LETTUCE DISEASES CAUSED BY SCLEROTINIA SCLEROTIORUM
AND PHYTOPHthora PORRI AND THEIR CONTROL

by

DJIMAN SITEPU Ir (Agr.)

Department of Plant Pathology
Waite Agricultural Research Institute
The University of Adelaide
South Australia

A thesis submitted to the University of Adelaide
in fulfilment of the requirements for the degree
of Doctor of Philosophy

March 1984
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>vi</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>vii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>CHAPTER 1 GENERAL INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 2 FIELD SURVEY</td>
<td>3</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Objective of the field survey</td>
<td>3</td>
</tr>
<tr>
<td>1.2 General descriptions of the areas</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Disease problems and their controls</td>
<td>3</td>
</tr>
<tr>
<td>2. The vegetable industry in the NAP</td>
<td>4</td>
</tr>
<tr>
<td>2.1 History</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Economic importance</td>
<td>4</td>
</tr>
<tr>
<td>2.3 Major problems</td>
<td>6</td>
</tr>
<tr>
<td>2.4 Agricultural practices</td>
<td>6</td>
</tr>
<tr>
<td>3. Materials and Methods</td>
<td>7</td>
</tr>
<tr>
<td>3.1 Surveying crops for diseases</td>
<td>7</td>
</tr>
<tr>
<td>3.2 Investigation, isolation and identification of pathogens</td>
<td>9</td>
</tr>
<tr>
<td>3.3 Sampling soils from around healthy and diseased plants</td>
<td>10</td>
</tr>
<tr>
<td>3.3.1 pH</td>
<td>10</td>
</tr>
<tr>
<td>3.3.2 Soil texture</td>
<td>10</td>
</tr>
<tr>
<td>3.3.3 Water potential</td>
<td>11</td>
</tr>
<tr>
<td>3.3.4 Soil water</td>
<td>11</td>
</tr>
<tr>
<td>3.3.5 Isolation of fungi</td>
<td>11</td>
</tr>
<tr>
<td>3.4 Assessing plants for diseases and yield loss in commercial lettuce fields</td>
<td>13</td>
</tr>
<tr>
<td>4. Results and Discussion</td>
<td>14</td>
</tr>
<tr>
<td>4.1 Diseases of vegetable crops in the NAP</td>
<td>14</td>
</tr>
<tr>
<td>4.1.1 Fungal diseases</td>
<td>14</td>
</tr>
<tr>
<td>4.1.2 Bacterial disease</td>
<td>17</td>
</tr>
<tr>
<td>4.1.3 Virus disease</td>
<td>17</td>
</tr>
<tr>
<td>4.1.4 Other apparent abnormalities</td>
<td>17</td>
</tr>
<tr>
<td>4.1.5 Isolation of fungi and analysis of soil</td>
<td>17</td>
</tr>
</tbody>
</table>
4.2 Disease management applied by growers

4.2.1 Spraying with chemicals
4.2.2 Agricultural practices
4.2.3 Certified seed

4.3 Yield loss due to certain diseases

4.4 Disease problems and growers' response

4.5 Some important diseases in commercial lettuce fields

4.5.1 Sclerotinia rot or Lettuce drop
4.5.2 Grey mould
4.5.3 Downy mildew
4.5.4 Anthracnose
4.5.5 Phytophthora stem rot
4.5.6 Lettuce necrotic yellows
4.5.7 Big vein
4.5.8 Minor virus diseases

4.6 Questions that arose during the survey

5. Summary and Conclusions

CHAPTER 3 STEM ROT OF LETTUCE CAUSED BY PHYTOPHTHORA PORRI

1. Introduction

1.1 Objectives
1.2 A previously undescribed pathogen in commercial lettuce fields
1.3 Yield loss in commercial fields
1.4 Incidence and distribution of the disease

2. Materials and Methods

2.1 Recovery, isolation and identification of P. porri
2.2 Experimental

2.2.1 Pathogenicity test
2.2.2 Physiological and cultural factors
2.2.3 Most susceptible part of the lettuce to P. porri
2.2.4 Effect of soil water and temperature on infection
2.2.5 Efficacy of some fungicides to control P. porri

3. Results and Discussion

3.1 Description of P. porri
3.2 Pathogenicity of P. porri
3.3 The occurrence of P. porri in commercial lettuce fields and yield loss
3.4 Factors that favour the infection in the field
3.5 Effect of physiological and cultural factors
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.1</td>
<td>Effects of kinds of media</td>
<td>51</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Effect of concentration of plant extract medium</td>
<td>54</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Effects of pH</td>
<td>54</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Effects of temperature and light</td>
<td>58</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Effects of nitrogen and carbon sources</td>
<td>58</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Effects of soil extract concentration</td>
<td>63</td>
</tr>
<tr>
<td>3.5.7</td>
<td>Survival of P. porri in culture</td>
<td>63</td>
</tr>
<tr>
<td>3.6</td>
<td>The most susceptible tissues of lettuce plants</td>
<td>65</td>
</tr>
<tr>
<td>3.7</td>
<td>Efficacy of some fungicides</td>
<td>65</td>
</tr>
<tr>
<td>4.</td>
<td>Summary and Conclusions</td>
<td>68</td>
</tr>
<tr>
<td>4.1</td>
<td>Phytophthora porri</td>
<td>68</td>
</tr>
<tr>
<td>4.2</td>
<td>Conditions for better growing of P. porri</td>
<td>70</td>
</tr>
<tr>
<td>4.3</td>
<td>Possible control measure</td>
<td>71</td>
</tr>
</tbody>
</table>

CHAPTER 4
SCLEROTINIA ROT IN LETTUCE PLANTS

1. **Introduction**
1.1 Objectives | 72 |
1.2 Its occurrence and importance | 72 |
1.3 Host plants and its distribution | 73 |
1.4 Biological control | 74 |

