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ABSTILACT

The main objective of this thesis is to gain a deeper understanding of the sin-

gularities which arise in solutions of Einstein's field equations. This will involve both
an indepth study of one particular solution, namely the Curzon solution, as well as

the development of a whole new framework for handling singularities which occur in
arbitrary space-times.

The Curzon solution is a special member of Weyl's class of metrics (the class of
all static, axisymmetric, vacuum solutions). The deceptively simple appearance of the

Curzon metric guaranteed that its surprisingly pathological singularity structure would

remain undiscoveled for many years. Chapter 1 gives an historical perspective on this

solution. This is of great interest, because the early work on the subject from the late

sixties onwards precisely mirrors the slow but steady growth in the understanding of

singularities at large during those yeaÌs.

In Chapter 2 the study of the Curzon solution begins in earnest. The analysis

is initially restricted to the spacelike hypersurfaces ú : constant, so that one has only

to consider the behaviour of spacelike geodesics and curves which lie in them, It is

possible to find all such geodesics which approach the central'directional singularity'.

Ultimately a new compactified coordinate system (for each hypersurface) is introduced,

which clearly separates out the directionai singularity into a ring of curvature singu-

larities threaded by spacelike geodesics heading out to infinity.

The class of all ú-varying geodesics-timelike, null and spacelike-which approach

the Curzon singulariiy is obtained in Chapter 3. Many of these reach the singularity

with finite affine parameter and finite curvature. New coordinates for the Curzon

space-time are constructed which permit these geodesics to be extended, whilst still
preserving all features of the spacelike hypersurfaces derived in Chapter 2. The Curzon

metric can be smoothly connected with Minkowski space. Chapter 4 is a survey of the

Weyl metrics at large, giving the state-of-the-art of this subject and pinpointing what

remains to be done.

Finally, in Chapters 5 & 6, a framework is developed for deciding whether or

not any given pseudo-Riemannian manifold (Mrg) is singular. This is based on a

new topological construction called the abstract boundary (ø-boundary) of. M. Of
course the 4-dimensional space-times of general relativity provide the motivation for

this work, and for this special ciass the new scheme has a number of advantages over

those already in existence, such as being more easily applied to specific examples,

and not requiring that the space-time under consideration be maximally extended.

Removable and directional singularities fit naturally into this framework, and are given

a rigorous definition for the first time.
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PREFACE

Much of the material incorporated in this thesis has previously been published

by the author. It has appeared (or will appear) as follows:

Chapter 2

Scott, S.M. and Szekeres, P.: General Relatiuity and Graaitation L8, 557-570

(1936). 'The Curzon singularity I: Spatial sections'

Chapter 3

Scott, S.M. and Szekeres, P.: General Relatiuity ønd Grauitation 18, 571-583

(1986). 'The Curzon singularity II: Global picture'

Chapter 4

Scott, S.M. : Proceedings of the Centre for Mathematical Analysis 19, 175-195

(1989). 'A survey of the Weyl metrics'

Chapters 6 8¿ 6

Scott, S.M. : Proceedings of the Third Hungørian Relatiaity Worleshop, ed. Perjés,

2.I., NOVA Science Publishers, Inc., New York (to appear 1991), 30 pages. 'when
is a pseudo-Riemannian manifold non-singular ? '

Minor modifications have been made to the papers which comprise Chapters 2,

3 and 4, in order that they fit better into the thesis format. The paper which forms

the last two chapters (5 & 6) is identical with the original version, except that it has

been split into two because of its length. As a result, the numbering of sections and

figures is different in those two chapters to that in earlier chapters. Also Chapter 6

cãntinues straight on from Chapter 5, and begins with Section 7 (not Section 1). Each

of Chapters 1-4 comes complete with its own introduction at the beginning, and list
of references at the end. Of course, in the case of the last two chapters, only Chapter

5 has an introduction, and the list of references appears at the end of Chapter 6.
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Chapter 1

An Historical Perspective
on the Curzon Solution

1-. L Introduction

In this chapter, an historical perspective on the Curzon solution is given. Al-

though the solution has been known for many yeats (since L924), investigations of its

singularity structure really only began in the late sixties. It transpires that an un-

derstanding of the singularity structure is central to an understanding of the global

structure of the solution. This will become apparent over the next three chapters.

The Curzon metric is presented in Section 1.2 as a special member of Weyl's class

of metrics (the static, axisymmetric, vacuum solutions of Einstein's field equations).

The fact that the metric possesses a singularity-the Curzon singularity-is immedi-

ately obvious. Section 1.3 is a review of past analyses of this singularity, together with

the conclusions drawn from them. This includes the development of the notion of a

'directional singularityt, a term which will make regular appearances throughout this

thesis.

Section 1.4 is entirely devoted to a description of the most far-reaching of these

past analyses, namely that of Szekeres and Morgan. They produced the first ever

extension of the Curzon metric, in fact the only extension in existence prior to the one

1



which will be given in Chapter 3. Section 1.5 is a critique of the work reviewed in

Section 1.3. A comparison of the conclusions reached by the various authors provides

an interesting insight into the level and growth of understanding of singularities during

those years.

In Section 1.6 the relationship between the Curzon solution and Israel's theorem

is considered, since it appears at the outset that the Curzon solution might be a

counterexample to the theorem. Of course, a close examination of the precise statement

of the theorem reveals that the Curzon solution is, in fact, excluded by two of the

technical conditions. However, the exercise does raise some interesting questions about

the possible topologies of event horizons, and the related issue of the nakedness of

singularities.

L.2 The Curzon metric

Using cylindrical coordinates (r,z,rp) with r 10, z € lR. and 0 19 <2tr,the

static, axisymmetric, vacuum solutions of Einstein's field equations are given by the

Weyl metrics [ 1 ], [2 ] (see also Synge [3 ])

ds2 :_e2\dt2 ¡"2(v_x)çdr, +drr)¡r2e-2^dg, (1.1)

where À (r, z) and u (r, z) arc solutions of the equations

À,"*À",*r-1),:9 (1.2)

and

ur:T(À"'-Àr'), vr=2rÀrÀr. (1.3)

If a solution À of Eq. (1.2) is found, then Eqs. (1.3) can be integrated to find

y. In fact Eq. (1.2) is recognised as being simply the Laplace equation in cylindrical

2



coordinates for a rp-independent function. There is thus a straightforward method of

obtaining static, axisymmetric, vacuum, general relativistic fields. Namely choose an

appropriate Newtonian gravitational field and then integrate the Eqs. (1.3).

An obvious choice is the gravitational field produced by a spherically symmetric

mass distribution with total mass rn, which is located at the origin of the cylindrical

coordinate system. So

À:-ml7 where n- ,z¡72 (1.4)

and

m212
lt 

- 
_

2R4 ) (1 .5)

where the constant of integration has been set to zero to ensure that the condition of

elementary flatness is satisfied along the z-axis.

This monopole solution is the so-called Curzon metric [4]. It is not equivalent

to the Schwarzschild metric-the unique spherically symmetric, vacuum solution of

general relativity. That solution is generated by the Newtonian potential of a constant

density line mass (or rod) with total mass rn and length 2m, which is located along

the z-axis with mid-point at the origin ([5], [6]).

For the Curzon solution, each metric component becomes either zero or infinite

at the origin of the cylindrical coordinate system i.e. the metric is singular at .R : 0.

Further investigation of the space-time in this region is necessary to determine whether

this is due to a particular property of the space-time, or if it is simply the result of a

bad choice of coordinates.

3



1.3 Past analyses of the Clurzon singularity

Gautreau and Anderson [7] calculated the invariant Kretschmann scalar

e.: RprpoRþ'Po

for the Curzon metric and found it to be of the form

( 1.7)

For straight line trajectories z: cr, c €.IR to -R: 0, the behaviour of a was

seen from Eq. (1.7) to be d --+ oo as .R -r 0. However for approaches along the z-axis

where r : 0, it was found that a -r 0 as -R + 0 (see Table 1.1 and Figure 1.1). They

noted

'. . . there appears to be a directionality associated with the "singularity"
at the origin'

and concluded at the end of the article that

the singular behaviour of an invariant quantity may not always

indicate the location of an intrinsic singularity, so that when examining an

invariant quantity one must be sure to take into consideration the possibility
of its directional behaviour'.

Stachel [8] took a different approach to the analysis of this directional singu-

larity-he was interested in determining its size (or extent). Using the coordinate

relations r : R sind and z: Rcosî, the Curzon metric was put into the spherical

coordinate (R,0,g) form

d,sz : _ 
"2\¿¿z 

¡ 
"z(,-t)çdÙ2 

+ R2d0r) + R, sin20 e-2^dg2 ( 1.8)

o: explT(# -r)] .[porynomiarin *tR]

(1.6)

m2 sin20
tt 

- 
_

2R2
where

^: -?R

4

and ( 1.e)



Table 1.1: Directional behaviour of the Kretschmann scalar at the Curzon singularity

Trajectory lim o
R+0

z:cr, c€lR
r:0

oo

0

The Gautreau and Anderson analysis of the behaviour of the Kretschmann
scalar a as ¡? + 0+ along straight line trajectories to the Curzon singularity
(R = 0).

A--à-0

Z
d.----->ú

C[ > o,ô

ct-___* oó

cx =oó

Figure 1.1 The r-z quarter-plane r 2 0, z > 0. A variety of straight line
trajectories to P = 0 are depicted, each labelled with the limiting behaviour

of a as Ã -' 0+ along that particular trajectory. The approach along the

z-axis (i.e. r - 0) is the odd one out, since for all other approaches the

Kretschmann scalar becomes singular at ¡? = 0.

r0
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The area A of the two-dimensional surfaces ú : constant, goo : constant (so

trR = constants) was calculated. In this static space-time, these two-surfaces are

invariantly characterisable gravitational equipotentials. It was found that

lltøø dgd'e (1.10)A

4trR2 exp (1.11)

The conclusion was that the gravitational equipotential surfaces shrink in area as the

value of .R decreases from infinity, uniil they reach a minimum. They then begin to

increase in area as -R decreases further, finally becoming inûnite as r? -r 0*.

It is also pointed out that the lines 0 = 0 and d : zr in the hypersurfaces ú =

constant are spacelike geodesics approaching the two "regular" points of -R : 0, which

lie an infinite spatial distance from any point on these geodesics. The lines 0 : r 12,

p : constant in the hypersurfaces ú : constant are also spacelike geodesics leading to

singular points of -R : 0 on the plane of symmetry. These points lie a finite distance

away from any finite value of r3' Stachel notes

,.. . the approach to .R --+ 0+ along different directions corresponds to
an approach to different limiting points on the infinite surface -B : 0'

and adds that

,. . . there seems to be no difficulty with the criterion of the blowing up

of a curvature scalar for the occurrence of real singularities in the Riemann

spacet.

However he reasons that there is no possibility of extending the manifold on which

the metric is imposed beyond the surface .R : 0, since at least one curvature invariant

becomes infinite along almost all directions of approach to the surface (except for d : 0

and 0 - r).

6



It is also claimed that the hypersurface t : constant should be regarded as being

multiply connected, since any closed curve in it enclosing a gravitational equipotential

cannot be shrunk continuously to a point. The example provided is the curve in

the plane of symmetry 0 = rfL with A: constant which has the length L:2rR

exp (ml R). With the value of .R decreasing from infinity this lengih reaches a minimum

value of. 2rme at R: m, arLd then increases again without limit as .R -r 0+.

Finally, Stachel notes that Israel [9 ]

t.. . has shown that the Schwarzschild metric is the only empty space

static metric of a sufficiently regular class which can have a non-singular

event horizon. Our result for the Curzon metric shows one of the alternate
topological peculiarities that can occur: an event horizon of infinite area

on which an invariant of the Riemann tensor becomes singular.t

In a further paper by Gautreau [10] it is conjectured:

Stachel's result suggests that there might be in general a corre-

spondence between equipotential surfaces approaching a non-zero area and

directional singularities'.

He points out, however, that no general proof of this is known.

Cooperstock and Junevicus [11] extended the analysis of the Curzon singularity

performed by Gautreau and Anderson [7]. Instead of using straight line trajectories

to R:0 as was done in [7], they considered the behaviour of o (Eq.(1.7)) along the

family of curves

z
(

tù

)b
r
rn

r¿)0 (1.12)
n'ù

For simplicity, since the hypersurfaces ú = constant have the plane of symmetry z :0,

the constant ö was assumed to be positive.

I



They found that as r -r 0*

(1) d+oo for n>213

(2) d -+ oo for r¿ :213, 0 < ö < (tlZ¡tts

a -r 0 for n:213, b> (Ll2)t/3

(3) o-r0 for 0<n<213

These results are summarised in Table 1.2, and illustrated in Figure 1.2.

The interesting feature of this work was the discovery of a class of curves, for

example those with2lS 1 n 11, which are both asymptotic to the z-axis as r -) 0+ and

have the behaviour a --+ oo. It was this peculiarity which led Cooperstock, Junevicus

and Wilson [12] to believe that there was a deficiency in the concept of a "directional

singularity", remarking that

,... If anything, the entire concept should be referred to as a trajectory
singularity rather than a directional singularity'.

In Cooperstock and Junevicus [11] they add

'.. . By the criterion of Gautreau and Anderson, one might be led to
call the termination point in the z-axis direction both singular and non-

singular. We feel that it is more reasonable to simply call it singular along

with every other termination point'.

L.4 The Szekeres and Morgan extension
of the Curzon metric

Szekeres and Morgan [13] took a different interpretation of the Gautreau and

And.erson [7] analysis. They thought that the regular behaviour of a along the a-axis,

unlike that for all other directions of approach to -R : 0,

'... leads one to make the suggestion that possibly the Curzon metric
,,opens up" for particles approachin g R :0 along the z-axis, allowing them

to pass on into some new region'.

8



Table 1.2: Behaviour of the Kretschmann scalar along curves approaching the Curzon
singularity

Family of curves

r
n1,

(
z

rn

fL

b brn)0
lima
r+0

n>213
n:213,,0<ó<(Il2)t/3
n:213, b> (Il2)tl3

0 < r¿ <213

oo

oo

0

0

The Cooperstock and Junevicus analysis of the behaviour of the

Kretschmann scalar a as r --+ 0* along the curves zf m= ü(r/rn)", where

ö, n ) 0. Whether or not o becomes singular (i.e. infinite) at the Curzon
singularity depends on the precise values of ò and r¿ which are chosen. The

'transition curve' is seen to be the one with n - 2/3and ö = (Ll2)U3.

C{--0 n-L/3
¿X'---Q

Z
n=5/6
¿¿-___-_,- oó

n=1
CX---> c<)

n= 2
CX.._----'- oÓ

A-ú

Figure 1.2 Curves of the type zfm = b(r/m)" in the r-z quarter-plane

r f 0, z ) 0. Each curve drawn is labelled with its value of n as well as the

limiting behaviour of a as r * 0* along that particular curve. of the two
cutves asymptotic to the z-axis, o * 0 along one (n = l/3), and becomes

singular along the other (n = 5/6). This demonstrates that the behaviour

of o can vary even amongst curves which all approach the singularity in
one direction-in this case the z-axis.

r0

9



In order to obtain more information about the singularity, they focussed their

attention on null geoilesics which lie in a fixed plane I : constant, and which approach

the singularity at .R : 0. To find such geodesics, they searched for asymptotic solutions

of the relevant geodesic equations as .R -r 0. Apart from the possibility of some of

these geodesics spiralling in towards -B : 0 (which was not considered), it was found

that there are only two types of solution-either the geodesics approach the z-axis

asymptotically and have the form

rfm-pe-n/l'| , (1.13)

where p is a non-negative constant, or else they lie in the plane z :0.

This led Szekeres and Morgan to conclude that

,... The behaviour along the r : 0 geodesics turns out to be general

rather than peculiar for it appears to be the case that almost all geodesics

approach the z-axis very rapidly (in Weyl's coordinates) as .R -r 0, the only

geodesics not exhibiting this behaviour being those which lie in the z : 0

planet.

Treating Eq. (1.13) as though it were the exact equation of the null geodesics near

R:0, they defined a ttcomoving" coordinate p, and a ttretardedt' time coordinate u

(z > o):

rlm - pe-m/z (1.14)

zo:constant>0 (1.15)

However, it is pointed out that the terms ttcomoving" and "retarded" are not exactly

applicable, since Eq. (1.13) only represents the asymptotic form of the geodesics, but

that they do apply in the limiting sense as z + 0t.

tfm: u+ 
l,'""2m/z

dz* p2m

222
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For approaches to -R : 0 such that z + Qi while p remains bounded, the Curzon

metric transformed to the new coordinates (u, prt,p) was found to have the form

d,sz : -2d,udz + dp2 + p,d?, * o(z-8e-z^/') h*drpdr' , (1.16)

where h* is a tensor whose behaviour is regular at z : 0.

So in these coordinates, the Curzon metric is completely regular as z -> 0+ while

p remains bounded, and may be connected across the plane z : 0 with flat space

expressed in double-null cylindrical coordinates (r,u, prg)

d,s2 : -2d,udz + dp' + p'dp' (, < o) . (1.17)

The resulting space-time is C* at z : 0, but not analytic, so the connection with

Minkowski space is just one of an infinite number of possible C- extensions.

It is pointed out that all outward going geodesics (, > 0) from ,R - 0 are both

past and future complete in these coordinates. The inward going geodesics (, > 0)

are, however, future incomplete as they approach z : 0 asymptotically in the new

coordinates. The suggested remedy for this situation was to replace the "retarded"

time coordinate u by an "advanced" time coordinate u defined by

tfm : u- f,'"e2^/'dz-# t zo:constant>0 . (1.18)

For approaches to ¡? : 0 such that z -¡ 0* and p remains bounded, the metric

transformed to the coordinates (urprz,,g) is again extendible across z :0 in a similar

manner to before. The lower haIf. (z < 0) of the Curzon metric can be covered and

extended in an analogous fashion, by replacing z with -z in the various coordinate

definitions.

The plane of symmetr! z :0 is not, however, covered by any of these coordinate

patches, and must be separately covered by, for example, the original Weyl coordinates.

11



The Kretschmann scalar o becomes infinite for approaches to ,R: 0 in this plane, but

in the (u, p, r,p) and (r, pr r,g) coordinate patches this real singularity has been pushed

out to z : 0, p : æ i.e. (suppressing u and u respectively) it appears as a ring placed

at infinity with null geodesics threading through it.

It is concluded from this that

'.. . the deceptively simple point-like appearance of -R : 0 in the Weyl
coordinates must be abandoned. Indeed by using comoving coordinates it
has more the appearance of an infinite plane (z : 0) at which the space-time

is momentarily flat'.

However, it is noted that geodesics approaching this plane at large values of p, have

to cross a ridge of high curvature close to z : 0 before reaching this flat region. This

is so because the invariant Kretschmann scalar o has an infinite limit along the lines

r : lclzl (k e IR+) as z --+ O,and thus along the curves

P : Ic lrll* "^/l"l , uru : constant , 9: constant (1'19)

(see Figure 1.3).

Although Szekeres and Morgan chose to extend the Curzon space-time by various

half-portions of Minkowski space, they also commented on another interesting C-

extension:

'.. . Perhaps the most natural extension is to connect the lower half
to the upper half of the curzon metric across z : 0 in such a way that

geodesics entering z : 0 from belo\4r emelge into z ) 0 and geodesics

ãntering from above emerge irrto z ( 0. From the above discussion this is

clearly possible to achieve in a C- manner' and would have the advantage

that particles entering A : 0 do not "disappear" from the external world'.

t2



U

inword null
geodesic

z

'CODS t,

outword null
geodesics

hi curvoture
ridge

Figure 1.3 The Curzon space-time (, > 0) near r? = 0 displayed in
(u,p,r,ça) coordinates (tp is suppressed). The metric can be connected

in a C- manner with flat space across the plane z = 0. In this way

the two outward null geodesics shown become past complete as well as

future complete' The inward null geodesic (p = 0) is, however, still future
incomplete and inextendible in these coordinates. Sections of two curves

r - kz (& = constant > 0) are drawn. To the left of these curves is a ridge

of high curvature just before flat space is reached at z -- 0,

o

a

e
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L.5 Comments on past analYses
of the Curzon singularity

Given that Gautreau and Anderson only found the limiting behaviour of o for

straight line trajectories z: cr¡ c € lR and r : 0 to the singularity at Ã = 0, their

development of the notion of. d,irectionality withrespect to singularities was a reasonable

first approximation. With the subsequent analysis of the behaviour of a along the

curves given by Eq.(1.12), which was carried out by Cooperstock and Junevicus, the

concept of a directional singularity was refined to that of a trajectory singularity.

