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ABSTRACT

The main objective of this thesis is to gain a deeper understanding of the sin-
gularities which arise in solutions of Einstein’s field equations. This will involve both
an indepth study of one particular solution, namely the Curzon solution, as well as
the development of a whole new framework for handling singularities which occur in
arbitrary space-times.

The Curzon solution is a special member of Weyl’s class of metrics (the class of
all static, axisymmetric, vacuum solutions). The deceptively simple appearance of the
Curzon metric guaranteed that its surprisingly pathological singularity structure would
remain undiscovered for many years. Chapter 1 gives an historical perspective on this
solution. This is of great interest, because the early work on the subject from the late
sixties onwards precisely mirrors the slow but steady growth in the understanding of
singularities at large during those years.

In Chapter 2 the study of the Curzon solution begins in earnest. The analysis
is initially restricted to the spacelike hypersurfaces t = constant, so that one has only
to consider the behaviour of spacelike geodesics and curves which lie in them. It is
possible to find all such geodesics which approach the central ‘directional singularity’.
Ultimately a new compactified coordinate system (for each hypersurface) is introduced,
which clearly separates out the directional singularity into a ring of curvature singu-
larities threaded by spacelike geodesics heading out to infinity.

The class of all t-varying geodesics—timelike, null and spacelike—which approach
the Curzon singularity is obtained in Chapter 3. Many of these reach the singularity
with finite affine parameter and finite curvature. New coordinates for the Curzon
space-time are constructed which permit these geodesics to be extended, whilst still
preserving all features of the spacelike hypersurfaces derived in Chapter 2. The Curzon
metric can be smoothly connected with Minkowski space. Chapter 4 is a survey of the
Weyl metrics at large, giving the state-of-the-art of this subject and pinpointing what
remains to be done.

Finally, in Chapters 5 & 6, a framework is developed for deciding whether or
not any given pseudo-Riemannian manifold (M,g) is singular. This is based on a
new topological construction called the abstract boundary (a-boundary) of M. Of
course the 4-dimensional space-times of general relativity provide the motivation for
this work, and for this special class the new scheme has a number of advantages over
those already in existence, such as being more easily applied to specific examples,
and not requiring that the space-time under consideration be maximally extended.
Removable and directional singularities fit naturally into this framework, and are given
a rigorous definition for the first time.
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PREFACE
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7.1., NOVA Science Publishers, Inc., New York (to appear 1991), 30 pages. ‘When

is a pseudo-Riemannian manifold non-singular ?’

Minor modifications have been made to the papers which comprise Chapters 2,
3 and 4, in order that they fit better into the thesis format. The paper which forms
the last two chapters (5 & 6) is identical with the original version, except that it has
been split into two because of its length. As a result, the numbering of sections and
figures is different in those two chapters to that in earlier chapters. Also Chapter 6
continues straight on from Chapter 5, and begins with Section 7 (not Section 1). Each
of Chapters 1-4 comes complete with its own introduction at the beginning, and list
of references at the end. Of course, in the case of the last two chapters, only Chapter
5 has an introduction, and the list of references appears at the end of Chapter 6.
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Chapter 1

An Historical Perspective
on the Curzon Solution

1.1 Introduction

In this chapter, an historical perspective on the Curzon solution is given. Al-
though the solution has been known for many years (since 1924), investigations of its
singularity structure really only began in the late sixties. It transpires that an un-
derstanding of the singularity structure is central to an understanding of the global
structure of the solution. This will become apparent over the next three chapters.

The Curzon metric is presented in Section 1.2 as a special member of Weyl’s class
of metrics (the static, axisymmetric, vacuum solutions of Einstein’s field equations).
The fact that the metric possesses a singularity—the Curzon singularity—is immedi-
ately obvious. Section 1.3 is a review of past analyses of this singularity, together with
the conclusions drawn from them. This includes the development of the notion of a
‘directional singularity’, a term which will make regular appearances throughout this
thesis.

Section 1.4 is entirely devoted to a description of the most far-reaching of these
past analyses, namely that of Szekeres and Morgan. They produced the first ever

extension of the Curzon metric, in fact the only extension in existence prior to the one



which will be given in Chapter 3. Section 1.5 is a critique of the work reviewed in
Section 1.3. A comparison of the conclusions reached by the various authors provides
an interesting insight into the level and growth of understanding of singularities during
those years.

In Section 1.6 the relationship between the Curzon solution and Israel’s theorem
is considered, since it appears at the outset that the Curzon solution might be a
counterexample to the theorem. Of course, a close examination of the precise statement
of the theorem reveals that the Curzon solution is, in fact, excluded by two of the
technical conditions. However, the exercise does raise some interesting questions about
the possible topologies of event horizons, and the related issue of the nakedness of

singularities.

1.2 The Curzon metric

Using cylindrical coordinates (r,z,¢) with r > 0, z € R and 0 < ¢ < 27, the
static, axisymmetric, vacuum solutions of Einstein’s field equations are given by the

Weyl metrics [1], [2] (see also Synge [3])
ds? = — e2dt? + 2N (dr? + d2?) + rle” P dyp? (1.1)
where A (r,z) and v (r, z) are solutions of the equations

Arr F Aoz +7710 =0 (1.2)

and

vy =1 (A2 =A%), v, =2\ A, . (1.3)

If a solution A of Eq.(1.2) is found, then Egs.(1.3) can be integrated to find
v. In fact Eq.(1.2) is recognised as being simply the Laplace equation in cylindrical
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coordinates for a (-independent function. There is thus a straightforward method of
obtaining static, axisymmetric, vacuum, general relativistic fields. Namely choose an
appropriate Newtonian gravitational field and then integrate the Eqgs. (1.3).

An obvious choice is the gravitational field produced by a spherically symmetric
mass distribution with total mass m, which is located at the origin of the cylindrical

coordinate system. So

A=-m/R where R=+vr2422 (1.4)

and

m2r?

~ 9Rt

(1.5)

VvV =

where the constant of integration has been set to zero to ensure that the condition of
elementary flatness is satisfied along the z-axis.

This monopole solution is the so-called Curzon metric [4]. It is not equivalent
to the Schwarzschild metric—the unique spherically symmetric, vacuum solution of
general relativity. That solution is generated by the Newtonian potential of a constant
density line mass (or rod) with total mass m and length 2m, which is located along
the z-axis with mid-point at the origin ([5], [6]).

For the Curzon solution, each metric component becomes either zero or infinite
at the origin of the cylindrical coordinate system i.e. the metric is singular at R = 0.
Further investigation of the space-time in this region is necessary to determine whether
this is due to a particular property of the space-time, or if it is simply the result of a

bad choice of coordinates.



1.3 Past analyses of the Curzon singularity
Gautreau and Anderson [ 7] calculated the invariant Kretschmann scalar
a= Ry . R*° (1.6)

for the Curzon metric and found it to be of the form

2

a = exp l%n (n;z—g - 2)] .[polynomial in m/R] . (1.7)

For straight line trajectories z = cr, ¢ € R to R = 0, the behaviour of o was
seen from Eq. (1.7) to be a — co as R — 0. However for approaches along the z-axis
where r = 0, it was found that & — 0 as R — 0 (see Table 1.1 and Figure 1.1). They

noted

‘... there appears to be a directionality associated with the “singularity”
at the origin’

and concluded at the end of the article that

‘... the singular behaviour of an invariant quantity may not always
indicate the location of an intrinsic singularity, so that when examining an
invariant quantity one must be sure to take into consideration the possibility
of its directional behaviour’.

Stachel [8] took a different approach to the analysis of this directional singu-
larity —he was interested in determining its size (or extent). Using the coordinate

relations r = R sinf and z = R cosf, the Curzon metric was put into the spherical

coordinate (R, 0,¢) form

ds? = — 2 di? + e2*"N(dR? + R2d0?) + R?sin’0 e~} dy? (1.8)
m m?sin?0
where A= — R and V= (1.9)



Table 1.1: Directional behaviour of the Kretschmann scalar at the Curzon singularity

Trajectory }%_I% a
z=cr , ceR o0
r=20 0

The Gautreau and Anderson analysis of the behaviour of the Kretschmann
scalar o as R — 0% along straight line trajectories to the Curzon singularity
(R=0).

Figure 1.1 The r-z quarter-plane r > 0, z > 0. A variety of straight line
trajectories to R = 0 are depicted, each labelled with the limiting behaviour
of a as R — 0t along that particular trajectory. The approach along the
z-axis (i.e. r = 0) is the odd one out, since for all other approaches the
Kretschmann scalar becomes singular at B = 0.



The area A of the two-dimensional surfaces ¢ = constant, goo = constant (so
t,R = constants) was calculated. In this static space-time, these two-surfaces are

invariantly characterisable gravitational equipotentials. It was found that

A = //m\/g; do dip (1.10)

9 2 1 2,,2
= 4nrR%exp [—Rﬂ - é—nﬁ] /0 exp [m ° ] dz . (1.11)

The conclusion was that the gravitational equipotential surfaces shrink in area as the
value of R decreases from infinity, until they reach a minimum. They then begin to
increase in area as R decreases further, finally becoming infinite as B — 0.

It is also pointed out that the lines § = 0 and 6§ = 7 in the hypersurfaces ¢ =
constant are spacelike geodesics approaching the two “regular” points of R = 0, which
lie an infinite spatial distance from any point on these geodesics. The lines § = 7/2,
¢ = constant in the hypersurfaces ¢ = constant are also spacelike geodesics leading to
singular points of R = 0 on the plane of symmetry. These points lie a finite distance

away from any finite value of R. Stachel notes

‘... the approach to R — 0% along different directions corresponds to
an approach to different limiting points on the infinite surface R =0’

and adds that

‘... there seems to be no difficulty with the criterion of the blowing up
of a curvature scalar for the occurrence of real singularities in the Riemann
space’.

However he reasons that there is no possibility of extending the manifold on which
the metric is imposed beyond the surface R = 0, since at least one curvature invariant
becomes infinite along almost all directions of approach to the surface (except for =0

and 0 = 7).



It is also claimed that the hypersurface ¢t = constant should be regarded as being
multiply connected, since any closed curve in it enclosing a gravitational equipotential
cannot be shrunk continuously to a point. The example provided is the curve in
the plane of symmetry § = m/2 with R = constant which has the length L = 27R
exp (m/R). With the value of R decreasing from infinity this length reaches a minimum
value of 2rme at R = m, and then increases again without limit as R — 0%,

Finally, Stachel notes that Israel [9]

‘... has shown that the Schwarzschild metric is the only empty space
static metric of a sufficiently regular class which can have a non-singular
event horizon. Our result for the Curzon metric shows one of the alternate
topological peculiarities that can occur: an event horizon of infinite area
on which an invariant of the Riemann tensor becomes singular.’

In a further paper by Gautreau [10] it is conjectured:

‘... Stachel’s result suggests that there might be in general a corre-
spondence between equipotential surfaces approaching a non-zero area and
directional singularities’.

He points out, however, that no general proof of this is known.

Cooperstock and Junevicus [11] extended the analysis of the Curzon singularity
performed by Gautreau and Anderson [7]. Instead of using straight line trajectories
to R = 0 as was done in [ 7], they considered the behaviour of o (Eq. (1.7)) along the

family of curves

= b(i)" . n>0. (1.12)

For simplicity, since the hypersurfaces ¢ = constant have the plane of symmetry z = 0,

the constant b was assumed to be positive.



They found that as r — 0%
(1) a—oo for n>2/3
(2) a—oco for n=2/3, 0<b< (1/2)/3
a—0 for n=2/3, b>(1/2)'/3
(3) a—0 for 0<n<2/3 .
These results are summarised in Table 1.2, and illustrated in Figure 1.2.

The interesting feature of this work was the discovery of a class of curves, for
example those with 2/3 < n < 1, which are both asymptotic to the z-axis as r — 0% and
have the behaviour a — oo. It was this peculiarity which led Cooperstock, Junevicus
and Wilson [12] to believe that there was a deficiency in the concept of a “directional

singularity”, remarking that

‘... If anything, the entire concept should be referred to as a trajectory
singularity rather than a directional singularity’.

In Cooperstock and Junevicus {11] they add

‘... By the criterion of Gautreau and Anderson, one might be led to
call the termination point in the z-axis direction both singular and non-
singular. We feel that it is more reasonable to simply call it singular along
with every other termination point’.

1.4 The Szekeres and Morgan extension
of the Curzon metric

Szekeres and Morgan [13] took a different interpretation of the Gautreau and
Anderson [ 7] analysis. They thought that the regular behaviour of « along the z-axis,

unlike that for all other directions of approach to R =0,

‘... leads one to make the suggestion that possibly the Curzon metric
“opens up” for particles approaching R = 0 along the z-axis, allowing them
to pass on into some new region’.



Table 1.2: Behaviour of the Kretschmann scalar along curves approaching the Curzon
singularity

Family of curves

n lim o
L2 mb(l> bn>0 |0
m

m

n>2/3 )
n=2/3, 0<b< (1/2)!?| oo
n=2/3, b>(1/2)!/? 0
0<n<2/3 0

The Cooperstock and Junevicus analysis of the behaviour of the
Kretschmann scalar « as r — 0% along the curves z/m = b(r/m)", where
b,n > 0. Whether or not o becomes singular (i.e. infinite) at the Curzon
singularity depends on the precise values of b and n which are chosen. The
‘transition curve’ is seen to be the one with n =2/3 and b = (1/2)/3.

o—0 n=1/3
&—0  n=75/6

Z Ol— 0O
n=1
—cO

0 r

Figure 1.2 Curves of the type z/m = b(r/m)" in the r-z quarter-plane
r >0, z > 0. Each curve drawn is labelled with its value of n as well as the
limiting behaviour of @ as 7 — 0% along that particular curve. Of the two
curves asymptotic to the z-axis, « — 0 along one (n = 1/3), and becomes
singular along the other (n = 5/6). This demonstrates that the behaviour
of a can vary even amongst curves which all approach the singularity in
one direction—in this case the z-axis.



In order to obtain more information about the singularity, they focussed their
attention on null geodesics which lie in a fixed plane ¢ = constant, and which approach
the singularity at R = 0. To find such geodesics, they searched for asymptotic solutions
of the relevant geodesic equations as R — 0. Apart from the possibility of some of
these geodesics spiralling in towards R = 0 (which was not considered), it was found
that there are only two types of solution—either the geodesics approach the z-axis

asymptotically and have the form
r/m ~ pe™kl (1.13)

where p is a non-negative constant, or else they lie in the plane z = 0.

This led Szekeres and Morgan to conclude that

‘... The behaviour along the r = 0 geodesics turns out to be general
rather than peculiar for it appears to be the case that almost all geodesics
approach the z-axis very rapidly (in Weyl’s coordinates) as B — 0, the only
geodesics not exhibiting this behaviour being those which lie in the z = 0

plane’.

Treating Eq. (1.13) as though it were the exact equation of the null geodesics near

R = 0, they defined a “comoving” coordinate p, and a “retarded” time coordinate u
) y g P

(z>0):

rjm = pe"™* (1.14)

z sz
t/m =u +/ e?™*dz + S 0 = constant > 0 . (1.15)

However, it is pointed out that the terms “comoving” and “retarded” are not exactly
applicable, since Eq. (1.13) only represents the asymptotic form of the geodesics, but

that they do apply in the limiting sense as z — 0.
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For approaches to R = 0 such that 2 — 0% while p remains bounded, the Curzon

metric transformed to the new coordinates (u, p, 2, ) was found to have the form
ds? = — 2dudz + dp® + p*dp® + O(z~3e~?™/*) b, dz dz" (1.16)

where h,, is a tensor whose behaviour is regular at z = 0.
So in these coordinates, the Curzon metric is completely regular as z — 0 while
p remains bounded, and may be connected across the plane z = 0 with flat space

expressed in double-null cylindrical coordinates (z,u, p, )
ds? = —2dudz + dp® + p*dp® (2 <0) . (1.17)

The resulting space-time is C* at z = 0, but not analytic, so the connection with
Minkowski space is just one of an infinite number of possible C* extensions.

It is pointed out that all outward going geodesics (z > 0) from R = 0 are both
past and future complete in thgse coordinates. The inward going geodesics (z > 0)
are, however, future incomplete as they approach z = 0 asymptotically in the new
coordinates. The suggested remedy for this situation was to replace the “retarded”

time coordinate u by an “advanced” time coordinate v defined by

2

t/m = v —/ ™7 dy — % , %o = constant >0 . (1.18)

For approaches to R = 0 such that z — 0% and p remains bounded, the metric
transformed to the coordinates (v, p, z,¢) is again extendible across z = 0 in a similar
manner to before. The lower half (z < 0) of the Curzon metric can be covered and
extended in an analogous fashion, by replacing z with —z in the various coordinate
definitions.

The plane of symmetry z = 0 is not, however, covered by any of these coordinate
patches, and must be separately covered by, for example, the original Weyl coordinates.

11



The Kretschmann scalar & becomes infinite for approaches to R = 0 in this plane, but
in the (u, p, 2, ¢) and (v, p, z, ¢) coordinate patches this real singularity has been pushed
out to z = 0, p = oo i.e. (suppressing u and v respectively) it appears as a ring placed
at infinity with null geodesics threading through it.
It is concluded from this that
‘... the deceptively simple point-like appearance of R = 0 in the Weyl
coordinates must be abandoned. Indeed by using comoving coordinates it

has more the appearance of an infinite plane (z = 0) at which the space-time
is momentarily flat’.

However, it is noted that geodesics approaching this plane at large values of p, have
to cross a ridge of high curvature close to z = 0 before reaching this flat region. This
is so because the invariant Kretschmann scalar « has an infinite limit along the lines

r =k|z| (k € R) as z — 0, and thus along the curves
p = klz|/me™¥l | wv=constant, ¢ = constant (1.19)

(see Figure 1.3).

Although Szekeres and Morgan chose to extend the Curzon space-time by various
half-portions of Minkowski space, they also commented on another interesting C'*

extension :

‘... Perhaps the most natural extension is to connect the lower half
to the upper half of the Curzon metric across z = 0 in such a way that
geodesics entering z = 0 from below emerge into z > 0 and geodesics
entering from above emerge into z < 0. From the above discussion this is
clearly possible to achieve in a C*° manner, and would have the advantage
that particles entering R = 0 do not “disappear” from the external world’.

12



Uua

inward null
geodesic

outward null
geodesics

l high curvature
ridge

Figure 1.3  The Curzon space-time (2 > 0) near R = 0 displayed in
(u,p, z,) coordinates (i is suppressed). The metric can be connected
in a C* manner with flat space across the plane z = 0. In this way
the two outward null geodesics shown become past complete as well as
future complete. The inward null geodesic (p = 0) is, however, still future
incomplete and inextendible in these coordinates. Sections of two curves
r = kz (k = constant > 0) are drawn. To the left of these curves is a ridge
of high curvature just before flat space is reached at z = 0.
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1.5 Comments on past analyses
of the Curzon singularity

Given that Gautreau and Anderson only found the limiting behaviour of « for
straight line trajectories z = cr, ¢ € R and r = 0 to the singularity at R = 0, their
development of the notion of directionality with respect to singularities was a reasonable
first approximation. With the subsequent analysis of the behaviour of « along the
curves given by Eq. (1.12), which was carried out by Cooperstock and Junevicus, the
concept of a directional singularity was refined to that of a trajectory singularity.

