CHARACTERISATION OF T CELLS IN RATS THAT DEVELOP INDEPENDENTLY OF THE THYMUS: LYMPHOCYTES WITH POTENTIAL REGULATORY ROLES

by

Craig Antony Murphy B.Sc.(Hons)

THE DEPARTMENT OF MICROBIOLOGY AND IMMUNOLOGY
THE UNIVERSITY OF ADELAIDE

A dissertation submitted to the University of Adelaide in candidature for the degree of Doctor of Philosophy in the Faculty of Science June 1999
ABSTRACT

It is becoming accepted that there exist sites, other than the thymus, that support T cell differentiation. Proposed sites of thymus-independent T cell differentiation include the liver and the gut epithelium. Previous work in this laboratory has identified a previously uncharacterised structure within the rat small intestine as another candidate site for extra-thymic T cell development. These structures are present in both euthymic and athymic rats and take the form of modified villi that contain closely packed lymphocytes and dendritic cells. It was shown that the majority of the lymphocytes in these lymphocyte-filled villi (LFV) did not express markers of mature B cells and T cells but they did express CD25 and CD43. Furthermore, lymphocytes within LFV were shown to undergo cell division, they were excluded from the recirculating pool and they included a minor population of cells which expressed markers of mature T cells (which include the α/β TCR, CD3, CD2, CD5 and CD4). It is shown herein that the major population of CD25⁺ CD43⁺ cells also express CD44 and CD161, a phenotype similar to that expressed by immature thymocytes at the time of commitment to the T cells lineage. These observations, together with the detection of RAG-1 protein in LFV, indicate that LFV have similarities to the thymus and are likely sites of thymus-independent T cell development. It is shown that with increasing age, cells expressing the α/β TCR increase in number in the tissues of athymic rats. Cells expressing the α/β TCR are detected in the TDL of young adult athymic rats before they are found in significant numbers in lymphoid organs. This suggests that the gut may be the source of these cells and raises the possibility that T cells developing at mucosal sites, in particular in LFV, may seed the peripheral lymphoid organs of athymic rats. Furthermore, the presence of LFV in euthymic rats indicates that they may contribute a corresponding thymus-independent T cell population in normal animals. Previous
studies have shown that the α/β T cells found in athymic rats cannot mediate rejection of allografts and hence are not the functional equivalents of conventional thymus-derived T cells. Phenotypic comparisons presented in this study show that the α/β T cells present in athymic rats are distinct from the majority of α/β T cells found in euthymic littermates. They have a larger mean size, exhibit a lower level of surface TCR expression, a higher proportion express activation markers and the majority express a pattern of adhesion molecules consistent with previous antigenic stimulation. Furthermore, additional work showed that the α/β T cells found in athymic rats share a number of features with NKT cells, a recently described subset of T cells with unique functional properties. These differences may be reflected in the observations reported in this thesis that show that as a whole, the α/β T cells found in athymic rats recirculate in reduced numbers and show a different pattern of tissue distribution following adoptive transfer. Moreover, examination of the cytokines produced by T cells following in vitro stimulation showed that NKT cells and α/β T cells from athymic rats produce large amounts of IFN-γ. Collectively, the information detailed in this thesis show that the NKT cells and the thymus-independent α/β T cells present in athymic rats are phenotypically and functionally related. This raises the possibility that thymus-independent α/β T cells are distinct from conventional T cells and that their functions in normal individuals are regulatory, as has been suggested for NKT cells.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS i
ABSTRACT iv
PUBLICATIONS vi
ABBREVIATIONS ix
TABLE OF CONTENTS xii

CHAPTER 1 INTRODUCTION

1.1 GENERAL INTRODUCTION 1
1.2 DEFINITION OF T CELLS 1
1.3 T CELL DIFFERENTIATION 2
 1.3.1 T cell development in the thymus 2
 1.3.2 Thymus-independent T cell development 6
1.4 THYMUS-INDEPENDENT T CELLS 7
 1.4.1 Congenitally athymic animals 7
 1.4.2 Immunological characteristics of athymic animals 9
 1.4.3 Characteristics of T cells found in nude animals 10
1.5 DIFFERENTIATION STATES OF MATURE T CELLS 13
 1.5.1 Peripheral development of T cells 13
 1.5.2 Surface phenotypes of naive, effector and memory T cells 14
 1.5.3 Functional characteristics of naive, effector and memory T cells 17
 1.5.4 Requirements for activation of naive, effector and memory T cells 20
1.6 RECIRCULATION AND HOMING OF LYMPHOCYTES 25
 1.6.1 Lymphocyte recirculation 25
 1.6.2 Comparison of the recruitment of naive, effector and memory T cells to various tissues 27
1.7 NKT CELLS 30
 1.7.1 Distribution and phenotypic markers of NKT cells 30
 1.7.2 Developmental requirements and origin of NKT cells 35
 1.7.3 Antigen recognition and functions of NKT cells 40
 1.7.3.1 Cytolytic activities 40

xii
1.7.3.2 Role in regulation of haematopoiesis and lymphopoiesis 42
1.7.3.3 Regulatory functions in immune responses 43
1.7.3.4 Role in autoimmunity 45