In terms of the description of this type of singularity, the proposed label "tra-

jectory singularity" must be the ultimate one, in the sense that it cannot be refined.

After all, the limit of a as -R + 0t along a particular trajectory is unique when it

exists. What was needed at that time was not a better description of the singularity,

but a better understanding of what such a description indicates about the singularity

structure, and indeed, about the global structure of the space-time.

Although it is not absolutely clear, it seems that both Gautreau and Anderson,

and Cooperstock and Junevicus were inclined to still consider the Curzon singularity

as a point. The former group probably thought that it was not an intrinsic singularity.

This is implied when they point out that

the singular behaviour of an invariant quantity may not always

indicate the location of an intrinsic singularity',

and. presumably refers to the fact that the Kretschmann scalar does not become infinite

for all straight line trajectories to .Ê : 0.

The latter group thought that .R :0 was an intrinsic singularity. Since they had

found curves along which d -l oo as -R -+ 0+ and which were also asymptotic to the

T4



z-axis, they felt that it was

'. . . more reasonable to simply call (the termination point in the z-axis

direction) singular along with every other termination point'.

This alone does not, of course, imply that they were thinking of .R : 0 as a point.

However, if they were actually considering it to be some sort of surface with non-zero

area, then they obviously had in mind that this would consist of intrinsically singular

points, each one corresponding to the termination point for a particular direction of.

approach to .R : 0. This would have been very strange indeed in the light of their

refinement of the notion of a directional singularity to that of a trajectory singularity,

and it is more likely that they simply thought of it as an intrinsically singular point.

The work of Stachel, occuming between that of Gautreau and Anderson, and

Cooperstock and Junevicus, was by far the most significant in terms of settling the

status of the Curzon singularity as a point or otherwise. Whilst curves and trajectories

to the singularity are useful tools for discovering many of its features, there are more

direct means by which to determine its size (or extent). Stachel calculated the area of

the two-dimensional gravitational equipotential surfaces (given by t,R: constants)'

and found that it became infinite as -R -r 0f .

Relating this result to the work of Gautreau and Anderson, Stachel concludes

that

,... the approach to ^R + 0+ along different directions corresponds to

an approach to different limiting points on the infinite surface .B : 0'.

Given that the notion of a "trajectory singularity" was yet to be proposed by Coop-

erstock and Junevicus, the conclusion was a good one-in fact, one which could easily

have been modified to incorporate the refinement that Cooperstock and Junevicus later

made to the concept of a directional singularity.
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However, it remains to be seen later in this thesis that the above conclusion is

not completely correct, in the sense that approaches to -B : 0 along ilifferent directions

will in many cases correspond to approaches to the so"me limiting point on the infinite

surface .B : 0. Furthermore, it will also be seen that different approaches to .R : 0

in the søme direction (e.g. different curves asymptotic to a particular direction), can

sometimes correspond to approaches to different limiting points on the infinite surface

-R : 0. This last remark is not really very surprising given the findings of Cooperstock

and Junevicus for the z-axis direction.

In relation to the problem of determining which points on the infinite surface

.R : 0 represent intrinsic singularities, Stachel asserts that

,. . . there seems to be no difficulty with the criterion of the blowing up

of a curvature scalar for the occurrence of real singularities in the Riemann

spacet.

This is in direct contrast with Gautreau and Anderson's earlier comment on the same

matter. Of course, it is now generally accepted that the singular behaviour of a cur-

vature scalar, for instance the Kretschmann scalar, is a sfficient condition lot the

existence of a real singularity of the space-time. (For a discussion of this and other

criteria, see for example [14].)

One gathers, from the above assertion, that Stachel thought of almost all limiting

points on the infinite surface .R : 0 as being real (or intrinsic) singularities. This is

because he regarded each such limiting point as corresponding to a different direction of

approach to .B : 0, and \ryas aware from Gautreau and Andersonts work that c -) oo

as r -) 9* i" nearly all of these directions. The only exception is that o -r 0 for

an approach along the z-axis, and it is clear that he considered the limiting point

corresponding to such an approach as being ttregulartt.
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Although Stachel found that the Curzon singularity at R : 0 is actually an

infinite surface, he did not attempt to determine its topology. If one accepts, for the

moment, his conclusion that different directions of approach to .R : 0 correspond to

approaches to different limiting points on this infinite surface, then it is difficult to

imagine how the regular limiting point for an approach along the z-axis (e.9. with

z > 0) meshes in with the intrinsically singular limiting points for all other directions

of approach.

To address this question, one really needs to return from thinking about the

surface area of gravitational equipotentials, to examining in more detail the behaviour

and properties of curves which approach .R : 0 along or asymptotic to the z-axis.

Stachel did not do this, and thus was not in a position to conjecture about the possible

topology of ¡? : 0.

It's clear why he considered the manifold to be inextendible through .B : 0.

He viewed this infinite surface as being almost entirely comprised of real singularities

where the Kretschmann scalar blows up-so there was obviously no hope of extension

through any such point. That only left the two "regular" limiting points corresponding

to approaches to .R : 0 along 0 :0 and d : 7r resP€ctively.

He knew that in a hypersurfacet: constantr 0 :0 and 0 : r are spacelike

geodesics which have infinite length between any geodesic point (, # 0) and l? : 0. In

the absence of something which could be extended, there was little reason for him to

expect that extensions through these two regular points of -R = 0 would be possible.

As previously mentioned, Stachel claimed that a hypersurface t : constant

should be regarded as being multiply connected, since any closed curve in it enclosing

a gravitational equipotential cannot be shrunk continuously to a point. This claim

seems to confuse the issues of whether the gravitational equipotentials Ú : constant,
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.R = constant are simply connected or not, and whether the hypersurfaces ú : constant

are simply connected or not. In any case, the concept of simple connectedness does

not appear to be well understood.

A gravitational equipotential ú : constant, .R : constant has the topology of a

sphere and thus, clearly, is simply connected. In a hypersurface ú : constant, a closed

curve which does not pass through ,R : 0 can always be shrunk continuously to a point

(with R + 0). There is no necessity to shrink such a curve to the particular "point"

.R : 0, which the work of Stachel would seem to suggest.

His example concerning the length of curves which lie in the plane of symmetry

0 : r 12 and have .R : constant, is not of direct relevance to the question of the simple

connectedness of the hypersurfaces ú : constant. However, it may well show that the

plane of symmetry itself is not simply connected. In order to further investigate these

questions, it witl be necessary to determine what meaning, if any, can be given to the

statement that a curve passes through (or indeed lies in) -R : 0.

L.6 fsraelts theorem

Recall from Section 1.3 the comment by Stachel [8] that Israel [9]

'... has shown that the Schwarzschild metric is the only empty space

static metric of a sufficiently regular class which can have a non-singular

event horizon. Our result for the Curzon metric shows one of the alternate
topological peculiarities that can occur: an event horizon of infinite area

on which an invariant of the Riemann tensor becomes singular.'

In fact, it will later be shown that the Curzon space-time possesses ø nonsingular

euent horizon at R:0. This means that Stachel's concludions about the space-time

structure at R :0 are (partially) incorrect. Furthermore, his description of Israelts
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work suggests that there is a problem reconciling our findings for the Curzon space-time

with Israel's results.

Perhaps the phrase t... of a sufficiently regular class' would exclude the Curzon

space-time from consideration. In order to find out, it is necessary to take a short

diversion to examine Israel's paper [9]. In the introduction, Israel states that the

conjecture which he intends to prove is the following:

,... that schwarzschild's solution is uniquely distinguished among all
static, asymptotically flat, vacuum fields by the fact that it alone Possesses

a nonsingular event horizon.?

As is known from Section L.2, the Curzon solution is certainly a static, vacuum

field. It is also asymptotically flat, as can be seen by taking the limit of the metric as

Ã -r oo. This limit is

ds2: -dt2 +dr2 +dz2 *r2d,g2 (1.20)

which is simply the flat space metric expressed in cylindrical coordinates (r, z,?).

So with the statement of the conjecture as it stands, the Curzon solution is not

excluded from the class of solutions under consideration, and thus remains a counterex-

ample. However, the statement of the theo¡em as given in the abstract puts a different

slant on things:

,.. . Among all static, asymptotically flat vacuum space-times with
closed simply connected equipotential surfaces gfoo : constant, the Schw-

arzschild solution is the only one which has a nonsingular infinite-red-shift

surface goo : 0.t

Whilst with this version the Curzon solution remains a member of the class of

solutions under consideration, it is no longer clear that it satisfies the final criterion,

namely, that it '... has a nonsingular infinite-red-shift surface goo :0'. The surface

goo = 0 is the infinite surface .R : 0, and although there does exist a nonsingular
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infinite-red-shift surface at R : 0, it does not constitute the entire surface. So this

discrepancy may well remove the Curzon solution from its status as a counterexample

to Israelts theorem.

Israel used the following line element for the metric of a static space-time:

ds2: gop(al,æ2,o3)dæod,rþ -V2dt2 , (1.21)

V-V(n1,,û2,s3), t:r,o , (L.22)

where o and B run from 1 to 3.

v, : l€.€l (1.23)

{ is a hypersurface-orthogonal, timelike Killing vector field.

His explicit statement of the theorem was as follows:

In a static space-time, let E be any spatial hypersurface t = constant, maximally

extended consistent with (.( ( 0. We consider the class of static fields such that the

following conditions are satisfied on l:

(u) D is regular, empty, noncompact, and "asymptotically Euclidean".

(b) The equipotential surfaces V : constant > 0, ú : constant are regular, simply

connected closed 2-spaces.

(c) The invariant RtacpRABCD formed from the 4-dimensional Riemann tensor

is bounded on E.

(d) If V has a vanishing lower bound on E, the intrinsic geometry of the 2-spaces

V : c approaches a limit ar¡ c -) 0+, corresponding to a closed regular 2-space of finite

The only static space-time satisfying (u)' (b)' (c) and (d) is

Schwarzschild's spherically symmetric vacuum solution.

area.

THEOREM
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For the Curzon space-time, E is any spatial hypersurface t : constant with

^R > 0. E is certainly regular, empty, noncompact and asymprotically Euclidean, and

thus satisfies conditio" (u). The equipotential surfaces I/ : constant ) 0, ú : constant

are the surfaces A : constant ) 0, ú : constant. As discussed in Section 1.5, these

surfaces are regular, simply connected closed 2-spaces, and so condition (b) is also

satisfied.

However, as \ryas seen in Section 1.3, the limit of the Kretschmann scalar o along

certain approaches to .R: 0 (in X) is infinite, and so condition (c) is r¿oú satisfied. V

has a vanishing lower bound on E, but the intrinsic geometry of the 2-spaces R: c

d,oes not approach a limit as c --+ 0+ corresponding to a closed regular 2-space of finite

area (see Section 1.5). Thus condition (d) is also not satisfied.

It is now clear that the Curzon space-time is excluded by conditions (c) and (d)

of the theorem, and thereby loses its status as a counterexample. Nevertheless, this

discussion has highlighted ihe fact that it is these two conditions of the theorem which

fine-tune its result, namely that the Schwarzschild solution is the only static space-time

to satisfy all four conditions.

At the time of this work, a nonsingular event horizon in a static field was, pre-

sumably, always thought of as a 2-surface which completely surrounds a real singularity

i.e. it is a regular, simply connected, closed 2-space of finite area (compare with con-

ditions (b) and (d) ). If this were not so, more care would probably have been taken

in both the paraphrasing of the theorem, and the interpretation of its significance. As

an example of the latter, Israel concludes the paper by saying that
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,. .. The result of this paper would have important astrophysical con-

sequences if it were permissible to consider the limiting external field of a
gravitationally collapsing asymmetric (non-rotating) body as static. In that
case, only two alternatives would be open-either the body has to divest

itself of all quadrupole and higher moments by some mechanism (perhaps

gravitational radiation), or else an event horizon ceases to exist.t

As it stands this comment is incorrect as will be seen later. It can be corrected by

replacing t.. . or else an event horizon ceases to existt with t... or else a naked singul-

arity will occur'. In other words, if a collapsing body retains some quadrupole and/or

higher moments, the resulting singulatity witl be 'visible' at some regions at infinity.

However, a nonsingular event horizon may still exist which prevents the singularity

from being tvisible'at other regions at infinity.

So what Israel's theorem effectively tells us is that curvature singularities of a

static vacuum field will always be naked (i.e. not completely enclosed by a nonsingular

event horizon), with the exception of the curvature singularity of Schwarzschild's spher-

ically symmetric vacuum solution. Although this is a very important result, it gives

no actual information about the nakedness of the singularity e.g. whether the singul-

arity is partially or totally naked, and the effect of this nakedness on the'unprotected'

regions of the space-time.
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Chapter 2

The Spacelike Hypersurfaces
of the Curzon Solution

2.L Introduction

The term "directional singularity" is used in general relativity. It is applied if

the limit of an invariant scalar formed from the Riemann tensor is found to depend on

the direction of approach to the singularity. One of the best known examplqs of such

directional behaviour is the Curzon singularity occurring at R:0 in the Weyl metric

[1]

dsz: _e2\dt2 ¡ "z(,-t)(dr2 
¡dz2)¡r2e-z^dg' (2.L)

for a monopole potential (the Curzon solution [2])

m212 where R - y2!72 (2.2)À--rnlB and u
2R4

It was first noticed by Gautreau and Anderson [3 ] that the Kretschmann scalar

d: Rurpofuþ"o (2.3)

tends to the value zero along the z axis, but becomes infinite for other (straight line)

directions of approach to .R: 0. A more detailed analysis encompassing a wider class

of curves was carried out by Cooperstock and Junevicus [4].
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This directional behaviour has been shown to be symptomatic of a subtle singu-

larity structure [5], whereby null geodesics approaching Ã = 0 may in some cases be

extended beyond the Weyl coordinate patch. These geodesics appear to thread their

way through a ringlike singularity (infinite curvature), which can be reached by other

null geodesics in finite affine parameter. This structure is at best suggestive. It is pro-

posed to put it on a firmer footing in this chapter, by viewing the matter entirely from

a spatial point of view. The full space-time picture will be given in the next chapter.

In Section 2.2, spacelike geodesics approaching .B : 0 in the hypersurfaces

I : constant are discussed. When confined to a fixed plane p : constant, these

geodesics turn out to have only two basic types of behaviour. Either they asymp-

tote exponentially towards the z axis, but in an oscillatory way, or else they approach

the r axis in a non-oscillatory manner. In Section 2.3 the analysis of Cooperstock and

Junevicus for power-law curves z x. rn is developed further. In particular, the critical

case ?? :213 discovered by them is analysed in greater detail. In addition to the be-

haviour of the Kretschmann scalar, the proper distance and first curvature along these

curves are also considered.

These properties are used in Section 2.4 to set up a compactified coordinate sys-

tem for the hypersurface ú : constant, in which the real singularity is clearly separated.

This singularity appears as a ring which can be reached by spacelike geodesics in fi-

nite proper distance. A large class of non-extendible curves, including the oscillating

geodesics, thread their way through the ring to terminate in a ne$' region of compact-

ified infinity. In the original Weyl coordinate system, these curves all terminated at

-E:0. Thus the picture of a ring singularity tentatively proposed in [5] is upheld in

the spatial sections.
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2.2 Spacelike geodesics approaching R - 0

The geodesic equations for the Weyl metric Eq. (2.1) have been given previously

by Szekeres and Morgan [5 ]. Only the case of spacelikegeodesics lying in a hypersurface

ú : constant is considered here, for which the equations are

,,,(l _ ¡yzr-z"z\t1 : (1 + r,z)lUzr-2ez^ (r,v" - v, *r-L)

* v, - À, - r' (r, - À")l (2.4)

2 e2^ (2.5)ö:Hr

and 
"z(v-À) e2 + 2\ * r2e-zt6z - , (2.6)

where ': dldz ,'=df ds and s is the proper distance.

Case(")td:constant

For these geodesics H :0, and Eq. (2.4) reduces to

r" : (! + r'')lr, - \, - r' (r" - À")l . (2.7)

It is known from symmetries present in the metric that geodesics lie along both the r

and z axes. Suppose there exists an asymptotic solution of Eq. (2.7) of the form

r-kz, rt-le as z+0

On substituting into Eq. (2.7) the explicit Curzon forms (Uq. (Z.Z)) for À and z, and

integrating once with respect to z, one finds

m2lc

2 (1 + lç2)222

Clearly no finite, non-zero values of & are admissible, whence fr : 0 or ,b : oo. That
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is, all geodesics in this plane approachin B R :0 are either asymptotic to the z axis or

asymptotic to the r axis.

An approximate solution may be obtained for geodesics asymptotic to the z axis

as z -r 0 by neglecting term s in (r f z)2 and r'2 in Eq. (2.7). This yields the differential

equation

r" : - (*'lrn * mlzs)r * (mf z2)r'

which for z ) 0 has the exact solution

r (z) - ,"-m/zz {o "o, lf'ßtzl @lr)l * B "i"l(,ßlz) (*l ,)l\ (2.8)

(see Ince [6]), where a and B arc constants. Thus the geodesics are asymptotic to

these curves that oscillate about the z axis with exponentially decreasing amplitudes

as z -+ 0. They will be referred to as the oscilløti,ng geodesics (including the geodesic

along lhe z axis).

Computer-generated. solutions of the exact geodesic equation Eq. (2.7) (using

a 4th-order Runge-Kutta method) reveal an interesting property of these oscillating

geodesics (see Figure 2.L). Geodesics originating from a point (ro,ro), with zs and

rolzo both small, reconverge many times-in fact, after every crossing of the z axis-

for quite a wide range of initial slope r[. These points appear to have a countably

infinite number of conjugate points.

A similar treatment with r rather than z as the independent variable, can be

used to find geodesics asymptotic to the r axis as r + 0. They have the form

z(r) : 1r2 lt + (rlm) + -t"'* o(r3) I (2.9)

where ,y is a constant, and will be called the non-oscdlløtíng geodesics (including the

geodesic along the r axis).
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Case (b): /10

The asymptotic solutions of Eq. (2.a) with H + 0 may similarly be shown to

approach the r or z axes. Eq. (2.5) and Eq. (2.6) must be used to estimate the angular

dependence. The results are

(i) for geodesics approaching the z axis as z -> 0t

r (z) (2.10)

ó(r) (2.11)

(ii) for geodesics approaching the plane z :0 as r -+ 0

,(r) 112 + O(rt)

ó (r) Nu

where þ,^l,u: constants. The former class of geodesics spiral about the z axis as

they approach .R: 0.

This analysis of spacelike geodesics approaching Ã = 0 started from the assump-

tion that they have the asymptotic form r - le z. Other possibilities, such as spiralling

geodesics in the r-z plane, have not been considered. However, in retrospect, once the

new picture to be developed in this chapter has been obtained, it will become clear

that such possibilities cannot exist. For example, a spiralling geodesic would have to

approach both a new region at infinity and the real singularity in larger and larger

loops. Even if such a geodesic were to exist (which seems highly unlikely), it would

approach no ne\ry points.
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2.9 Analysis of curves approaching R: 0

Cooperstock and Junevicus [4 ] considered the limit of the Kretschmann scalar

o (Eq.(2.3)) as r -) 0+ along the family of curves

'=clr)"n1 \m/

(C , n : constants > 0). They found that even among the curves of this family which

are asymptotic to the z axis (i.e. rz ( 1), there \ryas a division into those for which o -r 0

and those for which o -) oo. Their inclination was to lump these all together and regard

them as terminating at the same "singular point". However, a different view will be

taken here. It is felt that this analysis simply indicates the presence of ttstructure" in

the Curzon singularity, and that the directional dependence of the Kretschmann scalar

as .R --+ 0 indicates a crushing of the space-time in a neighbourhood of the singularity,

brought about by the use of Weyl coordinates.

In order to uncover this structure, a much extended analysis of curves approaching

-E : 0 in the r-z plane will be undertaken. As well as considering the limit of the

Kretschmann scalar, the proper distance and the frrst curvature along each curve as

.R -r 0 are also determined. Because of symmetries, it is only necessary to consider

the quarter-plane rrz ) 0 in what follows.