In terms of the description of this type of singularity, the proposed label “tra-
jectory singularity” must be the ultimate one, in the sense that it cannot be refined.
After all, the limit of @ as R — 0% along a particular trajectory is unique when it
exists. What was needed at that time was not a better description of the singularity,
but a better understanding of what such a description indicates about the singularity
structure, and indeed, about the global structure of the space-time.

Although it is not absolutely clear, it seems that both Gautreau and Anderson,
and Cooperstock and Junevicus were inclined to still consider the Curzon singularity
as a point. The former group probably thought that it was not an intrinsic singularity.

This is implied when they point out that

‘... the singular behaviour of an invariant quantity may not always
indicate the location of an intrinsic singularity’,

and presumably refers to the fact that the Kretschmann scalar does not become infinite
for all straight line trajectories to B = 0.
The latter group thought that R = 0 was an intrinsic singularity. Since they had

found curves along which a@ — oo as R — 0% and which were also asymptotic to the

14



z-axis, they felt that it was

‘... more reasonable to simply call (the termination point in the z-axis
direction) singular along with every other termination point’.

This alone does not, of course, imply that they were thinking of R = 0 as a point.
However, if they were actually considering it to be some sort of surface with non-zero
area, then they obviously had in mind that this would consist of intrinsically singular
points, each one corresponding to the termination point for a particular direction of
approach to R = 0. This would have been very strange indeed in the light of their
refinement of the notion of a directional singularity to that of a trajectory singularity,
and it is more likely that they simply thought of it as an intrinsically singular point.

The work of Stachel, occurring between that of Gautreau and Anderson, and
Cooperstock and Junevicus, was by far the most significant in terms of settling the
status of the Curzon singularity as a point or otherwise. Whilst curves and trajectories
to the singularity are useful tools for discovering many of its features, there are more
direct means by which to determine its size (or extent). Stachel calculated the area of
the two-dimensional gravitational equipotential surfaces (given by ¢, R = constants),
and found that it became infinite as R — 07.

Relating this result to the work of Gautreau and Anderson, Stachel concludes

that

‘... the approach to R — 0% along different directions corresponds to
an approach to different limiting points on the infinite surface R=0".

Given that the notion of a “trajectory singularity” was yet to be proposed by Coop-
erstock and Junevicus, the conclusion was a good one—in fact, one which could easily
have been modified to incorporate the refinement that Cooperstock and Junevicus later
made to the concept of a directional singularity.
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However, it remains to be seen later in this thesis that the above conclusion is
not completely correct, in the sense that approaches to R = 0 along different directions
will in many cases correspond to approaches to the same limiting point on the infinite
surface R = 0. Furthermore, it will also be seen that different approaches to £ =0
in the same direction (e.g. different curves asymptotic to a particular direction), can
sometimes correspond to approaches to different limiting points on the infinite surface
R = 0. This last remark is not really very surprising given the findings of Cooperstock
and Junevicus for the z-axis direction.

In relation to the problem of determining which points on the infinite surface

R = 0 represent intrinsic singularities, Stachel asserts that

‘... there seems to be no difficulty with the criterion of the blowing up
of a curvature scalar for the occurrence of real singularities in the Riemann
space’.

This is in direct contrast with Gautreau and Anderson’s earlier comment on the same
matter. Of course, it is now generally accepted that the singular behaviour of a cur-
vature scalar, for instance the Kretschmann scalar, is a sufficient condition for the
existence of a real singularity of the space-time. (For a discussion of this and other
criteria, see for example [14].)

One gathers, from the above assertion, that Stachel thought of almost all limiting
points on the infinite surface R = 0 as being real (or intrinsic) singularities. This is
because he regarded each such limiting point as corresponding to a different direction of
approach to R = 0, and was aware from Gautreau and Anderson’s work that & — oo
as r — Q"’ in nearly all of these directions. The only exception is that & — 0 for
an approach along the z-axis, and it is clear that he considered the limiting point

corresponding to such an approach as being “regular”.
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Although Stachel found that the Curzon singularity at B = 0 is actually an
infinite surface, he did not attempt to determine its topology. If one accepts, for the
moment, his conclusion that different directions of approach to R = 0 correspond to
approaches to different limiting points on this infinite surface, then it is difficult to
imagine how the regular limiting point for an approach along the z-axis (e.g. with
z > 0) meshes in with the intrinsically singular limiting points for all other directions
of approach.

To address this question, one really needs to return from thinking about the
surface area of gravitational equipotentials, to examining in more detail the behaviour
and properties of curves which approach R = 0 along or asymptotic to the z-axis.
Stachel did not do this, E;,Ild thus was not in a position to conjecture about the possible
topology of R = 0.

It’s clear why he considered the manifold to be inextendible through R = 0.
He viewed this infinite surface as being almost entirely comprised of real singularities
where the Kretschmann scalar blows up—so there was obviously no hope of extension
through any such point. That only left the two “regular” limiting points corresponding
to approaches to R =0 along § =0 and 6 =7 respectively.

He knew that in a hypersurface ¢ = constant, § = 0 and § = 7 are spacelike
geodesics which have infinite length between any geodesic point (z # 0) and R =0. In
the absence of something which could be extended, there was little reason for him to
expect that extensions through these two regular points of R = 0 would be possible.

As previously mentioned, Stachel claimed that a hypersurface ¢ = constant
should be regarded as being multiply connected, since any closed curve in it enclosing
a gravitational equipotential cannot be shrunk continuously to a point. This claim

seems to confuse the issues of whether the gravitational equipotentials £ = constant,
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R = constant are simply connected or not, and whether the hypersurfaces ¢ = constant
are simply connected or not. In any case, the concept of simple connectedness does
not appear to be well understood.

A gravitational equipotential ¢ = constant, R = constant has the topology of a
sphere and thus, clearly, is simply connected. In a hypersurface ¢ = constant, a closed
curve which does not pass through R = 0 can always be shrunk continuously to a point
(with R # 0). There is no necessity to shrink such a curve to the particular “point”
R =0, which the work of Stachel would seem to suggest.

His example concerning the length of curves which lie in the plane of symmetry
= n/2 and have R = constant, is not of direct relevance to the question of the simple
connectedness of the hypersurfaces ¢ = constant. However, it may well show that the
plane of symmetry itself is not simply connected. In order to further investigate these
questions, it will be necessary to determine what meaning, if any, can be given to the

statement that a curve passes through (or indeed lies in) R = 0.

1.6 Israel’s theorem

Recall from Section 1.3 the comment by Stachel [8] that Israel [9]

‘... has shown that the Schwarzschild metric is the only empty space
static metric of a sufficiently regular class which can have a non-singular
event horizon. Our result for the Curzon metric shows one of the alternate
topological peculiarities that can occur: an event horizon of infinite area
on which an invariant of the Riemann tensor becomes singular.’

In fact, it will later be shown that the Curzon space-time possesses a nonsingular
event horizon at R = 0. This means that Stachel’s concludions about the space-time

structure at R = 0 are (partially) incorrect. Furthermore, his description of Israel’s
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work suggests that there is a problem reconciling our findings for the Curzon space-time
with Israel’s results.

Perhaps the phrase ‘... of a sufficiently regular class’ would exclude the Curzon
space-time from consideration. In order to find out, it is necessary to take a short
diversion to examine Israel’s paper [9]. In the introduction, Israel states that the

conjecture which he intends to prove is the following:

‘... that Schwarzschild’s solution is uniquely distinguished among all

static, asymptotically flat, vacuum fields by the fact that it alone possesses
a nonsingular event horizon.’

As is known from Section 1.2, the Curzon solution is certainly a static, vacuum
field. It is also asymptotically flat, as can be seen by taking the limit of the metric as
R — oo. This limit is

ds? = — dt® 4 dr? + dz* + rPdy® (1.20)

which is simply the flat space metric expressed in cylindrical coordinates (ry2,00).

So with the statement of the conjecture as it stands, the Curzon solution is not
excluded from the class of solutions under consideration, and thus remains a counterex-
ample. However, the statement of the theorem as given in the abstract puts a different

slant on things:

‘... Among all static, asymptotically flat vacuum space-times with
closed simply connected equipotential surfaces goo = constant, the Schw-
arzschild solution is the only one which has a nonsingular infinite-red-shift
surface goo = 0.’

Whilst with this version the Curzon solution remains a member of the class of
solutions under consideration, it is no longer clear that it satisfies the final criterion,
namely, that it ‘... has a nonsingular infinite-red-shift surface goo = 0’. The surface
goo = 0 is the infinite surface B = 0, and although there does exist a nonsingular
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infinite-red-shift surface at R = 0, it does not constitute the entire surface. So this
discrepancy may well remove the Curzon solution from its status as a counterexample
to Israel’s theorem.

Israel used the following line element for the metric of a static space-time:
ds? = g.p(at, z?,2°) de*da? — V23di® | (1.21)
V = V(! 2% 2% , t=z°, (1.22)

where o and 3 run from 1 to 3.
V=g (1.23)

¢ is a hypersurface-orthogonal, timelike Killing vector field.

His explicit statement of the theorem was as follows:

In a static space-time, let X be any spatial hypersurface ¢ = constant, maximally
extended consistent with £.6 < 0. We consider the class of static fields such that the
following conditions are satisfied on X:

(a) X is regular, empty, noncompact, and “asymptotically Euclidean”.

(b) The equipotential surfaces V = constant > 0, ¢ = constant are regular, simply
connected closed 2-spaces.

(c) The invariant Ripop RABCD formed from the 4-dimensional Riemann tensor
is bounded on X.

(d) If V has a vanishing lower bound on X, the intrinsic geometry of the 2-spaces

V = c approaches a limit as ¢ — 0%, corresponding to a closed regular 2-space of finite

area.

THEOREM The only static space-time satisfying (a), (b), (c) and (d) is

Schwarzschild’s spherically symmetric vacuum solution.
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For the Curzon space-time, ¥ is any spatial hypersurface ¢ = constant with
R > 0. ¥ is certainly regular, empty, noncompact and asymprotically Euclidean, and
thus satisfies condition (a). The equipotential surfaces V = constant > 0, ¢ = constant
are the surfaces R = constant > 0, ¢ = constant. As discussed in Section 1.5, these
surfaces are regular, simply connected closed 2-spaces, and so condition (b) is also
satisfied.

However, as was seen in Section 1.3, the limit of the Kretschmann scalar « along
certain approaches to R = 0 (in X) is infinite, and so condition (c) is not satisfied. V
has a vanishing lower bound on X, but the intrinsic geometry of the 2-spaces R = ¢
does not approach a limit as ¢ — 0% corresponding to a closed regular 2-space of finite
area (see Section 1.5). Thus condition (d) is also not satisfied.

It is now clear that the Curzon space-time is excluded by conditions (c) and (d)
of the theorem, and thereby loses its status as a counterexample. Nevertheless, this
discussion has highlighted the fact that it is these two conditions of the theorem which
fine-tune its result, namely that the Schwarzschild solution is the only static space-time
to satisfy all four conditions.

At the time of this work, a nonsingular event horizon in a static field was, pre-
sumably, always thought of as a 2-surface which completely surrounds a real singularity
i.e. it is a regular, simply connected, closed 2-space of finite area (compare with con-
ditions (b) and (d)). If this were not so, more care would probably have been taken
in both the paraphrasing of the theorem, and the interpretation of its significance. As

an example of the latter, Israel concludes the paper by saying that
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‘... The result of this paper would have important astrophysical con-
sequences if it were permissible to consider the limiting external field of a
gravitationally collapsing asymmetric (non-rotating) body as static. In that
case, only two alternatives would be open—either the body has to divest
itself of all quadrupole and higher moments by some mechanism (perhaps
gravitational radiation), or else an event horizon ceases to exist.’

As it stands this comment is incorrect as will be seen later. It can be corrected by
replacing ‘... or else an event horizon ceases to exist’ with ‘... or else a naked singul-
arity will occur’. In other words, if a collapsing body retains some quadrupole and/or
higher moments, the resulting singulatity will be ‘visible’ at some regions at infinity.
However, a nonsingular event horizon may still exist which prevents the singularity
from being ‘visible’ at other regions at infinity.

So what Israel’s theorem effectively tells us is that curvature singularities of a
static vacuum field will always be naked (i.e. not completely enclosed by a nonsingular
event horizon), with the exception of the curvature singularity of Schwarzschild’s spher-
ically symmetric vacuum solution. Although this is a very important result, it gives
no actual information about the nakedness of the singularity e.g. whether the singul-

arity is partially or totally naked, and the effect of this nakedness on the ‘unprotected’

regions of the space-time.
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Chapter 2

The Spacelike Hypersurfaces
of the Curzon Solution

2.1 Introduction

The term “directional singularity” is used in general relativity. It is applied if
the limit of an invariant scalar formed from the Riemann tensor is found to depend on
the direction of approach to the singularity. One of the best known examples of such
directional behaviour is the Curzon singularity occurring at R = 0 in the Weyl metric

[1]
ds? = — e di? + 2N (dr? + d2?) + rle A dy? (2.1)

for a monopole potential (the Curzon solution [2])

m2r?

~ SR where R=+vr?2422 . (2.2)

A=—-m/R and v=

It was first noticed by Gautreau and Anderson [3] that the Kretschmann scalar
a = R, R*? (2.3)

tends to the value zero along the z axis, but becomes infinite for other (straight line)
directions of approach to R = 0. A more detailed analysis encompassing a wider class

of curves was carried out by Cooperstock and Junevicus [4].
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This directional behaviour has been shown to be symptomatic of a subtle singu-
larity structure [5], whereby null geodesics approaching R = 0 may in some cases be
extended beyond the Weyl coordinate patch. These geodesics appear to thread their
way through a ringlike singularity (infinite curvature), which can be reached by other
null geodesics in finite affine parameter. This structure is at best suggestive. It is pro-
posed to put it on a firmer footing in this chapter, by viewing the matter entirely from
a spatial point of view. The full space-time picture will be given in the next chapter.

In Section 2.2, spacelike geodesics approaching R = 0 in the hypersurfaces
t = constant are discussed. When confined to a fixed plane ¢ = constant, these
geodesics turn out to have only two basic types of behaviour. Either they asymp-
tote exponentially towards the z axis, but in an oscillatory way, or else they approach
the r axis in a non-oscillatory manner. In Section 2.3 the analysis of Cooperstock and
Junevicus for power-law curves z o< r™ is developed further. In particular, the critical
case n = 2/3 discovered by them is analysed in greater detail. In addition to the be-
haviour of the Kretschmann scalar, the proper distance and first curvature along these
curves are also considered.

These properties are used in Section 2.4 to set up a compactified coordinate sys-
tem for the hypersurface ¢ = constant, in which the real singularity is clearly separated.
This singularity appears as a ring which can be reached by spacelike geodesics in fi-
nite proper distance. A large class of non-extendible curves, including the oscillating
geodesics, thread their way through the ring to terminate in a new region of compact-
ified infinity. In the original Weyl coordinate system, these curves all terminated at
R = 0. Thus the picture of a ring singularity tentatively proposed in [5] is upheld in

the spatial sections.
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2.2 Spacelike geodesics approaching R =0

The geodesic equations for the Weyl metric Eq. (2.1) have been given previously
by Szekeres and Morgan [5]. Only the case of spacelike geodesics lying in a hypersurface

t = constant is considered here, for which the equations are

,r// (1 _ Hzr—zez,\) - (1 + 7,12) [H2r—262)\ (r’uz -, + ,,,—1)

+ v — A =7 (Ve — A2)] (2.4)
¢ = Hr2e? (2.5)
and 20N (72 4 32) 4 r2e P2 = 1 (2.6)
where ! = d/dz , " = d/ds and s is the proper distance.

Case (a) : ¢ = constant
For these geodesics H = 0, and Eq. (2.4) reduces to
M= 1+ [y = =1 (.= A)] . (2.7)

It is known from symmetries present in the metric that geodesics lie along both the r

and z axes. Suppose there exists an asymptotic solution of Eq. (2.7) of the form
r~kzy v~k as z—0.

On substituting into Eq. (2.7) the explicit Curzon forms (Eq.(2.2)) for A and v, and

integrating once with respect to z, one finds

m2k

v~ ——
2(1 + k2)222

Clearly no finite, non-zero values of k are admissible, whence k = 0 or k = co. That
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is, all geodesics in this plane approaching R = 0 are either asymptotic to the z axis or
asymptotic to the r axis.

An approximate solution may be obtained for geodesics asymptotic to the z axis
as z — 0 by neglecting terms in (r/z)? and r'? in Eq. (2.7). This yields the differential
equation

r = — (m¥/2* + m/2®)r + (m/2*)r
which for z > 0 has the exact solution
r(z) = ze”™* {a cos [(\/5/2) (m/z)] + Bsin [(\/5/2) (m/z)]} (2.8)

(see Ince [6]), where o and 3 are constants. Thus the geodesics are asymptotic to
these curves that oscillate about the z axis with exponentially decreasing amplitudes
as z — 0. They will be referred to as the oscillating geodesics (including the geodesic
along the z axis).

Computer-generated solutions of the exact geodesic equation Eq. (2.7) (using
a 4th-order Runge-Kutta method) reveal an interesting property of these oscillating
geodesics (see Figure 2.1). Geodesics originating from a point (ro, 20), With zo and
70/ 2o both small, reconverge many times—in fact, after every crossing of the z axis—
for quite a wide range of initial slope ry. These points appear to have a countably
infinite number of conjugate points.

A similar treatment with r rather than z as the independent variable, can be

used to find geodesics asymptotic to the r axis as r — 0. They have the form
2(r) = yr? [14(r/m) +7°r* + O(r°) | (2.9)

where v is a constant, and will be called the non-oscillating geodesics (including the

geodesic along the r axis).
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0.1

(rg,zg) = (=0.01,0.1)

0.04 2 .

Figure 2.1 Oscillating geodesics in the r-z plane. Five geodesics are plotted
from a point ( 7o, 7o), generated as computer solutions of the exact geodesic
equation Eq.(2.7) for a range of initial slope rj (m = 1). The lower three
geodesics focus and refocus on opposite sides of the z axis.
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Case (b) : ¢ #0

The asymptotic solutions of Eq.(2.4) with H # 0 may similarly be shown to
approach the r or z axes. Eq. (2.5) and Eq. (2.6) must be used to estimate the angular
dependence. The results are

(i) for geodesics approaching the z axis as z — 0%

r(z) ~ ( 7 ﬁ |) ze~™% (2.10)

\/_m

¢(2) ~ £-—+8 (2.11)

(ii) for geodesics approaching the plane 2 =0 as r — 0
2(r) = r*+0(°)
¢(r) ~ w

where f,7,w = constants. The former class of geodesics spiral about the z axis as
they approach R = 0.

This analysis of spacelike geodesics approaching R = 0 started from the assump-
tion that they have the asymptotic form r ~ kz. Other possibilities, such as spiralling
geodesics in the r-z plane, have not been considered. However, in retrospect, once the
new picture to be developed in this chapter has been obtained, it will become clear
that such possibilities cannot exist. For example, a spiralling geodesic would have to
approach both a new region at infinity and the real singularity in larger and larger
loops. Even if such a geodesic were to exist (which seems highly unlikely), it would

approach no new points.
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2.3 Analysis of curves approaching R =0

Cooperstock and Junevicus [4] considered the limit of the Kretschmann scalar

a (Eq.(2.3)) as r — 0% along the family of curves

(C, n = constants > 0). They found that even among the curves of this family which
are asymptotic to the z axis (i.e. n < 1), there was a division into those for which @ — 0
and those for which & — oco. Their inclination was to lump these all together and regard
them as terminating at the same “singular point”. However, a different view will be
taken here. It is felt that this analysis simply indicates the presence of “structure” in
the Curzon singularity, and that the directional dependence of the Kretschmann scalar
as R — 0 indicates a crushing of the space-time in a neighbourhood of the singularity,
brought about by the use of Weyl coordinates.

