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A6strøct

Synthetic Aperture Radars (SAR) have been widely utilized for military purposes and

civilian applications and make use of the relative motion between the radar and an object

to create a synthetic aperture to provide a high-resolution radar image. For proper coherent

processing of SAR signals, the shape of this synthetic aperture needs to be known to a

fraction of radar wavelength. In practice the turbulence and uncertainty of the relative

motion make the synthetic aperture different from its nominal shape degrading the SAR

high-resolution capability. How to compensate for the imperfection forms the basis of the

work conducted in this thesis.

This thesis investigates calibration for errors of a synthetic aperture in Inverse Synthetic

Aperture Radar (ISAR) and Multiple Pass Synthetic Aperture Radar (MPSAR). Both are

reviewed as the problems of array processing and are solved from the point of array

calibration.

A signal model for ISAR autofocus is derived by use of a scatterer model and four new

ISAR autofocus methods based on conventional beamforming, optimum beamforming,

signal subspace and noise subspace are developed. ISAR autofocus is effected by

adjusting the steering vector to maximize the output powers of conventional and optimum

beamformers. Alternatively it can be performed by projecting the steering vector into the

signal subspace and the noise subspace, respectively. A subaperture processing is

described to reduce the computational load. Computer simulations are conducted and real

data results of ISAR imaging are presented. Statistical analyses of the four methods are

carried out. The signal subspace method is identif,ed to be the maximum likelihood (ML)

estimation for ISAR autofocus. The Cramer-Rao lower bound (CRLB) of the estimated
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Abstract

complex vector associated with ISAR autofocus and the CRLB of the estimated distance

between two scatterers are derived. Further the CRLBs are analysed to obtain useful

insight into the developed methods and ISAR autofocus.

A novel processing step for three-dimensional (3D) SAR imaging via MPSAR processing

is proposed which includes conventional SAR processing, image registration, phase

correction and elevational imaging. For multiple SAR image registration, the complex

correlation, the minimum distance and the image model matching approaches are

developed. With regard to phase correction, the eigenvector method, the terrain centroid

tracking and the strong scatterer reference are described. Frequency domain beamforming

is used for elevational imaging and the maximum entropy extrapolation and the subspace

methods are adopted to enhance elevational resolution. All developed methods are verified

for computer simulated data and first European Remote Sensing satellite (ERS-l) real data

of repeat orbits and their statistical performances are analysed.
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Cftøpter 1- lntroduction tìA

1.1 Motivation

Since its origins in the 1950s, synthetic aperture radar (SAR) has been extensively

developed tll. Its advantages over other remote sensors of operating in all-weather

conditions and its high-resolution imaging have been exploited for civilian applications

and surveillance purposes. Many airborne and spaceborne SAR systems have been widely

utilized. Unlike other radars for target detection and tracking, SAR systems are used

primarily for mapping stationary targets (such as terrain, ocean and glacier) and imaging

moving objects (such as aircraft, ships and satellites).

SAR is able to produce two-dimensional high resolution images in the range and

azimuthal (cross-range) directions. High range resolution is obtained by transmitting a

wideband signal and high azimuthal resolution is achieved by synthesizing a large

aperture in azimuth. SAR is typically carried on a moving platform for air-to-ground

mapping of stationary terrain where motion of the platform creates the synthetic aperture.

Inverse SAR (ISAR), the inverse mode of SAR, is usually deployed on the earth for

ground-to-air imaging of moving objects. The synthetic aperture required for high

azimuthal resolution is provided by the motion of object.

SAR and ISAR imaging are coherent processes and require that the errors in synthesizing

the azimuthal aperture are less than a fraction of radar wavelength. However, in practice,

the synthesized aperture usually deviates much more than this from its designed shape due

to flight turbulence for SAR and unpredictable flight path for ISAR. In order to meet the

strict requirements of coherent processing, the actual shape of synthetic aperture should be

1



Chapter 1 : lntroduction

precisely estimated and appropriate correction made prior to image formation. This

correction is called motion compensation.

Motion compensation of SAR imaging can be assisted with inertial navigation systems

(D{S) and global position systems (GPS). However motion compensation for ISAR

imaging is more challenging than that of SAR because ISAR targets are often not

cooperative. Such compensation is usually conducted in two steps, that is, range

realignment (coarse compensation) and autofocus (fine compensation). Although many

approaches to ISAR autofocus have been proposed and developed, robust autofocus for

ISAR imaging has still remained a fascinatin g area of research.

Even if SAR or ISAR results in a two-dimensional high resolution image in the range and

azimuth, it can not resolve two scatterers locating at the same range-azimuth resolution

cell and different elevation. In some applications such as topographic mapping and

military reconnaissance, a three-dimensional (3D), i.e., range, azimuthal and elevational

high resolution image is required. Then interferometric SAR (InSAR) comes into being.