1.8 INTRAEPITHELIAL LYMPHOCYTES (IEL) 46
1.8.1 Surface markers and origins of IEL 47
1.8.2 Antigen recognition and functions of IEL 55

1.9 α/β TCRINTERMEDIATE CELLS 61
1.9.1 Surface markers and tissue distribution of α/β TCRINTERMEDIATE cells 61
1.9.2 Origin of α/β TCRINTERMEDIATE cells 65
1.9.3 Functions of α/β TCRINTERMEDIATE cells 66

1.10 LYMPHOCYTE-FILLED VILLI (LFV) AND CRYPTOPATCHES 68
1.10.1 Lymphocyte-filled villi (LFV) 68
1.10.2 Mouse LFV and Cryptopatches 69

1.11 PROJECT AIMS AND HYPOTHESES 71
1.11.1 Hypotheses 72

CHAPTER 2 MATERIALS AND METHODS

2.1 ANIMALS 73

2.2 PREPARATION OF NON-STERILE CELL SUSPENSIONS 73
2.2.1 Preparation of cells from lymph nodes and spleens 73
2.2.2 Preparation of cells from Peyer's patches 74
2.2.3 Preparation of mononuclear cells from the liver 74
2.2.4 Preparation of cells from bone marrow 75
2.2.5 Isolation of mononuclear cells from peripheral blood 75
2.2.6 Thoracic duct lymphocytes obtained by thoracic duct cannulation 76

2.3 TISSUE CULTURE PROCEDURES 77
2.3.1 Preparation of medium 77
2.3.2 Preparation of sterile cells for culture 78

2.4 ANTIBODIES 79
2.4.1 Primary antibodies 79
2.4.2 Systems for detection of primary antibodies 80
2.5 NEGATIVE SELECTION OF CD4+ CELLS USING IMMUNO-MAGNETIC BEADS

2.6 LABELLING OF CELLS FOR FLOW CYTOMETRIC ANALYSES
 2.6.1 Indirect labelling of cells with monoclonal antibodies (mAbs)
 2.6.2 Direct labelling of cells with PE-conjugated mAbs
 2.6.3 Dual fluorochrome labelling of cells
 2.6.4 Labelling DNA with propidium iodide (cell cycle analysis)
 2.6.5 Measurement of cell death by Annexin-V binding
 2.6.6 Labelling of cells with Carboxyfluorescein diacetate succinimidyl ester (CFSE) and cell tracking in vivo
 2.6.7 Detection of intracellular cytokines.

2.7 FLOW CYTOMETRY
 2.7.1 One-colour flow cytometry
 2.7.2 Two-colour flow cytometry

2.8 IMMUNOHISTOCHEMISTRY
 2.8.1 Preparing tissue blocks for sections
 2.8.2 Indirect immunoperoxidase
 2.8.3 Counterstaining with Haematoxylin
 2.8.4 Dual-fluorochrome labelling of tissue sections using indirect and direct immunofluorescent staining
 2.8.5 Indirect immunofluorescence staining to detect RAG-1 protein in tissue sections
 2.8.6 Detection of CFSE-labelled cells in tissue sections
 2.8.7 Fluorescence microscopy
 2.8.8 Confocal microscopy

2.9 MOLECULAR BIOLOGY TECHNIQUES
 2.9.1 Bacterial Growth Media and Buffers
 2.9.2 Preparation of genomic DNA
 2.9.3 Oligonucleotide primers
 2.9.4 Polymerase Chain Reaction (PCR)
 2.9.5 Separation of DNA fragments by agarose gel electrophoresis
 2.9.6 Determination of DNA fragment size
 2.9.7 DNA purification by phenol/chloroform extraction
2.9.8 Restriction endonuclease digestion
2.9.9 Purification of DNA from agarose using Geneclean®
2.9.10 Quantitation of DNA
2.9.11 Ligation of restriction digested fragments to vector
2.9.12 Preparation of chemically competent cells for transformation
2.9.13 Transformation of chemically competent *E. coli*.
2.9.14 Small 'Miniprep' plasmid DNA preparations
2.9.15 Large 'Miniprep' plasmid DNA preparations
2.9.16 DNA sequence analysis

2.10 PREPARATION AND ANALYSIS OF mRNA
2.10.1 RNase-free conditions and buffer preparations
2.10.2 Isolation of total RNA
2.10.3 Reverse Transcription (RT)-Polymerase Chain Reaction (PCR)

CHAPTER 3 EXTRATHYMIC T CELL DEVELOPMENT IN THE RAT: INVESTIGATIONS ON THE LIVER AND LYMPHOCYTE-FILLED VILLI (LFV)

3.1 INTRODUCTION
3.2 RESULTS
3.2.1 Expression of RAG-1 mRNA by mononuclear cells in the rat liver
3.2.2 Attempted detection of transcripts encoding RAG-1 in lymphocytes in LFV
3.2.3 Phenotypic characterisation of cells present in LFV
3.2.4 Detection of RAG-1 protein in LFV
3.3 DISCUSSION
3.3.1 Expression of RAG-1 by rat liver mononuclear cells: A Summary
3.3.2 Thymus-independent T cell development in LFV: A Summary