In order to uncover this structure, a much extended analysis of curves approaching
R = 0 in the r-z plane will be undertaken. As well as considering the limit of the
Kretschmann scalar, the proper distance and the first curvature along each curve as
R — 0 are also determined. Because of symmetries, it is only necessary to consider

the quarter-plane r,z > 0 in what follows.

(a) Limit of the Kretschmann scalar

The Kretschmann scalar for the Curzon metric is given explicitly by

o = 8eXmmr’RT=2R7) 194212 (m? — 3mR + 3R?)

+6m?R8(m— R)?] . (2.12)
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For curves of the type

FHOION e

m
Cooperstock and Junevicus found that as r — 0
(1) a—0 for 0<n<2/3
(2) a—=0 for n=2/3, b>1
a—oco for n=2/3, 0<b<1
(8) a— o0 for n>2/3 .
They actually found that o — 0 for n = 2/3 and b = 1, which is incorrect. This critical
case is important and may be more finely split by considering the two-parameter family
of curves
z 1\ /7\3 1N /r\3 r
=G G @ @G o) (214)
where ¢, k = constants > 0. The behaviour of « along this family as 7 — 0 is as follows:

(1) a—0 for ¢>1/2
(2) « — constant.k® for ¢=1/2

(3) a— for 0<e<1/2 .

(b) Length of curves

For a curve z(r) which approaches the origin, define its length L from a fixed

point (ro, Zo = z(ro)) to be

L =lim [ em/R-m/2R! (1422 dr

e—0 J¢

where R = 1/r?+2%(r) .

L is easily seen to be finite for the r axis geodesic and for other geodesics asymp-
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totic to it (the non-oscillating geodesics of Section 2.2), while for oscillating geodesics
asymptotic to the z axis it is infinite. This is somewhat surprising in view of the fact
that timelike geodesics asymptotic to the z axis reach R = 0 in finite proper time. For

the families of curves given by Eq. (2.13) and Eq. (2.14):

(1) L is finite for n > 2/3 and for n =2/3 with 0 <b<lor b=1, 0<c<2/9

(2) L is infinite for 0 < n < 2/3 and for n =2/3 with b>1 or b=1, ¢22/9 .

(c) First curvature of curvesas R — 0

If u# is the unit tangent vector to the curve 2(r), and a* is the acceleration vector

B — b y¥
a* = vty uv

the first curvature 8 is defined by
B = guata”

(see Synge [1]).

For the Curzon metric

e~V ol / " 2 2 / 2
B = (1——|—z’—2)2- (—'i‘+—z',3+¢zz — Yz ) +(1+z,2—¢z+¢rz> )

where ¥ = v — ) is determined from Eq. (2.2). Along the r and z axes f is, of course,

zero. For the families of curves given by Eq. (2.13) and Eq. (2.14), one obtains as 7 — 0

(1) B — oo for n>2/3 and for n=2/3 with 0<b<lorb=1,0<c<5/9
(2) B — constant.k*/3 for n=2/3, b=1, ¢=5/9

(3) B—0 for 0<n<2/3 and for n=2/3 with b>1 or b=1, ¢>5/9.

The above properties (a), (b) and (c) are all summarised in Table 2.1.
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Table 2.1: Properties of spacelike curves approaching R = 0 in the r-z plane

Curves L lima | limfg lim (z,y)
non-oscillating geodesics | finite ) 0 2,0
n>2,0>0 finite | oo 0o (3,0)
n=20<b<1 finite | oo o) (%,0)
n=2%0b=10<c< % | finite | oo 00 £,0)
n=2b=1,3<c<i| o | o | o =.0)
n=2%b=1c=3 oo | finite | oo (%, —tan‘l(consta,nt.k‘a/z))
n=%,b=1,%<c<% 0 0 oo (2,-%)
n=3%b=1c= 3 00 0 finite (%,-3)
n=%,b=1,c>% 0o 0 0 (3-%)
n=2>b>1 00 0 0 (%)
0<n<2,56>0 00 0 0 (£,-%)
oscillating geodesics oo 0 0 (%)

All limits are taken for R — 0. L is the proper distance along the curve,

o the Kretschmann scalar, § the first curvature.

The non-oscillating

geodesics are defined by Eq.(2.9) and asymptote along the r axis, the
oscillating geodesics are defined by Eq.(2.8) and asymptote along the z
axis. The other curves are given by Eq.(2.13) and Eq. (2.14), the latter
essentially being an extension of the former for parameter values n = -%,

b=1.
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2.4 New coordinates for the r-z plane

The length Lx of the Killing vector orbit ¢, r, z constant with tangent vector
0/0¢ is

2m
Ly =/ re"*d¢ = 2rre” .
0

This is the circumference of the circle r, z = constant lying in a spatial section. Its

“radius” may be defined to be
p(r,z) = Lg/2T = re”* .

For the Curzon metric, the curves in the r-z plane of constant radius of revolution

p are

r=pe ™R (2.15)
which as R — 0 have the behaviour (for z > 0)

P~ pe—m/z

For large R they behave as

rep

as expected, since the space is asymptotically flat. Thus the curves
r=pe™? (2.16)

are good approximations to the curves given by Eq. (2.15), both for z <1 and z>> 1.
It should, however, be realised that the real curves of constant radius of revolution are
quite complex, breaking into two pieces for p > me.

The distance L(z) along the curves given by Eq. (2.16), from a fixed point (ro, Zg)

to (r (2), z), can be shown to behave as
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L(z) ~ (z/m)?e™* as z—0
and

L(z)~z/m as z— o0 .

As shown in [5], there is a family of geodesics not lying in the spacelike hypersur-
faces t = constant (i.e. including timelike, null and spacelike geodesics with dt/ds # 0),
whose spatial projections behave like Eq. (2.16) as z — 0. These were found to be a
suitable set of curves on which to base a “comoving” system of coordinates. However,
the geodesics lying in the spacelike hypersurfaces ¢ = constant and asymptotic to the
z axis display oscillatory behaviour. The associated refocussing property discussed in
Section 2.2, makes these geodesics unsuitable candidates for setting up such a comov-
ing coordinate system. Instead we choose new coordinates & and y so that they are
“approximately” comoving for the curves given by Eq.(2.16), both for small and for
large 2.

For the quarter-plane r > 0, z > 0 define

z = tan™ <% e"'/z) + tan™? (—1% e‘(ﬁ"‘/")z/a) (2.17)

—_ -1 2 _ (2/m)*e¥
= (3 - mrreronpETE) - @9

m  m?r?

where Y =v—-A=— —

R 2R

The curves given by Eq. (2.16) behave as

-2
T ~ tan"lp y~—l2r-+<%) e™* for z—0

and

x ~ tan'p + tan~! (pe‘(‘ﬁ/”)m) TS 12r_ T for 2o 00 .
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Therefore, the coordinates z, y are indeed comoving for these curves in the asymptotic
sense that the z coordinate tends to a constant at each end, and can thus be used to
label the curves (tany acts as a proper distance parameter along the curves near these

ends). Some of these curves and their metric normal curves

1/2

% - [g (g _ %)3] (¢ = constant) (2.19)

are plotted in z-y coordinates in Figure 2.2.

Eq. (2.18) is a rather complicated expression, but has been selected after some
trial and error, partly to ensure that the z, y coordinates are in one-to-one correspon-
dence with the r, z coordinates. Arctan functions have been chosen for compactification

purposes. The part of the boundary specified by

0<z<m, y=mu/2
and

g=m, 0Sy<w/2

represents points of spacelike infinity of the Curzon metric, spacelike geodesics in the
z-y plane terminating there with infinite proper length. It is depicted in the figures by
two thick lines. Since the analysis here will bring in new points at infinity, this will be
referred to as the “old” spacelike infinity.

In the figures the positive r axis maps onto the segment /2 < z < 7 of the
z axis, while the positive z axis maps onto the entire y axis —7/2 <y < 7 /2. From

Eq.(2.12) it can be seen that near R = 0 the Kretschmann scalar o behaves as
a ~ 48R Ee ¥ [14 4 (r/m)*R™4] ,

and from Eq. (2.18) the coordinate y is seen to behave as
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Figure2.2 The compactified r-z quarter-plane. The curves given by Eq. (2.16)
are computer-plotted in z,y coordinates for a variety of values of p. They
stretch from the “new” spacelike infinity, which is the thick line at the bottom
of the diagram, to the “old” spacelike infinity along the top. Also plotted are
some of their metric normal curves given by Eq. (2.19), which cut across them.
The spacelike infinities are depicted by the thick lines and the small circle,
the “edge” by a dashed line, and the real singularity at z = 7/2,y=0 bya
cross,
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1/4 2
y ~ tan? [31 -2 (") ] .
m o mR

Using this approximation, one can quickly find the termination points (z,y) of the
curves discussed in Section 2.3. These are listed in the last column of Table 2.1, They
all terminate along the line z = m/2, 0 > y > —n /2. In Figure 2.3 curves given by
Eq.(2.13) with n = 2/3 are plotted using z, y coordinates. Those with 0 < b <1
terminate at the singularity (r/2,0), while those with b > 1 terminate at (7/2, —7/2).

In the new coordinates R = 0 corresponds to the boundary specified by

0<z<w/2, y=-m/2
and

r=n/2, -—-7w/2Z<y<0.
This boundary has the following features:

1. The point ¢ = 7/2, y = 0 represents a real singularity of the Curzon metric,
and is depicted in the figures by a cross. The limit of the Kretschmann scalar
along curves which terminate at this point is infinite, and many of these curves
(including all the non-oscillating geodesics given by Eq. (2.9) ) are of finite length

L.

2. The line 0 < = < 7/2, y = —m/2 represents a new region of spacelike infinity of
the Curzon metric. The geodesic down the z axis terminates at the point z = 0,
y = —7/2 and is of infinite length, but although the oscillating geodesics which
asymptote toward the z axis approach the line y = —7 /2, they do not terminate
at particular points of this line. The curves given by Eq.(2.16) which are of

infinite length L do, however, terminate at points of this line, and do so with
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Figure 2.3 The critical Cooperstock-Junevicus curves. These are given by
Eq.(2.13) with n = 2/3 and are computer-plotted for various values of b.
For 0 < b < 1 they terminate at the real singularity, while for b > 1 they
terminate at the “new” spacelike infinity depicted by the small circle.
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zero first curvature f—i.e. the fact that they are non-extendible is not due to
any intrinsic “oscillatory” behaviour. The limit of the Kretschmann scalar along
these and other curves terminating on this line is zero, indicating that space is

asymptotically flat here. This flat spacelike infinity is of infinite extent.

. The line ¢ = 7/2, —7/2 < y < 0 represents an “edge” of the space, and is
depicted in the figures by a dashed line. There are no curves in the z-y plane
that terminate on this line with zero first curvature (e.g. no asymptotic geodesics),
which explains the choice of the label “edge”. The curves given by Eq. (2.14) with

¢ = 1/2 terminate along this edge with the behaviour

3/2
?

tany — — constant. k™ a — constant.k®, L — o0, B —o00 .

. The point ¢ = 7/2, y = —7/2 represents a new spacelike infinity of the Curzon
metric, and is depicted in the figures by a small circle. Curves ending at this point
are of infinite length L, and many terminate with zero first curvature. The limit
of the Kretschmann scalar along curves ending at this point is zero, indicating

that flat space is also approached in this direction.

2.5 Conclusions

This analysis has been restricted to the quarter-plane r > 0, z > 0. Similar

behaviour is, of course, to be found in the other quarter-planes. In Figure 2.4 the two

half-spaces z > 0 and z < 0 are shown in 2-y-¢ coordinates. To represent the entire

spacelike hypersurface t = constant, these two patches should be joined along the plane

y =0, /2 < ¢ <, thus creating a “double-sheet” in the region 0 < = < /2. In
2

these coordinates the real singularity of the Curzon metric becomes a ring z = /2,
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Figure 2.4 Schematic picture of a 3-D section ¢ = constant of the Cur-
zon solution. The two patches shown are drawn in the compactified 2-y-¢
coordinates, and correspond to z > 0 and z < 0 for a ¢ = constant
section. The “new” spacelike infinities are the free bases of the small cylin-
ders, while the free bases and the walls of the large cylinders constitute
the “old” spacelike infinities. The two patches must be joined at y = 0
along the parts of the bases of the large cylinders outside of and including
the singularity (which is the jagged ring). One of the curves of constant
radius of revolution p > me given by Eq. (2.15) is shown starting in the
left patch and ending in the right.
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=0, 0 < ¢ < 27 about the y axis, with spacelike geodesics threading through it.
The spacelike geodesics given by Eq.(2.10) and Eq. (2.11) spiral through the ring and
continue out to the “new” infinity.

The ring singularity has a finite “radius” in the sense that it can be reached by
curves, indeed by geodesics, of finite length from the y axis (originally the z axis).
Presumably there is a minimal such geodesic whose length could be used as an actual
value for this radius. The circumference of this ring should, however, be regarded as
being infinite. This is readily seen by plotting the curves of constant radius of revolution
p given by Eq.(2.15). For p > me these curves start in one sheet at 0 < z < 7[2,
y = —x /2, wind once around the ring, and re-emerge on the other sheet. The winding
becomes tighter and tighter as p — oo. This peculiar behaviour (finite radius but
infinite circumference) is due entirely to the infinite curvature of the space at the ring.

This picture of the Curzon singularity as a ring in the spatial sections is con-
sistent with the picture suggested in [5]. There, however, the ring was placed at an
infinitely large radius. Also null geodesics not terminating at the real singularity were
shown to be incomplete, requiring an extension of the Weyl coordinates. The spacelike
hypersurfaces, however, are now seen to be complete in the original Weyl coordinates—
only the topology of the singularity is incorrectly given by these coordinates, due to
the crushing up of the ring plus new spacelike infinity into a single point. In Chapter
3 these two pictures will be linked together to provide a complete description for the

entire Curzon space-time.
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Chapter 3

The Global Structure
of the Curzon Solution

3.1 Introduction

In Chapter 2 it was shown that in the spacelike hypersurfaces ¢ = constant, the

real singularity at R = 0 of the Curzon solution

ds? = — e dt? + 2N (dr? 4 d2?) + rle P dy? (3.1)
where
m2r2
A=-m/R, v=—Zm and R=+r? 422, (3.2)

has the structure of a ring with finite radius. Spacelike geodesics approaching R = 0
in these hypersurfaces either terminate in finite proper distance at the ring singularity,
or thread their way through the ring and are inextendible (i.e. have infinite length). In
this way a “new” region of spacelike infinity appears on the other side of the ring.
All this is inherent in the original Weyl coordinates, since (for R > 0) they are in
precise one-to-one correspondence with the new coordinates. Where they differ, is that
in the new coordinates the ring singularity can only be approached by curves along
which the curvature (as defined by the Kretschmann scalar) becomes infinite. Curves

approaching R = 0 with finite curvature (the so-called “directional behaviour” of the
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Curzon singularity [2], [3]), terminate either at the new infinity or else at an “edge”
adjoining the ring singularity. In this chapter it is intended to use this picture as a
basis for providing a complete description of the entire Curzon space-time.

In Section 3.2 the behaviour of all geodesics (timelike, null and spacelike) ap-
proaching R = 0 is given. There is also a review of an earlier attempt [4] to extend
the Curzon metric in such a way, that some geodesics terminating at B = 0 in the
Weyl coordinates with finite affine parameter and finite curvature become extendible.
In Section 3.3 a new coordinate system for the Curzon metric is displayed. This is
shown in Section 3.4 to exhibit all the features of the spatial sections derived in Chap-
ter 2, and yet permits the relevant geodesics to be extended. Asin [4], it is possible to
connect the Curzon metric smoothly with Minkowski space. Physical interpretations

of this curious behaviour, such as a possible collapse scenario, are discussed in Section

3.5.

3.2 Behaviour of geodesics approaching R =0

The behaviour of null geodesics approaching R = 0 was discussed by Szekeres
and Morgan [4], while in Chapter 2 spacelike geodesics approaching R = 0 in the
hypersurfaces t = constant were examined in detail. Actually, not all null geodesics
approaching R = 0 were uncovered in [4]. After a great deal of further analysis of the
geodesic equations, it has been possible to obtain the behaviour of all geodesics (i.e.

spacelike, null and timelike) approaching R = 0. The results are as follows:
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(i) Geodesics with t # constant and ¢ = constant

(a) Asymptotic to the z axis as z — 0%

r(z) ~ e_m/z(A+Bz)

@)~ [ e@mirdu - To = T b+
s(z) ~ 8o —z2/K

where A, B, K, 1o, so are constants, ¢ = %1 or 0 for spacelike, timelike and null
geodesics respectively, and s(z) is the proper distance, proper time, or affine null

parameter along the geodesic.

(b) Asymptotic to the r axis as r — 0t
T 3
z(r) = Ar? [1 + 2-5 + (A2 + W) r? + 0(7'3)]
[t(r)| ~ to+ em2A2/ e2m/u=m?[2? gy,

s(r) ~ 8o+ -}{—67"2’42/ e~m /24 gy,

(ii) Geodesics with t, ¢ # constant

(a) Asymptotic to the z axis as z — 0%

0 = a3 (18) ) - 3 () G o)
() = o - (%) () + 06

A? AB
|t(2)]| ~ /ez’"/“du—m LGN

z 222 z

s(2) ~ sog— z2[K
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where H and ¢ are constants.

(b) Asymptotic to the surface 2 =0 as r — 0%

As in (i)(b) but with

$(r) ~ ¢o+ (H/K)e™# / y=2 e=mA/MA=amlu gy,

r

Spacelike, timelike and null geodesics occur in each of these four classes. In the various

expansions the parameter € appears in lower-order terms than those given.

(iii) Spacelike geodesics in the spatial sections ¢{ = constant

These were discussed in detail in Chapter 2. The geodesics asymptotic to the z
axis are complete (s — oo as z — 0) and exhibit either a slow oscillatory behaviour
or a slow spiralling behaviour as s — oo, while ones asymptotic to the plane z = 0
terminate in finite proper distance at the real singularity.

All geodesics in classes (i) and (ii) are incomplete, since the affine parameter s
approaches a finite limit so as R — 0. Along geodesics asymptotic to the plane z =0

(classes (i)(b) and (ii)(b)), the Kretschmann scalar
ol I

becomes infinitely large as R — 0. Hence these geodesics terminate at a genuine singu-
larity and are inextendible. On the other hand, & — 0 along all geodesics asymptoting
to the z axis (classes (i)(a) and (ii)(a)). The affine parameters (s—so) of these geodesics
are proportional to the coordinate z.

Suppose that one adopts the following asymptotically “comoving” coordinates

along the ingoing (¢ — +00) null geodesics (¢ = 0) of class (i)(a) with B =0 :
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m/fz

p = re

2z 2
v =t -—/ " e2miu gy % (20 = constant > 0) (3.3)
u = —2z .