InSAR is a technique for extracting the 3D target information by using the phase content

of two complex SAR images acquired at two different spatial positions which form the

baseline of InSAR. Normally InSAR signal processing includes: first two complex images

are registered; second the interferogram is formed by multiplying one image with the

conjugate of the other; third the principal value phase of the interferogram is unwrapped;

and finally the unwrapped phase and the baseline are used to calculate the terrain height.

The application of InSAR is primarily restricted by phase un,wrapping and baseline

estimation. The phase unwrapping may be a-ppropria-te in a low-noise environment in

which the progression of wrapped phase is consistent. However in the more realistic high-

noise environment such as spaceborne SAR where the wrapped phase usually progresses

inconsistently, the phase unwrapping may become ambiguous. On the other hand, the

baseline estimation requires the existence of several ground control points which may also

be impractical in many situations.

InSAR only estimates the height of the terrain, but the reflectivity of the terrain remains

unknown. Multiple pass SAR (MPSAR) processing is a natural extension of conventional

InSAR. It makes use of more than two SAR imaging flight passes to synthesise an aperture

in elevation, resulting in improved accuracy and resolving power in the elevational

2



Thesis Outline and Contributions

direction. The resulting resolution in elevation, coupled with the resolving capability of

single-pass SAR imagery in range and azimuth, constructs a 3D SAR image. This 3D

SAR image provides the information about both the elevational variation and the

reflectivity of terrain which is important to terrain mapping, ana-lysis and classif,cation.

Nevertheless this topic of research is in its infancy and its theory and practice require

further investigation.

Based on the above motivations, two issues on SAR signal processing are addressed in

this thesis. One is the autofocus problem for ISAR imaging. The other is the 3D SAR

imaging via MPSAR processing. They are considered as problems of array processing and

are approached from the perspective of array calibration. The aim is twofold. One is to

apply the array processing approaches to ISAR and MPSAR which have been treated by

use of the intuitive methods. The other is to develop a unifying framework where the

intuitive methods for ISAR and MPSAR could be interpreted and evaluated in a new way.

1.2 Thesis Outline and Contributions

In Chapter 2, background material on SAR, ISAR, InSAR and array processing is

provided. ISAR processing can be divided into two steps: motion compensation and image

formation and existing techniques for these are reviewed and examples of simulated ISAR

images of Boeing-127 aircraft are demonstrated. Image registration and phase unwrapping

are critical issues of InSAR processing and previous methods for image registration and

phase unwrapping are outlined and interferograms of simulated data and f,rst European

Remote Sensing satellite (ERS-l) real data are presented. Examples of one and two

dimensional phase unwrapping are given. Techniques of array processing including

beamforming, subspaces methods and array calibration are briefly reviewed.

In Chapter 3, some ideas from the calibration of antenna arrays are applied to ISAR

autofocus. First a signal model for ISAR autofocus is derived by use of a scatterer model.

Then two new approaches to ISAR autofocus are developed by adjusting the steering

vector to maximize the output powers of conventional and optimum beamformers

respectively. It is verified that the steering vector converges to the complex vector

corresponding to the translational motion of object if the covariance matrix is known

precisely. Next another two new ISAR autofocus approaches are developed based on the
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signal and noise subspaces of the covariance matrix. They make use of the orthogonality

between the noise subspace and the steering vector when the steering vector points to the

signal vector associated with the translational motion of object and are equivalent if the

covariance matrix is known. Subaperture processing is described and its advantage in

reclucing computational complexity is pointed out. Finally comprìter simulations are

conducted and real data results are presented for both one-dimensional and two-

dimensional ISAR imaging. The main contributions are: (a) deriving the signal model

for ISAR autoþcus, (b) developing four new ISAR autoþcus methods based on

conventional beamforming, optimum beamforming, signal subspace and noise

subspace.

In Chapter 4, the approaches developed in previous chapter are considered from an

estimation perspective. The schemes for estimating covariance matrices are described.

The relations of the signal subspace method to conventional methods of ISAR autofocus

are identified. The signal subspace method is shown to be equivalent to the maximum

likelihood (ML) estimation of the complex vector corresponding to the translational

motion. Theoretical performance bounds (Cramer-Rao lower bounds; CRLB) for ISAR

autofocus and location are determined. The CRLB of the estimated complex vector

associated with the translational motion of object and the CRLB of the estimated distance

between two scatterers are derived. The statistical performances of conventional

beamforming, optimum beamforming, signal and noise subspace methods for calibration

are analysed and compared with the CRLBs versus signal-to-noise ratio (SNR). The main

contributions are: (a) the identifi.cation of ML estimation of the complex vector for
ISAR autoþcus, (b) the determination of CRLBs for ISAR autoþcus and location ønd

(c) the investigation of statistical perþrmønces of developed approaches.