(") Limit of the Kretschmann scalar

The Kretschmann scalar for the Curzon metric is given explicitly by

g 
"2m(mr2a-t-zB-r) 

l2mar2 R-tz (m2 _ JmR+ g.R2)

*6m2R-e@-Ð'1 .

d
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For curves of the type

z

)"
(ó, n, > 0) (2.13)

rn

Cooperstock and Junevicus found that as r -r 0

(1) a-r0 for 0<r¿<213

(2) o-r0 for n:213, ó>1

a-)oo for n:213r 0<ó<1

(3) o -) oo for n > 213

They actually found that a -+ 0 for n :213 and ó : 1, which is incorrect. This critical

case is important and may be more finely split by considering the two-parameter family

of curves

(2.t4)

r
rn

, (+)* (

r
rn(rln(+)* (;)*(+)*(;)*

where c,lc : constants > 0. The behaviour of a along this family as r -) 0 is as follows

z

rn -c

(1) o-r0

(2) cv -r constant. k6

(3) 4-roo

for c> l12

for c: l12

for 0 < c <tl2

(b) Length of curves

For a curve z(r) which approaches the origin, define its length -t from a fixed

point (ro, ,o: z(ro)) to U"

tr : li* ['o u^l^-^zr2f2+r (L+ z,z¡rlz ¿, ,
e-O Jc

where ft, - 12 * z2(r)

-t is easily seen to be finite for the r axis geodesic and for other geodesics asymp-
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totic to it (the non-oscillating geodesics of Section 2.2), while for oscillating geodesics

asymptotic to the z axis it is infinite. This is somewhat surprising in view of the fact

that timelike geodesics asymptotic to the z axis reach .R : 0 in finíte proper time. For

the families of curves given by Eq.(2.13) and Eq. (2.L$:

(1) .úisfinitefor n >213 andfor n:213 with 0<ó<1or ó=1,0 <c<219

(2) -Disinfiniiefor 0 1n1213 andfor n:2f3 with ó) I or b:I, c2219

(") First curvature of curves as R -) 0

If up is the unit tangent vector to the curve z(r), and øp is the acceleration vector

aþ : ,llþ irrtr, ¡

the first curvature B is defined by

B : grraqa,v

(seeSynge[1]).

For the Curzon metric

p - #,*rl( **'¡þ*'-'þ,"'') #r-'þ'+r'')'f
where rþ : v- ) is determined from Eq. (2.2). Along the r and z axes B is, of course'

zero. For the families of curves given by Eq.(2.13) and Eq. (2.14), one obtains as r -r 0

(1)

(2)

(3)

þ-* for r¿ >213 andfor n--213 with 0 <b<1 or ô=1,0 <c<5f9

B + constant. k1ol3 for r¿ :213, ô: 1, c - 5lg

þ-0 for 0< n<213 andfor n:213 with ó)1or ö=1, c>519.

The above properties (u), (b) and (c) are all summarised in Table 2.1.
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Table 2.1: Properties of spacelike culves approachinB R:0 in the r-z plane

All limits are taken for I - 0. .[ is the proper distance along the curve'

a the Kretschmann scalar, B the first curvature. The non-oscillating

b--1.

Curves L limo Lim B lim (ø, gr)

non-oscillating geodesics

,>3,ó>0
n=å,0<ó<1
n:â,b:7,0<"<3
n=3,b:I,35"<i
n:3rb:Irc:+
n:3,b:L,È<"<3
n:2grb:Lrc:E
n:3,b:lrc>$
n:3,å>1
0<n<3,b>0
oscillating geodesics

finite

finite

finite

finite

oo

oo

oo

oo

oo

oo

oo

oo

oo

oo

oo

oo

oo

finite

0

0

0

0

0

0

0

oo

oo

oo

oo

oo

oo

finite

0

0

0

0

(i,0)
(ä,0)

(ä,0)

(i,0)
(i,0)

(i, ))- tan-l (constant. fr -3l2

G,-i)
( s- -T-\\2) 2t
(L -11\\2) 2t
( T- -r-\\2r 21
( Í -T-\\2t 2/

ç,-i)
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2.4 New coordinates for the r-z plane

The length Lx of. the Killing vector orbit f , r, z constant with tangent vector

ô l0ó is

This is the circumference of the circle r, z = constant lying in a spatial section. Its

"radius" may be defined to be

p(r,z): Lxl2tr : re-À

For the Curzon metric, the curves in the r-z plane of constant radius of revolution

p a,te

r: pO-^lR (2.15)

which as .R -r 0 have the behaviour (for z > 0)

r - pe-*lu

For large -t? they behave as

r-p

as expected, since the space is asymptotically flat. Thus the curves

r : p e-n/z (2.16)

are good approximations to the curves given by Eq. (2.15), both for z K t and z ) 1.

It should, however, be realised that the real curves of constant radius of revolution are

quite complex, breaking into two pieces for p ) me.

The d.istan ce L(z) along the curves given by Eq. (2.16)' from a fixed point (ro, ro)

to (r þ),r), can be shown to behave as
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L(z) ,- (zf m)2 e^/" as z -+ 0

and

L(z) - 2¡* as z+æ

As shown in [5 ], there is a family of geodesics n,oú lying in the spacelike hypersur-

faces ú : constant (i.e. including timelike, null and spacelike geodesics with d,tld's l0),

whose spatial projections behave like Eq. (2.16) as z -+ 0. These were found to be a

suitable set of curves on which to base a ttcomoving" system of coordinates. However,

the geodesics lying in lhe spacelike hypersurfaces ú : constant and asymptotic to the

z axis display oscillatory behaviour. The associated refocussing property discussed in

Section 2.2, makes these geodesics unsuitable candidates for setting up such a comov-

ing coordinate system. Instead we choose ne\ry coordinates ø and y so that they are

"approximately" comoving for the curves given by Eq.(2.16), both for small and for

latge z.

Forthequarter-plane r) 0rz) 0 define

r : tan-1 (;"^,") r tan-l (fi ur*^t')''')

U : tan-l 3
z rn e'þ

IAt+1++(rlm¡zP-t Ll4
þ

*

(2.17)

(2.1s)

where

The curves given by Eq.(2.16) behave as

o - tan-lp * tan-l (e"-(dtol'r'¡

. rn m2r21p:v-r\: R- 2R

æn,tan-Lp ¡ u--;-(â) e-^lz for z -> 0 ,

-2

It rn
trtN-o23z

and
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Therefore, the coordinates æ, y are indeed comoving for these curves in the asymptotic

sense that the ø coordinate tends to a constant at each end, and can thus be used to

label the curves (iany acts as a proper distance parameter along the curves near these

ends). some of these curves and their metric normal curves

t*:l?G - #)"f''' ((: consrant) (2.1e)

are plotted in u-y coordinates in Figure 2.2.

Eq. (2.18) is a rather complicated expression, but has been selected after some

trial and error, partly to ensure that the ø, gt coordinates are in one-to-one correspon-

dence with the r, z cootdinates. Arctan functions have been chosen for compactification

purposes. The part of the boundary specified by

Q 1a 1r, g : ¡r12

and

0<y <rl2

represents points of spacelike infinity of the Curzon metric, spacelike geodesics in the

r-y plane terminating there with infinite proper length. It is depicted in the figures by

two thick lines. Since the analysis here will bring in new points at infinity, this will be

referred to as the ttold" spacelike infinity.

. In the figures the positive r axis maps onto the segment T 12 < æ 1 tc of the

r axis, whilethe positive z axis maps onto the entirey axis -7112 <Y <tf2. Frcm

Eq. (2.12) it can be seen that near .B : 0 the Kretschmann scalar a behaves as

a - 4g R-8 e-a,þ [1 + å (rlm)z R-a] ,

and from Eq. (2.18) the coordinate y is seen to behave as
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Figure2.2 The compactified r-z quarter-plane. The curves given by Eq. (2.16)

arJ computer-plotted in o,y coordinates for a variety of values of p. They

stretch from the ,,new" spacelike infinity, which is the thick line at the bottom

of the diagram, to the "old" spacelike infinity along the top. Also plotted are

some of their metric normal curves given by Eq. (2.19), which cut across them.

The spacelike infinities are depicted by the thick lines and the emall circle,

the "edge" by a dashed line, and the real singularity at ø = Tl2,U = 0 by a

cro8s.
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Using this approximation, one can quickly find the termination points (r,V) of the

curves discussed in Section 2.3. These are listed in the last column of Table 2.1 ' They

all terminate along the line a = r/2,02y > -î12. In Figure 2.3 curvesgivenby

Eq. (2.13) with n : 213 are plotted using c, gt coordinates. Those with 0 < ó < 1

terminate at the singularity (tr 12,0), while those with ö ) 1 terminate at (n 12, -r l2).

In the new coordinates .R : 0 corresponds to the boundary specified by

0(o <Tl2t A:-rl2

and

a:r12, -r12(y<0

This boundary has the following features:

1. The point s : r/2, A = 0 represents a real singularity of the Curzon metric,

and is depicted in the figures by a cross. The limii of the Kretschmann scalar

along curves which terminate at this point is infinite, and many of these curves

( including all the non-oscillating geodesics given by Eq. (2.9) ) are of finite lengih

L,

2. The line 0 ( ø ( T12, A: -T12 represents a ne\l' region of spacelike infinity of

the Curzon metric. The geodesic down the z axis terminates at the point t :0,

y : -r 12 and is of infinite length, but although the oscillating geodesics which

asymptote toward the z axis approach the line y : -T 12, they do not terminate

at particular points of this line. The curves given by Eq.(2.16) which are of

infinite length .L do, however, terminate at points of this line, and do so with
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zero first curvature /-i.e. the fact that they are non-extendible is not due to

any intrinsic ttoscillatoryt' behaviour. The limit of the Kretschmann scalar along

these and other curves terminating on this line is zero, indicating that space is

asymptotically flat here. This flat spacelike infinity is of infinite extent.

3. The line ø = rl2, -Tl2 < y < 0 represents an *edge" of the space' and is

depicted in the figures by a dashed line. There are no curves in the o-y plane

that terminate on this line with zero first curvature (e.g. no asymptotic geodesics),

which explains the choice of the label "edge". The curves given by Eq. (2.14) with

c: ll2 terminate along this edge with the behaviour

tany + -constant,k-"/', ø -) constant.k6, L'-+æ, þ-æ

4. The point n : r /2, y : -r 12 represents a ne$' spacelike infinity of the Curzon

metric, and is depicted in the figures by a small circle. Curves ending at this point

are of infinite length -L, and many terminate with zero first curvature. The limit

of the Kretschmann scalar along curves ending at this point is zero, indicating

that flat space is also approached in this direction.

2.5 Conclustons

This analysis has been restricted to the quarter-plane r 2 0, z )- 0. Similar

behaviour is, of course, to be found in the other quarter-planes. In Figure 2.4 the two

half-spaces z 2 0 and z ( 0 are shown in a-y-S coordinates. To represent the entire

spacelike hypersurfa ce t : constant, these two patches should be joined along the plane

A : 0, Tl2 < s S Ttrthus creating a "double-sheet" in the region 0 ( ø < Tl2. In

these coordinates the real singularity of the Curzon metric becomes a ring a : r 12,
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v

a

x

z>o z<0

Figure 2.4 schematic picture of a 3-D section f = constant of the cur-
zon solution. The two paüches shown are drawn in the compactified o-y-{
coordinates, andcorrespondto 220 and z ( 0 fora ú =constant
section. The ,,nerry,, spacelike infinities are the free bases of the small cylin-
ders, while the free bases and the walls of the large cylinders conetitute

the "old" spacelike infinities. The two patches must be joined at g = Q

along the parts of the bases of the large cylinders outside of and including
the singularity (which is the jagged ring). one of the curves of conetant

radius of revolution p > rne given by Eq.(2.15) is shown starting in the

left patch and ending in the right'
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U : 0, 0 < ó ( 2zr about the y axis, with spacelike geodesics threading through it.

The spacelike geodesics given by Eq.(2.10) and Eq. (2.11) spiral through the ring and

continue out to the ttnew" infinity.

The ring singularity has a ûnite "¡adius" in the sense that it can be reached by

curves, indeed by geodesics, of finite length from the y axis (originally the z axis).

Presumably there is a minimal such geodesic whose length could be used as an actual

value for this radius. The circumference of this ring should, however, be regarded as

being infinite. This is readily seen by plotting the curves of constant radius of revolution

p given by Eq.(2.15). For p ) me these curves start in one sheet at 0 ( x < rf2,

A : -r 12, wind once around the ring, and re-emerge on the other sheet. The winding

becomes tighter and tighter as p -) oo. This peculiar behaviour (finite radius but

infinite circumference) is due entirely to the infinite curvature of the space at the ring.

This picture of the Curzon singularity as a ring in the spatial sections is con-

sistent with the picture suggested in [5]. There, however, the ring was placed at an

infinitely large radius. Also null geodesics not terminating at the real singularity were

shown to be incomplete, requiring an extension of the Weyl coordinates. The spacelike

hypersurfaces, however, are now seen tobe complete in the original Weyl coordinates-

only the topology of the singularity is incorrectly given by these coordinates, due to

the crushing up of the ring plus new spacelike infinity into a single point. In Chapter

3 these two pictures will be linked together to provide a complete description for the

entire Curzon space-time.
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Chapter 3

The Global Structure
of the Curzon Solution

3.1- fntroduction

In Chapter 2 it was shown that in the spacelike hypersurfaces f : constant, the

real singularity at ,R : 0 of the Curzon solution

ds2 : _ e2\dt2 ¡ "z(,_t)\dr2 
¡ dzz) ¡ r2 e_2^ dg2 (3.1)

where

)--mlR, m212
1t 

- 
_

2R4
and R: \F I ,z (3.2)

has the structure of a ring with finite radius. Spacelike geodesics approaching .R : 0

in these hypersurfaces either terminate in finite proper distance at the ring singularity,

or thread their way through the ring and are inextendible (i.e. have infinite length). In

this way a "new" region of spacelike infinity appears on the other side of the ring.

All this is inherent in the original Weyl coordinates, since (for ,R > 0) they are in

precise one-to-one correspondence with the new coordinates. Where they differ, is that

in the new coordinates the ring singularity car only be approached by curves along

which the curvature (as defined by the Kretschmann scalar) becomes infinite. Curves

approachin g R :0 with finite curvature (the so-called "directional behaviour" of the
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Curzon singularity l.2jr13]), terminateeither at the new infinityor else at an "edge"

adjoining the ring singularity. In this chapter it is intended to use this picture as a

basis for providing a complete description of the entire Curzon space-time.

In Section 3.2 the behaviour of. all geodesics (timelike, null and spacelike) ap-

proaching ¡? : 0 is given. There is also a review of an earlier attempt [a ] to extend

the Curzon metric in such a way, that some geodesics terminating at ,R : 0 in the

Weyl coordinates with finite affine parameter and finite curvature become extendible.

In Section 3.3 a new coordinate system for the Curzon metric is displayed. This is

shown in Section 3.4 to exhibit all the features of the spatial sections derived in Chap-

ler 2, and yet permits the relevant geodesics to be extended. As in [4 ], it is possible to

connect the Curzon metric smoothly with Minkowski space. Physical interpretations

of this curious behaviour, such as a possible collapse scenario, are discussed in Section

3.5.

3.2 Behaviour of geodesics approaching R - 0

The behaviour of null geodesics approaching -R : 0 was discussed by Szekeres

and Morgan [4], while in Chapter 2 spacelike geodesics approaching.R: 0 in the

hypersurfaces ú : constant \ryere examined in detail. Actuall¡ not all null geodesics

approachin g R :0 were uncovered in Ia ]. After a great deal of further analysis of the

geodesic equations, it has been possible to obtain the behaviour of ø// geodesics (i.e.

spacelike, null and timelike) approaching A : 0. The results are as follows:
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(i) Geodesics with t f constant and d : constant

(") Asymptotic to tlr,.e z axis as z + Qr

, (r) d e-^/" (A + Bz)

It(r)l ru ["r^l'd,u-#-mAB *rcrt-( '-nz\J" 222 z ''+,\lc-o-)'

t(') ru ss-zfl(

where A, B, I{, ts, se â,Íe constants, e : tl or 0 for spacelike, timelike and null

geodesics respectivel¡ and s (z) is the proper distance, proper time, or affine null

parameter along the geodesic.

(b) Asymptotic to the r axis as r -r Q*

t (r) : Ar2 ¡z + 12 + o(rs)

1

2

1 ¡ zL +
rn

3

*'

l¿ (r)l N ts j ¿m2A2 f, "'*'"-^'/zu" 
d,u

, (") ru ,, + | "*'o' I, "-m2lzu2 
¿u

(ii) Geodesics with t, ö + constant

(") Asymptotic to the z axis as z + 0*

r(") : e-^/" 
[o 

* Bz * +(#
H2
K'Xå) '" + o("\]

ó(,): ^-(#x
1

A2 )

mA2
2r'

z * O(22)

mAB__+úoIt(r)l N
I" "'^," du -

t(") N ss-zfl{

z
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where fI and Ss arc constants.

(b) Asymptotic to the surface z:0 as r -r 0*

As in (ixb) but with

ó(r) öo + (HlIt)"^'o' I,u-2 "-m2/zuz-zmfv 
¿u

Spacelike, timelike and null geodesics occur in each of these four classes. In the various

expansions the parameter e appears in lower-order terms than those given.

(iii) Spacelike geodesics in the spatial sections ú : constant

These were discussed in detail in Chapter 2 . The geodesics asymptoti c to the z

axis are complete (s --+ oo as z -, 0) and exhibit either a slow oscillatory behaviour

or a slow spiralling behaviour as s --+ oo, while ones asymptotic to the plane z : 0

terminate in finite proper distance at the real singularity.

All geodesics in classes (i) and (ii) are incomplete, since the af,Êne parameter s

approaches a finite limit so as -R --+ 0. Along geodesics asymptotic to the plane z = 0

(classes (ixb) and (ii)(b)), the Kretschmann scalar

R,"rprRP'P,d:

becomes infinitely large as .R -r 0. Hence these geodesics terminate at a genuine singu-

larity and are inextendible. On the other hand, o -r 0 along all geodesics asymptoting

to the z axis (classes (iX.) and (ii)(a)). The affine parameters (s-ss) of these geodesics

are proportional to the coordinate z.

Suppose that one adopts the following asymptotically "comoving" coordinates

along the ingoing (ú - {oo) null geodesics (e : 0) of class (iXu) with B = 0 :
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p T e*/"

t - ["o 
"2mlu 

du + TP:- J, 222
(ro -- constant > 0)u: (3.3)

u:-22

Then as \4'as shown in [4], as z -t 0+ along these geodesics, the Curzon metric given

by Eq.(3.1) and Eq. (3.2) becomes

d,s2: -d,udu+dp2 + p'd,ö2 IO(z-ge-z^/')hu,da\dx' , (3.4)

where h* is a tensor whose behaviour is regular at z : 0.

p and u approach constant values along these geodesics as z -+ 0+, p being like

an axial radial coordinate ¡ u ã null (advanced time) coordinate. The coordinate u

is an asymptotically affine null parameter along the geodesics, and approaches a null

(retarded time) coordinate as can be seen from the form of the metric (Oq. (e.+)).

Clearly it is possible to match this metric smoothly (i.e. in a C* way) across u : 0

with Minkowski space

ds2:-df*daz+dA2*dz2

expressed in double-null cylindrical coordinates

u:t*2, y,:t-2, fi:pcosþ, y-psinþ. (3.5)

In the remainder of this chapter it will be shown that coordinates can be chosen such

that both ingoing and outgoing null geodesics can simultaneously be extended into

regions of Minkowski space, whilst still preserving the ring structure of the curvature

singularity discovered in Chapter 2.
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3.3 New coordinates for the Curzon metric

In Chapter 2 the following coordinates were proposed for the spatial sections

t, ö : constant:

(3.6)

(3.7)

These coordinates have the effect of compactifying the upper r-z plane (, > 0)

into a curious double-rectangular-shaped region specified by

-¡r1t<it 0<y<r12

and

-r12<xcrf2 -r12<y<0

The real singularity occurs at the pair of boundary points x, : *.T 12, U : 0, which con-

verts to a ring when rotated about the central y axis (thus including the S coordinate)'

The boundary of the upper rectangle given by -o 1 æ 1Tt u : rf2 and x: tr,

0 < y < T 12 is the "old" spacelike infinity of the Curzon metric (corresponding to

¡?: oo), while the boundary line of the lower rectangle given by -r12 1æ 1rf2,

y : -r 12 represents the "nerry" spacelike infinity. This boundary line is approached in

an oscillatory manner by spacelike geodesics belonging to class (iii), Section 3.2. These

geodesics, which asymptote to the z axis as z + 0+ in the original Weyl coordinates,

are complete.
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If null and timelike curves are to be included, it is tempting to employ a com-

pactified time coordinate

r : tan-l (tl*)

The region z ) 0, ö : constant of the Curzon space-time then has the slab-like

T-shaped structure of Figure 3.1, with the curvature singularity occurring along the

jagged lines. However, there is an immediate problem with this picture. The ingoing

geodesics of class (i)(u), Section 3.2 which approach z : 0 with vanishing Kretschmann

scalar, all terminate at the upper edge -rf2 < t <t12,y: -t12,r: r12. Further-

more, they do so with finite affine parameter and should be extendible as discussed

in Section 3.2. However in these coordinates there is no hope of performing such an

extension, since a whole plane of arrival has been crushed to a line.