Then as was shown in [4], as z — 0% along these geodesics, the Curzon metric given

by Eq.(3.1) and Eq. (3.2) becomes
ds? = — dudv + dp® + p*d¢* + O(z~%e~ ™) h,,, dz"dz" (3.4)

where h,, is a tensor whose behaviour is regular at z = 0.

p and v approach constant values along these geodesics as z — 0%, p being like
an axial radial coordinate, v a null (advanced time) coordinate. The coordinate u
is an asymptotically affine null parameter along the geodesics, and approaches a null
(retarded time) coordinate as can be seen from the form of the metric (Eq.(3.4)).
Clearly it is possible to match this metric smoothly (i.e. in a C* way) across u = 0

with Minkowski space

ds® = — dt* + dz? + dy® + d2?
expressed in double-null cylindrical coordinates
v=t+z, wu=t—z, acT=pcos¢, yYy=psing . (3.5)

In the remainder of this chapter it will be shown that coordinates can be chosen such
that both ingoing and outgoing null geodesics can simultaneously be extended into
regions of Minkowski space, whilst still preserving the ring structure of the curvature

singularity discovered in Chapter 2.
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3.3 New coordinates for the Curzon metric

In Chapter 2 the following coordinates were proposed for the spatial sections

t, ¢ = constant:

z = tan™? (% em/z> + tan™?! (7_:‘1— e_(ﬁm/r)”a) (3.6)

Y (z/m)* e’
v = tan (35 - [R8+1+%(r/m)2R-4]1/4) ’ s

m2,,.2

2Rt

where Y =v—-A =

o) 3

These coordinates have the effect of compactifying the upper r-z plane (z > 0)

into a curious double-rectangular-shaped region specified by

—r<z<r 0<y<mw/2

and

—r/2<z<7w/2 -—-w/2<y<0.

The real singularity occurs at the pair of boundary points z = £ 7/2, y = 0, which con-
verts to a ring when rotated about the central y axis (thus including the ¢ coordinate).
The boundary of the upper rectangle given by —r < ¢ < 7,y = /2 and ¢ = £,
0 < y < 7/2 is the “old” spacelike infinity of the Curzon metric (corresponding to
R = o), while the boundary line of the lower rectangle given by —7/2 < z < /2,
y = —7/2 represents the “new” spacelike infinity. This boundary line is approached in
an oscillatory manner by spacelike geodesics belonging to class (iii), Section 3.2. These
geodesics, which asymptote to the z axis as z — 0t in the original Weyl coordinates,

are complete.
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If null and timelike curves are to be included, it is tempting to employ a com-

pactified time coordinate

T =tan"! (t/m) .

The region z > 0, ¢ = constant of the Curzon space-time then has the slab-like
T-shaped structure of Figure 3.1, with the curvature singularity occurring along the
jagged lines. However, there is an immediate problem with this picture. The ingoing
geodesics of class (i)(a), Section 3.2 which approach z = 0 with vanishing Kretschmann
scalar, all terminate at the upper edge —7/2 < z < 7/2, y = —7/2, 7 = /2. Further-
more, they do so with finite affine parameter and should be extendible as discussed
in Section 3.2. However in these coordinates there is no hope of performing such an
extension, since a whole plane of arrival has been crushed to a line.

A similar situation would occur with the Schwarzschild solution for geodesics
approaching r = 2m, if one were to adopt a compactified time coordinate 7 = tan~1¢.
The situation there is remedied by using a null (advanced time) coordinate [5]. The
same procedure could be adopted here using coordinates v’ = tan"lv, z, y, ¢ (for v,
see Eq. (3.3) ). However, these coordinates crush the hypersurface z = 0 of the Curzon

space-time to the 2-surface specified by
vV=—m/2 w/2<|z|<m y=0 0Z¢<7 .

This renders the coordinate transformation not one-to-one on this crucial hypersurface
across which the upper half of the Curzon space-time z > 0 is joined to the lower
half z < 0. In addition, just as in the Schwarzschild case, past incomplete geodesics
emanating from R = 0 (i.e. those in classes (i)(a) and (ii)(a) of Section 3.2 with ¢ — —o0
as z — 07) will remain incomplete. The famous Kruskal double-null coordinates (6]

solve this problem in the Schwarzschild case.
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Figure 3.1  The Curzon space-time (z > 0, ¢ = constant) in z, y, 7
coordinates. O is the origin £ = y = 7 = 0. (a) is an oscillating spacelike
geodesic in a spatial section ¢ = constant, (b) is a future incomplete null
(or timelike or spacelike) geodesic, and (¢) is a past incomplete null (or
timelike or spacelike) geodesic.
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In the case at hand, both problems can be resolved by adopting a kind of half-
advanced, half-retarded time coordinate 7', and at the same time making a modification

to the y coordinate whilst leaving z alone.

3
T = tan_lle'K(—t—+H)+i(y+I)1
m m 2

+ tan™ [e-K (i - H) - T—i—(y + %)3] (3.8)

_ (/m)* ¥ -
[F= (L (tfm)*) + 1+ % (r/m) R ] |

where

z/m
H(r,z) = / e du + 1 (r/2)? e?m/
1

2
T tanz
Krz) = (y i E)R + (tany) '

z and y are given by Eq. (3.6) and Eq. (3.7), and a is a positive constant chosen prefer-

ably to be fairly small (< 7~*) to ensure that the coordinates are one-to-one. The
coordinate ranges are —7 < T' <, —7 <& < m, 0 <Y < 7. The region specified by
7/2 <|z|< 7, 0 <Y < m/2 is excluded, as may readily be shown given the shape of

the z-y coordinate patch.

3.4 Features of the new coordinates

In view of the somewhat awesome complexity of the coordinate transformation
just given in Section 3.3, a few comments are probably in order. Along ingoing geodesics

(classes (i)(a) and (ii)(a) of Section 3.2 with ¢ — co), one has that as z — 0%

t/m+ H — constant, t/m—H — oo ,
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whilst along outgoing geodesics (¢ — —oo) the reverse is true, namely
t/m+H — —oo0, t/m—H — constant .

Along such geodesics z — tan™!A = constant, while

- (m)ze-m/z
) 2 .

z
Hence K approaches zero very rapidly as z — 0%, and the factors e=* have no signifi-

cance along the geodesics for this limit. Since
|t] ~ (2%/2m)e?™/= |
the terms
t m\3
— — 0
m (y + 2) -

and also make no serious contribution along the geodesics.

Thus one has that along these geodesics as z — 07
T ~ tan™'{t/m+ H] +tan™' [t/m - H] ,
so that for the ingoing geodesics

T — constant >0 as ¢ —o00 ,

whilst for the outgoing geodesics
T — constant <0 as ¢— —oo .

The coordinate Y ~ (+ve constant) z along these geodesics as ¢ — oo respectively,
and thus behaves like an affine parameter. The factor [1 + (¢/m)*] has been incor-
porated into the last term under the arctan in the expression for Y, in order that this
term does not dominate as z — 07, since it is the first term under the arctan which
gives Y the desired affine behaviour.
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However, it is also desirable to retain the essential features of the spacelike hy-
persurfaces ¢ = constant discussed in Chapter 2. Near R = 0 (z > 0) in these hypersur-
faces, the curves of constant radius of revolution A about the z axis are r (z) ~ A e~m/*
(see Section 2.4). Since geodesics belonging to class (i)(a) in Section 3.2 (with B = 0)

have the same r (z), it is readily shown that these curves have the following behaviour

in the new coordinates as z — 0% :

z — tan"'A = constant
T~ 2(@/m)/H*—0 .

Since t/m = constant, the last term under the arctan in the expression for ¥ now

dominates as z — 0%, so that
Y ~ (m?/z) e ™7 =0

which is the same as the behaviour of y + 7/2 along these curves near z = 0. Thus

these curves have the form

t Y \!
~ 92— — 0t
T 2—.4 (logY) as Y — 07 .

The factors e~¥ in Eq.(3.8) are important for curves in the spatial sections
approaching different parts of the plane 2 = 0 (2 — 0%, r — constant > 0). Along

such curves e ¥ (t/m + H) — 0 as z — 0%, whence

3 3
T ~ 2 tan™! i (y-}-z) — 2 tan™! W_i
m 2 8 m

Without these factors of e~X, the spatial sections ¢ = constant would all fold down to
the 2-surface T =0, 7/2 < |z| < w, Y= 7/2, 0 < ¢ < 7. Because the influence
of the terms t/m + H and t/m — H in the expression for T is removed by these
factors, the equatorial plane —oo <t < oo, r >0, z =0, 0 < ¢ < 27 corresponds
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to the 3-surface — 71 < T < m, 7/2 < |z|<m Y=7/2, 0 £ ¢ < 7 in the new
coordinates. This is necessary if the upper half (2 > 0) of the Curzon space-time is
to be smoothly connected with the lower half (z < 0) across this surface. For similar
reasons geodesics belonging to classes (i)(b) and (ii)(b) in Section 3.2, which approach
R = 0 asymptotically to the plane z = 0 with finite values of ¢, also approach the
curvature singularity at |z | = 7/2, Y = 7/2 in the new coordinates with the full
range of values of T'. The relative placement of all spacelike curves in the spacelike
hypersurfaces ¢ = constant is unchanged from the discussion in Chapter 2.

Finally, the appearance of the metric in these new coordinates near the surface
Y = 0 should be considered. For T' > 0 the coordinate transformations given by

Egs. (3.9), (3.6) & (3.8) have the asymptotic form
z/m ~ a(7/8)(z? —n?/4)*tanY
r/m ~ e ™7 tang (3.10)

t/m ~ // e du — (m/22%)tan’z — cot T .

Comparing this with the coordinate transformation given by Eqs. (3.3), it may be seen

that the coordinates z, Y, T are related at Y =0 to p, u, v by

p = tancz
u = —a(r3/4)(z? —7?/4)*tanY (3.11)
v = —cotT .

This is a perfectly acceptable coordinate transformation of Minkowski space ex-
pressed in the double-null cylindrical coordinates given by Eq. (3.5), and has the effect

of compactifying it to a box

—r/2<z<7[2, -7m/2<Y<7w/2, 0<T<7w.
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Negative values of p are associated with points having ¢/ = ¢+ 7 (0 < ¢ < 7). Of

course the standard allowances must be made for the removable coordinate singularity

at p=0 in
ds?® = — dudv + dp? + p*d¢?
™, = s T 2 dT
= g— |22~ - t -
a7 (:1: 4) [4:1: anY dz + (a: 7 ) sec YdY ST
+ sectz dz? + tan’z d¢? . (3.12)

It is now clear that the Curzon metric expressed in coordinates z, Y, T, ¢
can be connected with the half Y < 0 of Minkowski space as expressed in Eq. (3.12).
The junction across the surface Y =0, T' > 0 is C®. The surface Y =0, T <0 can
similarly be joined to Minkowski half-space on changing the equation for ¢/m occurring

in Egs. (3.10) to
t/m ~ —// e* du + (m/22%)tan’z — cotT .

The situation is depicted in Figure 3.2. The end surfaces Y =0,T >0 and Y = 0,
T < 0 at which the junctions with Minkowski half-spaces are made, are shown at an
angle purely to emphasise the fact that these junctions must be made with separate
Minkowski half-spaces. This also highlights the fact that the junction surfaces at Y’ =0
are null hypersurfaces. Note, however, that Y is not a null coordinate throughout

Minkowski space whilst T is, as can be seen from Egs. (3.11) and Eq. (3.12).

3.5 Discussion and conclusions

What is to be made of this bizarre property that the Curzon metric extends
smoothly to Minkowski space? There seem to be two basic outlooks on this question.
One can either regard the Curzon solution as the possible end product of a non-spherical
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(b)

t=const.

Figure 3.2 The extended Curzon space-time (z > 0, ¢ = constant) in z,
T = 0. The spatial sections

t = constant (e.g. the surface enclosed by the bold line) bend upward (or
downward) from the “new” spacelike infinity at T =0, Y = 0. Curves (a),
(b) and (c) are as in Figure 3.1. Curves (b) and (c) are now fully extended
through the adjoining Minkowski half-spaces M; and Ma.

Y, T coordinates. O is the origin z =Y
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collapse, or one can view it as a development out of Minkowski space in much the same
way as a plane-sandwich wave.

In considering the first option, it should be pointed out that cosmic censorship
is by no means a settled issue in general relativity. Indeed some studies [7], 8], [9]
suggest that it may not hold even in the case of spherical symmetry. Suppose that a
non-rotating axisymmetric arrangement of matter collapsed in such a way as to lead
to a final state represented by the Curzon solution. It is not being said that this is in
fact possible, but neither can one be certain that it, or something similar, is totally
impossible.

The lower left-hand part of Figure 3.2, including the lower Minkowski space
(T < 0), is no longer relevant in this collapse situation, being replaced by the interior
solution of the collapsing matter. Presumably the matter divides into two, some of it
ending up in the singularity at |z | = /2, Y = 7/2 while the rest proceeds through
the ring and continues to the flat region beyond Y = 0 (Figure 3.3). The collapse in
this case results in both a naked singularity (the ring) and an event horizon at ¥ =0,
since events with Y < 0 can never be seen by observers near the Curzon infinity (i.e.
near |z| = 7 or Y=m).

It is felt that such a scenario may not be totally unrealistic physically since the
singularity, although naked, is not a “harmful” singularity in the sense that any “light”
emanated from it becomes infinitely redshifted. This is easily seen since the redshift
at infinity from any particle situated on a Killing vector orbit z, r, ¢ constant is given
by e~*, which clearly approaches infinity as R — 0. Infinitely redshifted singularities,
such as those occurring in the Friedmann cosmologies, are not regarded as genuinely

naked in view of their benign redshift. Possibly the Curzon singularity may be granted

a similar status.
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Figure 3.3 A hypothetical collapse to the Curzon solution. z, ¥, T co-
ordinates with ¢ constant are used. The collapse of half the matter is
depicted as a series of six layered sections beginning with Section 1 at the
bottom (which is like half a flattened sphere). A singularity develops in
this section and then spreads out to form a ring. Part of the matter passes
through the ring and eventually disappears over the horizon at Y = 0 into
the Minkowski region M.
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Of course one is entitled to feel a little sceptical about this picture. After all,
a non-spherical collapse would be expected to radiate gravitational waves and should
not have a static exterior solution. However non-spherical collapses can have static
exteriors [9], [10], and in any case this situation may approximate the true one with
regard to its general global features—for example, the lack of infinite blueshifts across
any horizons indicates that there is nothing inherently unstable in the picture given
here.

The Minkowskian continuation for Y < 0 looks most peculiar, since positive
density matter is being matched to a flat space exterior. Examples of this kind do,
however, exist in the literature [11], [12]. In any case the choice of matching to
Minkowski space is fairly arbitrary. It was simply the easiest space to match smoothly
across the boundary Y = 0. Any other space which matches smoothly to Minkowski
space (e.g. plane waves, another Curzon solution, etc.) would do just as well.

A tempting idea is to match the lower half (z < 0) of the Curzon space-time
with the upper half (z > 0) across the surface Y= 0, in such a way that particles
disappearing through the ring from the top half reappear in the lower half and vice
versa. These two half-spaces must, in any case, be joined along the side walls Y = 7/2,
7/2< |z | <m —7 <T < of Figure 3.2. However because of the C*°, non-analytic
nature of the matching conditions at Y = 0, there is nothing to convince one that this
procedure has any overriding advantages.

But there is a totally different viewpoint to all this. Consider a timelike observer
in Figure 3.2 beginning life in the lower Minkowski region 7'< 0. At a certain point of
time she encounters the null surface Y= 0 and some curvature begins to develop. This
is not an unfamiliar situation in general relativity. The most standard such example

is the plane wave which is of Petrov type N, because that is what one must have
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across a piecewise C? junction with Minkowski space [13]. However if the matching
is very smooth (C? or higher), then the curvature need not be type N. Here one has
an extremely smooth C'*® curvature development, and the resulting space has Petrov
type I.

What is truly amazing is that the observer finds herself in a whole new world,
as it were. In front of her she suddenly sees a naked ring singularity (not visible
before she entered the curvature region). But it hardly need bother her since its
infinite redshift makes it effectively invisible. She is, however, faced with a dilemma—
to proceed through the ring (or even into it if she wishes to perish), or to continue up
the diagram to reemerge in the upper Minkowski space. If the latter option is taken,
the whole experience has been something similar to passing through a sandwich wave.
The first option is peculiar in that as the observer passes through the ring and heads
toward the Curzon spatial infinity, she sees behind her an increasingly pointlike particle
of mass m. A massive particle has, in effect, been created out of nothing. Does one have
here the seeds of some fantastic particle creation theory based on general relativity?

Both of these viewpoints are thought-provoking. The Curzon “particle” is not
the isolated monopolar particle of general relativity—that role obviously belongs to
the Schwarzschild solution. From a distance, however, it appears just like a particle
but endowed with some higher multipole moments [14]. The detailed analysis of
the singularity given here has shown it to possess a wealth of structure and physical
possibilities. It would be most interesting to find out if other Weyl solutions or, even
more ambitiously, stationary axisymmetric solutions show similar or other structures

in their singularities.
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Chapter 4
A Survey of the Weyl Metrics

4.1 Introduction

Hermann Weyl derived his class of metrics in 1917, just one year after Einstein
had presented his now-celebrated general theory of relativity to the world. With the
passing of some seventy years since that initial flurry, it is perhaps time to pause and
assess what progress has been made with respect to the Weyl metrics. Exactly what
is known about them, and what still remains to be done?

From about twenty-five years ago an interest in the Weyl metrics developed, par-
ticularly as exterior solutions in astrophysical problems [1] and as possible final states
of gravitational collapse [2], [3]. However, in addition to being of relevance to physics,
they are also of interest simply because they present us with the rare opportunity of
explicitly determining and investigating a large class of relativistic metrics.

The Weyl metrics are, in principle, all ‘known’ since there exists a precise algo-
rithm for generating them from an infinite set of Newtonian potential functions. This
procedure is given in Section 4.2. In practice, however, the global structure of only a
few such solutions is well understood, and it seems that much work and new insights
will be required if this situation is to change.

The member of the Weyl class which is simplest to obtain is the Curzon metric
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(see Section 4.2). Yet despite the ease with which it is generated, its source structure
and global structure remained a mystery until the papers by Scott & Szekeres [4],
[5] (see also Scott [6]) appeared in 1986. Due to space considerations their findings
will not be summarised here, but nonetheless form an integral part of this subject (see
Chapters 1, 2 & 3).

Since the Schwarzschild solution belongs to the Weyl class, the question naturally
arises as to how it is generated. This question is investigated and answered in Section
4.3 and ultimately, of course, involves a change from Weyl coordinates to the standard
Schwarzschild coordinates. Finding the relationship between the two coordinate sys-
tems is facilitated by a consideration of the general form of gravitational equipotentials
of the Weyl metrics.

The Schwarzschild solution is a special member of the subclass of the Weyl metrics
known as the Zipoy-Voorhees metrics. These metrics form the main focus of this survey
and are discussed in Sections 4.4, 4.5 & 4.6. In Section 4.4 the metrics are specified
and new coordinates more suited to their geometry are chosen to replace the original
Weyl coordinates. The problem of finding sources for these metrics is discussed in
Section 4.5, and the possibility of performing extensions is considered in Section 4.6.

Some general properties of the Weyl metrics are given in Section 4.7 and, in
particular, the relationship between an arbitrary Weyl metric and its generating New-
tonian potential is examined. The question of how flat space is generated within this
framework is fully investigated, and at the end of this section there is a list of some
related open problems.

In Section 4.8 a brief history of the static two-body problem of general relativity
is presented, including the early controversy over the two-particle Curzon solution, as

well as some much more recent developments. Section 4.9 gives a short description of
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a new mathematical approach to stationary, axisymmetric, vacuum space-times. It is
hoped that this approach will eventually offer new insight into some of the unanswered
questions related to the Weyl metrics.