In Chapter 5, novel processing steps for 3D SAR imaging via MPSAR processing are

proposed which include conventional SAR processing, image registration, phase

correction and elevational imaging based on a mathematical model for 3D SAR imaging

using 3D Fourier transform. The advantages of this method over typical InSAR are

highlighted. Computer simulations are conducted and ERS-I data are processed to verify

the proposed processing steps. The main contribution ß the development of new

processing steps for 3D SAR imagíng via MPSAR processing.
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In Chapter 6, after an overview of the concepts of image registration, a model for

MPSAR images is derived. A new approach of SAR image registration by use of complex

correlation is developed for image pairs. Then a minimal distance approach and an image

model matching approach are proposed for multiple image registration. The complex

correlation and the image model matching approaches are compared with the conventional

amplitude correlation method by processing real data of ERS-1. The results show that they

register multiple images more precisely than the amplitude correlation method. The møin

contributions are the developments of the complex conelation, the minimal dßtance

and the image model matching øpproaches for MPSAR image registration.

In Chapter 7, phased array calibration techniques are utilized for the phase correction of

multiple complex SAR images before the formation of focused beams in the elevational

direction. Three methods for phase correction are developed; eigenvector approach,

terrain centroid tracking and strong scatterer reference. The eigenvector approach is the

ML estimation of the phase factor. The terrain centroid tracking is valid for the terrain

where multiple strong scatterers exist whilst the strong scatterer reference is suitable for

the terrain where a dominant strong scatterer is detected. The proposed methods are

verified by processing the ERS-I data. The maín contributions are the developments of

the eigenvector approach, the terrain centroid tracking and the strong scatterer

reference for phase conection of MPSAR processing.

In Chapter 8, the formation and enhancement of elevational beams are studied. Multiple

receiving beams are formed for the elevational resolution which is efficiently implemented

with a discrete Fourier transform (DFT). A window is applied to control sidelobes and

zero-padding prior to DFT is used to increase the number of output beams. The elevational

resolution is enhanced by a maximum entropy data extrapolation or by a subspace method.

The maximum entropy data extrapolation extends the signal series of each pixel across

multiple SAR images forward and backward in the data domain using an auto-regressive

prediction filter. Then Fourier processing of extrapolated data produces a 3D

superresolution image. The subspace method makes use of the orthogonality between the

noise subspace and the signal subspace of covariance matrix of signal series to provide a

superresolution capability. The DFT processing, the maximum entropy data extrapolation

and the subspace method are compared by processing ERS-I data. The main

contributions sre (a) to use the DFT to beamform in elevøtion, (b) to apply the
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maximum entropy data extrapolation and the subspace method to enhance the

elevatio nøl re s olutio n.

In Chapter 9, the thesis is summarised and conclusions are drawn. Topics for further

research are suggested.

There are three appendices. The eigendecomposition of a covariance matrix for ISAR

autofocus is presented in Appendix A. Appendix B derives the solution for eigenvalues

and eigenvectors of a 2x2 covanance matrix. The CRLB of the estimated distance

between two scatterers are derived in Appendix C.
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Cftøpter 2

This chapter introduces some of the concepts associated with Synthetic Aperture Radar

(SAR), Inverse Synthetic Aperture Radar (ISAR), Interferometric Synthetic Aperture

Radar (InSAR) and array processing and provides a background for material presented in

later chapters. The discussion of SAR is very brief. Some good references on SAR are

books by Harger [77], Curlander and McDonoug¡ t78J utr¿ Wehner tll. The descriptions of

ISAR and InSAR are written from a signal processing perspective. Other material on

ISAR and InSAR is available in books tll tTel and papers t4ll44l [45]. Techniques for array

processing including beamforming, subspace methods and arcay calibration are

overviewed briefly. More detailed discussions on array processing theory are available in

the literature [2] [85] U171.

2.1 Synthetic Aperture Radar

Radar is an electromagnetic system mainly for the detection and tracking of objects. It

operates by transmitting a particular type of waveform and detecting the nature of the echo

signal to locate the object. However in many classical treatments, information on

structure, shape and size of object is unavailable because the object is considered as a

point target due to limited resolving capability of the radar.

In 1950s, a high resolution coherent rada4 SAR, appeared where the object is regarded as

an extended target rather than a point target, which provides a discrimination in range and

7



Chapter 2: Background lnformation

azimuthal directions where a large bandwidth waveform is used to achieve high resolution

in range and a synthetic aperture provides high resolution power in azimuth.

SAR is typically canied on a moving platform which is intended to be used in air-to-

ground imaging of terrain as shown in Figure 2.I. ft operates almost independently of

meteorological conditions and sun illumination which makes it most suitable for

topographic mapping and large area surveillance tasks. Both airborne and spaceborne

SAR systems ¿ìre now widely used.