CHAPTER 4 CHARACTERISATION OF T CELLS IN ATHYMIC (rNurNur) RATS

4.1 INTRODUCTION
4.2 RESULTS
4.2.1 Appearance of α/β T cells in rNu/rNu rats

4.2.2 Extended phenotype of α/β T cells in rNu/rNu rats

4.2.3 α/β T cells in rNu/rNu rats are larger, express reduced levels of surface TCR but most exhibit 2N levels of DNA

4.2.3.1 Cell size

4.2.3.2 Surface TCR

4.2.3.3 DNA content

4.2.4 Comparison of activation marker expression by α/β TCR$^+$ cells in rNu/rNu and rNu/+ rats

4.2.4.1 Activation markers

4.2.4.2 Expression of MHC class II molecules

4.2.4.3 Expression of CD45 isoforms

4.2.5 Expression of adhesion molecules by α/β T cells in rNu/rNu and rNu/+ rats

4.2.6 Other unique differences in surface molecule expression by α/β TCR$^+$ cells in rNu/rNu and rNu/+ rats

4.2.6.1 Expression of $\alpha E2$ integrin

4.2.6.2 Expression of U4002-antigen

4.2.6.3 Expression of Thy-1 antigen (CD90)

4.2.6.4 Expression of Mac-1 (CD11b)

4.2.7 Characterisation of α/β T cells isolated from the livers of rNu/+ and rNu/rNu rats

4.3 DISCUSSION

4.3.1 Appearance of α/β T cells in rNu/rNu rats: A Summary

4.3.2 Extended phenotype of α/β T cells in rNu/rNu rats: A Summary

4.3.3 α/β T cells in rNu/rNu rats are larger, express reduced levels of surface TCR but most exhibit 2N levels of DNA: A Summary

4.3.4 Comparison of activation marker expression by α/β TCR$^+$ cells in rNu/rNu and rNu/+ rats: A Summary

4.3.5 Expression of adhesion molecules by α/β T cells in rNu/rNu and rNu/+ rats: A Summary
4.3.6 Other differences in the expression of surface molecules by α/β T cells in rNu/rNu and rNu/+ rats: A Summary

4.3.7 Characterisation of α/β T cells isolated from the livers of rNu/+ and rNu/rNu rats: A Summary

CHAPTER 5 RECIRCULATION AND REDISTRIBUTION CHARACTERISTICS OF THYMUS-INDEPENDENT T CELLS

5.1 INTRODUCTION

5.2 RESULTS

5.2.1 Recirculation of thymus-independent αβ T cells

5.2.2 Distribution of thymus-independent α/β T cells

5.2.3 Purification of CD4+ T cells from rNu/rNu rats results in cell death

5.3 DISCUSSION

5.3.1 Recirculation of thymus-independent α/β T cells: A summary

5.3.2 Distribution of thymus-independent α/β T cells: A summary

5.3.3 Purification of CD4+ T cells from rNu/rNu rats results in cell death: A Summary

CHAPTER 6 RELATIONSHIP BETWEEN THYMUS-INDEPENDENT T CELLS AND NKT CELLS

6.1 INTRODUCTION

6.2 RESULTS

6.2.1 Mean size and level of TCR expression by NKT cells in rNu/+ rats and α/β T cells isolated from rNu/rNu rats

6.2.2 Similarities between the surface markers expressed by NKT cells from rNu/+ rats and αβ TCR+ cells from rNu/rNu rats

6.2.3 Production of cytokines by thymus-independent α/β TCR+ cells and NKT cells from rNu/+ rats

6.3 DISCUSSION
6.3.1 Mean size and level of TCR expression by NKT cells in rNu/+ rats and
α/β T cells isolated from rNu/rNu rats: A Summary 206

6.3.2 Similarities between the surface markers expressed by NKT cells from
rNu/+ rats and α/β TCR+ cells from rNu/rNu rats: A Summary 207

6.3.3 Production of cytokines by thymus-independent α/β TCR+ cells and
NKT cells from rNu/+ rats: A Summary 210

CHAPTER 7 GENERAL DISCUSSION

7.1 THE APPEARANCE OF α/β TCR+ CELLS IN ATHYMIC RATS AND
POSSIBLE LINKS TO EXTRA-THYMIC T CELL DEVELOPMENT IN
LYMPHOCYTE FILLED VILLI 213

7.2 PHENOTYPIC AND FUNCTIONAL CHARACTERISTICS OF
THYMUS-INDEPENDENT α/β TCR+ CELLS 217

7.3 EXPRESSION OF THE TCR BY THYMUS-INDEPENDENT T CELLS
AND THEIR RELATIONSHIP TO NKT CELLS. 222

7.4 FUTURE PROSPECTS 224

7.5 CONCLUSIONS 227

BIBLIOGRAPHY 230