A similar situation would occur with the Schwarzschild solution for geodesics

approaching r : 2m, iL one were to adopt a compactified time coordinate r : tan-l ú.

The situation there is remedied by using a null (advanced time) coordinate [5]. The

same procedure could be adopted here using coordinates or : tan-1 u¡ rt U¡ / (for u,

see Eq. (3.3) ). However, these coordinates crush the hypersurface z : 0 of the Curzon

space-time to the 2-surface specifred by

u':-r/2 r12<l*l<n a:0 0<Ó<n

This renders the coordinate transformation not one-to-one on this crucial hypersurface

across which the upper half of the Curzon space-time z ) 0 is joined to the lower

half z < 0. In addition, just as in the Schwarzschild case, past incomplete geodesics

emanating from -R : 0 (i.e. those in classes (iXt) and (ii)(a) of Section 3.2 with ú + -oo

as z -t g+) will remain incomplete. The famous Kruskal double-null coordinates [6]

solve this problem in the Schwarzschild case.
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In the case at hand, both problems can be resolved by adopting a kind of half-

advanced, half-retarded time coordinate ?, and at the same time making a modification

to the y coordinate whilst leaving ø alone.

T tan-1 1,. (** ") * *(, - ;)']
* ran-l 1,. (* - H) * *(, - ;)']
tan-, I,r(* - +)'T *'*

2 e'þ

Y: |+

(3.8)

4
(3.e)

z n1,

Æ8 (1 + (tl*)n) + 1+ (r lm)zP-+1t

where

¡r/^
H (r,z) : Jr'"- ""1" 

d,u * | (r¡r¡'u'^/'

I{ (r,z) : (, * î)" - (ffi)'
ø and y are given by Eq.(3.6) and Eq. (3.7), and ø is a positive constant chosen prefer-

ably to be fairly small (< n-o) to ensure that the coordinates are one-to-one. The

coordinate ranges ate -T < T < T¡ -T < a <r, 0 ( Y < r. The region specified by

T12 <l"l< r, 0 ( Y <r12 is excluded, as may readily be shown given the shape of

lhe u-y coordinate patch.

9.4 Features of the nev¡ coordinates

In view of the somewhat awesome complexity of the coordinate transformation

just given in Section 3.3, a few comments are probably in order. Along ingoing geodesics

(classes (ix") and (ii)(a) of section 3.2 with ú -r oo), one has that as z --+ 0*

tlm * 11 -+ constant, tl* - // -r oo 
'
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whilst along outgoing geodesics (t --+ -oo) the reverse is true, namely

tlm * f/ -r -oo , tlm - H -> constant

Along such geodesics ø + tan-lz4' : constant, while

e)
2

v
7t

+ e-*1"
2

HenceK approaches zero veryrapidly as z - 0*, and the factors e-K haveno signifi-

cance along the geodesics for this limit. Since

l¿l - Q2f2m¡e2*/' ,

the terms

t / zr\3
* (.Y +Z) --r o

and also make no serious contribution along the geodesics.

Thus one has that along these geodesics as z -+ 0*

? - tan-l ltlrn + Hl + tan-1 ltlm - Hl ,

so that for the ingoing geodesics

? --+ constant ) 0 as ú -+ oo ,

whilst for the outgoing geodesics

? --+ constant ( 0 as ú -+ -oo

The coordinate y - ({ve constant) z along these geodesics as ú -> too respectively

and thus behaves like an affine parameter. The factor ll + (tlm)n] h* been incor-

porated into the last term under the arctan in the expression for Y, in order that this

term does not dominate as z -+ 0*, since it is the first term under the arctan which

gives Y the desired af;Êne behaviour.
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However, it is also desirable to retain the essential features of the spacelike hy-

persurfaces ú : constant discussed in Chapter 2. Near.R :0 (z > 0) in these hypersur-

faces, the curves of constant radius of revolution A about the z axis are r (z) - Ae-^/'

(see Section2.a). Since geodesics belonging to class (iXu) in Section 3.2 (with B = 0)

have the same r (z)rit is readily shown that these curves have the following behaviour

in the new coordinates as z + 0*:

ø -r tan-14 : constant

T-2(tlm)/H2+0

Since tfm : constant, the last term under the arctan in the expression for Y now

dominates as z --+ 0+, so that

Y - (*'lz2)e-^/'+0 ,

which is the same as the behaviour of A 1- r 12 along these curves rleat z = 0. Thus

these curves have the form

as Y+0+

The factors e-K in Eq. (3.8) are important for curves in the spatial sections

approaching different parts of the plane z : 0 (, - 0*, r -r constant > 0). Along

such curves e-K(tf m*H) -+ 0 as " - 0+, whence

r - 2tan-1 l*Q- ;)'] -> 2 tan-, (ç *)

Without these factors of e-K, the spatial sections ú : constant would all fold down to

the 2-surface T : 0, rl2 < lt l 1 r, Y : rl2, 0 < Ó < o. Because the influence

of the terms tlm* f/ and tl*- H in the expression for ? is removed by these

factors, the equatorialplane -oo ( ú ( oo, r ) 0, z:0r 0 <Ó 12r conesponds
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to the 3-surface -r 1T 1r, Tl2 < lr l< T, Y: rl2, 0 < Ó ( zr in the new

coordinates. This is necessary if the upper half (z > 0) of the Curzon space-time is

to be smoothly connected with the lower half (z ( 0) across this surface. For similar

reasons geodesics belonging to classes (ixb) and (ii)(b) in Section 3.2, which approach

r? : 0 asymptotically to the plane z : 0 with finite values of ú, also approach the

curvature singularity at l, | : rf2, Y: Tl2 in the new coordinates with the full

range of values of. T. The relative placement of all spacelike curves in the spacelike

hypersurfaces ú : constant is unchanged from the discussion in Chapter 2.

Finally, the appearance of the metric in these new coordinates near the surface

Y : 0 should be considered. For ? ) 0 the coordinate transformations given by

Eqs. (3.9), (3.6) & (3.8) have the asymptotic form

zlm ru ø(rsla)(*' - n' 14)' tanY

rlm d e-^/u tar-s (3.10)

tl*
1,,^

."/" du - (m/222)tar2x - cotT

Comparing this with the coordinate transformation given by Eqs. (3.3), it may be seen

that the coordinates xrYrT are related at Y:0 to pruru by

u

p tan c

- a(tc3l$ (*' - o'14)'tanY (3. I 1)

u - cotT

This is a perfectly acceptable coordinate transformation of Minkowski space ex-

pressed in the double-null cylindrical coordinates given by Eq.(3.5), and has the effect

of compactifying it to a box

-r12 1a1r12, -r12<Y<rf2, 0<T<r
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Negativevalues of. pare associated withpointshaving Ó': Ó*zr (0 < Ö< zr'). Of

course the standard allowances must be made for the removable coordinate singularity

atp-0 in

ds2: -dudu+dp2+p'dó"

: 'i (* -i) þ, 
,." Y dx * (.' - i) *o'04#

* secax dæ2 + tan2æ dþ2 . (3.12)

It is now clear that the Curzon metric expressed in coordinates x, Y, T, þ

can be connected with the half Y ( 0 of Minkowski space as expressed in Eq. (3.12).

The junction across the surface Y:0, ? > 0 is C-. The surface Y:0, ? ( 0 can

similarly be joined to Minkowski half-space on changing the equation lor tf m occurring

in Eqs. (S.tO) to

tfm - 1",
e2/" du t (ml2z2)iar2a - cotT

fn

The situation is depictedin Figure 3.2. The end surfaces Y:0,7 ) 0 and Y:0,

T < 0 at which the junctions with Minkowski half-spaces are made, are shown at an

angle purely to emphasise the fact that these junctions must be made with sepørate

Minkowski half-spaces. This also highlights the fact that the junction surfaces at Y: 0

are null hypersurfaces. Note, however, that Y is not a null coordinate throughout

Minkowski space whilst ? is, as can be seen from Eqs. (3.11) and Eq. (3.12).

3.5 Discussion and conclusions

What is to be made of this bizarre property that the Curzon metric extends

smoothly to Minkowski space? There seem to be two basic outlooks on this question.

One can either regard the Curzon solution as the possible end producú of a non-spherical
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T

,fl.
T=t

1

t=cons L .

T=-t v-Lt-2
2

Figure 3.2 The extended Curzon space-time (z ) 0, d = constant) in o,

Y, ?coordinates. O is the origin s =Y =T = 0. The spatialsections
f = constant (".S. the surface enclosed by the botd line) bend upward (or

downward) from the "new" spacelike infinity atT = 0, Y = 0. Curves (a),
(b) and (c) are as in Figure 3.1. Curves (b) and (c) are now fully extended

through the adjoining Minkowski half-spaces Mt and Mz.

A
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collapse, or one can view it as a deaelopmenú out of Minkowski space in much the same

way as a plane-sandwich \4¡ave.

In considering the first option, it should be pointed out that cosmic censorship

is by no means a settled issue in general relativity. Indeed some studies [7], [8], [9]

suggest that it may not hold even in the case of spherical symmetry. Suppose that a

non-rotating axisymmetric arrangement of matter collapsed in such a way as to lead

to a final state represented by the Curzon solution. It is not being said that this is in

fact possible, but neither can one be certain that it, or something similar, is totally

impossible.

The lower left-hand part of Figure 3.2, including the lower Minkowski space

(" < 0), is no longer relevant in this collapse situation, being replaced by the interior

solution of the collapsing matter. Presumably the matter divides into two, some of it

ending up in the singularity at Ir l : rf2,Y: rl2 while the rest proceeds through

the ring and continues to the flat region beyond Y: 0 (Figure 3,3). The collapse in

this case results in both a naked singularity (the ring) and an event horizon at Y:0,

since events with y < 0 can never be seen by observers near the Curzon infinity (i.e.

near | fil: r or Y: r).

It is felt that such a scenario may not be totally unrealistic physically since the

singularity, although naked, is not a "harmful" singularity in the sense that any "light"

emanated from it becomes infinitely redshifted. This is easily seen since the redshift

at infinity from any particle situated on a Killing vector orbit z, r, / constant is given

by 
"-À, 

which clearly approaches infinity as A -+ 0. Infinitely redshifted singularities,

such as those occurring in the Friedmann cosmologies, are not regarded as genuinely

naked in view of their benign redshift. Possibly the Curzon singularity may be granted

a similar status.
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M

Y=0

\

I

Figure 3.3 A hypothetical collapse to the Curzon solution. x, Y, T ce
ordinates with / constant are used, The collapse of half the matter is

depicted as a series of six layered sections beginning with Section 1 at the

bottom (which is like half a flattened sphere). A singularity develops in
this section and then spreads out to form a ring. Part of the matter Passes

through the ring and eventually disappears over the horizon atY = 0 into
the Minkowski region ,,V'
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Of course one is entitled to feel a little sceptical about this picture. After all,

a non-spherical collapse would be expected to radiate gravitational lvaves and should

not have a static exterior solution. However non-spherical collapses ce,n have static

exteriors [9], [10], and in any case this situation may approximate the true one with

regard to its general global features-for example, the lack of infinite blueshifts across

any horizons indicates that there is nothing inherently unstable in the picture given

here.

The Minkowskian continuation for y < 0 looks most peculiar, since positive

density matter is being matched to a flat space exterior. Examples of this kind do,

however, exist in the literature [11], [12]. In any case the choice of matching to

Minkowski space is fairly arbitrary. It was simply the easiest space to match smoothly

across the boundary Y:0. Any other space which matches smoothly to Minkowski

space (e.g. plane waves, another Curzon solution, etc.) would do just as rvell.

A tempting idea is to match the lower half (z < 0) of the Curzon space-time

with the upper half (z ) 0) across the surface Y:0, in such a \¡¡ay that particles

disappearing through the ring from the top half reappear in the lower half and vice

versa. These two half-spaces must, in any case, be joined along the side walls Y: r 12,

T12 < I r I < T, -Í < T <n of Figure3.2. Howeverbecause of the C*, non-analytic

nature of the matching conditions at Y = 0, there is nothing to convince one that this

procedure has any overriding advantages.

But there is a totally diferent viewpoint to all this. Consider a timelike observer

in Figure 3.2 beginning life in the lower Minkowski region T < 0. At a certain point of

time she encounters the null surface Y- 0 and some curvature begins to develop. This

is not an unfamiliar situation in general relativity. The most standard such example

is the plane wave which is of Petrov type N, because that is what one must have
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across a piecewise C2 junction with Minkowski space [13]. However if the matching

is very smooth (Cs or higher), then the curvature need not be type N. Here one has

an extremely smooth C- curvature development, and the resulting space has Petrov

type.I.

What is truly amazing is that the observer finds herself in a whole new world,

as it were. In front of her she suddenly sees a naked ring singularity (not visible

before she entered the curvature region). But it hardly need boiher her since its

infinite redshift makes it effectively invisible, She is, however, faced with a dilemma-

to proceed through the ring (or even into it if she wishes to perish), or to continue up

the diagram to reemerge in the upper Minkowski space. If the latter option is taken,

the whole experience has been something similar to passing through a sandwich wave.

The first option is peculiar in that as the observer passes through the ring and heads

toward the Curzon spatial infinity, she sees behind her an increasingly pointlike particle

of mass m. A massive particle has, in effect, been created out of nothing. Does one have

here the seeds of some fantastic particle creation theory based on general relativity?

Both of these viewpoints are thought-provoking. The Curzon "particle" is not

the isolated monopolar particle of general relativity-that role obviously belongs to

the Schwarzschild solution. From a distance, however, it appears just like a particle

but endowed with some higher multipole moments [1a]. The detailed analysis of

the singularity given here has shown it to possess a wealth of structure and physical

possibilities. It would be most interesting to find out if other Weyl solutions or, even

more ambitiously, stationary axisymmetric solutions show similar or other structures

in their singularities.
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Chapter 4

A Survey of the Weyl Metrics

4.L Introduction

Hermann Weyl derived his class of metrics in 1917, just one year after Einstein

had presented his now-celebrated general theory of rêlativity to the world. With the

passing of some seventy years since that initial flurry, it is perhaps time to pause and

assess what progress has been made with respect to the Weyl metrics. Exactly what

is known about them, and what still remains to be done?

From about twenty-five years ago an interest in the Weyl metrics developed, par-

ticularly as exterior solutions in astrophysical problems [1] and as possible final states

of gravitational collapse [2 ], [3 ]. However, in addition to being of relevance to physics,

they are also of interest simply because they present us with the rare opportunity of

explicitly determining and investigating a large class of relativistic metrics.

The Weyl metrics are, in principle, all 'known' since there exists a precise algo-

rithm for generating them from an infinite set of Newtonian potential functions. This

procedure is given in Section 4.2 . Ín practice, however, the global structure of only a

few such solutions is well understood, and it seems that much work and new insights

will be required if this'situation is to change.

The member of the Weyl class which is simplest to obtain is the Curzon metric
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(see Section 4.2). Yet despite the ease with which it is generated, its source structure

and global structure remained a mystery until the papers by Scott & Szekeret [4],

[5] (see also Scott [6]) appeared in 1986. Due to space considerations their findings

will not be summarised here, but nonetheless form an integral part of this subject (see

Chaptersl,2&3).

Since the Schwarzschild solution belongs to the Weyl class, the question naturally

arises as to how it is generated. This question is investigated and answered in Section

4.3 and ultimately, of course, involves a change from Weyl coordinates to the standard

Schwarzschild coordinates. Finding the relationship between the two coordinate sys-

tems is facilitated by a consideration of the general form of gravitational equipotentials

of the lVeyl metrics.

The Schwarzschild solution is a special member of the subclass of the Weyl metrics

known as the Zipoy-Voorhees metrics. These metrics form the main focus of this survey

and are discussed in Sections 4.4,4,5 8¿,4.6. In Section 4.4the metrics are specified

and new coordinates more suited to their geometry are chosen to replace the original

lVeyl coordinates. The problem of finding sources for these metrics is discussed in

Section 4.5, and the possibility of performing extensions is considered in Section 4.6.

Some general properties of the Weyl metrics are given in Section 4.7 and, in

particular, the relationship between an arbitrary Weyl metric and its generating New-

tonian potential is examined. The question of how flat space is generated within this

framework is fully investigated, and at the end of this section there is a list of some

related open problems.

In Section 4.8 a brief history of the static two-body problem of general relativity

is presented, including the early controversy over the two-particle Curzon solution, as

well as some much more recent developments. Section 4.9 gives a short description of
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a nelv mathematical approach to statìonary, axisymmetric, vacuum space-times. It is

hoped that this approach will eventually offer new insight into some of the unanswered

questions related to the Weyl metrics.

The survey concludes with Section 4.10 which consists of a small but new ob-

servation by the author regarding ring singularities occurring in Weyl metrics. Before

proceeding it only remains to point out that the aim of this survey was to be as com-

prehensive as possible within the given space constraints. There are, of course, certain

omissions for which the author apologises in advance.

4.2 The Weyl metrics

Using cylindrical coordinates (r,z,g) where r ) 0, z € lR and 0 1g < 2er (with

? : 0 and g :2tr identified), the static, axisymmetric, vacuum solutions of Einstein's

field equations are given by the Weyl metrics [7], [8] (see also Synge [9])

d,sz :_ez^d* ¡"2(,-x)(dr2 ¡dz2)¡rze-2^dg' (+.t)

where À(r,z) and v (r,z) arc solutions of the equations

À"r*À""*r-1Àr:¡ (4,2)

and

vr:r(À"'-Àr'), uu:2rÀrÀr. (4.3)

If a solution À of Eq. (a.2) is found, then Eqs. (4.3) can be integrated to find

v. In fact Eq. (a.2) is recognised as being simply the Laplace equation in cylindrical

coordinates for a g-independent function. There is thus a straightforward method of

obtaining static, axisymmetric, vacuum, general relativistic fields. Namely choose an

appropriate Newtoniøn gravitational field and then integrate the Eqs. (a.3).
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An obvious choice is the gravitational field produced by a spherically symmetric

mass distribution with total mass rn, which is located at the origin of the cylindrical

coordinate system. So

),: -mlï where R- *22

m212
Y- 

2R4

and

(4.4)

and

(4.5)

This is the so-called Curzon metric [10]. Although generated by the Newtonian mass

monopole it is not equivalent to the Schwarzschild metric, which as is well-known

(Birkhoff's Theorem [11]) is the unique spherically symmetric, vacuum solution of

general relativity.

4,3 The Schwarzschild solution

The Schwarzschild solution is in fact generated by the Newtonian potential of a

constant density line mass (or rod) with total mass z7¿ and length 2nz, which is located

along the z-axis with its mid-point at the origin. So for this important example

,_1 /Rt*Rz_zm\ 
(4.6)o : 

u, 
t"\pr¡ pr¡2*1

where

Rt: (r' + (" - *)')
tl2 Rz: (rt + (z+m¡z¡Llz

and

(4.7)

(4.8)

(4.e)

,:åt"( 
)

Naiïely one might have been tempted to make the simple coordinate transfor-

R - @2, tan 0: rlz

mation
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from the cylindrical system (r,r,g) used by Weyl (Weyl coordinates), to a spherical

system (Rr0,g). However this will noú cast the metric into the familiar Schwarzschild

form, since under such a coordinate transformation the rod maps to the portion of axis

specifiedby0:0,0( R1m and 0:Tr0 <-R<rn. Soinsteadof producingthe

customary point mass, the line mass persists.

In fact any coordinate system which is one-to-one with the cartesian system

(*ryrr) on an open neighbourhood of the rod can be ruled out for the same reason.

A different type of coordinate transformation is needed here, and the key to finding it

lies in the following observation.

For the Weyl metrics given by Eqs. (4.1), (4.2) k (a.3) the S-metric "gop, "go9

(o, þ :1,2,3) induced on the hypersurface t : constant is given by

sgoB dæodr? - "z(v-s)çdrz 
* dzz) * r2"-2À¿r2 (4.10)

where tr : Tt 02 : z, a3 : g. Now it can be shown that

" goþ 
"^lop 

: t g"þ ty 
B.Vo "^ 

: 0 (4.11)

Thus eÀ is an analogue of the Newtonian potential ), and the surfaces on which it is

constant may be thought of as gravitational equipotentials.