SAR platform

terrain
swath

,

Figure 2.1 SAR strip mapping

A simplified block diagram of SAR is shown in Figure 2.2. A wideband signal is

generated by a transmitter and radiated into space by an antenna. A duplexer permits a

single antenna to be used for both transmission and reception. Reflecting objects intercept

and reradiate a portion of the transmitted signal; a small amount of signal returns back to

radar and is collected by the antenna coherently, i.e., the received signal is recorded in

amplitude and phase or in in-phase (I) and quadrature (Q) components. Range processing

produces the high range resolution profiles and azimuthal processing achieves the high

resolution in the azimuth.

I
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antenna

Figure 2.2 SAR block diagram

Besides strip mapping as shown in Figure 2.I, many other modes of SAR such as Doppler

Beam Sharpening (DB5;tll, squint mode SARtll, spotlight SAR[7e], scan SAR[I], inu"rr"

SAR (ISAR)tll and interferometric SAR (InSAR¡tzrl huu" appeared. ISAR and InSAR

will be described below

2.2lnverse SAR

ISAR is the inverse mode of SAR tll. It is usually deployed on the earth which can be used

for ground-to-air imaging of non-cooperative moving targets such as missiles, satellites,

aircraft, ships and celestial objects at a long distances no matter whether it is rainy or

foggy, day or night. ISARs have been applied extensively for radio astronomy and military

purposes.

Figure 2.3 shows ISAR imaging an aircraft flying in a straight line. The relative motion

between radar and object can be decomposed into translational motion and rotational

motion t3l. The translational motion represents the trajectory motion of a reference point

of the object. The rotational motion denotes the rotation of the object around the reference

point. Only the latter contributes to image formation. The former should be compensated

before image formation; this is called motion compensation.

o

I
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display
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aircraft

radar

Figure 2.3 ISAR imaging

After the translational motion is removed, ISAR imaging is changed into rotating platform

imaging as shown in Figure 2.4 wherc a ground-fixed radar is used to image object on

rotating platform. Radar images are produced using the range-Doppler principls taì.
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Figure 2.4 Rotating platform imaging
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The range resolution t, of ISAR is determined by the bandwidth B, of the transmitted

signal according to following relation

(2.11

w

where c is the speed of light. ISAR azimuthal resolution is created by the rotational

motion of object relative to the radar-line-of-sight (RLOS). The azimuthal resolution of

ISAR to is related to the angle Â0 through which the object rotates relatively to RLOS

during the coherent processing time. The relation between to and A0 is

T- z\e
(2.21

where I denotes the wavelength of the transmitted signal. (2.1) and (2.2) are valid when

the total rotation angle A0 is so small that there is no point scatterer on the object which

may move through a range-Doppler resolution cell[5]. To avoid image degradation caused

by motion through a resolution cell while using the simple range-Doppler analysis, we

must limit the total rotation angle Â0. For large rotating angle imaging and near f,eld

imagingtlall, the motion of scatterer through the range-Doppler resolution cells should be

compensated t5l.

The signal processing used in ISAR imaging can be divided into two steps. The first is

motion compensation which removes the translational motion and simplifies ISAR

imaging into rotating platform imaging. The second step is image formation which

reconstructs the reflectivity distribution of an object. The typical ISAR signal processing

procedure is shown in Figure 2.5. Precise motion compensation is realized by a

combination of range realignment and phase compensation (autofocus). The image

formation includes angular estimation and image reconstruction.

c
2B

1-
r

xa
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range

realignment estrmatlon

rmage

reconstruction

phase

compensation

motion compensation image formation

Figure 2.5 ISAR signal processing procedure

2.3 ISAR lmage Formation

2.3.1 Angular Estimation

RÍter motion compensation, ISAR imagrng rs turned into rotating platform imaging and

ideally the rotating velocity should be constant, implying that the aspect change between

adjacent two pulses is same. However in practical situations, this is usually not the case

l22l and therefore, to precisely image, there is a need to compensate by resampling or

interpolating the aspect samples. Moreover in the case of large rotating angle imaging,

precise knowledge of the rotating angle of the object is required to compensate for the

motion of scatterer through range-Doppler resolution cells t5l. Finally the ISAR image

needs to be scaled accurately in both the range and azimuthal dimensions in order to

provide object information such as length, size and shape. Improper scaling in range and

azimuth may result in distortion of the object image, making target classification and

identification difficult. Since the bandwidth of the transmitted signal is totally controlled,

range scaling is not a problem. However, for non-cooperative objects, the cross-range

scaling depends on the unknown aspect angle change and in order to scale the ISAR image

in azimuth, the aspect angle change must be accurately estimated.

The problem of ISAR azimuth scaling was first presented by Prickett and Chen in 1980 t3l

and Chen and Andrews in 1980 t6l nodced the influence of angular nonuniformity.

