A Search for Very High Energy Gamma-ray Emission From Four Galactic Pulsars

A Thesis Submitted to the Department of Physics and Mathematical Physics University of Adelaide for the degree of Doctor of Philosophy by

Steven Ashton Dazeley B.Sc (Hons.)

August 1999
Contents

Abstract vii

Statement of Originality viii

Acknowledgements ix

1 Very High Energy Gamma Ray Astronomy 1

1.1 Introduction ... 1

1.1.1 Thesis Aims ... 3

1.1.2 Thesis Outline ... 4

1.2 Observations ... 5

1.2.1 Galactic γ-ray Sources 5

1.2.2 Extra-Galactic γ-ray Sources 8

1.3 Pulsar Magnetospheres as Gamma Ray Sources 10

1.3.1 Outer Gap Model 10

1.3.2 Development of Outer Gaps 11

1.3.3 Characteristics of Outer Gaps and Their Emission 13

1.3.3.1 Region I .. 14

1.3.3.2 Region II ... 15

1.3.3.3 Region III .. 16

1.4 The Inverse-Compton Synchrotron Model 18
4 Ground Based TeV γ-ray Detection Techniques

4.1 Introduction .. 59
 4.1.1 Early Imaging Cameras .. 61

4.2 Modern Imaging Cherenkov Telescopes 64
 4.2.1 CAT Telescope ... 65
 4.2.2 HEGRA Array .. 68
 4.2.3 MAGIC Telescope ... 70
 4.2.4 VERITAS Array .. 71
 4.2.5 Telescope Array .. 71
 4.2.6 HESS Array ... 72
 4.2.7 CANGAROO III .. 73

5 DC Analysis of BIGRAT Data Files 75
 5.1 Overview ... 75
 5.2 Overview of Image Analysis 77
 5.3 Pedestal Estimation ... 80
 5.4 Software Padding .. 85
 5.5 Results of Vela Analysis 90
 5.5.1 1994 Vela Data Set ... 90
 5.5.2 Vela 1996 Data Set .. 98
 5.5.3 Combined Vela Pulsar Analysis 99
 5.5.4 Results of Parameter Cuts 101
 5.6 Results of PSRB1706-44 Analysis 102
 5.6.1 Results of Parameter Cuts 104

6 Simulations of the 3.8m CANGAROO Telescope 105
 6.1 Introduction ... 105
 6.2 Simulations ... 106
 6.3 Small Zenith Angle Results 109
 6.4 Large Zenith Angle Simulations 114
6.5 Parameter Cuts and Maximising Quality Factor Q 115

7 DC Analysis of CANGAROO Data Files ... 121

7.1 Introduction 121
7.2 DC Analysis of CANGAROO data 121

7.2.1 Calibration of Telescope Pointing Direction 123
7.2.2 Data Analysis 125
7.2.3 Statistical Significance 129
7.2.4 Significance Contour Maps 129
7.2.5 Source Probability Density Function 131

7.3 Overview of Vela Pulsar data 133

7.3.1 Results of Vela Pulsar Analysis 134

7.4 Overview of Crab Pulsar Analysis 138

7.4.1 Results of Crab Analysis 139

7.5 Overview of PSRB1259−63 Analysis 141

7.5.1 Results of PSRB1259−63 Analysis 143

8 Discussion and Conclusions 147

8.1 Introduction 147
8.2 Monte Carlo Simulations of the 3.8 Metre 148
8.3 BIGRAT Results 148
8.4 CANGAROO Results 151

8.4.1 Vela Pulsar 153
8.4.2 Crab Nebula 158
8.4.3 Eccentric Binary PSRB1259−63 159

8.5 Future Work in this Field 160
8.6 Conclusions 160

A Hillas Image Parameters 165
Abstract

This thesis presents the results of observations of four potential γ-ray sources with the CANGAROO and BIGRAT imaging Cherenkov telescopes. As part of this effort, a theoretical investigation into the CANGAROO telescope is given using the Monte Carlo simulation technique. Previous results, from groups operating telescopes in the southern hemisphere have indicated the presence of unpulsed TeV γ-ray emission from three of these objects. This work provides an independent analysis of further observations of these objects.

The set of Monte Carlo simulations are used to develop a set of analysis methods which are sensitive to γ-ray detection, and which reject the cosmic ray background most efficiently. These methods are then used in the analysis of all CANGAROO data. Observations of the Crab nebula from 1996 to 1998, Vela pulsar/nebula in 1997 and the highly eccentric binary PSRB1259--63 in 1997 are presented. These observations show no evidence of steady TeV emission. However, new 3σ upper limits of 9.3×10^{-13} photons cm$^{-2}$ s$^{-1}$ at 12 TeV for the Crab nebula, 2.5×10^{-12} photons cm$^{-2}$ s$^{-1}$ at 2.7 TeV for the Vela pulsar/nebula and 3.2×10^{-12} photons cm$^{-2}$ s$^{-1}$ at 2.7 TeV for PSRB1259--63 are given and compared with previously published results. The possible reasons for these non-detections are also presented and discussed.

Observations of the Vela pulsar/nebula in 1994 and 1996 and PSRB1706--44 from 1995 to 1996 with the BIGHAT telescope are also presented. These observations show no evidence of steady TeV γ-ray emission, a new set of upper limits for these sources at an energy threshold of 0.5 TeV is given. These are 3.8×10^{-11} photons cm$^{-2}$ s$^{-1}$ for the Vela pulsar/nebula and 3.0×10^{-11} photons cm$^{-2}$ s$^{-1}$ for PSRB1706--44.