For the Schwarzschild potential À given by Eq.(4.6),

eÀ: constant

=+ Rt * Rz = c (a constant > 2m)

These gravitational equipotentials are, of course, just the 2-surfaces p : constant'

where p is the radial coordinate normally used for the Schwarzschild metric. From the

metric component

9oo -- - e"\
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the function p(c) is readily determined to be

p(c) : (c *2m) ,

and with a little more effort the coordinate transformation

1

2

p : L ror*Rz*2m)

coso _ * for-^Rr)

(4.t2)

is found to be the one which casts the Schwarzschild metric into its familiar form

ds2 : - (, -'!\o* * (, -2-\-r ^

\ p )*" , \^ ;) dp'+ p'(dl' + sirf 0d?2) . (4.1s)

It is to be noted that this transformation from (trr,z,g) coordinates to (t,prï,V)

coordinates is a one-to-one mapping of the entire region surrounding (but not including)

the line mass onto the esterior Schwarzschild solution p ) 2m. This is not really very

surprising since the Weyl metrics are static.

4.4 The Zipoy-Voorhees metrics

where

Rt: (r2 * (, - D')''" Rz =(r'+ (z+t¡z)t/z

schild s etrics gen-

erate tonian with total

mass 21, whi the origin.

So

(4.t4)

and (4.15)

(4.16)

and
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This metric was first derived by Bach and Weyl [ 12 ], and is occasionally referred

to as simply rthe metric of Bach and Weyl'. However it has since been discussed and

investigatedtoavaryingextentbynumerousauthors [13], [14], [15], [16], [17], [18],

[19 ] and is more commonly referred to as the Voorhees metric or the Zipoy-Voorhees

metric after two of them.

In fact the papers of. Zipoy [ 1a ] and Voorhees [ 18 ] are particularly interesting

and warrant some further discussion here. There is a common philosophy underpinning

both, namely that the coordinate system chosen to express a particular Weyl metric

(À,r) should be adapted to the symmetries of the source (or mass distribution) giving

rise to the Newtonian potential )- So for the line metrics given by Eqs. (4.I4), (4.15)

& (4.16) an obvious choice is the prolate spheroidal coordinate system (u,d) defined

implicitly by

r-lsinhucos0 z=/coshusin0, (4.17)

where u)0 ar..d -rf2<0<r12.
If further the coordinate ø is defined by * - coshu, where a 2I, then the

coordinates (x,0) form an orthogonal system whose level curves ø : constant and

d : constant are confocal ellipses and hyperbolas respectively, with foci at r : 0,

z : *lr-l (* : t, 0 : ¡r f2,-T l2). These coordinates are illustrated in Figure 4.1.

If further the coordinate p is defined by p: /r, where p2.1, then in (t,P,Q,g)

coordinates the metric becomes

dsz : - e2\ df + 
"z(v-\) Ø, - t2 sin2l)(ffi + dlr)

* e-z¡ þ' - 12) cos20 d,g2 (4.18)

(4.1e)^:tî,'(#)
where
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Q=-tr
6

n

Figure 4.1 A graph showing the relationship between cylindrical
coordinates (r,z) and prolate spheroidal coordinates (c,d).
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and

(4.20)

The gravitational equipotentials e) : constant now have the particularly simple

form p : constant (p > /), confirming that prolate spheroidal coordinates are indeed

well suited to the given source. For the Schwarzschild solution (l - m) the metric

assumes its usual form (Eq.(4.13)) by a straightforward change into (Í, pt,0',g) coor-

dinates, where

p'-p*m and 0':rl2-0 (4.2I)

4.5 Possible sources for the
Zip oy -Vo orhees metrics

By examining the behaviour of a particular invariant of the Riemann tensor as

ø -r 1+, Zipoy concludes that in all but the Schwarzschild case, o : 1 is comprised of

curvature singularities. However this conclusion is slightly incorrect, since if mll > 2

the invariant does in fact tend to zero as æ = I is approached along either the positive

z-axis or the negative z-axis (iÎ mll :2 il tends to a finite, positive value).

The proper distance from æe ) 1 to t : I along the spacelike geodesics given by

0 = 0, t, g constants is found to be finite for all values of. mll. Timelike geodesics

given by 0 :0, tp constant reach æ : L in both finite coordinate time and finite proper

time for all values of mll. However it is interesting to note that the circumference of

thecirclesgivenby 0 -0rtru constantsbecomesinfiniteas o+ 1+ for mfl>1,

and zero fot mf I < l.

,:r(î)""( 
)
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Voorhees proposed the following method for determining the geometry of. the

sources for these metrics. Assuming that all the rods are of equal mass rn but have

varying length 21, it is possible to determine the relationship a(æ,0), F(æ d) between

the prolate spheroidal coordinates (æ,0) used for the Schwarzschild solution, and those

(*,0) used for the solution generated by the rod of length 2/.

It is then a straightforward matter to find p'(r,0),0'(æ,0) where (p',0') are the

standard Schwarzschild coordinates given by Eqs. (4.2L). Figure 4.2 shows how the rod

æ : L transforms under this change to Schwarzschild coordinates.

It is noted that for solutions with mll ) I the singular region (ø : 1) does not

cover the entire surface p' : 2m, and indeed no curvature singularity is encountered

along the axis of symmetry as pt -+ 2m*. However, consider the spacelike geodesic

whichin (ø,d) coordinates is givenbyt: constant, 0: rl2, and extendsfrom n:I,

0 : r12 out to ø = *oo, 0 : r12.

In Schwarzschild coordinates it lies along the axis of symmetry 0t = 0, and

extends from pt - 2rlt, 0t - 0 out to P' : *ær 0t :0. But the point (p' :2*r 0' :0)

corresponds to the point (to > I,0 - r12) in (æ,d) coordinates. So what happens to

the piece of geodesic lying betw€€tt Íe and æ : 1?

The answer is that it maps onto the cap which is missing from the top of the

sphere p' :2m in Figure 4.2 (iii) ! This is an undesirable feature, and since there are

further problems associated with these source representations, one concludes that the

method of Voorhees yields only a very rough approximation to the source structure.

The true geometry of the sources for the Zipoy-Voorhees metrics remains an open

problem.
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Figure 4.2 The rod of mass m and length 2l (a - 1) depicted in
Schwarzschild coordinates (pt, 0t).

2t =7!rr?'=4m
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4.6 Possible extensions of the
Zip oy -Voorhees metrics

In a more recent paper by Papadopoulos, Stewart & Witten [20 ], it is pointed out

that the Zipoy-Yoorhees metrics form the static limit of the Tomimatsu-Sato family

of solutions [21], 122l¡. It is also noted that apart from the Schwarzschild solution

(l : m), all metrics in the class are of Petrov type D on the axis of symmetry, and

type I (or general) elsewhere. But perhaps the major revelation of the paper concerns

the(north pole'æ :1,0 - rl2 andtsouth pole'ø = 1,0: -Tl2 in solutions with

mll > 2.

In keeping with the spirit of Zipoy and Voorhees, the metric is expressed in prolate

spheroidal coordinates. Then using a complex null tetrad (*,ñ,/, k), the Weyl tetrad

components Üe, Vr, ü2, \Ús, \f¿ are calculated (Ü1 : 0 & Üs : 0). For solutions with

rnll >- 2,úo,úz k Va are infinite along t,:L, -r12 <0 <rf2rconfrrming that the

rod r : 1 minus its endpoints (or poles) is indeed comprised of curvature singularities.

However the value of each of \ús, úz k \[a at the north and south poles is found to

vary according to the direction of approach to the pole.

The north and south poles are thus the locations of. directíonøI singularities.

In an attempt to unwrap this directional behaviour, a polar-type coordinate system

based on the north pole is introduced. However the attempt is unsuccessful, because

the coordinate transformation maps the pole to a point. To successfully unwrap the

directionality it will certainly be necessary to use a coordinate transformation which

maps the pole to a higher-dimensional surface.

It can be shown that timelike geodesics lying along the axis of symmetry (ø > 1,

0 - r 12) reach the north pole in finite proper time. Since no curvature singularity
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is encountered there, it is argued that an extension of the space-time is necessary.

As a first step towards providing one, an extension of the U-dimensional 'spøce-ti,me'

spanned by the time coordinate ú and the axis of symmetry (ø ) 1, 0 : rl2) is

successfully performed.

If mll (> 2) is an integer, the extension is analytic.I'Í.n <rnll 1n11, where

z¿ is an integer (" 2 2), the extension is C"-an analytic extension is not possible

in such cases. An extension of the full 4-dimensional space-time through the north

pole (or likewise the south pole) has yet to be found. It is clear however, that the

ability to perform such an extension, will be intimately tied to the ability to unwrap

the directionality which is present at the poles.

4,7 Some general properties of the Weyl metrics

From the preceeding discussion of the Zipoy-Voorhees metrics, and the earlier

comments regarding the Curzon and Schwarzschild metrics, it is apparent that:

In general there is no corcespondence between the geometry of the sou,rce

for a Weyl metríc, and, the geometry of the Newtonian source from which

it is generøted.

Is it at least true then, that every Weyl metric (Eq. (a.t)) is generated by a unique

Newtonian potential À(r,z)? At a superficial level the answer to this question is, of

course, tyes'. Since the Weyl metric coeficient goo is -"'\, it is clear that two different

Newtonian potentials \(rrz) and Àz (rrt), will certainly generate Weyl metrics which

/oofr different.

There is a possibility however, that if the second Weyl metric is expressed in a

different coordinate system (í,rrZ,.p), it could assume the same form as the first metric

still expressed in Weyl coordinates. That is, different À1 and ,\2 might generate the

,Ð



so,rne metric simply expressed in different coordinates. But does this actually happen

in practice ?

The answer lies in an interesting paper by Gautreau & Hoffman [23]. They

set themselves the task of finding all Newtonian potentials À (r, z) which generate flat

space. Obviously À : 0 is one such potential, giving rise as it does to flat space

expressed in cylindrical coordinates

d,s2 : - dt2 I dr2 * dz2 + r' d?' (4.22)

Now the Newtonian potential of a constant density line mass of infinite extent,

lying along the entire z-axis is given by

),:2olnr , (4.23)

where o ) 0 is the mass per unit length. If the Riemann tensor components are

calculated for this subclass of the Weyl metrics, it is readily seen that they all vanish

for the case ø : Il2 (r > 0). So À : lnr is another potential which generates flat

space.

It can be shown that there are precisely two other such potentials, namely

.l:Ir"( ¡22-z ), .r:Ir"( 12*22 *z ) (4.24)

They correspond to the Newtonian potentials of semi-infinite line masses of constant

density Lf 2rlyingalong the entire positive z-axis and entire negative z-axis respectively.

So with four distinct Newtonian potentials which generate flat space, one concludes

that:

There is not a strict I-I correspondence between the Weyl metrics and
their generating Newtonian potentiøls À (r, z).
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However some questions naturally arise here. For instance, how special is the

case of flat space in this context ? In other words, is it true in general that a Weyl

metric is generated by more than one potential ? If not, then what is the class of excep-

tions ? Also can a strict 1-1 correspondence be obtained by restricting the generating

Newtonian potentials to those corresponding to mass distributions of finite extent ? At

the present time all of these questions remain unanswered.

4.8 The two-particle Curzon solution

No survey of the Weyl metrics would be complete without mentioning the two-

particle Curzon solution, which as the name suggests, was first found by Curzon [24]

(and later by Silberstein [25]). This solution is generated by the Newtonian potential

À(r,z) of two particles (point masses) of mass rn1 and rn2. Obviously, for the mass

configuration to be axisymmetric, the two particles must both lie along the z-axis at

21 arrd ,z2 respectively (zy < a2). So

TTù1 lTù2
(4.25)À

Pt Pz

where

and

Pt rz * (z - "r), and pz r2* (z-tr)' (4.26)

1
(4.27)u: 12 +

2 Pt

Silberstein claimed that the existence of. a static solution consisting only of two

point masses surrounded by vacuum, indicated the incorrectness of the general theory

of relativity. After all, two masses at rest in vacuum should gravitate ! Einstein [26 ]

countered that the two-particle solution is not purely a aacuu,rn solution, and provided

ffi12
4

ffi22

Pza
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the following argument. Consider a small circle given by ú : constant, z = constant

(rt < z 1zz), r: constant, where r is small. If one takesthecircumference C and

radius .R of this circle, it is found that in the limit as ,? - 0t,

C lR -+ 2r e-' where u : u (0, z)

Now for zy 1 z 122¡ v(0,2) I 0 and so CIR does not approach 2r as .R -r 0+.

Hence the space-time violates the condition of elementary fl,atness on the section of axis

between the two particles, suggesting the existence of a "sttut". This would explain

the static nature of the solution.

However in 1968, some thirty-two years after Einstein's paper on this subject,

Szekeres [27 ] demonstrated that static; two-body solutions do exist in general relativ-

ity. In his solutions, at least one of the two point masses is endowed with a multipole

mass structure, which allows equilibrium to be achieved without the need for an inter-

vening strut. The simplest example is that of a pure mass monopole (a Curzon particle)

balanced by a mass monopole-dipole, where the mass of each particle (as represented

by the monopole moment) is positive.

Another major contribution to this subject came quite recently in 1982. Using

a technique to generate stationary solutions from static ones, Dietz and, Hoenselaers

[28 ] obtained from the two-particle Curzon solution, a stationary, axisymmetric solu-

tion representing two particles precisely balanced by their spin-spin interaction. Their

solution is also a purely vacuum solution with no strut required.

The source structure for the two-particle Curzon solution is still unknown. From

Section 4.2 it is known that although the Curzon metric given by Eq. (4.4) k Eq. (a.5)

is generated by the Newtonian mass monopole, the Curzon solution is not the unique

spherically symmetric, vacuum solution of general relativity. The source for the Curzon
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solution is a ring singularity with finite radius and infinite circumference, and the space-

time has a doubled-sheeted topology inside the ring.

So without further investigation, there is no reason to expect that the source for

the two-particle Curzon solution simply consists of two point masses joined by a strut.

The source structure is probably considerably more complicated, and the space-time

may even be extendible. A first step towards resolving these issues would presumably

be to look for directional behaviour at the two particle locations; (r : 0, z1) and

(r=0,22).

4,9 Recent mathematical developrnents

In a recent paper by Woodhouse & Mason [29], the ideas presented in an earlier

paper by Ward [30 ] are developed into a geometric correspondence between the súø-

tionary, axisymmetric vacuum space-times and particular complex analytic objects-

holomorphic vector bundles on a non-Hausdorff Riemann surface (twistor space). As

a result, the solutions to the Ernst equations on space-time can be described in terms

of certain free holomorphic functions on regions in the Riemann sphere (or on parts of

the twistor space).

The paper discusses the effect of the action of the Geroch group on these free

holomorphic functions, and also the conditions on them implied by global properties

such as axis regularity and asymptotic flatness. Unfortunately the construction is, at

present, tied to the use of Weyl coordinates, so that aspects of the singularity/source

structure and global structure which are obscured by the use of Weyl coordinates, are

difficult to address in this new framework also.

Nevertheless the construction is geometric, and it should therefore be possible to
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articulate it independently of the choice of such coordinates. The study of singularities

would then perhaps be reducible to the study of singularities of holomorphic functions.

However further work needs to be done before these ideas are able to contribute to the

study of the singularities occurring in the Weyl metrics.

4.LO Ring singularities

Perhaps the most appropriate way to conclude a survey is to add a small, but

new observation on the given subject-in this case the Weyl metrics. This particular

observation will concern ring singularities (that is, rings comprised of curvature singu-

larities), occurring in the hypersurfaces ú : constant of the Weyl space-times. These

rings are known to be a common feature throughout the entire Weyl class.

That the Weyl metrics should exhibit singularities in the form of rings is not

really very surprising, since all metrics in the class are axisymmetric. So if a curvature

singularity occurs at the point (ro,rorpo) in the hypersurface f : constant (rs + 0),

then a curvature singularity occurs at every point (rorro,p), where 0 < g 12r, In

other words (ro, to) is a ring singularity.

What past investigators have found rather more surprising, is that these rings may

have an infinite circumference. If, in addition, the ring singularity can be reached from

the axis of symmetry via a finite number of spacelike geodesics, each having finite proper

length, then one is indeed confronted by a highly counter-intuitive phenomenon-

namely a ring having finite radius, but infinite circumference !

The Curzon metric provides the most well-known example. Although in Weyl

coordinates the Curzon singularity appears as a point (at ,R : 0) exhibiting highly

directional behaviour, a change to the new coordinates constructed by Scott & Szekeres
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un\ryraps the point to include, amongst other things, a ring singularity with finite radius

and infinite circumference.

When past investigators of Weyl metrics have happened across an example of

this phenomenon, they have tended to regard it as an exceptional case. However,

the simple argument which follows will indicate that for ring singularities with finite

radius occurring in Weyl metrics, the generic case is that the circumference of the

ring is infi,nite, not finite. Note that the standard Weyl coordinates (ú,r, z,g)willbe

used in what follows, although the argument could proceed equally well in any other

coordinate system (t, * ry, g).

Suppose that in a Weyl space-time a curvature singularity occurs at the point

p: (to,ro#0,zo,po). It is assumed that p can be reachedfromthe axis of symmetry

by a Co curve 7, which consists of a finite number of spacelike geodesics, each having

finite proper length. So (rs, zo), 0 1 g < 2r is a ring singularity with finite radius

which occurs in every hypersurface t : constant.

Now it will generally be true that À : -oo at the curvature singularity p. This

means that À -+ -oo as p is approached from any direction. So if one considers the

circle given by (" : constant, zo), where 0 < r ( rs, then its circumference C' is found

to be Cr:2rr e-), and it is readily seen that as r -+ ro¡ C' - *oo.

The details have been omitted here, but the argument can be made rigorous.

Note that the fact that the ring singularity has a finite radius is not used to show

that it has an infinite circumference. In other words, a ring singularity with an infinite

radius would also have an infinite circumference, but this is not very surprising after

atl. It only remains to find a physical explanation of this strange phenomenon. How

can a ring singularity with finite radius have an infinite circumference ?

81



REFERENCES

1. Morgan, T. and Morgan, L.: Physical Reuiew 183, 1097 (1969). 'The gravita-
tional field of a disk'

2. Doroshkevich, 4.G., Zel'dovich, Ya.B. and Novikov, I.D.: Souiet Physics JETP
22, L22 (1966). 'Gravitational collapse of nonsymmetric and rotating masses'

3. Zel'dovich, Ya.B. and Novikov,I.D. : Relyatiui,stsleaya Astrofizilea, Nauka, Moscow
(1e67), 106.

4. Scott, S.M. and Szekeres, P.; General Relatiuity and Grauitation 18,557 (1986).

'The Curzon singularity I : Spaiial sections'

5. Scott, S.M. and Szekeres, P.: General Relatiuity and Graaitation 18,571 (1986).

'The Curzon singularity II : Global picture'

6. Scott, S.M. : Grauitational Collapse and Relatiuity, ed. Sato, H. and Nakamura,
T., World Scientific Publishing Co, Pte. Ltd., Singapore and Philadelphia (1986),

158. 'Analysis of a directional singularity'

7. Weyl, H.: Annalen der Physih64,ll7 (1917). 'Zur Gravitationstheorie'

8. Weyl, tI.: Annalen der Physik 59, 185 (1919). 'Bemerkung über die axialsym-

metrischen Lösungen der Einsteinschen Gravitationsgleichungen'

9. Synge, J.L. : Relatíuity: The General Theory, North-Holland Publishing Com-

pany, Amsterdam (1960), 309.

10. Curzon, H.E.J. : Proceedings of the London Mathematical Socí,ety 23,477 (1924).

'Cylindrical solutions of Einstein's gravitation equations'

11. Birkhoff, G.D. : Relatiaity and Modern Physics, Harvard University Press, Cam-

bridse (1923),255.

12, Bach, R. and Weyl, H.t Mathematische Zeitschrift 13, 134 (L922). 'Neue Lös-

ungen der Einsteinschen Gravitationsgleichungen. B. Explizite Aufstellung statis-

cher axialsymmetrischer Felder. Mit einem Zusatz über das statische Zweik&-
perproblem von H. Weyl'

13. Darmois, G. : Les Equations de la Grauitation Einsteínienne, Mémorial des sci-

ences mathématiques, Fascicule XXV, Gauthier-Villars, Paris (1927), 36.