Werness et al. in lgg} t27l assumed that three prominent scatterers existed in an ISAR

image and used the first point to remove the translational motion, the second one to
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measure and compensate for the angular nonuniformity and the third point to estimate the

azimuthal scale factor. However the selection of multiple strong scatterers and

measurement of their phase components were infeasible in practical applications. Bocker

et al. in 1991 tl5l approximated the translational motion and rotational motion with

quadratic polynomials and an iterative procedure was applied to estimate the translational

motion and the nonuniform rotational motion. Delisle and Wu in 1994 [28] made use of a

two-receiver radar to compute the target angular trajectory although this may rarely be a

practical option. We in lgg4l29l developed an approach which was based on the principle

of tomographic imaging and the property of coherent processing to estimate the aspect

angle change from the wideband echo data and gave an improved approach based on

extended-coherent-processing in 1995 [30]. Nash in 1994 t31l employed a polar-format-

processing imaging method to determine the aspect angle change.

2.3.2 lmage Reconstruct¡on

Image reconstruction is the estimation of the reflectivity distribution of an object by

processing the motion compensated echo data. The simple standard method is FFT range-

Doppler processing [4]where the two-dimensional processing is decomposed into two one-

dimensional processings. Fast Fourier transform (FFT) is utilized in the range and azimuth

processing to enhance computational efficiency. The FFT range-Doppler processing

assumes that no point scatterers move through the range-Doppler resolution cells during

the coherent processing time which is only valid for small rotating angle imaging.

An image reconstruction method for large rotating angle imaging is extended-coherent-

processing (ECP) l4lÍ32).It replaces the total coherent interval with a number of small

subintervals in which no point scatterers move through the range-Doppler resolution cells.

V/ith subintervals of such size, the ISAR images can be calculated by the range-Doppler

processing. Then the sùbimages obtained in each subinterval are aligned in range and

range-rate to account for the relative motion of scatterers occurring between separate

subintervals and coherently summed to produce the extended image of the total coherent

duration.

Walker in 1980 [33] developed another large rotating angle imaging approach known as

polar-format-processing (PFP). After the translational motion is removed, the ISAR image

may be reconstructed by an inverse two-dimensional Fourier transform. In order to exploit
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FFI received signals in polar coordinates are required to be interpolated into Cartesian

coordinates. The interpolation involves two steps; range and azimuthal interpolations.

Munson et al. in 1984 Í341 interpreted spotlight-mode SAR as a tomographic

reconstruction problem. By use of the projection-slice theorem of computer-aided

tomography, ISAR image can be reconstructed using the convolution back-propagation

algorithm (CBP) in the case of large rotating angle imaging.

In conventional range-Doppler processing, range resolution and azimuthal resolution can

only be enhanced by increasing the effective bandwidth of the transmitted signal and the

total rotation angle of the object relative to RLOS, respectively. This course of action may

be undesirable in many practical applications of ISAR imaging. An alterative approach for

improving the resolution of ISAR image relies on the use of advanced super-resolution

signal processing methods. This technique will be used to enhance the elevational

resolution in chapter 8.

The maximum entropy method could be used in ISAR imaging t361. A modified approach

which extrapolated the observed data in the forward and backward directions with an

auto-regressive (AR) model and performed the FFT processing over the extended data

was shown to be robust to model order and noise [37]. Gupta in 1994 [38] employed a two-

dimensional linear prediction to get super-resolution ISAR images. ¡u.¡ t31J and Odentaal

et al. [3e] applied multiple signal classification (MUSIC) spectral estimation to ISAR

imaging. Hua et al. exploited Matrix Pencil (MP) high resolution spectral estimation

techniques to produce super-resolution capability of ISAR [40]. Sop.r-resolution imaging

was formulated as a least square problem and solved by use of a Hopfield neural network
t4l I

As an example, ISAR images of Boeing-l2J are demonstrated. They were produced by

processing simulated data obtained from Naval Research Laboratory (NRL) of U.S.A.

through the internet. For the simulated data, a stepped frequency waveform was used. The

parameters of simulated data are listed in Table 2.1. Figure 2.6 (a) shows an impressive

image of aircraft by compared with the plan view in Figure 2.6 (b). However if ISAR

motion compensation is undone, the resulting image will be out of focus as shown in

Figure 2.6 (c). Consequently motion compensation plays a key role in ISAR imaging and

is discussed below.
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Object Central frequency PRF Bandwidth No. of pulses No. of range samples

Boeing-727 9GHz 20KHz 150 MHz 32 64

Table 2.lParameters of simulated ISAR data
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ISAR image

30
Range

25

15

E

't0 20 40 50 60

(c) ISAR image of Boeing-727 witltout motion compensation

Figure 2.6 ISAR images of Boeing-727

2.4 ISAR Motion Compensation

ISAR motion compensation estimates the undesirable translational motion of an object

using the echo data and subsequently compensates for it, thus changing ISAR imaging

into rotating platform imaging. The accuracy of ISAR motion compensation is usually

required to be less than a eighth of wavelength of the transmitted signal. This strict

requirement is usually satisfied by carrying out ISAR motion componsation in two steps;

range realignment and autofocus (phase compensation).