The survey concludes with Section 4.10 which consists of a small but new ob-
servation by the author regarding ring singularities occurring in Weyl metrics. Before
proceeding it only remains to point out that the aim of this survey was to be as com-
prehensive as possible within the given space constraints. There are, of course, certain

omissions for which the author apologises in advance.

4.2 The Weyl metrics

Using cylindrical coordinates (r, z, ) where r > 0, z € R and 0 < ¢ < 27 (with
@ = 0 and ¢ = 27 identified), the static, axisymmetric, vacuum solutions of Einstein’s

field equations are given by the Weyl metrics [7], [8] (see also Synge [9])
ds? = — e t? + (32("‘)‘)(dr2 + dz?) + rie~dyp? (4.1)
where A (r, z) and v (r, z) are solutions of the equations

Arr + Az + T—l)\r =0 (42)
and

vy =1 (A2 =A%), v, =2r)\ ), . (4.3)

If a solution A of Eq.(4.2) is found, then Egs.(4.3) can be integrated to find
v. In fact Eq. (4.2) is recognised as being simply the Laplace equation in cylindrical
coordinates for a y-independent function. There is thus a straightforward method of
obtaining static, axisymmetric, vacuum, general relativistic fields. Namely choose an
appropriate Newtonian gravitational field and then integrate the Eqgs. (4.3).
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An obvious choice is the gravitational field produced by a spherically symmetric
mass distribution with total mass m, which is located at the origin of the cylindrical

coordinate system. So

A=-m/R where R=+r?+22 (4.4)

and

m2r2

e (4.5)

V=

This is the so-called Curzon metric [10]. Although generated by the Newtonian mass
monopole it is not equivalent to the Schwarzschild metric, which as is well-known
(Birkhoff’s Theorem [11]) is the unique spherically symmetric, vacuum solution of

general relativity.

4.3 The Schwarzschild solution

The Schwarzschild solution is in fact generated by the Newtonian potential of a
constant density line mass (or rod) with total mass m and length 2m, which is located

along the z-axis with its mid-point at the origin. So for this important example

_ _]_._ R1 + Rz —_ 2m)
(e w
where
R, = (7'2 + (2 — m)z) 4 Gl R, = (r2 + (2 + m)z) 12 (4.7)
and
_ 1 (R'L + Rz):2 — 4m?
v=73 ln( N . (4.8)

Najvely one might have been tempted to make the simple coordinate transfor-

mation
R=vVr2+4+2?, tanf=r/z (4.9)
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from the cylindrical system (r, z,¢) used by Weyl (Weyl coordinates), to a spherical
system (R, 0, ). However this will not cast the metric into the familiar Schwarzschild
form, since under such a coordinate transformation the rod maps to the portion of axis
specified by § = 0,0 < R <m and 6 = 7,0 < R < m. So instead of producing the
customary point mass, the line mass persists.

In fact any coordinate system which is one-to-one with the cartesian system
(z,y,z) on an open neighbourhood of the rod can be ruled out for the same reason.
A different type of coordinate transformation is needed here, and the key to finding it
lies in the following observation.

For the Weyl metrics given by Egs. (4.1), (4.2) & (4.3) the 3-metric 3g,g, 3g*°

(e, 8 =1,2,3) induced on the hypersurface { = constant is given by
3gap dzdal = 2 ~N(dr? + dz?) + rie A dy? (4.10)
where z! =r, 22 = 2, 23 = . Now it can be shown that
3g9P Aap = 39 3Vs3V,er = 0 . (4.11)

Thus e* is an analogue of the Newtonian potential A, and the surfaces on which it is
constant may be thought of as gravitational equipotentials.
For the Schwarzschild potential A given by Eq. (4.6),
e} = constant
= Ry + R; = ¢ (a constant > 2m)

These gravitational equipotentials are, of course, just the 2-surfaces p = constant,
where p is the radial coordinate normally used for the Schwarzschild metric. From the
metric component

Goo = — e
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the function p(c) is readily determined to be
1
p(0) = £ (e +2m) |
and with a little more effort the coordinate transformation
1
pF =3 (B1+ Rz + 2m)

(4.12)

1
cosf = o (R2 — Ry)

is found to be the one which casts the Schwarzschild metric into its familiar form

-1
ds? = — (1 — 27m) dt? + (1 - 2—7—) dp® + p? (d6* + sin?0dp?) . (4.13)

It is to be noted that this transformation from (¢, r, z, ¢) coordinates to (¢, p, 0, ¢)
coordinates is a one-to-one mapping of the entire region surrounding (but not including)
the line mass onto the ezterior Schwarzschild solution p > 2m. This is not really very

surprising since the Weyl metrics are static.

4.4 The Zipoy-Voorhees metrics

The Schwarzschild solution falls naturally into the subclass of Weyl metrics gen-
erated by the Newtonian potential of a constant density line mass (or rod) with total

mass m and length 2/, which is located along the z-axis with its mid-point at the origin.

So
_ l m Ry + Ry — 21
d=gT R (Rl FRa+ 2:) (4.14)
where
R, = (r2 + (2 — 1)2) s and R; = (7'2 + (2 + 1)2)1/2 (4.15)
and

(EY In ((Rl ngzz— 4’2> . (4.16)
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This metric was first derived by Bach and Weyl [12], and is occasionally referred
to as simply ‘the metric of Bach and Weyl’. However it has since been discussed and
investigated to a varying extent by numerous authors [13], [14], [15], [16], [17], [18],
[19] and is more commonly referred to as the Voorhees metric or the Zipoy-Voorhees
metric after two of them.

In fact the papers of Zipoy [14] and Voorhees [18] are particularly interesting
and warrant some further discussion here. There is a common philosophy underpinning
both, namely that the coordinate system chosen to express a particular Weyl metric
(), v) should be adapted to the symmetries of the source (or mass distribution) giving
rise to the Newtonian potential A. So for the line metrics given by Egs. (4.14), (4.15)
& (4.16) an obvious choice is the prolate spheroidal coordinate system (u, ) defined
implicitly by

r = | sinhu cos 0 z =1 coshu sinf , (4.17)

where u >0 and —7/2 <0 < 7/2.

If further the coordinate z is defined by ¢ = coshwu, where z > 1, then the
coordinates (z,0) form an orthogonal system whose level curves = = constant and
0 = constant are confocal ellipses and hyperbolas respectively, with foci at r = 0,
z=+l,—l (x=1,0 =+4x/2,—7n/2). These coordinates are illustrated in Figure 4.1.

If further the coordinate p is defined by p = lz, where p > I, then in (¢, p,6,¢)

coordinates the metric becomes

ds? = — e d? + 2N (p* — I%sin%0) (pzd—izp + d92>
+ 72 (p? — 1?) cos?8 dy? (4.18)
where
A= %? In (Z:r;) (4.19)



Figure 4.1 A graph showing the relationship between cylindrical
coordinates (r, z) and prolate spheroidal coordinates (z, ).
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and
1 /m\2 p? — 12
=-|=) In|————] . .
Y=3 ( l ) " (p2 - Psinzﬂ) (4.20)
The gravitational equipotentials e* = constant now have the particularly simple
form p = constant (p > !), confirming that prolate spheroidal coordinates are indeed
well suited to the given source. For the Schwarzschild solution (I = m) the metric

assumes its usual form (Eq. (4.13)) by a straightforward change into (t, o', ', ¢) coor-

dinates, where

'=p+m and O =7/2-0. (4.21)

4.5 Possible sources for the
Zipoy-Voorhees metrics

By examining the behaviour of a particular invariant of the Riemann tensor as
z — 1%, Zipoy concludes that in all but the Schwarzschild case, z = 1 is comprised of
curvature singularities. However this conclusion is slightly incorrect, since if m/l > 2
the invariant does in fact tend to zero as = 1 is approached along either the positive
z-axis or the negative z-axis (if m/l =2 it tends to a finite, positive value).

The proper distance from zo > 1 to & = 1 along the spacelike geodesics given by
6 = 0, t, o constants is found to be finite for all values of m/l. Timelike geodesics
given by 6 = 0, ¢ constant reach z = 1 in both finite coordinate time and finite proper
time for all values of m/!. However it is interesting to note that the circumference of
the circles given by 6 = 0, t, = constants becomes infinite as ¢ — 1 for m/l > 1,

and zero for m/I < 1.
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Voorhees proposed the following method for determining the geometry of the
sources for these metrics. Assuming that all the rods are of equal mass m but have
varying length 21, it is possible to determine the relationship Z (z, ), 8 (z,0) between
the prolate spheroidal coordinates (Z,8) used for the Schwarzschild solution, and those
(z,0) used for the solution generated by the rod of length 2.

It is then a straightforward matter to find p'(z,8), 6'(z, ) where (p',8') are the
standard Schwarzschild coordinates given by Egs. (4.21). Figure 4.2 shows how the rod
z = 1 transforms under this change to Schwarzschild coordinates.

It is noted that for solutions with m/l > 1 the singular region (z = 1) does not
cover the entire surface p’ = 2m, and indeed no curvature singularity is encountered
along the axis of symmetry as p’ — 2m*. However, consider the spacelike geodesic
which in (2, 0) coordinates is given by ¢ = constant, § = 7/2, and extends from ¢ = 1,
6 =x/2 out to z = +o0, § =m/2.

In Schwarzschild coordinates it lies along the axis of symmetry ¢’ = 0, and
extends from p’ = 2m, ' = 0 out to p’ = +00, 6’ = 0. But the point (p' = 2m, ' = 0)
corresponds to the point (2o > 1, = 7/2) in (z,0) coordinates. So what happens to
the piece of geodesic lying between zo and z =17

The answer is that it maps onto the cap which is missing from the top of the
sphere p' = 2m in Figure 4.2 (iii)! This is an undesirable feature, and since there are
further problems associated with these source representations, one concludes that the
method of Voorhees yields only a very rough approximation to the source structure.
The true geometry of the sources for the Zipoy-Voorhees metrics remains an open

problem.
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Figure 4.2 The rod of mass m and length 2! (z = 1) depicted in
Schwarzschild coordinates (p',6').
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4.6 Possible extensions of the
Zipoy-Voorhees metrics

In a more recent paper by Papadopoulos, Stewart & Witten [20], it is pointed out
that the Zipoy-Voorhees metrics form the static limit of the Tomimatsu-Sato family
of solutions [21], [22]. It is also noted that apart from the Schwarzschild solution
(I = m), all metrics in the class are of Petrov type D on the axis of symmetry, and
type I (or general) elsewhere. But perhaps the major revelation of the paper concerns
the ‘north pole’ z = 1, # = 7/2 and ‘south pole’ z = 1, § = —x/2 in solutions with
mfl > 2.

In keeping with the spirit of Zipoy and Voorhees, the metricis expressed in prolate
spheroidal coordinates. Then using a complex null tetrad (m,m, [, k), the Weyl tetrad
components Uq, ¥y, Uy, U3, Uy are calculated (U3 =0 & U3 = 0). For solutions with
mfl > 2, Uy, Uy & ¥, are infinite along z =1, —7/2 < § < 7/2, confirming that the
rod £ = 1 minus its endpoints (or poles) is indeed comprised of curvature singularities.
However the value of each of ¥g, ¥; & ¥, at the north and south poles is found to
vary according to the direction of approach to the pole.

The north and south poles are thus the locations of directional singularities.
In an attempt to unwrap this directional behaviour, a polar-type coordinate system
based on the north pole is introduced. However the attempt is unsuccessful, because
the coordinate transformation maps the pole to a point. To successfully unwrap the
directionality it will certainly be necessary to use a coordinate transformation which
maps the pole to a higher-dimensional surface.

It can be shown that timelike geodesics lying along the axis of symmetry (z > 1,

6 = w/2) reach the north pole in finite proper time. Since no curvature singularity
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is encountered there, it is argued that an extension of the space-time is necessary.
As a first step towards providing one, an extension of the 2-dimensional ‘space-time’
spanned by the time coordinate ¢ and the axis of symmetry (z > 1, § = 7/2) is
successfully performed.

If m/l (> 2) is an integer, the extension is analytic. If n < m/l < n 4+ 1, where
n is an integer (n > 2), the extension is C™"—an analytic extension is not possible
in such cases. An extension of the full 4-dimensional space-time through the north
pole (or likewise the south pole) has yet to be found. It is clear however, that the
ability to perform such an extension, will be intimately tied to the ability to unwrap

the directionality which is present at the poles.

4.7 Some general properties of the Weyl metrics

From the preceeding discussion of the Zipoy-Voorhees metrics, and the earlier

comments regarding the Curzon and Schwarzschild metrics, it is apparent that:

In general there is no correspondence between the geometry of the source
for a Weyl metric, and the geometry of the Newtonian source from which
it is generated.

Is it at least true then, that every Weyl metric (Eq. (4.1)) is generated by a unique
Newtonian potential A (r,z)? At a superficial level the answer to this question is, of
course, ‘yes’. Since the Weyl metric coefficient goo is —e??, it is clear that two different
Newtonian potentials A;(r, z) and A; (7, 2), will certainly generate Weyl metrics which
look different.

There is a possibility however, that if the second Weyl metric is expressed in a
different coordinate system (2,7, Z, @), it could assume the same form as the first metric

still expressed in Weyl coordinates. That is, different A; and A, might generate the
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same metric simply expressed in different coordinates. But does this actually happen
in practice?

The answer lies in an interesting paper by Gautreau & Hoffman [23]. They
set themselves the task of finding all Newtonian potentials A (r, z) which generate flat
space. Obviously A = 0 is one such potential, giving rise as it does to flat space

expressed in cylindrical coordinates
ds’® = — dt* + dr® + d2* + ridy? . (4.22)

Now the Newtonian potential of a constant density line mass of infinite extent,

lying along the entire z-axis is given by
A=2clnr , (4.23)

where ¢ > 0 is the mass per unit length. If the Riemann tensor components are
calculated for this subclass of the Weyl metrics, it is readily seen that they all vanish
for the case o = 1/2 (r > 0). So A = Inr is another potential which generates flat

space.

It can be shown that there are precisely two other such potentials, namely
A:%ln(\/rz-l-z?—z) , )\=%ln(\/r2+z2+z) . (4.24)

They correspond to the Newtonian potentials of semi-infinite line masses of constant
density 1/2, lying along the entire positive z-axis and entire negative z-axis respectively.
So with four distinct Newtonian potentials which generate flat space, one concludes

that:

There is not a strict 1-1 correspondence between the Weyl metrics and
their generating Newtonian potentials A (r, z).
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However some questions naturally arise here. For instance, how special is the
case of flat space in this context? In other words, is it true in general that a Weyl
metric is generated by more than one potential 7 If not, then what is the class of excep-
tions? Also can a strict 1-1 correspondence be obtained by restricting the generating
Newtonian potentials to those corresponding to mass distributions of finite extent 7 At

the present time all of these questions remain unanswered.

4.8 The two-particle Curzon solution

No survey of the Weyl metrics would be complete without mentioning the two-
particle Curzon solution, which as the name suggests, was first found by Curzon [24]
(and later by Silberstein [25]). This solution is generated by the Newtonian potential
A (r, z) of two particles (point masses) of mass m; and m;. Obviously, for the mass
configuration to be axisymmetric, the two particles must both lie along the z-axis at

z; and z; respectively (21 < z2). So

A= —— —— 4.25
P (4.25)
where
= \/7‘2 + (z—21)? and p; =/r2+ (2 — 2;)? (4.26)
and
1, (m m22) 2mimy (7‘2 + (2 — z1)(z — =) )
v = —=r + + -1 . 4.27
2 (P14 pst) (72— =) P12 (4.21)

Silberstein claimed that the existence of a static solution consisting only of two
point masses surrounded by vacuum, indicated the incorrectness of the general theory
of relativity. After all, two masses at rest in vacuum should gravitate! Einstein [26]

countered that the two-particle solution is not purely a vacuum solution, and provided
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the following argument. Consider a small circle given by ¢ = constant, z = constant
(21 < z < z2), r = constant, where r is small. If one takes the circumference C' and

radius R of this circle, it is found that in the limit as R — 0,
C/R — 2re™  where v=v(0,2) .

Now for z; < z < z3, v(0,2) # 0 and so C/R does not approach 27 as R — 07,
Hence the space-time violates the condition of elementary flatness on the section of axis
between the two particles, suggesting the existence of a “strut”. This would explain
the static nature of the solution.

However in 1968, some thirty-two years after Einstein’s paper on this subject,
Szekeres [27] demonstrated that static, two-body solutions do exist in general relativ-
ity. In his solutions, at least one of the two point masses is endowed with a multipole
mass structure, which allows equilibrium to be achieved without the need for an inter-
vening strut. The simplest example is that of a pure mass monopole (a Curzon particle)
balanced by a mass monopole-dipole, where the mass of each particle (as represented
by the monopole moment) is positive.

Another major contribution to this subject came quite recently in 1982. Using
a technique to generate stationary solutions from static ones, Dietz and Hoenselaers
[28] obtained from the two-particle Curzon solution, a stationary, axisymmetric solu-
tion representing two particles precisely balanced by their spin-spin interaction. Their
solution is also a purely vacuum solution with no strut required.

The source structure for the two-particle Curzon solution is still unknown. From
Section 4.2 it is known that although the Curzon metric given by Eq. (4.4) & Eq. (4.5)
is generated by the Newtonian mass monopole, the Curzon solution is not the unique

spherically symmetric, vacuum solution of general relativity. The source for the Curzon
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solution is a ring singularity with finite radius and infinite circumference, and the space-
time has a doubled-sheeted topology inside the ring.

So without further investigation, there is no reason to expect that the source for
the two-particle Curzon solution simply consists of two point masses joined by a strut.
The source structure is probably considerably more complicated, and the space-time
may even be extendible. A first step towards resolving these issues would presumably
be to look for directional behaviour at the two particle locations: (r = 0, z;) and

(r =0, 2).

4.9 Recent mathematical developments

In a recent paper by Woodhouse & Mason [29], the ideas presented in an earlier
paper by Ward [30] are developed into a geometric correspondence between the sta-
tionary, axisymmetric vacuum space-times and particular complex analytic objects—
holomorphic vector bundles on a non-Hausdorff Riemann surface (twistor space). As
a result, the solutions to the Ernst equations on space-time can be described in terms
of certain free holomorphic functions on regions in the Riemann sphere (or on parts of
the twistor space).

The paper discusses the effect of the action of the Geroch group on these free
holomorphic functions, and also the conditions on them implied by global properties
such as axis regularity and asymptotic flatness. Unfortunately the construction is, at
present, tied to the use of Weyl coordinates, so that aspects of the singularity/source
structure and global structure which are obscured by the use of Weyl coordinates, are
difficult to address in this new framework also.

Nevertheless the construction is geometric, and it should therefore be possible to
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articulate it independently of the choice of such coordinates. The study of singularities
would then perhaps be reducible to the study of singularities of holomorphic functions.
However further work needs to be done before these ideas are able to contribute to the

study of the singularities occurring in the Weyl metrics.

4.10 Ring singularities

Perhaps the most appropriate way to conclude a survey is to add a small, but
new observation on the given subject—in this case the Weyl metrics. This particular
observation will concern ring singularities (that is, rings comprised of curvature singu-
larities), occurring in the hypersurfaces ¢ = constant of the Weyl space-times. These
rings are known to be a common feature throughout the entire Weyl class.

