Sulphur Transformations during
Pyrolysis of Low-Rank Coals and
Characterisation of Ca-based
Sorbents

by

Marnie TELFER

Thesis submitted for the degree
of Doctorate of Philosophy

in

The University of Adelaide
Department of Chemical Engineering
Faculty of Engineering

June 1999
SUMMARY

The high sulphur content in South Australian Low-rank coals causes serious constraints for the utilisation in fluidised-bed gasification systems for power generation. During the initial pyrolysis stage of the process, sulphur in coal evolves toxic compounds such as H₂S, COS and CS₂, which are precursors of acid-rain. Sulphur remaining in the char contributes to processing problems such as slagging, fouling, agglomeration and defluidisation.

Temperature-programmed Pyrolysis experiments employing Bowmans and Lochiel low-rank coal and treated Bowmans coals, were conducted to investigate the sulphur transformations during pyrolysis. Effects of sulphur distribution and inorganic matter were studied. Roughly 60% of the initial organic sulphur evolved over a range of temperatures, indicating the presence of aliphatic sulphides and disulphides, aliphatic/aryl thiols and some aryl sulphides in the original coal had decomposed. Solid-state sulphate transformations occurred between 400 and 600 °C to form organic sulphur in the char. The retention was greater for higher sulphate concentrations and less volatile sulphate compounds. Decomposition of reactive aliphatic sulphide and disulphide compounds decreased retention. In turn, the presence of sulphate sulphur suppressed organic sulphur decomposition between 300-500 °C.

Acid soluble/organically bound inorganics retained organic sulphur between 500-600 °C. Chemical and SEM analysis of acid-washed calcium exchanged chars removed at 800 °C and 900 °C, supplied evidence that calcium, enriched in the char, formed calcium sulphide between 700-900 °C by suppressing organic sulphur decomposition between 500-700 °C and facilitating the reactions with stable organic sulphur species in the char after 700 °C. Similar results were not observed for calcium carbonate added to coal, emphasising the importance of the intimate/organic bonding nature of calcium and the ability to facilitate reaction with sulphur. Organically-bound sodium in acid-washed sodium-exchanged coal formed significant proportions of water-soluble silicates in the char. A concentrated coating of sulphur around the silicates providing further evidence...
of sulphur’s role in ash agglomeration. Sodium also formed acid-insoluble constituents with sulphur. Total sulphur retention increased by 10% as the sodium acetate solution concentration in the ion-exchanging step increased from 0.25 M (2 wt% total Na) to 1.0 M (3.2 wt% total Na).

Sulphur transformations during fixed and fluidised-bed pyrolysis were performed to ascertain the effect of heat and mass transfer on sulphur transformations. Interpretation was aided by a heat transfer model. Sulphate and organic sulphur in coal decomposed to H₂S during the initial devolatilisation stage of pyrolysis, to an extent and at a rate proportional to the heating rate and inversely proportional to particle size. A decrease in the devolatilisation rate initiated solid-state sulphate transformations to retain organic sulphur in coal. The retention was enhanced for pyrolysis at faster heating rates and smaller particle sizes. A slower thermal response and an edge-wise distribution of sulphur across particle diameter implied that both heat and mass transfer resistances encouraged sulphur retention during the fluidised-bed pyrolysis of larger coal particles.

Atmospheric and pressurised TGA calcination experiments were conducted on a number of South Australian limestones and dolomites. The mechanism of calcination, effect of particle size, sorbent type and CO₂ partial pressure under fluidised-bed gasification conditions were studied. For the calcination experiments, particle size had varying effect for the sorbents investigated. The rate and mechanism of calcination were mainly influenced by the initial magnesium carbonate content, initial porosity and the occurrence of thermally induced fractures. The low initial porosity and particle size dependency of the calcination reaction of Angaston Limestone implied that the shrinking core model (SCM) was the most suitable to predict calcination conversion. The model predictions were successful to approximately 30% conversion, due to limitations in accounting for physical changes during the reaction. A two-stage shrinking core model, applied after 30% conversion, was found to accurately predict the calcination of 53-64 μm Angaston Limestone and 212-355 and 53-64 μm particles of Caroline Limestone. For the latter sorbent, the two stage SCM provided better predictions than a grainy pellet and homogenous model. It was concluded that the calcination reaction proceeds at a definite CaCO₃-CaO reaction interface for sorbents of high and low initial porosity. Finally, a constant mole fraction, y₁, was necessary to relate the calcination rate of Caroline
Limestone with CO\textsubscript{2} partial pressure, due to heat and mass resistances present during the calcination of CaCO\textsubscript{3} under significant partial pressures of CO\textsubscript{2} and for total pressures greater than 1 atm.

