Cobalt: Physiological Effects and Uptake Mechanisms in Plants

by

Jukong Liu

B. and M. Agr. Sci., Northwest Agricultural University, Shaanxi, China

A thesis submitted to The University of Adelaide
for the degree of Doctor of Philosophy
December, 1998
CONTENTS

SUMMARY 7
DECLARATION 9
ACKNOWLEDGEMENTS 10
ABBREVIATIONS 11

CHAPTER 1. Introduction 12

1.1 OVERVIEW 12
 1.1.1 Physical and chemical properties of cobalt 12
 1.1.2 Biochemistry of Cobalt 13
 1.1.3 Cobalt in plants and in the environment 14

1.2 PHYSIOLOGICAL EFFECTS OF CO ON PLANTS 17
 1.2.1. Beneficial Effects 17
 1.2.2 Toxicity of Co in plants 19
 1.2.2.1 Toxic effects of Co on plant yield 20
 1.2.2.2 Toxic effects of Co on seed germination and seedling growth 20
 1.2.2.3 Toxic effects of Co on pollen germination and pollen tube growth 21
 1.2.2.4 Toxic effects of Co on photosynthesis 21
 1.2.2.5 Tolerance of Co in plants 22
 1.2.3. Effects of Co on enzymes in plants 23
 1.2.3.1 Induction of enzymes 23
 1.2.3.2 Inhibition of enzymes 23

1.3. CO UPTAKE, TRANSLLOCATION AND ACCUMULATION IN PLANTS 26

1.4. INTERACTION OF CO WITH OTHER METALS 28
 1.4.1 Calcium 28
 1.4.1.1 Evidence for Co-Ca interaction 28
 1.4.1.2 Calmodulin 29
 1.4.1.3 Calcium transport 30
 1.4.2 Iron 30
 1.4.3 Other Microelements 32

1.5 SUMMARY 31
CHAPTER 2. General Materials and Methods

2.1 Plant Material
 2.1.1 Mung bean
 2.1.2 Chara

2.2 METHODS
 2.2.1 Co uptake
 2.2.1.1 Co uptake in mung bean
 2.2.1.2 Co flux measurements in Chara
 2.2.2 Chlorophyll content and chlorophyll fluorescence
 2.2.2.1 Determining chlorophyll content
 2.2.2.2 Determining chlorophyll fluorescence
 2.2.3 Growth parameters and nutrient uptake
 2.2.3.1 Growth parameters
 2.2.3.2 Nutrient uptake
 2.2.4 Data Analysis

CHAPTER 3. Cobalt Uptake in Mung Beans

3.1 Introduction

3.2 Methods

3.3 Results
 3.3.1 Validity of 60Co uptake measurements
 3.3.2 Uptake in excised roots
 3.3.3 Time course of uptake
 3.3.4 Concentration dependence of uptake
 3.3.5 Effect of Co pretreatment on uptake
 3.3.6 Uptake rate as a function of growth
 3.3.7 60Co distribution with growth
 3.3.8 Effect of pH on Co uptake
 3.3.9 Competition with other cations
 3.3.9.1 Trace metals
 3.3.9.2 Ca and Mg
 3.3.10 Effect of cysteine and NEM on Co uptake

3
3.4 DISCUSSION

3.4.1 Cell wall binding
3.4.2 Concentration dependence of Co uptake
3.4.3 pH dependence of Co uptake
3.4.4 Specific mechanisms?
3.4.5 Cobalt uptake and membrane surface charge
3.4.6 The energetics of Co uptake
3.4.7 Co translocation in plants

CHAPTER 4 60Co Uptake and Distribution in Chara

4.1 INTRODUCTION

4.2 MATERIALS AND METHODS

4.3 RESULTS

4.3.1 60Co uptake into whole cells
4.3.2 Desorption of 60Co
4.3.3 60Co distribution within cells
4.3.4 Time course of 60Co uptake and distribution
4.3.5 Effect of pH on 60Co influx
4.3.6 Effect of thiol agents on 60Co influx
4.3.7 Effect of other divalent cations on 60Co influx

4.4 DISCUSSION

4.4.1 pH dependence of 60Co influx in Chara
4.4.2 Inhibition of Co influx by other metal cations
4.4.3 Distribution of Co between cytoplasm and vacuole
CHAPTER 5 Physiological Effects of Co in Mung Bean in Relation to Nutrient Balance