That the Weyl metrics should exhibit singularities in the form of rings is not
really very surprising, since all metrics in the class are axisymmetric. So if a curvature
singularity occurs at the point (ro, 2o, 9o) in the hypersurface ¢ = constant (rg # 0),
then a curvature singularity occurs at every point (ro, 20, ), where 0 < ¢ < 27. In
other words (o, 20) is a ring singularity.

What past investigators have found rather more surprising, is that these rings may
have an infinite circumference. If, in addition, the ring singularity can be reached from
the axis of symmetry via a finite number of spacelike geodesics, each having finite proper
length, then one is indeed confronted by a highly counter-intuitive phenomenon—
namely a ring having finite radius, but infinite circumference!

The Curzon metric provides the most well-known example. Although in Weyl
coordinates the Curzon singularity appears as a point (at R = 0) exhibiting highly

directional behaviour, a change to the new coordinates constructed by Scott & Szekeres

80



unwraps the point to include, amongst other things, a ring singularity with finite radius
and infinite circumference.

When past investigators of Weyl metrics have happened across an example of
this phenomenon, they have tended to regard it as an exceptional case. However,
the simple argument which follows will indicate that for ring singularities with finite
radius occurring in Weyl metrics, the generic case is that the circumference of the
ring is infinite, not finite. Note that the standard Weyl coordinates (t,r,z,¢) will be
used in what follows, although the argument could proceed equally well in any other
coordinate system (¢,z,y, ).

Suppose that in a Weyl space-time a curvature singularity occurs at the point
p = (to,To # 0, 20,0). It is assumed that p can be reached from the axis of symmetry
by a C° curve v, which consists of a finite number of spacelike geodesics, each having
finite proper length. So (ro,20), 0 < ¢ < 27 is a ring singularity with finite radius
which occurs in every hypersurface ¢ = constant.

Now it will generally be true that A = —oo at the curvature singularity p. This
means that A — —oo as p is approached from any direction. So if one considers the
circle given by (r = constant, zo), where 0 < r < 7, then its circumference C, is found
to be C, = 2wre~?, and it is readily seen that as r — o, C; — +o0.

The details have been omitted here, but the argument can be made rigorous.
Note that the fact that the ring singularity has a finite radius is not used to show
that it has an infinite circumference. In other words, a ring singularity with an infinite
radius would also have an infinite circumference, but this is not very surprising after
all. It only remains to find a physical explanation of this strange phenomenon. How

can a ring singularity with finite radius have an infinite circumference ?
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Chapter 5
The Abstract Boundary

— A New Boundary Construction
for n-Dimensional Manifolds

1 Introduction

In general relativity, one often wishes to know whether a particular solution of
Einstein’s field equations is singular or not. Such a seemingly simple question has often
been the cause of a great deal of confusion. Perhaps the most significant problem is that
a solution usually comes packaged in one of two ways. Either it is embedded in a larger
4-dimensional manifold e.g. the Schwarzschild solution (r > 2m), or no embedding is
given at all e.g. non-compactified Minkowski space-time.

The latter case is problematic because there is no edge to the space-time, which
makes it difficult to assess whether or not singular behaviour occurs there. The former
case is problematic because it provides a fixed reference. Whilst a metric may look
very singular with respect to that particular embedding, it may not look singular at all
with respect to another embedding e.g. the Kruskal embedding for the Schwarzschild
solution. However, it has often been the case that the assessment of whether or not a

solution is singular has been made relative to a given embedding.
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This paper provides a new approach to the problem, our aims being to clarify
the issues involved, and to provide a practical formula for judging whether or not a
particular solution is singular. We have shifted the question to a wider framework,
namely n-dimensional manifolds with regular metrics of arbitrary signature, since none
of the techniques and ideas used are peculiar to 4-dimensional space-times.

As much flexibility as possible has been incorporated into the scheme. For in-
stance, one may only be concerned about singular behaviour that occurs relative to
a special set of curves on the manifold. This is particularly true in general relativity,
where one may simply be interested in geodesics, or in curves with bounded accelera-
tion, etc. Apart from a few basic conditions which must be complied with, there is the
freedom to choose the family of curves that will be used.

The central idea of the scheme, is that all possible embeddings of the given pseudo-
Riemannian manifold into other n-dimensional manifolds must be compared. On the
basis of these comparisons, each boundary point belonging to such an embedding is
classified into one of six categories, three of which are non-singular, and three singular.
This allows a precise definition of a removable singularity and a directional singularity
to be formulated for the first time.

In order to elucidate the various new concepts and definitions that are intro-
duced, a number of examples, including some from general relativity, will be given
throughout. The final section of the paper contains our definition of a non-singular
pseudo-Riemannian manifold, together with a discussion of its relationship to past defi-
nitions. It would be a natural progression from such a point to consider the question of
an optimal boundary for a pseudo-Riemannian manifold. However, such considerations

are beyond the scope of the current paper, and will appear elsewhere. Finally, when-
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ever M, M, M, etc. occur throughout the text, they will always denote n-dimensional,

connected, Hausdorff C* manifolds.

2 Parametrized curves on a manifold

The concept of a curve on a manifold is integral to any discussion regarding
singularities of pseudo-Riemannian manifolds. Although geodesics are often used in
this context, we will include a much wider range of curves, called parametrized curves.
A subclass of these curves may then be selected, according to the purpose that one has

in mind.

Definition 2.1 Ifa € R, b € RU {+o0} and a < b, then we will refer to [a,b) as a
half-open interval. A parametrized curve y(t) on a manifold M is a continuous map

v :I — M, where I is a half-open interval [a,b).

Definition 2.2 A parametrized curve v(t) on M will be said to be non-intersecting, if

for any ty and t; in I such that ty # t3, v(t1) and ¥(t2) are different points of M.

Definition 2.3 A non-intersecting, parametrized curve ¥(t) on M given byy: I - M
where I = [a,b), is equivalent to another non-intersecting, parametrized curve 7'(t') on
M given by ~' : I' = M where I' = [a', ), iff {y(t) :t € I} = {y'(¥) : t' € I} and

v(a) = v'(a'). We will write that y(t) ~ +'(t').

If we let F denote the family of all non-intersecting, parametrized curves on M,
then it is readily seen that ~ is a proper equivalence relation on F. A particular
equivalence class under ~ will be denoted by [y(t)], where (%) is an arbitrarily chosen

member of that class.
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It follows from the preceding definitions that if two non-intersecting, parametrized
curves v(t) and 7/(t') are equivalent, then there exists a continuous, strictly monotone
increasing function s : [a,b) — [a/,¥') such that 4/ o s = 7. Clearly s(a) = o/, and
as t — b~, s(t) — b'~. We will say that 7/(t') is obtained from +(t) by the change of

parameter s.

Definition 2.4 Let v(t) be a curve in F given by v : I — M where I = [a,b), and let
4'(') be another curve in F given by v' : I' = M where I' = [a', ). /(') will be said

to be a subcurve of 7(t) iff a < o' <V <b and ¥(t) |y =Y'(t').

Lemma 2.5 Let v(t) be a curve in F given by v : I — M where I = [a,}), and let
~4'(¢') be a subcurve of y(t) given by v : I' = M where I' = [a', V).

(i) If & < b, then 4/(#') has finite parameter range.

(ii) If ¥ = b and «(t) has finite parameter range, then 4'(¢') has finite parameter

range.

iii) If ¥ = b and ~(t) has infinite parameter range, then 4/(¢') has infinite parameter
v U

range.

Definition 2.6 Let v(t) be a curve in F given by v : I — M where I = [a,b), and let
~'(') be another curve in F given by ' : I' = M where I' = [d/, ). 4(t) will be said
to be extendible to v/(¢') if there exists an i and j in I', wherea' <1 <j < ¥, and a
k in I, where a < k < b, such that /(') | i)~ ¥(t) | k). Note that i and k will not be
unique here. We will also say that y(t) is extendible, when there exists a curve ¥'(t)

in F such that (t) is extendible to ~'(t').

It is a straightforward exercise to show that if the curve v(t) is extendible, then
every other curve in [y(2)] is also extendible. So it is valid to speak about equivalence

classes of curves being extendible or otherwise.
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Now the equivalence class [y(t)] will contain curves with finite half-open interval
I' = [d',V) (i.e. ' is finite), as well as curves with infinite half-open interval I" = [a", b")
(i.e. ¥ = +00). This is an undesirable feature since it means, amongst other things,
that a curve may be extendible even though it has infinite parameter range. In order
to avoid these situations, we introduce some restrictions on F.

Let C C F be a family of non-intersecting, parametrized curves on M, and let
4(t) be a curve in C given by v : I — M where I = [a,b). We will always require that
all subcurves of 4(t) are also members of C. The equivalence relation ~ is naturally

induced on C from F, and as before, we will denote an equivalence class of curves in C

by [v(?)]-

Definition 2.7 It will be said that C has the bounded parameter property (b.p.p.) if
for any curve y(t) in C, either all members of the equivalence class [y(t)] have finite

parameter range, or all members have infinite parameter range.

C will always be assumed to have the bounded parameter property in what follows,

and a manifold M with such a C will be denoted by (M, C). Three well-known examples

are given below.

Examples

(i) M is a manifold with affine connection. C, is the set of all non-intersecting

geodesics with affine parameter.

(i) M is a manifold with affine connection. Cyqp i the set of all non-intersecting,

continuous, piecewise C! curves with generalized affine parameter [1].

(iii) M is a manifold with Lorentzian metric. C,, is the set of all non-intersecting,
timelike and null geodesics with affine parameter.
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Theorem 2.8 Suppose that we have an (M,C). Let 7(t) be a curve in C given by
v : I — M where I = [a,b), and let 4/(¢') be another curvein C given by v': I' = M

where I’ = [a/, /). If 4(2) is extendible to 7'(t’), then v(t) has finite parameter range.

Proof

Since 7(t) is extendible to v'(t'),

di,5€l', kel, where ¢/ <i<j<V and a <k<b,

such that v/(¥') i) ~ () lk.s)-

Now 7(t) |x,s) is a subcurve of 4(t), and v'(t) |;,5) is a subcurve of /(')
So both are contained in C.

Since j < ¥, j is finite.

Thus by the bounded parameter property, b is also finite.

QED

3 Enveloped manifolds and boundary sets

In order to formulate a definition of a singularity-free pseudo-Riemannian mani-
fold, we need to consider the behaviour of the metric near the “fringes” or “boundaries”
of the manifold. However, these two words really only make sense when M sits in some
larger manifold M. This notion is made precise in the following definition, thus enabling

boundary points and boundary sets to be defined later in the section.

Definition 3.1 An enveloped manifold is a pair of manifolds M and M and a C®
embedding ¢ : M — M. This will be denoted by (M, M, ). We note that since both
manifolds have the same dimension n, p(M) is an open submanifold of M. We will
also refer to the enveloped manifold as an envelopment of M by M, and M will be

called the enveloping manifold.
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There are two different methods of setting up an enveloped manifold, both of

which will be used in the examples which follow here, and in later sections.

Method 1. We start with a manifold M, and choose one of its connected, open subsets
M. This subset has a natural C* differentiable structure induced from M, with which
it becomes an open submanifold of M. Trivially, the map 7 : M — M given by i(p)=p

is a C* embedding. So (M, M, i) is an enveloped manifold.

Examples

(i) M= R’
M = R? — a Cantor set

—

(i) M= R?

Note that where an enveloped manifold (M ,M, ) has been set up using this

method, we will usually refer to (M) simply as M.

Method 2. We start with a manifold M, and look for another manifold M into which
it can be C* embedded as an open submanifold. Then (M, M,¢) is an enveloped

manifold.

Examples

(iii) M = {(z,y) € R* : y > 0}
M= R?
o: M- M

(z,9) - (5,2 +y +2)
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(iv) M and ¢ as in Example (iii)

M= R*— {(z,y): 22 +y* < 1}

In Examples (ii), (iii) and (iv) above, the manifold M is the same. Although the
enveloping manifold is the same in Examples (ii) and (iii), the C embedding differs.
In Example (iv), the enveloping manifold itself is different. These three examples thus

give three different enveloped manifolds.

Definition 3.2 A boundary point p of an enveloped manifold (M,./T/l\, ) is a point in
the topological boundary of p(M) i.e. a point p in M — (M) such that every open
neighbourhood U of p in M has non-empty intersection with p(M). A boundary set
B C M- ©(M) is a connected set of such boundary points, and we will use the

notation (M, ./(/l\,(,o,B) for an enveloped manifold with a particular boundary set B.

There will often be an infinite number of boundary points associated with any
particular enveloped manifold (M,./(/l\ ,). Only when (M) = M will there be no
boundary points at all. As the next example will illustrate, there are cases where

precisely one boundary point exists.

Example

(v) M= R?
M = R? — {0} where O is the origin
The only boundary point p is O.

The only boundary sets B are @ and {O}.
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4 Limit points and C-completeness

Definition 4.1 Let (M,/W, @) be an enveloped manifold, and y(t) a non-intersecting,
parametrized curve on M given by v : I — M where I = [a,b). We will say that a point
p € M is a limit point of v(t) #f, in the half-open interval I, there exists an increasing
sequence of numbers t; — b~ such that (v o)(t;) = p (meant in the usual topological
sense). If, in addition, (po7y)(ti) — p for every such sequence {t;}, then p will be said

to be the endpoint of ¥(t).

It is clear from the definition that limit points and endpoints p of curves on M
either lie in (M) itself, or are boundary points lying in M — ¢(M). In the former
case we will simply say that ~(¢) has a limit point or an endpoint in M, namely ¢~*(p).
Some curves will have no limit points at all, and others may have infinitely many. Of
course a curve with an endpoint has a unique limit point.

Now if v(t) and /(') are two curves in F, and 4(t) ~ v/(t'), then a limit point of
v(t) will also be a limit point of 4/(¢'), and if v(¢) has the endpoint p, then +'(#') also
has the endpoint p. So we may speak about the limit points of the equivalence class of
curves [y(t)], and where appropriate, say that [y(t)] has the endpoint p. Also if y(t) is

extendible to another curve in F, then it is clear that v(t) has an endpoint in M.

Definition 4.2 Let (M,./{/(\,(p,B) be an enveloped manifold with boundary set B, and
let y(t) be a curve on M belonging to F. It will be said that y(t) approaches B if it

has at least one limit point in M, and all its limit points in M lie in B.

Definition 4.3 Given an (M,C), we will say that M is C-complete iff every equiva-
lence class of curves in C with finite parameter range has a limit point in M, and has

no limit points in any M — w(M), where (M,/ﬁ,tp) is an envelopment of M.
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As the following two examples demonstrate, C-completeness does not guarantee

that every equivalence class of curves in C with finite parameter range is extendible.

Examples

(i) (M,C) where C consists of the curve 4(t) with finite parameter range, together
with all of its subcurves. If 4(¢) has an endpoint in M, then M is C-complete.

However v(t) is clearly not extendible.

(ii) (M,C) where M = R? and C contains the curve y(t) given by v : [0,1) — R? where
v(t) = (t, sin(1 —t)~1). This curve has a finite parameter range and infinitely
many limit points in M. It also lies in a bounded region of R?. So whether or
not M is C-complete will depend on the other curves belonging to C. However,
irrespective of this, y(¢) is not extendible to any curve in C (or in F for that

matter), because it doesn’t have an endpoint in M.

The converse is clearly true, namely if every equivalence class of curves in C with

finite parameter range is extendible, then M is C-complete.

5 Abstract boundaries

The set of all boundary points of a particular manifold M is often enormously
large, since there may exist an infinite number of envelopments of M, each having an
infinite number of boundary points. It is therefore desirable to reduce it to a more
manageable size, by adopting some suitable process for making identifications between

boundary points. This is what we proceed to do.
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Definition 5.1 If (M, M, ¢, B) and (M, M!,¢', B') are two enveloped manifolds with
boundary sets B and B’ respectively, then we say that B covers B' if for every open

neighbourhood U of B in M there exzists an open neighbourhood U’ of B in M such
that

potp'™! (U’ﬂcp'(M)) cvU.

If B consists of just a single point p, we will simply say that p covers B’. Similarly,
if B’ consists of a single point p', we say that B covers p’. If both consist of just a single
point, then we say that p covers p’. For the latter case it can be established that if p’

is a limit point of a particular curve on M (belonging to F), then p is also.

Theorem 5.2 Let p be a boundary point of the enveloped manifold (M, M, ), and
let p’ be a boundary point of the enveloped manifold (M,/\/Z’ ,¢'). Suppose that p
covers p'. If p' is a limit point of a curve y(t) in F given by v : I — M where I = [a, ),
then p is also a limit point of 7(¢).

Proof

Since p’ is a limit point of v(t), in the half-open interval I there exists an increasing
sequence of numbers #; — b~ such that (¢'oy)(t:) — p'.

Let U be an open neighbourhood of p in M.

Since p covers p’, there exists an open neighbourhood U’ of p’ in M! such that
po' ™ (U'Nn@'(M)) C U.

Now 3 neN st. V i>n, (¢oy)(t) € UnNg' (M)
= V i>n, (poy)(ti)€U.

Thus p is also a limit point of ().

QED
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Now suppose that B and B’ are boundary sets of the enveloped manifold (M,
M\,cp). If B’ is a subset of B (possibly consisting of a single point p’), then it is
clear that B covers B’ (B covers p'). Conversely, for two different enveloped manifolds
(M, M, ) and (M, M, '), it is possible for a single boundary point of (M, M, ) to

cover a boundary set of (M, M ,') consisting of infinitely many points.

Example

(i) M=R"
M = R" — {O} where O is the origin
r is the usual radial coordinate
it M= M 0: M- M
pp p(r) — p(r +1)
i(M)=M= R"—- {0}
¢(M) = R* — B"(0,1) where B"(0,1) is the unit ball (0 <r <1)
The only boundary point of (M,ﬂ ,2) is the origin O.
However (M, M, ) has an infinite number of boundary points, namely the unit
sphere S™(0,1).

57(0,1) covers O and O covers S*(0,1).

Covering is a partial ordering on the set of all boundary sets of a manifold M:
(M,M\,np, B) B covers B
(M,M\hﬁolaBl)a (MaM\21(p2aB2)a (MaM\S’LP&B!i)

If B; covers B, and Bj covers Bz, then DBj; covers B3.
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Definition 5.3 Given two enveloped manifolds (M,M\, v, B) and (M, M, ¢, B’) with
boundary sets B and B' respectively, we will say that B and B’ are equivalent iff B
covers B’ and B' covers B. This will be denoted by B ~ B'. We will also use the

notation p ~ B, B ~ p' and p ~ p' where appropriate.

We have thus imposed an equivalence relation ~ on the set of all boundary points
of the manifold M. If we now make identifications between boundary points according
to whether or not they are equivalent, then we will greatly reduce the size of the set to

something more manageable. This is what we set out to do at the start of the section.

Definition 5.4 Ifp is a boundary point of an enveloped manifold (M, /\7, ©), then the
equivalence class (under ~) of boundary points of M to which p belongs will be denoted
by [p]. This will be referred to as an abstract boundary point of M. The set of all such

abstract boundary points will be denoted by B(M), and called the abstract boundary of

M.

In Example (i) we saw that the boundary point O covers the boundary set
§7(0,1), consisting of infinitely many points. Since the reverse is also true, we have
that O ~ S™(0,1). Now if p € S™(0,1), it may be seen that O covers p, but that p
does not cover 0. So O and p are not equivalent boundary points, which means that
[O] and [p] are different abstract boundary points of M. In such a situation we would
say that [O] covers [p].