The results from the coal pyrolysis and sorbent calcination investigations provide a fundamental knowledge base for which models of sulphur emissions and sulphur capture during fluidised-bed gasification can be derived from.
TABLE OF CONTENTS

DE CLARATION .. i
ACKNOWLEDGMENTS .. ii
SUMMARY ... iii
TABLE OF CONTENTS .. vi
LIST OF FIGURES .. xiv
LIST OF TABLES ... xxviii
NOMENCLATURE .. xxxii

1. INTRODUCTION .. 1
 1.1 CRC - Cooperative Research Centre for New Technologies
 for Power Generation using Low-rank Coal ... 1
 1.2 Low-Rank Coal Deposits and Utilisation .. 2
 1.2.1 Victorian Coal Deposits ... 2
 1.2.2 South Australian Deposits .. 3
 1.3 Power Generation Technologies using Low-rank Coal 5
 1.3.1 Conventional Generation Processes ... 5
 1.3.2 Advanced Power Generation Processes ... 5
 1.3.2.1 Fluidised-bed Combustion ... 5
 1.3.2.2 Fluidised-bed Gasification ... 6
 1.4 Problems involving Sulphur during Coal Power Generation 6
 1.4.1 Environmental Considerations .. 7
 1.4.1.1 Sulphur Emissions from Gasification and Combustion 7
 1.4.1.2 Desulphurisation Strategies .. 7
 1.4.2 Ash-related Problems .. 9
 1.4.2.1 Agglomeration and Defluidisation .. 9
 1.4.2.2 Fouling and Ash Deposition and High Temperature Corrosion 10
 1.4.2.3 Strategies for Agglomeration and Defluidisation Control 11
 1.5 Scope and Structure of Thesis ... 11
Table of Contents

2. **LITERATURE REVIEW** .. 13

2.1 Introduction .. 13

2.2 Characteristics Low-Rank Coal .. 13
 2.2.1 Coalification and Coal Rank .. 14
 2.2.2 Inorganic Matter in Coal .. 14

2.3 Sulphur in Coal .. 16
 2.3.1 Original Sulphur Forms ... 16
 2.3.2 Inorganic Sulphur .. 17
 2.3.2.1 Pyrite Sulphur ... 17
 2.3.2.2 Sulphate Sulphur ... 17
 2.3.3 Organic Sulphur .. 17

2.4 Analysis of Sulphur forms in Coal .. 18
 2.4.1 Determination of Sulphur Forms in Coal .. 19
 2.4.1.1 The Wet Chemical Method ... 19
 2.4.1.2 Instrumental Techniques ... 20
 2.4.1.2.1 Electronprobe Microscopy (EPM) ... 20
 2.4.1.2.2 Scanning Electron Microscopy (SEM) ... 21
 2.4.1.2.3 Transmission Electron Microscopy (TEM) 22
 2.4.1.2 Comparison between Chemical and Instrumental Techniques 23
 2.4.2 Identification of Organic Sulphur Functionalities in Coal 24
 2.4.2.1 Indirect Thermal Degradation Techniques .. 24
 2.4.2.2 Direct Spectroscopic Techniques .. 27
 2.4.2.2.1 X-ray Photoelectron Spectroscopy (XPS) 27
 2.4.2.2.2 X-ray Absorption Spectroscopy (XANES) 28
 2.4.2.3 Comparisons between Direct and Indirect Techniques for Determination of Organic Sulphur Species ... 28