L4. Zipoy,D.M. : Journal of Mathernatical Physics 7,LI37 (1966). 'Topology of some

spheroidal metricst

15. Gautreau, R. and Anderson, J.L.: Physi,cs Letters2S^,291 (1967). 'Directional
singularities in Weyl gravitational fields'

16. Robertson, H.P. and Noonan, T.'W. : Relatí,uity and Cosmology, W.B. Saunders

Company, Philadelphia, London and Toronto (1968), 274.

82



17. Gautreau, R. z Physícs Letters 284, 606 (1969). 'On equipotential areas and

directional singularities'

18. Voorhees, B.H. : Physical Reuiew D 2,zLLg (1970). (Static axially symmetric
gravitational fields'

19. Cooperstock, F.L and Junevicus, G.J.: International Journal of Theoretical
Physics 9, 59 (1974). 'Singularities in Weyl gravitational fields'

20. Papadopoulos, D., Stewart, B. and Witten, L.: Physical Reuiew D 24, 320

(1981). 'Some properties of a particular static, axially symmetric space-time'

21. Tomimatsu, A. and Sato, H.: Physícøl Reai,ew Letters 29, L344 (L972), 'New
exact solution for the gravitational field of a spinning mass'

22. Tomimatsu, A. and Sato, H.: Progress of Theoretical Physics 50, 95 (1973).

'New series of exact solutions for gravitational fields of spinning masses'

23. Gautreau, R. and Hoffman, R.B. ; Il Nuouo Cimento 86L, 411 (1969). 'Exact
solutions of the Einstein vacuum field equations in Weyl co-ordinates'

24. Cwzon, H.E.J. : Proceedings of the London Mathematical Society 23,xxix (1924).

'Bipolar solutions of Einstein's gravitation equations'

25. Silberstein, L. : Physical Reuiew 49, 268 (1936). 'Two-centers solution of the
gravitational field equations, and the need for a reformed theory of matter'

26. Einstein, A. and Rosen, N. : Påysical Reuiew 49, 404 (1936). 'Two-body problem

in general relativity'

27. Szekeres, P. : Physical Reuiew L76,1446 (1968). 'Multipole particles in equilib-
rium in general relativity'

28. Dietz,W. and Hoenselaers, C. z Physical Reaiew Letters 48,778 (1982). 'Station-
ary system of two masses kept apart by their gravitational spin-spin interaction'

29. Woodhouse, N.M.J, and Mason, L.J.: Nonlineari,ty 1, 73 (1988). 'The Geroch

group and non-Hausdorff twistor spacest

30. 'Ward, R.S.: General Relatiaity and Graui,tation 15, 105 (1983). 'Stationary
axisymmetric space-times : a ne\4r approach'

83



Chapter 5

The Abstract Boundary

A New Boundary Construction
for n-Dimensional Manifolds

1 Introduction

In general relativity, one often wishes to know whether a particular solution of

Einstein's field equations is singular or not. Such a seemingly simple question has often

been the cause of a great deal of confusion. Perhaps the most significant problem is that

a solution usually comes packaged in one of two ïvays. Either it is embedded in a larger

4-dimensional manifold e.g. the Schwarzschild solution (r > 2m), or no embedding is

given at all e.g. non-compactified Minkowski space-time.

The latter case is problematic because there is no edge to the space-time, which

makes it difficult to assess whether or not singular behaviour occuts there. The former

case is problematic because it provides a fixed reference. Whilst a metric may look

very singular with respect to that particular embedding, it may not look singular at all

with respect to another embedding e.g. the Kruskal embedding for the Schwarzschild

solution. However, it has often been the case that the assessment of whether or not a

solution is singular has been made relative to a given embedding.
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This paper provides a new approach to the problem, our aims being to clarify

the issues involved, and to provide a practical formula for judging whether or not a

particular solution is singular. We have shifted the question to a wider framework,

namely n-dimensional manifolds with regular metrics of arbitrary signature, since none

of the techniques and ideas used are peculiar to 4-dimensional space-times.

As much flexibility as possible has been incorporated into the scheme. For in-

stance, one may only be concerned about singular behaviour that occurs relative to

a special set of curves on the manifold. This is particularly true in general relativity,

where one may simply be interested in geodesics, or in curves with bounded accelera-

tion, etc. Apart from a few basic conditions which must be complied with, there is the

freedom to choose the family of curves that will be used.

The central idea of the scheme, is that all possible embeddings of the given pseudo-

Riemannian manifold into other n-dimensional manifolds must be compared. On the

basis of these comparisons, each boundary point belonging to such an embedding is

classified into one of six categories, three of which are non-singular, and three singular.

This allows a precise definition of a removable singularity and a directional singularity

to be formulated for the first time.

In order to elucidate the various new concepts and definitions that are intro-

duced, a number of examples, including some from general relativity, will be given

throughout. The final section of the paper contains our definition of a non-singular

pseudo-Riemannian manifold, together with a discussion of its relationship to past defi-

nitions. It would be a natural progression from such a point to consider the question of

an optimal boundary for a pseudo-Riemannian manifold. However, such considerations

are beyond the scope of the current paper, and will appear elsewhere. Finally, when-
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ever M¡M,M, etc. occur throughout the text, they will always denote n-dimensional,

connected, Hausdorff C- manifolds.

2 Parametrized curves on a manifold

The concept of a curve on a manifold is integral to any discussion regarding

singularities of pseudo-Riemannian manifolds. Although geodesics are often used in

this context, we will include a much wider range of curves, called parametrized curves.

A subclass of these curves may then be selected, according to the purpose that one has

in mind.

Definition 2.L IÍ ø € IR, å € R U {+oo} and a < b, then we will refer to fa,b) as a

half-open interval. .4 parametúzed curve 1(t) on a manifold M is a continuous rnl,p

1: I + M, where I is ø half-open ínteraallorb).

Definition 2.2 A parametrized, curue 1(t) on lvt wiII be said to be non-intersecting, i/

for any\ aniltz in I such that trf tz, 1(t1) andl(t2) are d,ifferent poínts oÍ M.

Deffnition 2,3 A non-intersecting, parametrized curue 1(t) on M giuen bA'Y z I -+ M

where I : faró), is equivalent to o,nother non-'íntersecting, parametrized, curue l(t') on

M gi,aen bAt' ,It+ M where I' :la',b'), íff {f(¿)'t e I}: {l'(t'):tte It} anil

l@) - "f'(o'). We will write that l(t) - ^l'(t').

If we let .F denote the family of all non-intersecting, parametrized curves ot M,

then it is readily seen that - is a proper equivalence relation on F. A particular

equivalence class under - will be denoted by [f (¿)], where 7(ú) is an arbitrarily chosen

member of that class.
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It follows from the preceding definitions that if two non-intersecting, parametrized

curves 7(ú) and l(tt) arc equivalent, then there exists a continuous, strictly monotone

increasing function s : [ø, b) -+ føtrö') such that 7' o I : 7. Clearly s(ø) : ø', and

as ú -+ ó-, s(t) -> b'-. 'We will say that 7/(ú') is obtained from 7(ú) by the change of

parørneter s.

Definition 2.4 Letl(t) be ø curae ín F giaen bU1,I --+ M where I:la,b), ønd,Iet

f(tt) be another curue in F giaen bU | : I'+ M where I':fa',b'). l'(t') will be saiil

to be ø subcurve oÍl(t) iff o < at <b' 1b o,nd 1(t)l¡",,6,¡:l(t').

Lemma 2,5 Let 7(ú) be a curve in .F given by 7 : I + M where I : fa,ó), and let

| (tt) be a subcurve of 7(ú) given by "Y' z It + M where It - lat ,bt).

(i) If b' 1b, then 7'(ú') has finite parameter range.

(ii) If b' : b and "¡(t) has finite parameter range, then 7'(ú') has finite parameter

range.

(iii) If bt : b and 7(ú) has infinite parameter range, then 7'(ú') has infinite parameter

range.

Definition2.6 Letl(t) be a curue in F giuen bA"l : I + M where I:lø,b), andlet

f(tt) be q,nother curae in f gíaen bA l: I'-+ M where I'--lo',b'). l(t) wiII be said

to be extendible to "l'(t') iÍ there eústs an i and j in It, where at 1¿ < j < bt, ønd ø

h i,n I, where a 1 lc 1 b, such that l(tt) lt;,j) - r(¿) lt¡,0 . Note that í anil Ie will not be

unique here. We will also say thøt 1(t) is extendible, when there es,ists a curue l(t')

in F such thøt 1(t) is eúendible to l(tt),

It is a straightforward exercise to show that if the curve 7(ú) is extendible, then

every other curve in [7(t)] is also extendible. So it is valid to speak about equivalence

classes of curves being extendible or otherwise.
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Now the equivalence class [7(t)] witt contain curves with finite half-open interval

I' : fa',ó') (i.e. ô'is finite), as well as curves with infinite half-open interval I" - lat',U')

(i.e. ó" : +oo). This is an undesirable feature since it means, amongst other things,

that a curve may be extendible even though it has infinite parameter range. In order

to avoid these situations, we introduce some restrictions on .F.

Let C C F be a family of non-intersecting, parametrized curves on M, and let

7(ú) be a curve in C given by 7 : I + M where I = la,ó). We will always require that

all subcurves of 7(ú) are also members of C. The equivalence relation - is naturally

induced on C from .F, and as before, we will denote an equivalence class of curves in C

bv [z(¿)].

Definition 2.7 It witl be said that C has the bounded parameter property (b.p.p.) iÍ

for any curue {t) in C, either all members of the equiualence class l1(t)l høae finite

parameter range, or øll members haae infi,níte parameter ro'nge.

C will always be assumed to have the bounded parameter property in what follows,

and a manifold M withsuch a C will be denoted by (M,C). Three well-known examples

are given below.

Examples

(i) M is a manifold with affine connection. Co is the set of all non-intersecting

geodesics with affine parameter.

(ä) M is a manifold with affine connection. Cno, is the set of all non-intersecting,

continuous, piecewise C1 curves with generalized affine parameter [1].

(äi) lvl is a manifold with Lorentzian metric. Cn" is the set of all non-intersecting,

timelike and null geodesics with affine parameter.
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Theorem 2.8 Suppose that we have an (M,C). Let 7(ú) be a curve in C given by

7 z I -+ M wherc I : lø,ö), and let l(tt) be another curve in C given by l, I' + M

where I' : fø',ó'). If 7(t) is extendible to l(tt),then'¡(ú) has finite parameter range.

Proof

Since 7(t) is extendible to l(t'),

S irj e ltr k€l, where øt 1i < i <ó' and a llc <b,

such that l(t')l¡,ù - 7(f)l¡r,o).

Now 7(ú) l¡r,a¡ is a subcurve of 7(t), and 7'(ú/) l¡;,¡¡ is a subcurve of- l(tt).

So both are contained in C.

Since j 1b', j is finite.

Thus by the bounded parameter property, ó is also finite.

QED

3 Enveloped manifolds and boundary sets

In order to formulate a definition of a singularity-free pseudo-Riemannian mani-

fold, we need to consider the behaviour of the metric near the ttfringes" or ttboundaries"

of the manifold. However, these two words really only make sense when .&f sits in some

larger manifold,û'. ttrir notion is made precise in the following definition, thus enabling

boundary points and boundary sets to be defined later in the section.

Deffnition 3.L An enveloped manifold is a pair of manifolds M and, .û and a C*

embeililing g I M -, û. This wiII be denoteil by (M,ñ,d. We note that since both

møni,folils haae the san'ùe ilimension n, g(M) is øn open submaniloW of û. We will

also refer to the enuelopeil manifolil as 0,n envelopment of M bu û, and û witl be

called úl¿e enveloping manifold.
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There are two different methods of setting up an enveloped manifold, both of

which will be used in the examples which follow here, and in later sections.

Method 1. We start with a manifold û, und choose one of its connected, open subsets

M. This subset has a natural C- diffe¡entiable structure induced ftom û, with which

it becomes an open submanifold,of .û. Trivially, the map i : lvl - .û given by i(p) : p

is a C* embedding . So (M, fr,ù is an enveloped manifold.

Examples

0 û: lR2

M:lR2-aCantorset

ç) û: IR2

M:{(",y)€lR2:A>0}

Note that where an enveloped manifold, (Jvl,û,ò has been set up using this

method, we will usually refer to ?(J"l) simply as M.

Method 2. We start with a manifold M, and,look for another manifold û iotowhich

it can be C- embedded as an open submanifold. Then (/úrû,g) is an enveloped

manifold.

Examples

(iii) rf :{(',y) €R':y>0}

.û: IR'2

?tM-rû

þ,V)-(r,æ*y*2)
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(iv) lvl and g as in Example (iii)

û : IR' - {(r, y), *' + y" < L}

In Examples (ii), (iii) and (iv) above, the manifold M is the same. Although the

enveloping manifold is the same in Examples (ii) and (iii), the C- embedding differs.

In Example (iv), the enveloping manifold itself is different. These three examples thus

give three different enveloped manifolds.

Definition 3.2 .4 boundary point p of øn enueloped mønifold (M,û,g) is ø poi,nt in

the topological bounilary of p(/vl) i.e. a poi,nt p in fr - VU"q such that euer7 open

neighbourhood, U of p in û hot non-empty intersection with ?(M). A boundary set

B 
-C 

û - g(M) is a connected set of such boundary points, and we will use the

notati,on (M, û,?, B) for an enueloped manifold with a particular boundary set B.

There will often be an infinite number of boundary points associated with any

particular enveloped manifold (M,û,V). Only when ?(M): û will there be no

boundary points at all. As the next example will illustrate, there are cases whe¡e

precisely one boundary point exists.

Example

(") û: lR2

Jvl - R'- {O} where O is the origin

The only boundary point p is O.

The only boundary sets B are Ø and {O}.
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4 Limit points and C-cornpleteness

Definitio n 4,L Let (M, û,p) be an enueloped mønifold, and {t) a non-intersecting,

parømetrized curue on M giuen bU 1 t I --+ M where I : la,b), We wiII say thøt ø poínt

p e û is ø limit point 
"l l@ if, in the half-open interuo,l I, there eústs an increasing

sequence of numbers t; -+ b- such that (p "l)(t¿) --+ p (rneant in the usuøl topological

sense). If, in addition, (p"l)(tt) --+ p for euery such sequence {t;}, then p wiII be said

to be the endpoint of l(t).

It is clear from the definition that limii points and endpoints p of curves on JvI

either lie in g(M) itself, or are boundary points lying in .û - g(M). In the former

case \¡¡e will simply say that 7(f ) has a limit point or an endpoint in M, narnel1 p-r(p).

Some curves will have no limit points at all, and others may have infinitely many. Of

course a curve with an endpoint has a unique limit point.

Now if 7(ú) and l(t') arc two curves in F, and 7(ú) - 'l'(t'), then a limit point of

7(t) will also be a limit point of l(tt), and if 7(t) has the endpoint p, then 7'(ú') also

has the endpoint p. So we may speak about the limit points of the equivalence class of

curves [Z(¿)], and where appropriate, say that [7(t)] has the endpoint p. Also if ^¡(ú) is

extendible to another curve in F, then it is clear that 7(ú) has an endpoint in M.

Definitio n 4.2 Let (M, û, g, B) be an enueloped manifold with boundary set B , and

let 1(t) be a curae on M belonging to F. It wíll be said thøt 1(t) approaches B if it

has øt least one limit point in û, and all its limit poínts in û lie in B.

Definition 4.3 Giuen an (M,C), we will say that M is C-complete iff euery equíua-

lence class of curues in C with finite parameter rønge has a lirnit point in M, and, has

no limit poínts in any û - ç(M), where (M,û,9) is an enuelopment of M.
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As the following two examples demonstrate, C-completeness does not guarantee

that every equivalence class of curves in C with finite parameter range is extendible.

Examples

(i) (/"1, C) where C consists of the curve 7(ú) with finite parameter range, together

with all of its subcurves. If 7(t) has an endpoint in /vl,lhen M is C-complete.

However'¡,(ú) is clearly not extendible.

(ii) (t1,c)where lvl:R2 andc contains the curveT(ú) givenbyl , [0, t) -+ ]R2 where

l(t) : (ú, sin (1 - ú)-t). This curve has a finite parameter range and infinitely

many limit points in JvL It also lies in a bounded region of lR2. So whether or

not M is C-complete will depend on the other curves belonging to C. However,

irrespective of this, 7(ú) is not extendible to any curve in C (or in .F for that

matter), because it doesn't have an endpoint in /vl.

The converse is clearly true, namely if every equivalence class of curves in C with

finite parameter range is extendible, then M is C-complete.

5 Abstract boundaries

The set of all boundary points of a particular manifold M is often enormously

large, since there may exist an infinite number of envelopments of. M, each having an

infinite number of boundary points. It is therefore desirable to reduce it to a more

manageable size, by adopting some suitable process for making identifications between

boundary points. This is what we proceed to do.
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Deffnition 5.1 If (M,û,g,B) and(M,,û',g',B') aretwo enuelopedmanilolds with

boundary sets B and Bt respectiaely, then we say tha,t B covers B' iÍ for euery open

neíghbourhooil U of B in .û th"r" esists an open neighbourhood [Jt of Bt i,n .û' such

that

p o v'-t (r' n ?'(Jvl)) C ,.

If B consists of just a single point p¡ we will simply say that p covers .B'. Similarly,

if B' consists of a single point pt, w@ say that -B covers p'. If both consist of just a single

point, then we say that p covers p'. For the latter case it can be established that if p'

is a limit point of a particular curve on M (belonging to F), then p is also,

Theorem 6.2 Let p be a boundary point of the enveloped manifold (M,û,g), and

let p'be a boundary point of the enveloped manifold (/rt,û',p'). Suppose that p

covers p' . Ifp' is a limit point of a curve 'y(t) in .F given by ? : I -+ M where 7 : [a,b),

then p is also a limit point of "¡(ú).

Proof

Since p' is a limit point of 7(t), in the half-open interval .I there exists an increasing

sequence of numbers f¡ -+ å- such lhat (gt "Z)(¿¡) --+ p' .

LeN U be an open neighbourhood of p in û,.

Since p covers p', there exists an open neighbourhood, (J'of pr in.t'such that

I o 9'-t (u' ñ v'(M)) c u'

Now I n€N[ s.t. V i]n, (p'"f)(¿r) e U'n7'(M)

+ V i)n, (p"rX¿,) eU.

Thus p is also a limit point of 7(ú).

QED
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Now suppose that .B and Bt are boundary sets of the enveloped manifold (,1v1,

û,ò. If B' is a subset of .B (possibly consisting of a single point p'), then it is

clear that B covers B' (B covers p'). Conversely, for two different enveloped manifolds

(M,n,9) and (M,û',g'),it is possible for a single boundary point of (M,û,g) to

cover a boundary set of (Mrû'rp') consisting of infinitely many points.

Example

0 fr: IR'

M - R" - {O} where O is the origin

r is the usual radial coordinate

i,:M--û vtlv!-.û
pàp p(r)-p(r+1)

i(M)-Jvt-R"-{o}

P(M): IR' - B"(0,1) where B"(0,1) is the unit ball (0 < r < 1)

The only boundary point of (M,û,ù is the origin O.

However (M,û,g) has an infinite number of boundary points, namely the unit

sphere ,S"(0,1).

S"(0,1) covers O and O covers ,9"(0,1).

Covering is a partial ordering on the set of all boundary sets of a manifold Mz

(M,û,p,8) B covers B

(M,ût,Pr, Bt), (M,,û2,v2,82), (M,ûs,9s, Bs)

If .81 covers .B2 and -82 covers -B3, then .B1 covers .B3.
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Definition 5.3 Giaen two enueloped, manifotds (M, û,P, B) and (M, û',9t, Bt) with

boundary sets B and Bt respecti,uelUt ue will say that B and Bt øre equivalent iff B

couers B' and Bt couers B. This wíII be d,enoted by B - B'. We will a,lso use the

notatí,on p - B', B - p' and p - ptt where appropriate.

'We have thus imposed an equivalence relation - on the set of all boundary points

of the manifold /\4. If \r/e now make identifications between boundary points according

to whether or not they are equivalent, then we will greatly reduce the size of the set to

something more manageable. This is what we set out to do at the start of the section.

Definition 5.4 If p is a boundary point of an enueloped, manifold' (M, û,p), then the

equiualence cløss (under -) oÍ boundary points oÍ M to which p belongs will be denoted

by lpl. This will be referred to as o,n abstract boundary point oÍ M. The set of all such

abstract boundary points will be denoted by ß(M), anil called the absftact boundary oÍ

M.