In general there will be no relationship at all between two abstract boundary
points [p] and [ ¢} of M. However, as the example indicates, there may be cases where
[p] covers [¢] or [g] covers [p], but both cannot be true if [p] and [¢] are different
abstract boundary points. It is clear that covering is also a partial ordering on the set
of all abstract boundary points of M.
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Now there are further ways of reducing the size of the abstract boundary B(M)
of M. If M is paired with a family C of curves on M i.e. (M,C) (see Section 2), then
we can confine ourselves to thinking about boundary behaviour which occurs relative

to C. This motivates the following definition.

Definition 5.5 Suppose that we have an (M,C), and an envelopment of M by M,
namely (M, M, ). Let p be a boundary point of (M, M, ). Then we will say that p

is a C-boundary point iff it is a limit point of some curve in the family C.

We note that p has only to be a limit point of a curve in C, as opposed to an
endpoint. This means that some C-boundary points will not be approached by Iany
curve in C, although they will, of course, be approached by curves in F. An example of
such behaviour will be given in the following section, after we have introduced a metric
on M.

The set of all C-boundary points of a manifold M is normally considerably smaller
than the set of all boundary points of M, because the family C of curves on M is much
smaller than the family F. The size of this set can be further reduced by identifying

its elements according to whether or not they are equivalent (see Definition 5.3).

Definition 5.6 Given an (M,C), an equivalence class (under ~) of C-boundary points
of M will be called an abstract C-boundary point of M. The set of all such abstract

C-boundary points will be called the abstract C-boundary of M, and denoted by Bc(M).

Corollary 5.7 Given an (M,C), B¢(M) C B(M).

Proof
Let p be a boundary point of the enveloped manifold (M, M, ).
Let p’ be a C-boundary point of the enveloped manifold (M, M, ©').
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Suppose that p ~ p'.

Since p’ is a C-boundary point, it is a limit point of some curve 4(t) in C.

By Theorem 5.2, p is also a limit point of (¢).

Thus p is a C-boundary point of M.

It follows that two equivalent boundary points of M are either both C-boundary points,

or are both not C-boundary points.
QED

In general, B¢(M) will be a much smaller set than B(M). So from our starting
point in this section, namely the set of all boundary points of M, we have made some
very significant reductions to obtain the abstract C-boundary of M. We note that

covering is also a partial ordering on B¢(M).

Definition 5.8 Suppose that we have an (M,C), and an envelopment of M by M,
namely (M,/ﬁ, ). Let p be a C-boundary point of (M, M, ). Then we will say that
p is a point at infinity iff it is not a limit point of any curve in C with finite parameter

range.

This means that all curves in C with p as a limit point have infinite parameter
range. No ambiguity occurs here, because if 4(t) is one such curve with infinite pa-
rameter range, then by the b.p.p., all curves in C belonging to [y(t)] also have infinite
parameter range. All subcurves of y(t) are members of C, and by Lemma 2.5 (iii), any
such subcurve with p as a limit point also has infinite parameter range. Similarly, if
4(t) is equivalent to a subcurve of some other curve in C, then that curve has infinite

parameter range too.
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The question which naturally arises here, is whether the definition of a point
at infinity can be successfully transferred from C-boundary points of M, to abstract
C-boundary points of M. The answer to this question is provided by the following

corollary to Theorem 5.2.

Corollary 5.9 Suppose that we have an (M,C). Let p be a C-boundary point of
the enveloped manifold (M, M, ), and let p’ be a C-boundary point of the enveloped
manifold (M M ,¢). If p~p and p is a point at infinity, then p’ is also a point at

infinity.

Proof

Since p’ is a C-boundary point of M, it is a limit point of some curve 4(¢) in C.
Suppose that v(t) has finite parameter range.

By Theorem 5.2, p is also a limit point of ~(2).

So p is a limit point of a curve in C with finite parameter range.

But p is a point at infinity.

It follows that all curves in C with p’ as a limit point have infinite parameter range.

Thus p’ is a point at infinity.

QED

This means that every equivalence class [p] of C-boundary points of M either
consists entirely of points at infinity, or has no such points. So we will speak about
an abstract C-boundary point of M being a point at infinity or otherwise. This then
provides a natural way of separating the abstract C-boundary B¢(M) into two disjoint

subsets.
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6 Pseudo-Riemannian manifolds

Definition 6.1 A C* metric g on a manifold M (where k € N U{0}) is a real-valued,
second rank covariant, symmetric and non-degenerate C*¥ tensor field on M. The pair
(M, g) will denote a manifold M with a C* metric g, and will be called a C* pseudo-

Riemannian manifold.

Note that since g is non-degenerate and continuous on M, its signature is constant
over M. Our discussion will encompass all signatures, except where explicitly stated
otherwise. When ¢ is positive definite it will be referred to as a C* Riemannian metric,
and the pair (M, g) will be called a C* Riemannian manifold. When g is Lorentzian
and M is 4-dimensional, the pair (M, g) will be called a C* space-time.

We recall from Example (i) of Section 2 that if M is a manifold with affine
connection, the set C, of all non-intersecting geodesics with affine parameter satisfies
the properties required of a family C of curves on M. Of course for a C* pseudo-
Riemannian manifold (M, g), where k > 1, the C*~! pseudo-Riemannian connection
will always be the particular affine connection which is chosen. Also, since C; is such
an important class of curves on M, it will henceforth be assumed that it is contained

in any family C.

Definition 6.2 (M,g,C) will denote a C* pseudo-Riemannian manifold (M, g), where
k > 1, together with a family C of curves on M which satisfies the properties given in
Section 2, and contains C, as a subset. In addition, it will be assumed that if y(t) is
a curve in C which is equivalent to a curve in C,, then y(t) is itself a member of C,.

(M, g,C) will be referred to as a triple.
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The last condition simply ensures that the geodesics are only parametrized by
affine parameters. Referring back to Example (ii) of Section 2, we observe that Cyqp
would be a suitable choice for C, since the generalized affine parameter is an affine
parameter on all geodesics. Of course Cgqp is a much larger family than C;, and one
would only use it if interested in the behaviour of the C* metric g with respect to a
much wider class of curves than geodesics. The family C,, given in Example (iii) of
Section 2 is not a suitable choice for C, since it does not contain the family C, .

Requiring that C has the subset C, guarantees (for the first time) that every point
of the manifold M is located on at least one curve belonging to C. In fact, infinitely
many geodesics pass through each point p of M. In addition, each p is the endpoint of
an infinite number of geodesics with finite affine parameter range. Thus, disregarding
the fact that p is not actually a C-boundary point of M, there is no sense in which it
can be thought of as a point at infinity. We now provide two examples of manifolds

with Lorentzian metrics in order to illustrate some of the points made in Sections 4 & 5.

Examples
(i) The Curzon space-time

Let M be the 4-dimensional manifold R*. Using standard Euclidean coordinates
(¢,z,y,2) on M, let M be the open submanifold of M specified by z > 0. The

set B ={pE¢€ M : z=y=2z=0} is clearly a boundary set of the enveloped
manifold (M,/\,/i\, 7).

The Curzon metric g on M (for z% + y% # 0) is given below. Following stan-

dard practice, it is expressed in cylindrical polar coordinates (t,7,z,¢) where

r=+22+y2>0 and ¢ =tan"ly/z (0 < ¢ < 2m).
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ds? = — e dt* + tiz(""\)(dr2 + dzz) + ,r.ze—2,\d902

m m2r?
where \=——, v=——r,
2R4

7 R=+vr?+4+22 and m > 0 is a constant.
This is a C* metric on M (for r > 0). Also, if the metric is re-expressed in Eu-
clidean coordinates, then it extends across the axis r = 0 in a C*° manner. Thus
g is a C* metric on the whole of M. The Curzon space-time (M, g) is analysed

in depth and maximally extended in two papers [2], [3] by Scott & Szekeres (see

also Scott [4]).

En route to performing this extension, M is twice re-embedded in M. The first
C* embedding used is ¢ : (t,7,2,9) — (tan~1t/m, r'(r, 2), #/(r, 2), ¢ ), where
the somewhat complicated functions 7’ and z’ can be found in [2]. In Euclidean
coordinates (t,z,y,2), the points (¢,0,0, z) lying on the axis r = 0 are mapped
by % to (tan~1¢/m, 0, 0, 2'(2) ).

The topological boundary of %(M) in M is a connected, compact subset of M
(see Fig. 6.1). The set B' = By U B;, where By = {p' € M:p = (t,r,—7/2,0)
where —7/2 <t < 7/2, 0 <r < 7/2, 0<p<2rland B={peM:p=
(t,z = 0,y = 0,z = —/2) where —7/2 <t < 7/2} is a connected subset of
this boundary (i.e. B’ is a boundary set of the enveloped manifold (M, M, ).
It can be shown that the boundary set B of the enveloped manifold (M,./W ,1)
covers the boundary set B’ of the enveloped manifold (M M ,%). However B’

does not cover B, so the two boundary sets are not equivalent.

Suppose that we are interested in the family C; of geodesics on M. In the above-
mentioned papers it was shown that B’ is approached by a large class of oscillating
spacelike geodesics. In fact every boundary point p’ belonging to B’ is a limit point
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Figure 6.1 The Curzon space-time (M, g) is C* embedded by % into the
manifold M = R*, The angular coordinate ¢ has been suppressed, but
points to the right of the diagram (i.e. » > 0) have the constant angle
¢ < m, and points to the left of the diagram (i.e. » < 0) have the constant
angle ¢ + 7. An oscillating spacelike geodesic in one of the hypersurfaces
t = constant is depicted.
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(i)

of infinitely many such geodesics, and is thus a C,-boundary point. However,
apart from points belonging to the set B;, no p’ in B’ is the endpoint of a curve
in Cy. Also, since no p’ in B’ is a limit point of a geodesic on M with finite affine

parameter, the boundary set B’ is comprised of points at infinity.

The Misner example

Let M be the 2-dimensional manifold S* x R!. Using coordinates (¢,4) on M,

where t € R, 0 <% < 2x, a Lorentzian metric g on M is given by
ds® = 2dt dyp + t dp?.

Clearly g is a C° metric on M, and so (M,g) is a C* pseudo-Riemannian

manifold. This example is due to Misner [5].

Suppose that we are again interested in the family C, of geodesics on M. The
portion of M containing ¢t = 0 is depicted in Figure 6.2. The vertical lines on the
cylinder (i.e. 1 = constant) are null geodesics which are complete on the infinite
cylinder. Null cones are drawn along one such geodesic. Null geodesics also lie in
t = 0, where they circle round and round infinitely many times, but these are all
either past-incomplete or future-incomplete. Only the non-intersecting portions

of these geodesics are members of C,.

It can be shown that other geodesics (null, timelike and spacelike) execute infi-
nite spirals as they approach t = 0 from either above or below. However, each
such geodesic approaches ¢ = 0 with finite affine parameter, and thus is either
past-incomplete or future-incomplete. So (M, g) is a geodesically incomplete C*
pseudo-Riemannian manifold. It is true though, that every geodesic in C, with
finite affine parameter range either has an endpoint in M, or executes an infinite
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spiral to t = 0 and thus has infinitely many limit points in M, namely every
point on ¢t = 0. So although the Misner example is geodesically incomplete, it is

C,-complete.
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Figure 6.2 The Misner example

106



Chapter 6

Definition of a Non-Singular
Pseudo-Riemannian Manifold

7 Extensions and regular boundary points

Suppose that (M, g) is a C¥ pseudo-Riemannian manifold, and that (M, M, @) is
an envelopment of M by M. This could be written in shortened form as (M, g, M, ).
The C* embedding ¢ : M — M induces a C* metric on the open submanifold (M)
of M, and where there is no risk of ambiguity, this will also be denoted by g. With
this convention established, we now define an extension of a C* pseudo-Riemannian

manifold (M, g).

Definition 7.1 4 C' extension of a C* pseudo-Riemannian manifold (M,g), where
leN and 1 <1<k, is an envelopment (M,/\//I\,tp) of M by a C' pseudo-Riemannian

manifold (M,§) such that Glomy =g

Trivially, (M, g) is a C* extension of itself. The signature of g on M and the
signature of § on M are the same. Any boundary point p of (M,/\//? ,4) is regular in
the sense that it is simply a point belonging to a manifold M on which there is a C'
metric g. This raises the question of whether we can form a notion of regularity for

boundary points of arbitrary envelopments (as opposed to extensions) of (M, g). This
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motivates the following definition.

Definition 7.2 Suppose that (M, g) is a CF pseudo-Riemannian manifold and that p
is a boundary point of the enveloped manifold (M,./(/l\,t,o). Then we will say that p is
C! regular for g, if there exzists an open submanifold M of M with eM)CM,peM

and a C' metric § on M such that (M,§) is a C! extension of (M, g).

Theorem 7.3 Suppose that (M, g,C) is a triple, and that p is a boundary point of the
enveloped manifold (M, M, ). If p is C' regular for g, then it is a C-boundary point

of M,

Proof
If the boundary point p is C! regular for g, then there exists a C! extension (./W ,g) of
(M, g) such that M is an open submanifold of M, o(M) C M and p e M.
An infinite number of geodesics on M pass through p.
Let 7/(t) be one such geodesic given by 4 : I' — M where I’ = [a, ¢), which satisfies
the following four conditions:

(i) t is an affine parameter along '

(i1) 4/(t) is non-intersecting

(iil) 4’(8) = p for some b € (a,c)

(iv) 7'(¢) € (M) V t € [a,b)
Now define the curve v : I — M, where I = [a,b), by 7(t) = (¢ 1e7')(2).
Clearly v € C; C C.
4(t) has the endpoint p.

Thus p is a C-boundary point of M.

QED
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If a boundary point of a triple (M, ¢,C) is not a C-boundary point, then we will
call it a non-C-boundary potnt. Since such points are not limit points of any curves
in our chosen family C, they are of no direct interest to us, and will not undergo any
further classification. Theorem 7.3 tells us that boundary points of M which are C!
regular for ¢ must be C-boundary points. Points at infinity are also C-boundary points
by definition. The following corollary to Theorem 7.3 establishes the intuitively obvious

result that a point at infinity cannot cover a boundary point which is C! regular for g.

Corollary 7.4 Suppose that (M,g,C) is a triple. Let p be a C-boundary point of
the enveloped manifold (M, M, ¢), and let p’ be a C-boundary point of the enveloped
manifold (M, M ,¢'). If pis C' regular for g and p' is a point at infinity, then p’ does

not cover p.

Proof

The proof follows directly on from that of Theorem 7.3.

By Lemma 2.5(i), v(t) has finite parameter range.

If p’ were to cover p, then by Theorem 5.2, p’ would be a limit point of 4(t).

This would mean that p’ was a limit point of a curve in C with finite parameter range,

and thus could not be a point at infinity.
QED

Since a point at infinity cannot cover a boundary point which is C! regular for
g, such points cannot be equivalent. In particular, this means that a point at infinity
cannot simultaneously be C'! regular for g, and vice versa. From Corollary 5.9, we
know that the label of ‘a point at infinity’ can be successfully transferred to abstract

C-boundary points of M. In the light of Corollary 7.4, one wonders whether the same
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might be possible for the label ¢ C' regular for g’. Unfortunately, this is not the case,

as the following example demonstrates.

Example
() M=R
M =(0,1)
it M- M o: M- M
T z -y = gl/?

My=M=(0,1)  oM)=M=(,1)
z = 0 is a boundary point of (M, M, 1)

y = 0 is a boundary point of (M, M, o)

z=0coversy =0 and y =0 covers z =0

e, z=0~y=0

A C* metric g on M is given by ds? = da?.

So (M, g) is a C* Riemannian manifold.

In fact, using the coordinate z, g is a C'* metric on the whole of M.
So the C* Riemannian manifold (M, g) is a C* extension of (M, g).
Thus z =0 is C* regular for g.

The induced C* metric on ¢(M) is given by ds? = 4y? dy?.
However, y = 0 is not C'! regular for g for any ! > 1, since the metric becomes

degenerate as y — 07,

8 Boundaries and removable singularities

In Definition 3.2, boundary points and boundary sets were defined with respect
to a particular envelopment of M, say (M,/\’/(\ ,). However, we have not yet given
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a definition of the entire boundary for such an envelopment, and will proceed to do
so now. This boundary should not be confused with the abstract boundary B(M)
of M, and the abstract C-boundary B¢(M) of M (see Section 5), both of which are

independent of particular envelopments of M.

Definition 8.1 Let € denote the enveloped manifold (M, M, ). The boundary B(€)
of this envelopment of M is the topological boundary of ¢(M) in M. That is, B(E)
is the set consisting of all boundary points of €. Unlike a boundary set B of &, the

boundary B(E) is not always a connected subset of M.

Our classification of the constituent boundary points of such a boundary is only
partially complete. As yet, the only C-boundary points of a triple (M, g,C) which have
received a further classification, are those which are either C? regular for g, or points at
infinity. Such boundary points would normally be considered to be non-singular with
respect to the C* metric ¢ on M and the chosen family C of curves. Since non-C-
boundary points have no bearing on whether or not the manifold M is C-complete, it

would seem reasonable to also classify them as being non-singular.

Definition 8.2 Suppose that (M, g,C) is a triple, and that EE(M,M\, p) is an envel-
opment of M by M. We will say that a boundary point p of £ is C* non-singular, if it
is either C! regular for g, a point at infinity, or a non-C-boundary point. Otherwise we
will say that it is C! singular. A boundary set B of £ will be said to be C' non-singular,

if it consists entirely of C! non-singular boundary points.

So by definition, the C! non-singular boundary points are already further classified
into three types. We now embark on a classification of the C! singular boundary points,

which coincidentally, will also be into three types.
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Definition 8.3 Suppose that (M, g,C) is a triple, and that p is a C' singular boundary
point of the envelopment (M, M,p) of M. We will say that p is a C' removable
singularity, if there exists a C' non-singular boundary set B’ of another envelopment

(M,/(/l\’,go’) of M, such that B’ covers p. Otherwise, we will say that p is a C' essential

singularity.

A removable singularity occurs when non-singular boundary points of an envelop-
ment of M are squashed together in another envelopment. This type of singular point
is not really a problem since, as the name suggests, it can be ‘removed’ by switching
to another envelopment of M. On the other hand, essential singularities pose a more
serious problem, because their presence usually signifies that the triple (M, g,C) is, in

some sense, inherently singular. They will be discussed further in the following sections.

Examples

(i) In Example (i) of Section 7, the boundary point y = 0 of the enveloped manifold
(M, M, ) is not C' regular for g, for any I > 1. Taking the family C of curves to
be C,, y = 0 is certainly a C,-boundary point of M. However, it is not a point at
infinity. It follows that y = 0 is a C' singular boundary point (for all { > 1). Now
the boundary point = 0 of the enveloped manifold (M, M, 1) is C'* regular for
g. Since y = 0 is covered by the C*® non-singular boundary set {z = 0}, it is a

C*> removable singularity.
(i1)) The Schwarzschild solution

Let M be the 4-dimensional manifold S? x R?. Using coordinates (t,r,8, ) on

M, let M be the open submanifold of M specified by r > 2m (where m > 0).
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The familiar Schwarzschild metric g on M is given by

-1
ds? = — (1 - 2——:—?'-) dt* + (l — 2Tm) dr? + r2(d6?® + sin?0 dp?).

This is a C* Lorentzian metric on M, and so the pair (M, g) is a C* space-time.
We will take the family C of curves on M to simply be C,, so that we have the
triple (M, ¢,Cy).