2.5 Behaviour of Sulphur Forms during Coal Conversion .. 29
 2.5.1 Fluidised-bed Gasification ... 29
 2.5.2 Inorganic Sulphur Transformations .. 31
 2.5.2.1 Pyrite Sulphur ... 31
 2.5.2.2 Sulphides .. 34
 2.5.2.3 Sulphate Sulphur ... 36
2.5.3 Organic Sulphur Transformations .. 39
 2.5.3.1 Thermal decomposition of Organic Sulphur Functionalities 40
 2.5.3.1.1 Thiols and Disulphides 40
 2.5.3.1.2 Aryl, Cyclic and Aliphatic Sulphides 41
 2.5.3.1.3 Thiophenes .. 42
 2.5.3.1.4 A Summary Organic Sulphur Functionalities
 Decomposition .. 43
 2.5.3.2 Organic Sulphur Retention ... 43
 2.5.3.2.1 Cyclisation Reactions of Organic Sulphur 44
 2.5.3.2.2 Organic Sulphur from Inorganic Sulphur 45
 2.5.4 Mechanisms for CS₂ and COS Evolution 46
 2.5.4.1 Carbon Disulphide ... 47
 2.5.4.2 Carboxyl Sulphide ... 47
 2.5.4.3 Sulphur Dioxide ... 48
 2.6 Interaction of Sulphur with Inorganic Constituents 49
 2.6.1 The Physical Transformation of Inorganic Matter 49
 2.6.2 The Chemistry of Inorganic Transformations during Combustion 50
 2.6.3 The Chemistry of Inorganic Transformations during Gasification 54
 2.7 Effect of Coal Characteristics on Sulphur Evolution 55
 2.7.1 The Effect of Coal Rank 55
 2.7.2 The Effect of Sulphur Content and Distribution of Sulphur Forms ... 58
 2.7.3 The Distribution of the Organic and Inorganic Sulphur Forms into
 Pyrolysis Products ... 60
 2.8 Effect of Processing Parameters on Sulphur Transformations 61
 2.8.1 Effect of Heating Rate on Sulphur Transformation 61
 2.8.2 Effect of Particle Size on Sulphur Transformation 62
 2.8.3 Effect of Gasifying Agent on Sulphur Transformations 63
 2.8.4 Effect of Gasifying Pressure on Sulphur Transformations 65
 2.9 Modelling of Sulphur Compounds ... 66
 2.9.1 Non-Isothermal Kinetics ... 66
 2.9.2 Single-First Order Kinetics 68
 2.9.3 Global Sulphur Transformation Model 70
2.9.4 Summary.. 71

2.10 Ca-based Sorbents For In-situ Desulphurisation... 72
 2.10.1 Desulphurisation Reactions.. 73
 2.10.2 Potential Sorbents... 74
 2.10.3 Characterisation of Ca-based Sorbents... 75
 2.10.3.1 Thermodynamic Constraints... 75
 2.10.3.2 Physical Limitations... 80
 2.10.3.3 Effect of Calcination Reaction on Sulphur Capture.................................... 83
 2.10.4 Mechanisms and Kinetics of Calcination.. 84
 2.10.4.1 Factors Affecting Calcination... 85
 2.10.4.2 Calcination Models... 85
 2.10.4.3 Effects of CO₂ on Calcination Kinetics... 88

2.11 Conclusions from the Literature Review.. 90

2.12 Objectives of the Current Study... 93

3. EXPERIMENTAL TECHNIQUES AND DATA ANALYSIS... 95

3.1 Introduction.. 95

3.2 Sample Preparation.. 96
 3.2.1 Drying.. 97
 3.2.2 Removal of Inorganic Constituents... 97
 3.2.2.1 Water-washing... 98
 3.2.2.2 Acid-washing.. 98
 3.2.3 Addition of Inorganic Constituents... 99
 3.2.3.1 Ion-exchanging... 99
 3.2.3.2 Limestone Additives... 99
 3.2.3.3 Sulphur Additives... 99
 3.2.4 Sizing...100
 3.2.4.1 Sieving..100
 3.2.4.2 Pelletising...101