5.1 INTRODUCTION

5.2 MATERIALS AND METHODS
 5.2.1 Plant material
 5.2.2 Methods

5.3 RESULTS
 5.3.1 Comparative effects of Co and Fe deficiency on the growth of mung bean
 5.3.2 Effect of Co on growth of mung bean
 5.3.3 The role of Ca in ameliorating Co toxicity
 5.3.3.1 Growth
 5.3.3.2 Photosynthetic efficiency
 5.3.3.3 Cobalt uptake
 5.3.4 Effect of Co on nutrient content of seedlings
 5.3.4.1 Co content
 5.3.4.2 Micronutrient content (+Fe plants)
 5.3.4.3 Micro-nutrient content (-Fe plants)
 5.3.4.4 Macro-nutrients

5.4 DISCUSSION
 5.4.1 Mechanisms of Co effects in plants
 5.4.1.1 Effect of Co on Fe uptake, transport and function.
 5.4.2 Mechanisms of Co interaction with other elements in uptake and transport
 5.4.2.1 Micronutrient metals (Cu, Mn and Zn)
 5.4.2.2 Macronutrients
 5.4.3 The role of phytochelatins
CHAPTER 6 Comparative Effects Of Co And Other Trace Metals On Growth And Nutrient Status Of Mung Beans

6.1 INTRODUCTION
6.2 MATERIALS AND METHODS
6.3 RESULTS
6.3.1 Physiological effects of trace metals in mung bean
6.3.1.1 Effects of trace metals on the growth of mung bean
6.3.1.2 Effects of the trace metals on the appearance of seedlings
6.3.2 Effect of trace metals on the uptake of micronutrients
6.3.2.1 Micronutrients
6.3.2.2 Macro nutrients
6.4 DISCUSSION
6.4.1 Relative toxicity of Co.
6.4.2. Effect of trace metals on Fe deficiency
6.4.3 Effect of Fe-deficiency on uptake of other nutrients
6.4.4 Causes of trace metal toxicities: nutrient imbalance versus direct toxicity
6.4.5 The specificity of Co on S uptake

CHAPTER 7 General Discussion
7.1 UPTAKE OF TRACE METALS.

References
SUMMARY

This thesis describes an investigation into the mechanism of uptake of cobalt (Co) into plants and the physiological consequences of Co uptake and distribution within plants. The experiments were conducted with mung beans grown in solution culture but comparison was also made with Co uptake in a giant alga, Chara corallina.

Co has no known function in plant cells yet there appeared to be 3 possible uptake systems for Co; 1) a high affinity system which saturates at approximately 1 μM with a Km of approximately 0.3 μM, 2) a system with intermediate affinity for Co with a Km of approximately 3 μM and 3) a linear phase which extends to at least 500 μM.

Co influx was sensitive to the internal Co status, plants which had been previously exposed to Co had lower ⁶⁰Co influx that plants which had not been treated with Co. Influx of Co was also sensitive to other divalent cations. The degree of inhibition of influx of ⁶⁰Co decreased in the order Cd>Cu>Hg>Ni>Zn>Mn>Fe>Pb. Ca and Mg were only inhibitory at high concentrations and this was interpreted in terms of direct effects of these metals on membrane surface charge. Influx was also inhibited by the sulphydryl reagent NEM, which suggested that the uptake mechanism might involve binding of Co to –SH groups within the membrane.

Experiments with Chara showed that Co accumulated in both vacuole and cytoplasm. The rapid appearance of Co in the vacuole suggested that there was a high affinity Co transporter on the tonoplast or alternatively that Co transfer to the vacuole was direct (e.g. by endocytosis). ⁶⁰Co influx in Chara differed from that in mung bean in terms of pH optimum (Chara: 6 – 9; mung bean: 5 – 6) and a lower sensitivity to other divalent trace metals. However, influx was sensitive to NEM and to mM concentrations of Ca and Mg, as in mung beans.

Co inhibited growth of mung bean seedlings in ½ Hoagland’s solution at 5 μM but not at 0.5 μM. Co caused alterations in the concentrations of micronutrient elements and to a lesser extent macronutrient elements. The main visual symptoms of Co toxicity were similar to
those of Fe deficiency, which was consistent with the large reduction of Fe content in plants exposed to Co, even at 0.5 μM. Toxicity of Co was ameliorated by increasing Ca concentration in the range 0.1 to 1 mM. A comparison was made between the effects of Co and of other toxic metals, Hg, Zn, Cd, Pb, Cu and Ni on growth and nutrient balance of mung beans. Metals, Zn, Cd, Ni are also essential nutrients, but there are some situations (e.g. high concentrations) when they can become toxic.