Each point p of M given by (t,2m, 6, ) is clearly a boundary point of the en-
veloped manifold (M, M, i). However no such point is C' regular for g (for any
[ > 1), since the metric component g,, becomes infinite as r — 2m*. A partic-
ular boundary point (to, 2m, 8o, o) is the endpoint of spacelike geodesics on M
given by t = tg, 0 = 6y and ¢ = @g. Such geodesics reach the boundary point
(to,2m, 0o, o) in finite proper distance. We conclude from this that every point

(¢,2m, 0, ) is a C! singular boundary point of M (for all I > 1).

Now Kruskal [6] re-embedded M in M in the following manner. Using coordinates

(#',2',0',¢") on M, the C> embedding ¢ which he used is given by

(8,7, 0,0) = (' = L Afr — 2m er/Am (et4m — gmil4m) |

z = % \/—_% eT/4m (et/4m+e—t/4m)’ 9 = , (pl= ‘P)-

P(M) = {(t,2',8,¢') € M : &' >|t'|}. This set is labelled as region I in Figure

8.1. The induced C* metric on (M) is as follows:
ds? = F(t',z') (— dt'® + dz'?) + r*(¢', 2') (d0'? + sin?0’ dy'?)
where r is determined implicitly by the equation
() - (@) = = (r — 2m) e"/2m,

and F is given by F? =16 m?/r e~/?m,
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r = constant
> 2m I:

r =

0
/ > 2m
11
I

r = constant <2m

4._—-?'=2m

r = constant

'

t=0—"

t = constant 4”

Ir

r = constant
< 2m

Figure 8.1 The Kruskal re-embedding ¢ of the Schwarzschild solution in
S? x R%, Coordinates (t/,z’,6’,¢') are used, but the angular coordinates

¢’ and ¢’ are suppressed. (M) is region I, and M is regions I, II, I’ and

Ir.
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Now let M denote the open submanifold of M consisting of all points (t', 2,0, ¢")
such that (t')? — (2')2 < 2m. M is represented in Figure 8.1 by regions I, II, I’
and II’. It can be shown that the functions F?(¢/,z') and r?(¢/,z') on ¥(M) can
be extended analytically to all of M, and are everywhere positive on M. So the
induced C* metric on (M) given above, can be extended to a C* metric § on

M. In other words, (M,§) is a C* extension of (M, g).

The points (¢ = 0, z' = 0, ¢, ¢') in M — (M) are boundary points of the
enveloped manifold (M , M, ). Each such point (0,0, 80, 0) is C* regular for
g, and covers the boundary points (¢,r = 2m, 6o, o) of the enveloped manifold
(M,/\//?,i). This means that the C! singular boundary points (¢,2m,0,¢) of

(M, M, 1) are, in fact, C* removable singularities.

Theorem 8.4 Suppose that we have a triple (M, ¢,C), and that p’ is a boundary point
of the enveloped manifold & = (M, M',¢'). If p' is a C' removable singularity, then

every C! non-singular boundary set B which covers p’ contains at least one boundary

point which is C' regular for g.

Proof

If p’ is a C' removable singularity, then it is a C! singular boundary point of £’.

So p' is a C-boundary point of M which is not a point at infinity.

This means that it is a limit point of some curve 4(¢) in C given by v : I — M, where
I = [a,b), and b is finite.

So in the half-open interval I, there exists an increasing sequence of numbers ¢; — b~
such that (¢'ov)(t;) — p'.

Since p' is a C' removable singularity, there exists a C! non-singular boundary set B of

an enveloped manifold &' = (M,.A//i\ ,), such that B covers p'.
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Now (peov)(t) € (M), V i€N.
Let A= {(po7)(t:):i €N} C p(M).
So ANB=0@.

Define U= M — A.

Since A is closed, U is open.

Suppose that ANB=0.

It follows that B C U.

B covers p/, so there exists an open neighbourhood U’ of p’ in M! such that
po' ™t (U'NY/(M)) C U.

Since the sequence (¢'o7)(t:) — P/,

3 neN st V i>n, (¢o7)(t) € UnN¢'(M)
= V i>n, (poy)(t:)e U

= ANU#OQD.

But this is a contradiction, since U = M — A.

It follows that ANB # @.

Let p € ANB.

Since ANB=@, pc A—-A.

This implies that there exists an increasing infinite subsequence {¢;, : k¥ € N} of the
sequence {t; : ¢ € N} such that (po7)(%,) — p.

Thus p is a limit point of the curve ~(?).

Since p is a C! non-singular boundary point of £, and is a limit point of a curve in C

with finite parameter range, it must be C' regular for g.

QED
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9 Directional and pure singularities

Definition 9.1 Suppose that (M, g,C) is a triple, and that p is a boundary point of the
enveloped manifold € = (M,.K/l\, ). We will say that p is a C' directional singularity,
if it is a C! essential singularity which covers either a point at infinity, or a boundary
point which is C* reqular for g. We will say that p is a C' pure singularity, if it is a

C' essential singularity which is not a C' directional singularity.

So a directional singularity is a singular boundary point which covers either a point
at infinity or a regular boundary point, and yet is not itself covered by any non-singular
boundary set. This means that it might, for instance, cover two non-intersecting, non-
singular boundary sets of a particular envelopment of M. It might also be equivalent to
a boundary set of another envelopment of M which contains pure singularities as well
as regular boundary points and/or points at infinity. There are quite a few possibilities.

On the other hand, pure singularities have been stripped clean of any connection
with regular boundary points and points at infinity, since they neither cover them,
nor are covered by them. Their presence indicates that a triple (M, g,C) is inherently

singular—a notion which will be made precise in the following section.

Examples

(i) A directional singularity
M=R it M- M
M = (0,2r) Tz
i(M) = M = (0,27)

z=0 and z = 27 are the only boundary points of (M, M, 1).
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M = st

Let (r,6) be a standard polar coordinate patch on the manifold R?, where r > 0
and 0 < 0 < 2w,

Let (r,0) be another polar coordinate patch on R?, where r > 0, 0 < ' < 27
and ¢’ starts from § = x and increases in the same direction as 6.

M will be represented as the C* submanifold of R? given by

{(1,6): 0< <27} U {(1,6): 0 < 0 < 27}.

Now define a C® embedding ¢’ : M — M! as follows:

for n/4 <z< Tr/4 z—(1,0=u2),
for 0<z<m/2 z— (1,0 =x+7),
and for 37/2 <z < 27 g~ (1,0 =z—m).

The point (1,6’ = 7) in M is the only boundary point of the enveloped manifold
(M, M',¢").

(1,7) covers the boundary point £ = 0 and the boundary point z = 27 of the
enveloped manifold (M, M, 1).

A C* metric g on M is given by ds? = = (1 + tan® z/4)? dz?.

So (M, g) is a C* Riemannian manifold.

In fact, g is a C* metric on the open submanifold (-2, 2r) of M.

Thus the boundary point z = 0 is C'* regular for g.

Now suppose that C =C,.

It can be shown that all geodesics on M which approach the boundary point
z = 27 have infinite affine parameter range.

Thus z = 27 is a point at infinity.

The induced C* metric on ¢'(M) is as follows:
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(i)

for /4 <0< T[4 ds? = - (1 + tan? 6/4)% d6?
for 7 <0< 3r/2 ds? = & (1 + tan?(0' — 7)/4)% d6'2
and for 7/2 <8 < 7 ds? = & (1 + tan?(0' + 7)/4)% d6'2.
It may be seen that as 6/ — 7%, ggpg — %.
However, as 0/ — 7~, ggpg — +00.
So the boundary point (1,7) of (M,./W’, ') is certainly not C'! regular for g, for
any | > 1.
Since it covers the boundary point = 0 which is C* regular for g, (1,7) is a
C,-boundary point which is not a point at infinity.
It is thus a C' singular boundary point of (M, M’,¢').
Now (1,7) is not a C'! removable singularity, since it is not covered by a C' non-
singular boundary set of any other envelopment of M.
It follows that the boundary point (1,7) is a C' directional singularity which

covers both a point at infinity, and a boundary point which is C* regular for g.

The Curzon space-time
(see Example (i) of Section 6)

We recall that the boundary set B of the enveloped manifold (M, M, ¢) consists
of points p which, in Euclidean coordinates (¢, z,y, 2), are of the form (¢,0,0,0).
It may be seen from the Curzon metric component g,; = —e~?™/R where R =
V2% + y? + 22, that for any curve on M (i.e. an element of F) which has a point
p as its endpoint, g;; — 0~ as R — 0% along the curve. So p is not C! regular

for g, for any 1 > 1.
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(iif)

It was shown in [3] that each p is the endpoint of timelike, null and spacelike
geodesics on M with finite affine parameter range. This means that p is a C'
singular boundary point of (M ,/ﬁ ,1). It was also shown that the limit of the
Kretschmann scalar R,,,, R***?? along any such geodesic is infinite. This implies
that, for / > 2, p cannot be covered by any C' non-singular boundary set of

another envelopment of M. That is, p is a C' essential singularity for 1 > 2.

Now referring back to Section 6, we recall that every boundary point p’ belong-
ing to the boundary set B’ of the enveloped manifold (M,M\,’Q/)) is a point at
infinity. In fact every such boundary point is covered by precisely one bound-
ary point p in the boundary set B of (M,M,i). In particular, the bound-
ary points (tan™'¢o/m,0 < r < 7/2,2z = —7/2, ¢ ), where t, is a constant,
and the boundary point (tan'to/m,z = 0,y = 0, 2 = —7/2) belonging to
B, are all covered by the boundary point (o, z = 0,y = 0,z = 0) belong-
ing to B. It follows that every p in B is a C' directional singularity, for all
! > 2. Finally, it can be shown that each p is equivalent to a boundary set of
(M M ,¥) which consists entirely of points at infinity, non-C,-boundary points
(tan"ltg/m,r = 7/2, —7/2 < z < 0, ), and C' (I > 2) pure singularities

(tan=lto/m,r=7/2,2=0, ¢).
The Schwarzschild solution

We recall from Example (ii) of Section 8 that (M, §) is a C* extension of the
Schwarzschild space-time (M, g). Now consider the points (', 2/,0",¢') of M
which satisfy the relation (¢')? — (2')? = 2m, where ¢/ > 0. The set B of all such
points is clearly a boundary set of the enveloped manifold (M, M,7). Now for

any curve on M (i.e. an element of F) which has a point p € B as its endpoint,
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Gy — —oo and Gy — +00 as p is approached along the curve. So p is not C/
regular for g, for any [ > 1. We will take the family C of curves on M to simply

be C,, so that we have the triple (M,7,C,).

It is well known that each p € B is the endpoint of timelike and null geodesics on
M with finite affine parameter range, and thus is not a point at infinity. So pis a
C' singular boundary point of M (for all I > 1). Furthermore, these are the only
geodesics on M for which p is a limit point, which means that p itself does not
cover any boundary points which are points at infinity. It is also well known that
the limit of the Kretschmann scalar R, ,, R#*#° along every geodesic on M with
p as its endpoint is infinite. This implies that, for [ > 2, p cannot be covered by
any C' non-singular boundary set of another envelopment of M. It also implies
that p itself does not cover any boundary point which is C' regular for g, where
[ > 2. It follows that each boundary point p € B is a C! pure singularity, for all

1 >2.

The classification of boundary points of a triple (M, ¢,C) is now complete, with
each boundary point belonging to precisely one of six final categories. The process
of determining the relevant category for any particular boundary point is illustrated in
Figure 9.1, which also incorporates the intermediate classifications that have been used.
On the other hand, we have not yet completed our classification of abstract C-boundary
points of (M, g,C). Corollary 5.9 established that the label ‘point at infinity’ can be
used for abstract C-boundary points. However, Example (i) of Section 7 and Example
(i) of Section 8 demonstrate that it is not possible, in general, to use either the label
‘C! regular for g’ or the label ‘C' removable singularity’ for these points. The following

theorem provides two further labels which can be used.
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p is a boundary point of (.M,./W, ®)
Q. Is p a limit point of any curve belonging to C ?

Y&S No
p is a C-boundary point p is a non-C-boundary point
Q. Is there a C! extension (M,3) of C! non-singular

(M, g) such that pe M C M7

YES NO

pis C' regular for g Q. Is p a limit point of any curve
in C with finite parameter range?

C" non-singular

YES NO
p is a C! singular boundary point p is a point at infinity
Q. Is p covered by any C' non-singular C! non-singular

boundary set of another envelopment of M ?

YES NO
=\

pis a C' removable singularity p is a C! essential singularity

Q. Does p cover either a point at infinity, or a
boundary point which is C! regular for g ?

YES NO

p is a C! directional singularity p is a C' pure singularity
g

Figure 9.1 Given a triple (M, ¢,C) and an! € N, where 1 <1 < k, this is a classification

of a boundary point p of the envelopment (M, M ,p) of M by M. The six possible final
categories appear in boxes.
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Theorem 9.2 Suppose that (M, g,C) is a triple. Let p be a boundary point of the
enveloped manifold (M, M ,), and let p' be a boundary point of the enveloped manifold
(M, M, ). I p ~ p' and pis a C' directional singularity, then p' is also a C' directional

singularity. If p is a C* pure singularity, then p' is also a C' pure singularity.
g 8 g

Proof

Let p be a C! essential singularity

= p is a C-boundary point of M.

Since p ~ p', by Corollary 5.7, p’ is also a C-boundary point of M.

Since p is not a point at infinity, by Corollary 5.9, p’ is not a point at infinity either.
Suppose that p’ is C' regular for g

= pis covered by the C' non-singular boundary set {p'}.

But p is not a C' removable singularity.

It follows that p’ is a C! singular boundary point.

Similarly, p’ cannot be a C' removable singularity, since this would again imply that p
is a C! removable singularity.

Thus p’ is also a C' essential singularity.

Now if p covers either a point at infinity, or a boundary point which is C' regular for
g, then so does p/, and vice versa.

This means that p and p’ are either both C' directional singularities, or are both C'

pure singularities.

QED

Consider an abstract C-boundary point [p] of a triple (M, g,C). If p is a point
at infinity, then [p] is a point at infinity. If p is a C' directional singularity, then by

Theorem 9.2, we are entitled to call [p] a C! directional singularity. Similarly, if p is
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a C'! pure singularity, we can also call [p] a C' pure singularity. The only remaining
possibilities are that p is either C' regular for g, or is a C! removable singularity.

Now we have seen in Example (i) of Section 7 and Example (i) of Section 8, that
it is possible for a boundary point which is C! regular for g to be equivalent to a C
removable singularity. So we will say that [p] is C' regular for g, if at least one member
of that particular equivalence class of C-boundary points is C! regular for g. Otherwise,
if all members of the equivalence class are C! removable singularities, then [p] will
also be called a C' removable singularity. This completes our classification of abstract
C-boundary points of a triple (M, g,C) into five final categories. The process of deter-
mining the relevant category for any particular abstract boundary point is illustrated

in Figure 9.2.

10 Singular pseudo-Riemannian manifolds

The underlying philosophy of this paper, is that in order to say when a particular
triple (M, g,C) is singular, one needs to consider all possible envelopments of M by
other n-dimensional manifolds M. It is not sufficient to base our assessment on one
given envelopment of M, since we have seen that a singular boundary point of such an
envelopment may be covered by a non-singular boundary set of another envelopment
of M, or may itself cover regular boundary points or points at infinity. Only a pure
singularity cannot be ‘removed’ or ‘separated’ by switching to other envelopments of

M, and thus signifies that the triple is inherently singular.

Definition 10.1 A triple (M, g,C) will be said to be C' singular (where 1 < I < k),
iff the abstract C-boundary Bc(M) of M contains a C' pure singularity. Otherwise it
will be said to be C' non-singular, or C' singularity-free.
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(M, g,C)
E>1>1

p is a boundary point of (M, M, ¢)

[p] € B(M)
Q. Is p a C-boundary point of M ?

YEs No

[p) € Be(M) [p]is an abstract non-C-boundary point

Q. Is any boundary point
belonging to [p] C! regular for g ?

YES NO

[p]is C! regular for g

p is a C'! removable p is_a point pis a C! directional pisa C! pure
singularity at infinity singularity singularity
[p]is a C! removable [p]is a point [p)is a C! directional [p)is a C! pure
singularity at infinity singularity singularity

Figure 9.2 Given a triple (M, ¢,C) and an ! € N, where 1 <1 < k, this is a classification
of an abstract boundary point [p] belonging to B(M). The six possible final categories
appear in boxes.
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There are two elements of choice in this whole scheme. If we begin with simply
a C* pseudo-Riemannian manifold (M, g), we must first choose the family C of curves
on M that will be used. From Section 6 onwards it has been assumed that C, is always
a subset of C. Just what other curves are also included in C depends entirely on the
particular interests of the user, and the purpose that they have in mind. Varying the
choice of C may change the status of a triple (M, g,C) from non-singular to singular,
and vice versa. We are also free to choose an [ between 1 and k. Clearly, cases will arise
where a triple (M, ¢,C) is both C' singular and C" non-singular, where 1 < ' < [ < k.

So the choice of [ is an important factor.

Theorem 10.2 If a triple (M, g,C) is C-complete, then no boundary point of any

envelopment (M, M, @) of M is either C' regular for g or C' singular (1 <! < k).

Proof

Let p be a boundary point of the enveloped manifold (M, M, ¢).

Now suppose that p is either C' regular for g or C' singular.

It is thus a limit point of a curve ¥(t) in C with finite parameter range.

But since (M, ¢,C) is C-complete, v(t) has no limit points in M — p(M).

This is a contradiction.

It follows that (M,g,C) has no boundary points which are either C'! regular for g or

C! singular.

QED
Corollary 10.3 A triple (M, g,C) which is C-complete, is C' singularity-free.

The reverse of Corollary 10.3 is not true in general. If a triple (M, g,C) is C-

complete, then any boundary point of an envelopment (M,./(/l\ ,) of M, must either
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be a point at infinity or a non-C-boundary point. However, a boundary point of a triple

M, g,C) which is C! singularity-free may, in addition, be a C' removable singularit
g Ys

a C! directional singularity or C' regular for g.

Example

M =R

(t,z,y, #z) are Euclidean coordinates on M.

A C* metric n on M is given by ds? = —dit? + dz? + dy? + dz2.

(M, n) is Minkowski space-time.

Let C =C,, so that we have the triple (M,n,C,).

Let M={peM: -1< t,z,y,z <1}.

(M, 7| M, Cylm) is a triple.

£= (M, M,q).

Every boundary point p in the boundary B(€) of £ is clearly C* regular for 5| m.
B(€) is also a boundary set of £ in this particular case.

If p is a boundary point of another envelopment (M, M',¢') of M, then it is
covered by the C'*® non-singular boundary set B(£).

Thus it cannot be a C'! pure singularity (1 <[ < 00).

It follows that the triple (M, n{m,Cylam) is C* singularity-free.

However it is not C,| m-complete, since B(E) consists entirely of boundary points

which are C'* regular for 7|um.

In summary then, a triple (M, ¢g,C) which is C,-complete is not always geodesi-

cally complete e.g. see Example (ii) of Section 6. However, a triple which is geodesically

complete, is also Cg-complete. If the triple (M, g,C) is singularity-free, it is not nec-

essarily C-complete, but the reverse is always true (see Corollary 10.3). A significant
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advantage of Definition 10.1 over past definitions, is that a triple (M, g,C) does not

have to be maximally extended in order to be singularity-free.
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