3.3 Experimental Apparatus and Techniques...101
 3.3.1 Temperature-Programmed Pyrolysis (TPP)...102
 3.3.2 Horizontal Tube Furnace..102
3.3.3 Fluidised-bed Reactor ... 104
 3.3.3.1 Bulk Particle Fluidised-bed Reactor 104
 3.3.3.2 Single Particle Fluidised-bed Reactor 105
3.3.4 Atmospheric Thermogravimetric Apparatus 106
3.3.5 Pressurised Thermogravimetric Apparatus 107
3.4 Analytical Methods for Coal and Coal Pyrolysis Products 109
 3.4.1 Proximate and Ultimate Analysis .. 109
 3.4.2 Chemical Analysis of Sulphur and Sulphur Forms 109
 3.4.3 Chemical Analysis of Inorganics ... 109
 3.4.3.1 Inorganics in the Ash .. 109
 3.4.3.2 Analysis of Forms of Sodium and Silica 110
 3.4.3.2.1 Water Leaching .. 110
 3.4.3.2.2 Acid Leaching .. 110
 3.4.4 Scanning Electron Microscopic (SEM) Analysis 111
 3.4.4.1 Pulverised Coal/Char Samples 111
 3.4.4.2 Coal/Char Pellets ... 112
 3.4.5 Surface Area and Porosity Measurements 113
3.5 Summary .. 114

4. TRANSFORMATIONS OF SULPHUR DURING TEMPERATURE-
PROGRAMMED PYROLYSIS OF SA LOW-RANK COAL 115
4.1 Introduction .. 115
4.2 Behaviour of the Sulphur Forms in SA Low-rank Coals 116
 4.2.1 Temperature-programmed pyrolysis of Bowmans Coal 116
 4.2.2 Comparison between Chemical and SEM analysis of Organic Sulphur 118
 4.2.3 Temperature-programmed pyrolysis of Lochiel Coal 120
 4.2.4 SEM images of Bowmans and Lochiel Coal TPP Chars 124
 4.2.4.1 Raw Bowmans Coal .. 125
 4.2.4.2 Raw Lochiel Coal ... 126
4.3 The Effect of Inorganic Sulphur Forms ... 127
4.4 Summary .. 133
5. THE EFFECT OF INORGANIC CONSTITUENTS ON SULPHUR TRANSFORMATIONS .. 135

5.1 Introduction .. 135

5.2 The Effect of Water-soluble and Acid-soluble Inorganic Constituents 136
 5.2.1 The Effect of Water and Acid-washing on Coal Pyrolysis 136
 5.2.2 The Effect of Water-soluble Ions on Sulphur Transformations 138
 5.2.3 The Effect of Acid-soluble Cations on Sulphur Transformations 141

5.3 The Individual role of Organically-bound Inorganic Constituents 143
 5.3.1 Temperature-programmed pyrolysis of Acid-washed Calcium-
 exchanged and Acid-washed Sodium-exchanged Bowmans coal 143
 5.3.2 Detailed Analysis of Acid-washed Sodium-exchanged Chars 148
 5.3.2.1 SEM Analysis of Acid-washed Sodium-exchanged Chars 148
 5.3.2.2 Chemical Analysis of Acid-washed Sodium-exchanged
 Chars .. 157
 5.3.2.3 The Effect of Sodium Acetate Concentration 164
 5.3.3 Analysis of Acid-washed Calcium-exchanged TPP Chars 170

5.4 The Effect of Limestone Additives on Sulphur Transformations 173

5.5 Summary .. 176

6. THE EFFECT OF HEATING RATE AND PARTICLE SIZE ON SULPHUR
 TRANSFORMATIONS AND INTERACTIONS WITH INORGANIC
 CONSTITUENTS .. 178