In Example (i) we saw that the boundary point O covers the boundary set

S"(0,1), consisting of infinitely many points. Since the reverse is also true, we have

tb,at O - .9"(0,1). Now if p € ,9"(0,1), it may be seen that O covers p, but that p

does not cover O. So O and p are not equivalent boundary points, which means that

[O] and Ip] are different abstract boundary points of. M. In such a situation we would

say that [O] covers [p].

In general there will be no relationship at all between two abstract boundary

points [p] and Iq ] of ¡11. However, a,s the example indicates, there may be cases where

[p] covers [q] ot [q] covers [p], but both cannot be true if [p] and [q] are diferent

abstract boundary points. It is clear that covering is also a partial ordering on the set

of all abstract boundary points of. M.
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Now there are further ways of reducing the size of the abstract boundary ß(/v1)

of Jv|. If M is paired with a family C of curves ot M i.e. (M,C) (see Section 2), then

we can confine ourselves to thinking about boundary behaviour which occurs relative

to C. This motivates the following definition.

Definition 5.5 Suppose that we haue an (M,C), and an enuelopment of M by .û,

namely (M,û,9). Let p be a boundary point oÍ (Jvl,û,ò. Then we wiII say that p

is a C-bottndary point iff it is a límit point of some curue in the family C.

We note that p has only to be a limit point of a curve in C, as opposed to an

endpoint. This means that some C-boundary points will not be approached by any

curve in C, although they will, of course, be approached by curves in F. An example of

such behaviour will be given in the following section, after we have introduced a metric

on M.

The set of all C-boundary points of a manifold M is normally considerably smaller

than the set of all boundary points of. M, because the family C of curves on M is much

smaller than the family .F. The size of this set can be further reduced by identifying

its elements according to whether or not they are equivalent (see Definition 5.3).

Definition 5.6 Giuen an (M,C), an equíualence class (under -) otC-boundøry points

of M wíll be called ør¿ abstract C-boundary point ol Jvl. The set of all such abstract

C-boundary points will be called úåe abstract C-boundary of M, and denoted by ßc(Jvl).

Corollary ó.7 Given an (M,C), Bc(M) ç B(M).

Proof

Let p be a boundary point of the enveloped manifold (M, fr,d.

Let p' be a C-boundary point of the enveloped manifold (M, û',p')
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Supposethat p-pt.

Since p' is a C-boundary point, it is a limit point of some curve 1(t) in C.

By Theorem 5.2, p is also a limit point of 7(ú).

Thus p is a C-boundary point of M.

It follows that two equivalent boundary points of. M are either both C-boundary points,

or are both not C-boundary points.

QED

In general, ßc(M) will be a much smaller set than B(J"l). So from our starting

point in this section, namely the set of all boundary points of M, we have made some

very significant reductions to obtain the abstract C-boundary of. M. 'We note that

covering is also a partial ordering on ßç(M).

Definition 5.8 Suppose that we høae an (M,C), and, an enuelopment of M by M,

nømely (M,û,g). Let p be aC-boundøry point of (M,û,ù. Then we will say that

p is a point at infinity iff it is not ø limit poínt of any curae in C with fi,nite parameter

ra,nge.

This means that all curves in C with p as a limit point have infinite parameter

range. No ambiguity occurs here, because if 7(t) is one such curve with infinite pa-

rameter range, then by the b.p.p., all curves in C belonging to [7(ú)] also have infinite

parameter range. All subcurves of 7(ú) are members of C, and by Lemma 2.5 (iii), any

such subcurve with p as a limit point also has infinite parameter range. Similarl¡ if

.y(ú) is equivalent to a subcurve of some other curve in C, then that curve has infinite

parameter range too.
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The question which naturally arises here, is whether the definition of a point

at infinity can be successfully transferred from C-boundary points of. .lvl, to abstract

C-boundary points of M. The answer to this question is provided by the following

corollary to Theorem 5.2.

Corollary õ.9 Suppose that we have art (M,C). Let p be a C-boundary point of

the enveloped manifold (M,û,g), and let pt be a C-boundary point of the enveloped

manifold (M,û',/). If p - pt and p is a point at infinit¡ then p'is also a point at

infinity.

Proof

Since p' is a C-boundary point of M, it is a limit point of some curve 1(t) in C.

Suppose that 7(ú) has finite parameter range.

By Theorem 5.2, p is also a limit point of 7(t)

So p is a limit point of a curve in C with finite parameter range.

But p is a point at infinity

It follows that all curves in C with pt as a limit point have infinite parameter range.

Thus pt is a point at infinity.

QED

This means that every equivalence class Ip] of C-boundary points of M either

consists entirely of points at infinity, or has no such points. So we will speak about

an abstract C-boundary point of /vl being a point at infinity or otherwise. This then

provides a natural way of separating the abstract C-boundary Bs(M) into two disjoint

subsets.
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6 Pseudo-Riemannian manifolds

Definition 6.1 ACh metric g ono,mønífoldM(where&e NU{0}) isareal-uølued,,

secondra,nk couariønt, symmetric and non-degenerate Ck tensor field, on M, The pøir

(M,g) will denote a manífold M with a Ck rnetric g, and will be called a Ce pseudo-

Riemannian manifold.

Note that since g is non-degenerate and continuous on M,its signature is constant

over M, Our discussion will encompass all signatures, except where explicitly stated

otherwise. When g is positive definite it will be referred to as a Ck Riema,nnian metric,

and the pair (M,9) will be called a Ch Riemannian manifold. When g is Lorentzian

and M is 4-dimensional, the pair (M,g) will be called a Ck space-time.

We recall from Example (i) of Section 2 that |f. M is a manifold with affine

connection, the set Cn of. all non-intersecting geodesics with affine parameter satisfies

the properties required of a family C of curves on M. Of course for a Ck pseudo-

Riemannian manifold (Mrù, where & > 1, the Cß-l pseudo-Riemannian connection

will always be the particular affine connection which is chosen. Also, since C, is such

an important class of curves on M, it will henceforth be assumed that it is contained

in any family C.

Definition 6,2 (M,9,C) will denote aCk pseudo-Riemanniøn mønifold(M,g), where

k )_ l, together with ø family C of curues on M which sati,sfies the properties giuen in

Section 2, and contains Cn as a subset. In addition, it will be assumed that i,f 7(t) ts

a curue in C which is equiualent to a curue in Cn, then 1(t) is itself ø member oÍ Co,

(M,9,C) will be referred to as a triple.
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The last condition simply ensures that the geodesics are only

affine parameters. Referring back to Example (ii) of Section 2, we o

would be a suitable choice f.or C, since the generalized affine parameter is an affine

parameter on all geodesics. Of course Cnoo is a much larger family than Cn, and one

would only use it if interested in the behaviour of the Ck metric g with respect to a

much wider class of curves than geodesics. The family Cn" given in Example (iii) of

Section 2 is not a suitable choice for C, since it does not contain the family Co.

Requiring that C has the subset Cn grarantees (for the first time) that every point

of the manifold M is located on at least one curve belonging to C. In fact, infinitely

many geodesics pass through each point p of. M. In addition, each p is the endpoint of

an infinite number of geodesics with finite affine parameter range. Thus, disregarding

the fact that p is not actually a C-boundary point of. M, there is no sense in which it

can be thought of as a point at infinity. We now provide two examples of manifolds

with Lorentzianmetrics in order to illustrate some of the points made in Sections 4 k 5.

Examples

(i) The Curzon space-time

Let û be the 4-dimensional manifold lR4. Using standard Euclidean coordinates

(t,r,y, z) on .û, Lt M be the open submanifold of .û, specified by z ) 0. The

set B : {p € fr i a:U:z=0} is clearly a boundary set of the enveloped

manifold (M, û,t¡.

The Curzon metric g on M (for n2 + v2 # 0) is given below. Following stan-

dard practice, it is expressed in cylindrical polar coordinates (ú,r, z,g) where

,:",ffiT )0 and g:tan-l yls @<v<2r).
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ds2 = _ e2^d* + e2(v_^\(dr2 ¡ dz2) ¡ 12 s_z\¿r2

where

This is a C* metric on lvt (for r > 0). Also, if the metric is re-expressed in Eu-

clidean coordinates, then it extends across the axis r -- 0 in a C- manner, Thus

g is a C- metric on the whole of M. The Curzon space-tim. (M,g) i. analysed

in depth and maximally extended in two papers [2], [3] by Scott & Szekeres (see

also Scott [4]).

En route to performing this extension, M is twice re-embeddedin û. The first

C- embedding used is t/ : (trrrz,p) * ( tan-1 tf m, rt(r,z), z'(rrz), ?), where

the somewhat complicatedfunctions r'and ztcan be found in [2]. In Euclidean

coordinates (ú,c, y,z),the points (ú,0,0,2) lying on the axis r : 0 are mapped

by $ to ( tan-l tf m,0, 0, z'(z)).

The topological boundary of ,þ(M) in .û is a connected, compact subset 
"f. 

û

(see Fig. 6.1). The set -B' : B1UB2, where Bt: {p' e û i p' : (t,r,-rf2,9)

where -rl2 <t <rf2,0 ( r ( rf2,01g 12n} and Bz: {p' e û, p'-

(t,, - \rU :0,2 : -"12) where -7112 < t < "l2j is a connected subset of

this bound.ary (i.e. Bt is a boundary set of the enveloped manifold, (M,û,rþ)).

It can be shown that the boundary set -B of the enveloped manifold (tø,ûrt¡

covers the bound.ary set Bt of. the enveloped manifold' (Mrû,rþ). However B'

does not cover B, so the two boundary sets are not equivalent.

Suppose that we are interested in the family Cn of. geodesics on M. In the above-

mentioned papers it was shown that B' is approached by a large class of oscillating

spacelike geodesics. In fact every boundary point p' belongingto Btis a limit point

r02

_ n'¿\_n-- R,
m212

rt 
- 

_Y- zR4'
R_ v'2 ! 22 and rn ) 0 is a constant



+-l["2 .=+

-_ lr

¿- II"2

r.=if

t=const.

]T
2

n

Figure 6.1 The Curzon space-time (M,S) is C- embedded by r/ into the

manifold .t- = Ra. The angular coordinate rp has been suppressed, but
points to the right of the diagram (i.e. r ) 0) have the constant angle

ó 1r, and points to the left of the diagram (i.e. r ( 0) have the constant
angle { * zr. An oscillating spacelike geodesic in one of the hypersurfaces
ú = constant is depicted.

0

t
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of infinitely many such geodesics, and is thus a Cr-boundary point. However,

apart from points belonging to the set 82, no p' in B' is the endpoint of a curve

in Co. Also, since no p' in B' is a limit point of a geodesic on M with finite affine

parameter, the boundary set -Bl is comprised of points at infinity.

(ii) The Misner example

Let M be the 2-dimensional manifold ,91 x IR1. Using coordinates (t,1þ) on M,

where ú € lR, 0<1þ 12r, aLorentzianmetric g on M isgivenby

d,s2:2dtd1þ+td,rþ2.

Clearly g is a C- metric on M¡ and so (M,g) is a C- pseudo-Riemannian

manifold. This example is due to Misner [5].

Suppose that we are again interested in the family Co of. geodesics on M. The

portion of. M containing f : 0 is depicted in Figure 6.2. The vertical lines on the

cylinder (i... ,þ: constant) are null geodesics which are complete on the infinite

cylinder. Null cones are drawn along one such geodesic. Null geodesics also lie in

t : 0, where they circle round and round infiniiely many times, but these are all

either past-incomplete or future-incomplete. Only the non-intersecting portions

of these geodesics are members of Co.

It can be shown that other geodesics (null, timelike and spacelike) execute infi-

nite spirals as they approach ú : 0 from either above or below. However, each

such geodesic approaches ú : 0 with finite afrne parameter, and thus is either

past-incomplete or future-incomplete. So (.M, g) is a geodesically incomplete C*

pseudo-Riemannian manifold. It is true though, that every geodesic in C, with

finite affine parameter range either has an endpoint in M, or executes an infinite
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spiral to t : 0 and thus has infinitely many limit poinls in .1v7, namely every

point on f : 0. So although the Misner example is geodesically incomplete, it is

Co-complete.
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Figure 6.2 The Misner example
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Chapter 6

Definition of a Non-Singular
Pseudo-Riemannian Manifold

7 Extensions and regular boundary points

Suppose that (M,g) is a Ce pseudo-Riemannian manifold, and that (M, û,9) is

an envelopment of M by,û'. thir could be written in shortened form as (M, g, û,p).

The C- embedding g , M --. û induces a Ce metric on the open submanifold e(M)

of .û, and where there is no risk of ambiguity, this will also be denoted by g. With

this convention established, \rye no\¡r define an extension of a CÈ pseudo-Riemannian

manifold (M,g).

Definition 7.1 A Ct exlension of ø Ck pseudo-Riemannian manifold (M,g), where

/e Af anill <¿< le,isønenuelopment(M,û,ò oÍMbya Ct pseud,o-Ri,emannian

mani,fold (û,Ð such that îlv@t):9.

Trivially, (M,g) is a Ce extension of itself. The signature of g on lvI and the

signature of f on .û ur.the same. Any boundary point p of. (M,û,d is regular in

the sense ihat it is simply a point belonging to a manifold .û on which there is a C¡

metric f. This raises the question of whether \¡/e can form a notion of regularity for

boundary points of arbitrary envelopments (as opposed to extensions) of (,rtl,g). This
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motivates the following definition

Definition 7.2 Suppose thøt (M,g) ís a Ck pseudo-Riernannian manifold ønd that p

is a boundøry poínt of the enaeloped mønifold (M,û,ç). Then we wíll say that p ís

C¡ regular lor g, if there esists øn open submanifold ñ "f 
û with 9(M) C ñ, p e ñ

ønd a Ct metric j on.M such that (ñ,9) is a Ct ettension oÍ (M,g).

Theorem 7.3 Suppose that (M,9,C) is a triple, and that p is a boundary point of the

enveloped manifold (M, û,ò. If p is Ct regular for g, then it is a C-boundary point

of M.

Proof

If the boundary point p is Ct regular for g, then there exists a Cl extension (Ñ,rtr) of

(M, g) such that Ñ i" an open submanifold of .û,, p(M) C ñ and p e ñ.

An infinite number of geodesic 
" 

on ñ pass through p.

Let l(t) be one such geodesic given by | : It --+ .M wherc I' :fa,c), which satisfies

the following four conditions:

(i) t is an affine parameter along 7'

(ii) 7'(t) is non-intersecting

(iii) 7'(ó) : ¡r for some b e (a,c)

(iv)7'(ú) ee(M) Y tela,b)

Now define the curve 1 : I --+ M, where I : [a,ô), by 1(t) = (g-t"l)(t).

Clearly 1 € Cs ç C.

7(ú) has the endpoint p.

Thus p is a C-boundary point of. M.
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If a boundary point of a triple (M,g,C) is not a C-boundary point, then we will

call it a nonl-boundary point. Since such points are not limit points of any curves

in our chosen family C, they are of no direct interest to us, and will not undergo any

further classification. Theorem 7.3 tells us that boundary points of. M which are Ct

regular for g must be C-boundary points. Points at infinity are also C-boundary points

by definition. The following corollary to Theorem 7.3 establishes the intuitively obvious

result that a point at infinity cannot cover a boundary point which is C¡ regular for g.

Corollary 7.4 Suppose that (M,g,C) is a triple. Let p be a C-boundary point of

the enveloped manifold (M,ûrV), and let p'be a C-boundary point of the enveloped

manifold (M, û',g). If p is Ct regular for g and pt is a point at infinity, then p' does

not cover p.

Proof

The proof follows directly on from that of Theorem 7.3.

By Lemma 2.5(i), "¡(ú) has finite parameter range.

If p' were to cover p, then by Theorem 5.2, p' would be a limit point of 7(t).

This would mean lhat pt was a limii point of a curve in C with finite parameter range,

and thus could not be a point at infinity.

QED

Since a point at infinity cannot cover a boundary point which is C¡ regular for

g, such points cannot be equivalent. In particular, this means that a point at infinity

cannot simultaneously be Cr regular for g, and vice versa. From Corollary 5.9, we

know that the label of 'a point at infinity' can be successfully transferred to abstract

C-boundary points of. M. In the light of Corollary 7.4, one wonders whether the same
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might be possible for the label 'C' regular for g'. Unfortunately, this is not the case,

as the following example demonstrates.

Example

(i) ,t: n.

M - (o,t)

i:M-.û vtJvl--û

æàt fièA:sL/z

i(/rt) - tuI:(0,t) e(M)- M - (0,1)

x : 0 is a boundary point of (M, û,¡)

a :0 is a boundary point of. (Ìvt,û,p)

ø :0 covers A :0 and y : 0 covers n:0

i.e. r:0 - U:0

A C- metric g on M is given by dsz : dx2.

So (M,g) is a C* Riemannian manifold.

In fact, using the coordinate ø, g is a C- metric on the whole of fr.

So the C- Riemannian manifold (û, ù is a C- extension of. (M, g).

Thus ø :0 is C- regular for g.

The induced C- metric on g(M) is given by ds2 : 4y2 ily2.

However, U : 0 is not C¡ regular for g for any I ) 1, since the metric becomes

degenerate as y -+ 0+.

8 Boundaries and removable singularities

In Definition 3.2, boundary points and boundary sets were defined with respect

to a particular envelopment of. M, say (M,û,ù. However, we have not yet given
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a definition of the entire boundary for such an envelopment, and will proceed to do

so now. This boundary should not be confused with the abstract boundary ß(M)

of. M, and the abstract C-boundary Bc(M) of. M (see Section 5), both of which are

independent of particular envelopments of. M.

Definition 8.1 Let t d,enote the enaeloped manifold(M,fr,ò. ?å,e boundary B(t)

of thís enuelopment of M is the topologica,l boundary of V(J"l) in .û. That is, B(t)

is the set consisting of all boundary poínts of t. Unlike a boundary set B of t, the

boundary B(S) is not always a connected subset 
"f fr.

Our classification of the constituent boundary points of such a boundary is only

partially complete. As yet, the only C-boundary points of a triple (M,9,C) which have

received a further classification, are those which are either C¡ regular for g, or points at

infiniiy. Such boundary points would normally be considered to be non-singular with

respect to the Ce metric g on M and the chosen family C of curves. Since not-C-

boundary points have no bearing on whether or not the manifold Jvl is C-complete, it

would seem reasonable to also classify them as being non-singular.

Deffnition 8.2 Suppose that (M,g,C) is a triple, a,nd tha,t t:(M,û,d is a,n enuel-

ogtrnent ol M by û. We wilt say that ø boundary point p oÍ € is Cl non-singular, a/ iú

is either Ct regular Ío, g, a point at infi,ni,ty, or a nonl-boundary point, Otherwise we

will say that it is Cl singular. A boundary set B of € will be søid to be Ct non-singular,

if it consists entirely oÍ Ct non-singular bounilary points.

So by definition, lhe Ct non-singular boundary points are already further classified

into three types. We now embark on a classification of the C¡ singular boundary points,

which coincidentally will also be into three types.
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Deffnition 8.3 Suppose thøt (M,9,C) is a triple, and that p is a CI si,ngulør boundary

point of the enuelopment (M,û,d oÍ M. We will say that p is a CI removable

singularity , íf there erists a Ct non-singular boundary set Bt of another enuelopment

(/rl, û',p') oÍ M, such that Bt couers p. Otherwise, we will say that p is a Ct essential

singularity.

A removable singularity occurs when non-singular boundary points of an envelop-

ment of M are squashed together in another envelopment. This type of singular point

is not really a problem since, as the name suggests, it can be 'removed' by switching

to another envelopment of. M. On the other hand, essential singularities pose a more

serious problem, because their presence usually signifies that the triple (M,g,C) is, in

some sense, inherently singular. They will be discussed further in the following sections.

Examples

(i) In Example (i) of Section 7, the boundary point U : 0 of the enveloped manifold

U"l, ûrtp) is not C¡ regular for g, for any ¿ > 1. Taking the family C of curves to

be Cn, A :0 is certainly a Cr-boundary point of M. However, it is not a point at

infinity. It follows that g : 0 is a C¡ singular boundary point (for all f > 1). Now

the boundary point s = 0 of the enveloped manifold (/rl,û,i) is C* regular for

g. Since U : 0 is covered by the C- non-singular boundary set {ø : 0}, it is a

C- removable singularity.

(ii) The Schwarzschild solution

Let û, be the 4-dimensional manifold 52 x lR2. Using coordinates (t,r,0,g) on

û,Lt Mbe the open submanifold,of..û specified by r ) 2rn (where rn > 0).
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The familiar Schwarzschild metric g on lvl is given by

ds2=- dtz + dr2 I r2(do2 + sin2d dp').(
-1

This is a C* Lorentzian metric on M, and so the pair (M, g) is a C- space-time.