2. **Materials and Methods** | 74 |
2.1 Assessment of disease in commercial lettuce fields | 74 |
2.1.1 Sampling procedure | 74 |
2.1.2 Assessment of diseased plants | 75 |
2.1.3 Factors measured | 75 |
2.1.3.1 Number of sclerotia of S. sclerotiorum | 75 |
2.1.3.2 Soil factors | 76 |
2.1.3.3 Cultural practices | 76 |
2.2 Recovery, isolation and identification of sclerotial parasites or antagonists | 77 |
2.3 Laboratory and Glasshouse experiments | 78 |
2.3.1 Production of sclerotia of S. sclerotiorum | 78 |
2.3.2 Pathogenicity tests | 78 |
2.3.3 Efficacy of some fungicides against S. sclerotiorum | 78 |
2.3.4 Physical and cultural factors | 79 |
2.3.5 A prerequisite for infection by ascospores | 79 |
2.3.6 Factors effecting sclerotial viability and germination | 79 |
2.3.7 Biological control of S. sclerotiorum by F. lateritium | 80 |
2.3.7.1 In the laboratory and glasshouse 80
2.3.7.2 In the field 81

3. Results and Discussion

3.1 Correlation between disease and environmental factors 82

3.1.1 Correlation between diseased plants and sclerotia 82
3.1.2 Correlation between disease factors other than sclerotia 86
3.1.3 Correlation between factors other than percent diseased plants 87
3.1.4 Cultural practices 87

3.2 Sclerotial parasite and antagonist 88

3.3 Pathogenicity of S. sclerotiorum 91

3.4 Effect of inoculum density on disease incidence in lettuce 91

3.5 Efficacy of some fungicides 93

3.6 Physiological and cultural factors 96

3.6.1 Effects of pH 96
3.6.2 Effects of nitrogen and carbon sources 98

3.7 A prerequisite for infection by ascospores 100

3.8 Factors affecting sclerotial viability 103

3.8.1 Effect of storage duration in cool room 103
3.8.2 Effect of burial in storage 103
3.8.3 Effect of depth on sclerotial germination 105

3.9 Biological control of S. sclerotiorum 108

3.9.1 Biological control by Fusarium lateritium 108

3.9.1.1 Inhibition of mycelial growth 108
3.9.1.2 Inhibition of ascospore germination 108
3.9.1.3 The influence of medium on the inhibition of ascospore germination 110
3.9.1.4 The influence of temperature on inhibition of ascospore germination 110
3.9.1.5 Glasshouse experiments on the protection of young lettuce plants 114
3.9.1.6 Field experiment 118

3.9.2 Biological control by sclerotial parasites 118
4. Summary and Conclusions

4.1 Sclerotinia rot a major disease of lettuce

4.2 Factors affecting the incidence and severity of disease in lettuce fields

4.3 Possible control measures

CHAPTER 5 GENERAL DISCUSSION

BIBLIOGRAPHY

APPENDICES
SUMMARY

The study of vegetable diseases in smallholdings in the Northern Adelaide Plains, South Australia, revealed that lettuce has many diseases which cause substantial yield losses. The most important disease is Sclerotinia rot (Sclerotinia sclerotiorum) which is also very destructive to other major vegetable crops in the area. Other important diseases are: Phytophthora stem rot (Phytophthora porri), grey mould (Botrytis cinerea), downy mildew (Bremia lactucae), anthracnose (Harssonina panattoniana), and lettuce necrotic yellows (LNYV).

Phytophthora stem rot of lettuce, a disease newly discovered in this project, and causing significant yield losses, presents a serious hazard to growers in the Northern Adelaide Plains. Lettuce crops were the only vegetable plants affected by the disease, and pathogenicity tests in the laboratory and glasshouse confirmed that lettuce was the only host plant for the pathogen. Phytophthora porri from lettuce shows some differences from P. porri Foister including host plant, optimum temperature for growth and pathogenicity.

A saprophytic fungus Fusarium lateritium inhibits the germination of ascospores and the growth of mycelia of Sclerotinia sclerotiorum, and protected young plants in pot experiments in the glasshouse. Experimental evidence indicated that S. sclerotiorum, its ascospores in particular, requires organic matter as a prerequisite for initial infection of healthy lettuce plants. Results suggested that F. lateritium conidia or mycelia inhibited S. sclerotiorum on such media.

Several sclerotial parasites and antagonists were found in the soils of the vegetable growing areas. Coniothyrium mimitans, was isolated from
all sampled fields, Trichoderma spp. including T. harzianum, Gliocladium sp. and Fusarium spp. were also abundant. Trichotheicum sp. was found in only one field. C. minitans and T. harzianum possibly decompose the sclerotia of S. sclerotiorum in the field. One isolate of Streptomyces sp. inhibited the growth of S. sclerotiorum in vitro.

Environmental conditions such as excessive rainfall, high soil water content, cold and moist air, dense weeds together with plant condition (dense and fully grown), favoured the development of S. sclerotiorum which then caused severe damage. In some lettuce fields yields were reduced by more than 85%.

There were indications from a survey of vegetable crops that the incidence of disease might be reduced by: (1) intensive mechanical action by removing infected plants; (2) thorough and clean cultivation; (3) regular preventive spraying with effective fungicides; (4) crop rotation and (5) good soil drainage.

It was concluded that the two important pathogens of lettuce cause considerable yield losses in the Northern Adelaide Plains, and both pathogens were prevalent during winter crops. Improved control can probably be achieved immediately by using fungicides, sanitation and cultural practices. This project has indicated that further control can be achieved by the using of biological control agents such as F. lateritium against Sclerotinia rot of lettuce and the use of tolerant cultivars.