6.1 Introduction .. 178

6.2 Fixed-bed Pyrolysis of South Australian Low-rank Coals 179
 6.2.1 Fixed-bed Pyrolysis of Raw Bowmans Coal 179
 6.2.2 Fixed-bed Pyrolysis of Raw Lochiel Coal .. 182
 6.2.3 Fixed-bed Pyrolysis of Acid-washed Ion-exchanged Coals 185

6.3 Bulk Fluidised-bed Pyrolysis of Bowmans Coal .. 188
 6.3.1 Sulphur Transformations during Fluidised-bed Pyrolysis 188
 6.3.2 The Effect of Particle Size on Sulphur Transformations 193

6.4 Single Particle Fluidised-bed Pyrolysis of Bowmans Coal 195
 6.4.1 Intraparticle Variations of Sulphur .. 195
6.4.2 Interactions of Sulphur and Inorganics during Fluidised-bed Pyrolysis..197

6.5 Summary..202

7. INVESTIGATION OF THE CALCINATION AND SULPHIDATION OF SA LIMESTONES AND DOLOMITES..204

7.1 Introduction...204

7.2 Preliminary Investigations in the TGA systems........................205

7.3 The Calcination of Ca-based Sorbents......................................208

7.3.1 Calcination of Angaston Limestone.................................208

7.3.2 Calcination of Ardrossan Dolomite.................................213

7.3.3 Calcination of Caroline Limestone.................................219

7.3.4 Calcination of Klein Point Limestone.............................225

7.3.5 Comparison of the Calcination Behaviour between Sorbents...228

7.4 The Effect of Carbon Dioxide Partial Pressure.......................231

7.5 Modelling Calcination Conversion..239

7.5.1 Models for Non catalytic Gas-solid Reactions...................239

7.5.2 Modelling the Calcination of SA Limestones.....................243

7.5.2.1 Angaston Limestone Calcination.................................244

7.5.2.2 Caroline Limestone Calcination.................................252

7.6 Sulphidation of Caroline Limestone......................................256

7.6.1 Outline of Sulphidation Investigations............................257

7.6.2 Sulphidation Results..258

7.7 Summary..261

8. EVALUATION OF THE PRESENT WORK..263

8.1 Introduction...263

8.2 Evaluation of the Experimental Data.....................................264

8.2.1 Analysis of Errors of the Pyrolysis Experiments...............264

8.2.2 Analysis of the Errors of the Calcination Experiments.......265

8.3 Comparison with Literature Data..266

8.4 Summary..271
Table of Contents

9. **CONCLUSIONS, IMPLICATIONS AND RECOMMENDATIONS**
 - 9.1 Conclusions from the Present Study 272
 - 9.2 Implications of the Present Study 277
 - 9.3 Recommendations for Future Work 278

REFERENCES ... 279

APPENDICES .. 294

APPENDIX A SEM IMAGES
 - A.1 X-ray Maps for Sulphur/Inorganic Interactions 295
 - A.2 X-ray Images for Intraparticle Sulphur Variations 299

APPENDIX B CALCINATION AND SULPHIDATION THEORIES 301
 - B.1 Calcination Conversion ... 301
 - B.2 The Calcination Shrinking Core Model 302
 - B.2.1 Assumptions of the Shrinking Core Model 302
 - B.2.2 Calculations for the Shrinking Core Model 303
 - B.3 Sulphidation Conversion .. 306

APPENDIX C ANALYSIS OF EXPERIMENTAL ERROR 307
 - C.1 Errors Analysis of the Sulphur Transformations during Pyrolysis 308
 - C.1.1 Errors Analysis of the TPP Experimental Data 310
 - C.1.2 Errors Analysis of the Fixed-bed Pyrolysis Data 314
 - C.1.3 Errors Analysis of the TPP Experimental Data 316
 - C.2 Experimental Errors in the TGA Systems 317
 - C.2.1 Atmospheric Thermogravimetric Apparatus (ATGA) 317
 - C.2.2 Pressurised Thermogravimetric Apparatus (PTGA) 320
 - C.3 Summary ... 321

LIST OF PUBLICATIONS ... 322