2.4.1 Range Realignment

After range compression of echo data, a series of high resolution range profiles are

obtained. Range walk can occur in these range profiles due to the translational motion of

the object between the transmitted pulses. Range realignment aligns the high resolution

range profiles in the range direction by placing the returns of different pulses from the

same scatterer in the same range cell. It is a coarse compensation of translational motion

and can be simply carried out by tracking a strong scatterer of the object in a short interval

16



ISAR Motion Compensation

[6]. However this approach will be likely to fail when fluctuations of the target return or

the level of scintillation noise become too high.

Two automatic algorithms were proposed to realign the echo data[6]. The first, spatial

domain realignment, assumes that the amplitudes of adjacent range prof,les are similar

except for a small range shift due to the tiny change of aspect angle during a pulse

repetition interval (PRI). The peak position of cross-correlation between these range

profrles is used to estimate this small range shift. The second, frequency domain

realignment, supposes that the differences between two adjacent complex range profiles

are the shift of range walk and the phase change due to the motion of the target centre.

Only the first of these differences needs to be estimated for range alignment and phase

correlation in the frequency domain is used to estimate it.

Recently, a Kalman filter has been employed for range realignment t7l t8l. A two or three

state Kalman f,lter was used to provide the filtered estimates of the range shift. The Hough

transform was applied to range realignment in clutter environment [9].

2.4.2 Autofocus

After range realignment is accomplished, all range walks in range profiles should be less

than half a range resolution cell. The residual error of translational motion is then

minimized by phase compensation which is a fine compensation of translational motion.

Phase compensation is usually called autofocus with the reference point being termed the

focal point. The many ISAR autofocus methods which have appeared are reviewed below.

One simple approach to ISAR autofocus is to choose as the reference point a range cell

containing a strong scatterer[10]. The phase exponential function of the reference point in

mthrunge profile can be estimated by

exp {iQ.1 =
,rr^

l*^r^l

(2.3)

where xn,* deîotes the mth complex range profile resulting from the zth transmitted

pulse and n, is the reference range cell where the strong scatterer is located. All the range

profiles are corrected by the phase factor of the reference point. The reference range cell

nr can be detected with criteria such as minimal variance [10], maximal average

amplitude, minimal entropy or maximal energy [11ì.
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For a complex target that does not have a stable prominent scatterer, an estimate of the

pulse-to-pulse phase difference of the reference point can be made by taking the phase

differences for each range cell and averaging them weighted by the amplitudes of the

content of each range 
".11t1Jt31. 

An alternative is to average the phase differences of only

the range cells which contain a strong scatterer[l2lll3J. 5itrc. both approaches require

phase averaging, it is necessary to unwrap the phase.

The other method of autofocus is to estimate the track parameters of translational motion.

In a short time interval, the phase due to translational motion can be approximated by

ô* = at(*T)'+ ar(mT) + a, (2.41

where Z stands for PRI, a, a, and a3 ate track parameters. The track parameters can be

determined by image contrast optimizationtl4l I15l [16] tl7l. Recently the parameters of

instantaneous frequency have been estimated via the maximum likelihood principle for

ISAR autofocus [18].

Another method baseci on phase gradient autolocus (PGA) was proposed f'or SAR phase

error correction [19]. It has been used for ISAR autofocus l20l anda two-stage algorithm to

find the ML estimator of translational motion has been develope¿ [21ì.

The range-Doppler principle assumes that object rotates with a constant velocity around a

f,xed axis. However in practical situations, objects such as airqaft and ships are

manoeuvring. Yaw, roll and pitch result in the variations of rotation velocity and rotation

axis. The variation of rotation velocity brings about non-uniform rotating ISAR imaging
I22l andtime-frequency analysis has been used in these situationst23l l24lÍ25l.The variation

of rotation axis will change the image plane of ISAR, consequently blurring the ISAR

image[26).

As stated above, many techniques have been proposed for ISAR autofocus. Some of them

depend on the existence of strong scatterers. The others need to unwrap the phase to do

phase averaging or fitting. Most of them are only verified with simulated data and when

applied to real data, some work and some fail.

ISAR autofocus actually eliminates the effect of the undesirable translational motion of

object based on the estimated shape of synthesised aperture which is typically a problem

of array calibration. Whilst techniques of array calibration have been extensively
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developed by the array signal processing community, applying them to ISAR autofocus is

a novelty and thus contributes to the theory of ISAR imaging. In this thesis new

approaches for ISAR autofocus by use of the calibration techniques of antenna array will

be developed and verified with simulated and real data in chapter 3. Their statistical

performances will be investigated in chapter 4.

2.5 lnterferometric SAR

As discussed above, SAR is a coherent imaging system in which the 2D complex SAR

image is an estimate of the complex reflectivity of the terrain. InSAR is a technique for

extracting 3D information about target by using the phase content of the 2D complex SAR

images as additional information that can be derived from the radar echo data.