We will take the family C of curves on M to simply be Cn, so that we have the

triple (M,g,Cà.

Each point p of. ,û giv"n by (ú,2m,0,p) is clearly a boundary point of the en-

veloped manifold (M,û,i). However no such point is Cl regular for g (for any

l t t), since the metric component g,. becomes infinite as r -+ 2m+. A, partic-

ular boundary point (ts,2m,0o,go) is the endpoint of spacelike geodesics on M

given by ú : ts, 0 : ds and g : go. Such geodesics reach the boundary point

(ts,2m,0o,?o) in finite proper distance. We conclude from this that every point

(t,2m,0,g) is a C¡ singular boundary point of M (for all ¿ > 1).

Now Kruskal [6] re-embedded M in .û i"the following manner. Using coordinates

(t' , æ' ,0' , g) on û, the C- embedding t/ which he used is given by

(t,r,0,?)à (t' : T r -2m e'/am ("t/am - e-t/Am),

*, : T 
./r=ñ 

"r/+m 
("t/am * e-tla^¡, 0t : 0, g, : g) .

,þ(M): { (ú', n' ,0',,p') e û : il > l¿'l }. This set is labelled as region .I in Figure

8.1. The induced C- metric on tþ(M) is as follows:

d,sz : F'(t',"') (- dt'z + da'z) * r2(t',a') (d0'' + sin20' dp'')

where r is determined implicitly by the equation

(t')' - (*')' : - (r - 2m) e'/2^,

and .F is given by F2 : L6 m2 f r "-rfzm 
.
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L

r: consf&nb <2m,

:2¡n
t:@ r:0

I

I

r : constent
) 2¡n

Í'

/ : constent
) 2rn

t_

ú : consfant

t:@ f:0ü:0 :2tn
l.: constent
12m

Figure 8,1 The Kruskal re-embedding tþ of the Schwarzschild solution in
,92 x IR2. Coordinates (t'ra'r|t,gt) arc used, but the angular coordinates

0' and,g' aresuppressed. ,t(/"1) is region I, and,f/is regions I,II, I'and
II'.
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Now let Ñ denote the open submanifold of .û, consisting of all point s (t' , æ' ,0' , g')

such that (t')' - (*')' < 2m . fi is represented in Figure 8.1 by regions I , II , I'

and II'. It can be shown that the functions F'(t',c') and r2(t',æ') on rþ(M) can

be extended analytically to all of .M, ard are everywhere positive on .ü. So th"

induced C- metric on tþ(M) given above, can be extended to a C* metric / on

Ñ. ln other words, (ñ,Ð is a C- extension of (M,g).

The pointu (t' - 0,at :0,0',g) ln.û -rþ(M) are boundary points of the

enveloped manifold (M,û,rþ). Each such point (0,0,ds,p0) is C- regular for

g, and covers the boundary points (t,r - 2m,ïs,po) of the enveloped manifold

(tø,û,,1¡. This means that the Clsingular boundary points (t,2m,0,g) of.

(M, û,2') are, in fact, C- removable singularities.

Theorem 8.4 Suppose that we have a triple (M,9,C), and lhat ptis a boundary point

of theenveloped manifold t': (Mrû',g). If p'is a Ct removablesingularity, then

every Cl non-singular boundary set B which covers p/ contains at least one boundary

point which is C¡ regular for g.

Proof

If p' is a Cl removable singularity, then it is a Cl singular boundary point of. tt.

So p' is a C-boundary point of. M which is not a point at infinity.

This means that it is a limit point of some curve 7(ú) in C given by 7 : 7 ¿ M, where

I : Íø,ó), and ó is finite.

So in the half-open interval .I, there exists an increasing sequence of numbers ú¡ -r ó-

such that (p' .l)(t,) -+ p' .

Since p' is a Cl removable singularity, there exists a Cl non-singular boundary set B of

an enveloped manifold 8t : (Mrû,rp), such that B covers p'.
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Now(e"rX¿¡) eç(M), V ieN.

Let A={(p"?Xrr):f e N}çvUvl).

So,4 ìB:Ø.

Define U : .û - Ã.

Since A is closed, U is open.

Suppose that A ñB: Ø.

It follows that B Ç U.

.B covers pt , so there exists an open neighbourh ood (Jt of p' in .û' such that

? o9'-L (r'n9'(M)) c u.

Since the sequenc" (g'" ?Xúi) + pt ,

I r¿€N s.t. V í)n, (V'"1)(t;)eU'n7'(M)

+ V i)n, (p"1)(t¡)eU

+ AnU+Ø.

But this is a contradiction, since U : û - A.

Itfollowsthat AnB+Ø.

Let p e AnB.

Since AnB- Ø, peA-4.

This implies that there exists an increasing infinite subsequence {ú¡* z lc e N} of the

sequence {t; z i € N} such thaþ (9"2)(¿¡*) -+ p.

Thus p is a limit point of the curve 7(ú).

Since p is a Cl non-singular boundary point of t, and is a limit point of a curve in C

with finite parameter range, it must be Ct regular for g.

QED

116



I Directional and pure singularities

Definition 9.1 Suppose that (M, g ,C) í,s a tríple, anil that p is a boundøry point ol the

enaeloped mønifold, t : (M, û,d. We will say that p is ø Ct directional singularity,

íf it is ø CI essential singularity whích couers either a point at infinity, or ø bounilary

point which ís Ct regular lo, g. We will say that p is a Cl pure singularity , if it í,s ø

Ct essential singularity which is not a CI directional singularity.

So a directional singularity is a singular boundary point which covers either a point

at infinity or a regular boundary point, and yet is not itself covered by any non-singular

boundary set. This means that it might, for instance, cover two non-intersecting, non-

singular boundary sets of a particular envelopment of /vl. It might also be equivalent to

a boundary set of another envelopment of. M which contains pure singularities as well

as regular boundary points and/or points at infinity. There are quite a few possibilities.

On the other hand, pure singularities have been stripped clean of any connection

with regular boundary points and points at infinity, since they neither cover them,

nor are covered by them. Their presence indicates that a triple (MrgrC) is inherently

singular-a notion which will be made precise in the following section.

Examples

(i) A directional singularity

.û:R i:M-rfr
/\4-(0,2r) nèa

i(Jrl)-.h4-(0,2r)

r : 0 and r : 2r are the only boundary points of (M, frrù.
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.û,, : st

Let (r,0) be a standard polar coordinate patch on the manifold IR2, where r ) 0

and0<0<2r.

Let (r, 0t) be another polar coordinate patch on IR2, where r ) 0, 0 < 0t < 2tr

and 0t starts from d : zr and increases in the same direction as 0.

.û' *ill be represented as the C- submanifold of IR2 given by

{(1,d) :0 <0 <2o} u {(1,0'):0 <0t<hr}.

Now define a C* embedding g' : M - .û' as follows:

for rl4<a<7rf4 rr+(1 ,0=*),

for 0<r<Tl2 øe(1 ,0':x*r),

andfor 3rl2<r12r ør+(1 ,0':t-.n).

The point (1,0' : r) in û,'is the only boundary point of the enveloped manifold

(M,û',p).

(1, n') covers the boundary point ø : 0 and the boundary point x : 2r of the

enveloped manifold (lrt,,û, ;¡.

A C* metric g on M is given by ds2 : *l (1 * tan2 æf 4)2 du2 .

So (,,tl,g) is a C- Riemannian manifold.

In fact, g is a C- metric on the open submanifold (-2o,2tr) of. û,.

Thus the boundary point ø : 0 is C- regular for g.

Now suppose that C = Cn.

It can be shown that all geodesics on M which approach the boundary point

n :2¡r have infinite affine parameter range.

Thus æ :2r is a point at infinity.

The induced C- metric on g'(M) is as follows:
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for rf4 < 0 < 7rl4 ds2 : * (t + tanz 0f4)2 d02

for r <0t < 3rl2 d,s2 :#(t+ tan2(0t -r)14)2 d0'2

andfor rl2 <0t< r d,s2: *(t+tan2(ït*r)14)2d0'2.

It may be seen that as 0' -+ r+, g6tst + fi.
However, a"s 0t + 7t-, !l6t6t + *oo.

So the boundary point (1,n) of (M,û',V) is certainly not C¿ regular for g, for

any/)1.

Since it covers the boundary point ø = 0 which is C- regular for g, (1,2r) is a

Cr-boundary point which is not a point at infinity.

It is thus a Cr singular boundary point of. (M,û',g).

Now (1,2r) is not a Cl removable singularity, since it is not covered by a Cl non-

singular boundary set of any other envelopment of. M.

It follows that the boundary point (1,r) is a C¿directional singularity which

covers both a point at infinity, and a boundary point which is C* regular for g.

(ii) The Curzon space-time

(see Example (i) of Section 6)

We recall that the boundary set B of the enveloped manifold (M, û,i) consists

of points p which, in Euclidean coordinates (ú, r,A,z), are of the form (¿,0,0,0).

It may be seen from the Curzon metric componenl grr: -"-2mlø, where -R :

./w,thatforanycurveonM(i.e.aneIementof'F)whichhasapoint

p as its endpoint, gu --+ 0- as .R -r 0+ along the curve. So p is not Cl regular

for g, for any I > 1.
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It was shown in [3] that each p is the endpoint of time[ke, null and spacelike

geodesics on M with finite affine parameter range. This means that p is a Ct

singular boundary point of (M,û,ù. It was also shown that the limit of the

Kretschmann scalar Rprpofut"p" along any such geodesic is infinite. This implies

that, for I ) 2, p cannot be covered by any Cl non-singular boundary set of

another envelopment of M. That is, p is a Cl essential singularity for I ) 2.

Now referring back to Section 6, we recall that every boundary point p' belong-

ing to the boundary set B' of. the enveloped manifold (M,.û,rþ) is a point at

infinity. In fact every such boundary point is covered by precisely one bound-

ary point p in the boundary set -B of. (M,û,Ð. In particular, the bound-

ary points (tan-l tolm,0 < r 1 rf2, z : -Tl2, g), where úe is a constant,

and the boundary point (tutt-ttolm, o : 0, U :0, z : -Tl2) belonging to

Bt, are all covered by the boundary point (to,r:0,A = 0,¡z - 0) belong-

ing to .8. It follows that every p in B is a Ct directional singularity, for all

I > 2. Finally, it can be shown that each p is equivalent to a boundary set of

(Jrt,û,r/) which consists entireiy of points at infinity, non-Cn-boundary points

(tan-l tolm,r : r/2,-rl2 < z < 0,?), and C¡ (l > 2) pure singularities

(tan-1 tolm, r - r /2, z : 0, g).

(iii) The Schwarzschild solution

We recall from Example (ii) of Section 8 that (ñ,Ð is a C- extension of the

Schwarzschild space-time (M,g). Now consider the points (t'r*',T',p') 
"f. 

û

which satisfy the relatio.t (¿')' - (*')' :2m, where ¿' > 0. The set B of all such

points is clearly a boundary set of the enveloped manifold (fi,û,ù. Now for

any curve on M (i.e. an element of. F) which has a point p e B as its endpoint,
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j¿t¿t -+ -oo and lo,o, + *oo as p is approached along the curve. So p is not Cl

regular for g, for any I > L. We will take the family C of curve" oo ñ to simply

be Cn, so that we have the triple (ñ,1,Cò.

It is well known that each p e B is the endpoint of timelike and null geodesics on

ñ withfinite affine parameter range, and thus is not a point at infinity. So p is a

C¡ singular boundary point of ñ (for all ¿ > 1). Furthermore, these are the only

geodesics on ñ for which p is a limit point, which means that p itself does not

cover any boundary points which are points at infinity. It is also well known that

the limit of the Kretschmann scalar Rt rpoRt"p" along every geodesic on ñ with

p as its endpoint is infinite. This implies that, for I ) 2, p cannot be covered by

any Ct non-singular boundary set of another envelopment of. ñ. It also implies

that p itself does not cover any boundary point which is C¡ regular for /, where

I > 2, It follows that each boundary point p e B is a C¡ pure singularity, for all

l>2.

The classification of boundary points of a triple (MrgrC) is now complete, with

each boundary point belonging to precisely one of six final categories. The process

of determining the relevant category for any particular boundary point is illustrated in

Figure 9.1, which also incorporates the intermediate classifications that have been used.

On the other hand, we have not yet completed our classification of abstract C-boundary

points of. (M,g,C). Corollary 5.9 established that the label'point at infinity'can be

used for abstract C-boundary points. However, Example (i) of Section 7 and Example

(i) of Section 8 demonstrate that it is not possible, in general, to use either the label

tCl regular for g'or the label tCl removable singularity'for these points. The following

theorem provides two further labels which can be used.

LzI



(M,g,C)
k>¿>1

p is a boundary point of (J"1,û,p)

Q. Is p a limit point of any cruve belonging to C ?

Yxs NO

p is a C-boundary point p is a non-C-boundary point

Q. Is there a Cl extensioL (MÃ)
(M,g) such that p e lvl ç Jvl?

of C¡ non-singular

YE

p is Ct regular for g

C¡ non-singular

NO

Q. Is p a limit point of any curve
in C with finite parameter range ?

NO

pis a C¡ singular boundary point p is a point at infinity

Q. Ir p covered by any C¿ non-singular
boundary set of another envelopment of. M?

Cl non-singular

NO

p is a Cl removable singularity p is a Cl essential singularity

Q. Does p cover either a point at infinity, or a
boundary point which is C¡ regular for g ?

YE

Y ES NO

p is a C¡ directional singularity p is a CI pure singularity

Figure9.1 Givenatriple (M,g,ú) andanl € N,where 1(l ( &,thisisaclassification
of a boundary point p of the envelopment (M, û,p) of lvl bv û.The six possible final
categories appear in boxes.
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Theorem 9.2 Suppose that (M,g,C) is a triple. Let p be a boundary point of the

enveloped manifold (/r1, û,p), and let p' be a boundary point of the enveloped manifold

(M, û' , p'). If p - pt andp is a C¡ directional singularity, then p' is also a C¡ directional

singularity. If p is a Cl pure singularity, then p' is also a Cl pure singularity.

Proof

Let p be a Ct essential singularity

* p is a C-boundary point of. M.

Since p - p', by Corollary 5.7, p/ is also a C-boundary point of M.,

Since p is not a point at infinit¡ by Corollary 5.9, p' is not a point at infinity either.

Suppose that p' is CI regular for g

* p is covered by the Cl non-singular boundary set {p'}.

But p is not a Cl removable singularity.

It follows that p' is a C¡ singular boundary point.

Similarly, p' cannot be a Ct removable singularity, since this would again imply that p

is a Cl removable singularity

Thus p/ is also a Cl essential singularity.

Now if p covers either a point at infinity, or a boundary point which is Cl regular for

g, then so does p', and vice versa.

This means that p and p' ate either both C¡ directional singularities, or are both C¡

pure singularities.

QED

Consider an abstract C-boundary point [p] of a triple (M,g,C). If p is a point

at infinity, then [p] is a point at infinity. If p is a Cl directional singularit¡ then by

Theorem 9.2, we are entitled to call [p] u CI directional síngulariúy. Similarly, if p is
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a Cl pure singularity, we can also call lp) " Ct pure si,ngularity. The only remaining

possibilities are that p is either C¡ regular for g, or is a Cr removable singularity.

Now we have seen in Example (i) of Section 7 and Example (i) of Section 8, that

it is possible for a boundary point which is C¡ regular for g to be equivalent lo a Ct

removable singularity. So we will say that Ip] is Ct regular for g,il at least one member

of that particular equivalence class of C-boundary points is Cl regular for g. Otherwise,

if all members of the equivalence class are Cl removable singularities, then [p] will

also be called a Ct remouable singularity. This completes our classification of abstract

C-boundary points of a triple (M,g,C) into five final categories. The process of deter-

mining the relevant category for any particular abstract boundary point is illustrated

in Figure 9.2.

10 Singular pseudo-Riemannian manifolds

The underlying philosophy of this paper, is that in order to say when a particular

triple (M,grC) is singular, one needs to consider ø// possible envelopments of Mby

other n-dimensional manifolds û. It is not sufficient to base our assessment on one

given envelopment of M, since we have seen that a singular boundary point of such an

envelopment may be covered by a non-singular boundary set of another envelopment

of. /vl, or may itself cover regular boundary points or points at infinity. Only a pure

singularity cannot be tremoved' or 'separated' by switching to other envelopments of

lvl, and thus signifies that the triple is inherently singular.

Definition 10.1 ,4 triple (M,g,C) wíll be said to be CI singular (where I < t < k),

iff the abstract C-boundary Bc(M) of M contains a Ct pure si,ngularity. Otherwise it

will be said to be Ct non-singulat, or Cl singularity-free.
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(M,g,C)
k>l>L

p is a boundary point of (/"1,û,ç)
le)e B(M)

Q. Is p a C-boundary point of. ivl?

No

le) e Bc(Jvt) [p] is an abstract non-C-boundary point

Q. Is
belonging

oundary point
] C¡ regulat fot g ?.

any
toI

b
p

Yes

[p] is Ct regular for g

is a Ct removable tsp
singularity

r is a C¡ directional' singularity

NO

p p
at

\I
Ip]ir p Cl.¡emovable

srngulanty
[p] is a point

at rnflnlty
Ip]ir q C¡.directional

srngularrty
[p]ir u.C¡ pure

slngularrty

Figure 9.2 Given a triple (M,g,C) and an I e N, where 1 < I S /c, this is a classification
of an abstract boundary point [p] belonging fo ß(/v1). The six possible final categories
appear in boxes.
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There are two elements of choice in this whole scheme. If we begin with simply

a Ce pseudo-Riemannian manifold (M,g), we must first choose the family C of curves

on M that will be used. From Section 6 onwards it has been assumed that Co is always

a subset of C. Just what other curves are also included in C depends entirely on the

particular interests of the user, and the purpose that they have in mind. Varying the

choice of.C may change the status of a triple (M,g,C) from non-singular to singular,

and vice versa. We are also free to choose an I between 1 and fr. Clearly, cases will arise

where a triple (M,g,C) is both C¡ singular and Ct'non-singular, where L < tt < I < k.

So the choice of / is an important factor.

Theorem 10.2 If a triple (Mr7,C) is C-complete, then no boundary point of any

envelopment (M,fr,d of M is either C¡regular for g or C¿singular (1 < I < k).

Proof

Let p be a boundary point of the enveloped manifold (M,fr,ù.

Now suppose that p is either Ct regular for g or C¡ singular.

It is thus a limit point of a curve 7(f) in C with finite parameter range.

But since (M,9,C) is C-complete, T(ú) has no limit points in ,û - rp(M).

This is a contradiction.

It follows that (M,grC)has no boundary points which are either Cl regular for g or

Cl singular.

QED

Corollary L0.3 A triple (M,9,C) which is C-complete, is Cl singularity-free.

The reverse of Corollary 10.3 is not true in general. If a triple (Mrg,C) is C-

complete, then any boundary point of an envelopment (M,ûrù of. M, must either
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be a point at infinity or a non-C-boundary point. However, a boundary point of a triple

(MrgrC) which is CI singularity-free may, in addition, be a Cl removable singularity,

a C¡ directional singularity or Ct regular for g.

Example

0 û: lR'a

(t,*rV, z) arc Euclidean coordinate" oo û,.

A C* metric ,¡ on û is given by d,s2 : -d,tz * drz + dv2 * d,22.

(û,ù is Minkowski space-time.

Let C = Cn, so that we have the triple (û,T,C).

Let M-{pe.û: -1 < t,æ,U,z <I}.

(M,qlu,Cnlu) is a triple.

t: (M,û,ù'

Every boundary point p in the boundary B(€) of. t is clearly C- regular for ql¡y¡.

ß(€) is also a boundary set of t in this particular case.

If p'is a boundary point of another envelopment (M,û',p') of. M, then it is

covered by the C- non-singular boundary set ß(t).

Thus it cannot be a Ct pure singularity (1 < ¿ < oo).

It follows that the triple (M,Tlu,Crlu) is C- singularity-free.

However it is not Col¡a-complete, since 6(t) consists entirely of boundary points

which ate C* regular for r¡l¡a.

In summary then, a triple (M,g,C) which is Co-complete is not always geodesi-

cally complete e.g. see Example (ii) of Section 6. However, a triple which is geodesically

complete, is also Cn-complete. If the triple (M,g,C) is singularity-free, it is not nec-

essarily C-complete, but the reverse is always true (see Corollary 10.3). A significant
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advantage of Definition 10.1 over past definitions, is that a triple (M,g,C) does not

have to be maximally extended in order to be singularity-free.
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