.
Contents

1 Introduction .. 3
 1.1 Multi-watt single frequency solid-state lasers 4
 1.2 Interferometric Detection of Gravitational Waves 10
 1.3 Field Based Laser Vibrometry 13
 1.4 Introduction to Control Theory 15

2 The Slave Laser .. 19
 2.1 Introduction ... 19
 2.2 Diode and Slab Temperature Control 24
 2.3 Slab Laser Loss and Gain Measurements 33
 2.3.1 Crystal Loss Measurements 33
 2.3.2 Small Signal Gain Measurements 36
 2.3.3 Optimum Output Coupling 36
 2.4 Efficiency and Mode Confinement 38
 2.5 Slab Interferograms 42
 2.6 Ring Resonator Results 47

3 Injection Locking of the Slave Laser 51
 3.1 Introduction ... 51
 3.2 Theory of Injection Locking 52
 3.3 Passive Injection Locking Performance 57
 3.3.1 Mode Matching and Alignment 57
 3.3.2 Master and Slave Temperature Matching 60
 3.4 Injection Locking Servo Design 61
 3.4.1 The Discriminator 61
3.4.2 The Actuator ... 63
3.4.3 High Voltage Amplifier 70
3.4.4 Pre-Amp Design and Loop Gain 70
3.5 Slave Laser Frequency Noise 73

4 Frequency and Intensity Noise Measurements 79
4.1 Introduction ... 79
4.2 Theory of Frequency Noise Reduction by Injection-Locking 80
4.3 Frequency Noise due to the Slave Resonator 82
4.4 Intensity Noise .. 84
 4.4.1 Measurement of Intensity Noise 88
4.5 Intensity Noise Reduction 90

5 Conclusions and Further Work .. 97

A Mathematical Derivations of Formulae 101
 A.1 Sensitivity of the Wheatstone Bridge Temperature Sensor 101
 A.2 Ring Laser as a Regenerative Amplifier 102
 A.3 Mode Matching .. 104
 A.4 Sensitivity of Pound-Drever-Hall Error Signal 106
 A.5 Sensitivity of the AOM beatnote experiment 108

B Circuit Diagrams .. 111
 B.1 Pre-Amp for Temperature Control of the Slab 111
 B.2 Power Amp in the temperature controller of the slab 111
 B.3 Pre-Amp for the Frequency Servo for the Slave Laser 111
 B.4 Transimpedance Photo-diode Circuit 114
 B.5 Intensity Noise Suppression Pre-Amp 114

C Publications ... 117