Radar interferometry was first used in observation of the surfaces of Venus and the Moon

in 1969 t42l and lg72l43l, respectively. Graham in 1974 [44] was the first to introduce

InSAR for a topographic mapping and pointed out that two kinds of information were

required for the production of topographic map. Firstly, the various objects and features to

be mapped must be presented in an image with sufficient resolution to be identified.

Secondly, a three-dimensional measurement of position of a sufflcient number of points

mustbe made to def,ne the terrain surface. In 1986, Zebker and Goldst"¡n [45ì presented

the first practical results of observation with a side-looking airborne radar. Goldstein et al.

in 1933 ta6J extended the research from the airborne images to SEASAT satellite

observations. They used data acquired over the Cottonball Basin of Death Valley three

days apart and their resulting topographic map agreed very well with the Geological

Survey maps.

2.5.1 InSAR Principle

InSAR consists of two antenna receivers P, and P, as shown in Figure 2.1 . The distance

betweenP, andP, iscalledthelnSARbaseline Bo.P, transmitspulsesignals.P, and

P, receive the echo data simultaneously for one flight pass. Thus two complex images of

the same scene can be obtained by typical SAR signal processing.
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Figure 2.7 InSAR geometry

The phase difference g of returned signals between P, and P, corresponding to a given

scene scatterer A will be expressed as

o¿

\,

H

h

2n. - 2nQ= Ilrr-r)=f (rl* n,' +2rrBocos(Þ + cr) )' - r,

(,1-n"'-,1\
t-t

\ zB"r, )

(2.s)

where r, and r, are the distances of A with respect to P, and P, respectively. The

parameters that are measured by the radar or are assumed known are rr, È1 (platform

height), Bo, a. (baseline orientation), À (wavelength) and g (though it is modulo 2n).

Hence r,r, þ (incidence angle) and h (terrain height) can be calculated from the relations

12 = rl+ 91.
2n'

þ = orccos

(2.6)

(2.71

and
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Thus the terrain height h, of a given pixel, can be obtained from the measured

interferometric phase <p. Doing this over the whole image allows a three-dimensional

version of the target scene to be obtained at the same image resolution as the original two-

dimensional SAR images.

Use of a two-antenna system is one way to realize an InSAR slster¡[44J. In this system, a

single data collection pass provides the necessary two-channel data in a controlled

fashion. This single-pass approach provides InSAR data without pass-to-pass alignment

problems and without the possibility of temporal changes in terrain inherent in a two-pass

system. However the two-antenna system requires a second antenna and must handle

twice the data recording rates in order to simultaneously collect the two data streams.

Typically, radome and antenna sizes limit the baseline length of a two-antenna system.

Another way to collect InSAR data is to make two sensor collection passes with a single

antenna slste¡¡[48ì. This approach is known as two pass InSAR. With two pass InSAR, the

<p in (2.5) is doubled due to two-way propagation. An advantage of this two-pass single-

antenna system is that an existing single-channel SAR sensor can collect InSAR data

without modif,cation. However this technique requires a stable high-performance

navigation subsystem. This subsystem ensures that the two data collection passes have

accurately known and nearly identical data collection geometries with the necessary

baseline separation. A significant disadvantage of this approach is that changes in terrain

condition between passes affect the InSAR phase measurements and ultimately

contaminate the terrain height measurement.

When the InSAR baseline Bo is perpendicular to the flight direction, it is called across-

track InSAR and can be used to measure the terrain height as described above. It will be

addressed in this thesis. If the baseline is parallel to flight direction, it is called along-track

InSAR which may be used to measure the scene movement such as the mapping of water

currents[100], the detection of moving objects[202]t2031 and the measurement of directional

wave spectral2o4l.

Differential InSAR has been used for the measurement of small-scale movements in

vertical direction and provides a relative accuracy of the order of a few centimetres or

even less. The theory of differential InSAR was firstly described by Gabriel et al. in 1988

tl3ll. It has been used to measure distortions of earth crust due to earthquak"ll32J un¿

volcano eruptions t133ì un¿ to detect small changes in ice sheet motion [134].
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For topographic mapping, the InSAR signal processing procedure is shown in Figure 2.8.

The two SAR images should be processed with the same Doppler parameters to preserve

the coherence of two images. After image registration, the interferogram can be formed by

multiplying one registrated image with the conjugate of the other. Then the absolute phase

is restored by a two-dimensional phase unwrapping procedure. Finally the terrain

elevation can be calculated with (2.5) - (2.8). The critical steps of InSAR signal processing

are image registration and phase unwrapping which will be discussed in section 2.6 and

section 2.7, respectively.

Figure 2.8 InSAR signal processing procedure

Computer simulation of interferograms for flat terrain were conducted. In the simulation,

the altitude of satellite was 785 km, baseline 40 m, incidence angle 23o, and radar

wavelength 5.67 cm. Figure 2.9 shows the resulting interferogram. The real data acquired

by the first European Remote Sensing satellite (ERS-1) over the area of Bonn, Germany

with three-day repeat pass were processed. The interferogram is shown in Figure 2.10

where the radar wavelength is 5.67cm and the baseline is about 45m. The fringes in

Figure 2.9 arc more distinct than those in Figure 2.10. This is due to the limited SNR of

real data and the urban terrain of ERS-1 experimental area.
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2.5.2 InSAR Error Analysis

Differentiation of (2.8) withrespect to H, rr, g, Bo, o and À then allows the heighterror

to be found as follows

òh

M - 1, (2.e)

ah
â<p

òhq

òh
ò,, - -cos p,

Àr, sin B

2n9osin (cl + Þ) '

r, sin B

B otan (u +

òh
ãd = -rlsrnÞ,

r, sin P
- Àtan (cr + 9)

)'

(2.1o1

(2.111

(2.12)

(2.13)

(2.141
òh

-dL

(2.II), (2.12) and (2.13) show that the estimated height is a sensitive function of phase

difference g, baseline Bo and baseline orientation ü. This means that precise

measurements of phase difference and baseline are required for accurate topographic

mappmg.

The phase differences that form the interferogram may be corrupted by phase noise, firstly

due to the finite signal-to-noise ratio in each of the two images, and secondly due to the

temporal decorrelation, and finally due to the baseline decorrelation. The temporal

decorrelation results from the variation of reflectivity of terrain between the two flight

Passes[47]. Both nature and humans can significantly alter the terrain through processes

such as precipitation from rainfall or irrigation, wind, plant growth, clearing, construction,

and vehicle incursions. Similarly, tropospheric propagation changes related to weather

change can contribute to temporal decorrelation. The baseline decorrelation is due to the

change of looking angle between two passes and increases with baseline increase. The

critical baseline is the baseline length when statistical correlation between images of two
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flight passes approaches to zero t48l t491. The baseline decorrelation is explained by the

spectral shift of echo data of two flight passes tsOl tsll.

The interferogram also suffers from shadowing or layover. Shadowing occurs when part

of the target scene is invisible to the radar and the coresponding parts of the image consist

of noise. Layover happens when there are two targets located in the same slant range cell.

The signals from those targets are superimposed.

An effective approach to reduce InSAR error is to make use of multiple flight passes. This

will be discussed in chapter 5.

2.6 lmage Registration

Image registration is the first step of InSAR processing. It estimates the shifts of two SAR

images in range and azimuth so that an image pair is accurately aligned. The existing

methods of image registration are classified as spatial processing and frequency

processing.

Spatial processing includes correlation [52], ,"qo"ntial similarity detection [53], and

matched filtering t5al. Two-dimensional correlation is a basic statistical approach used in

image registration. The correlation measure is defined as

c,r(Lx, ay) = I)o, @,y) Az(x + L,x,y + Ây) (2.15)

xy

where Ar(x,t) and Ar(x,t) represent the amplitudes of two SAR images and the

normalized correlation measure is expressed as

I to, (x,y) -Ãl lAr(x + L,x,v + Lv) -Ã2)
(2.16)

Ztor(*,y) -Arl'
Crz( A,x, LY v

)

x
I to, (x,y) -Ã12
v xy

where a, = #IIo, (x,y), u, = *L*_.\\tr(x,Ð and (x,v) are indices in an

N" * N, point 'iir{aä#ur"u which is locatåd'rúthìn an N,, x N,y point search area. Figure

2.11 illustrates the relationship between the search area and the window area. In general,

the correlation need be computed for all (Nr, - N, + 1) (Nr, - N, + 1) possible translations

25



Ghapter 2: Background lnformation

of the window area within the search area to determine its maximal value and obtain a

translational estimate.

search

area

Figure 2.11 Relationship between search and window areas

Rotational and scaling search processes must be carried out in addition to translational

search if the angular and scale differences are severe. This costly search procedure can be

simpiifieci ii some conroi points are avaiiabie to <ietermine the scale tactor and rotation

initially. The scale factor and rotation are then updated from the translational correlation

results. The correlation can be calculated efficiently with the FFT t521.

The second method of spatial processing is to compute the sum of the absolute differences

between two images at each pixel, i.e.,

Dr(Lx,Ay) = IIlo, (x,y) - Ar(x+A.r,y+ Ay)l (2.'t7l
)cy

or the normalized measure which is defined as

Dr(Lx,Ay) = IIlo,@,Ð -4-Ar(x+a,x,y+nÐ *-1¡l (2.18)

xy

These measures decrease with the degree of similarity; the difference being smallest when

two aligned images are most similar. A far more efficient improvement of this method is a

sequential search strategy. For each window of the image, one of the similarity measures

defined above is accumulated until the threshold is exceeded. For each window the

number of points that are examined before the threshold is exceeded is recorded. The

window which examines the most points is assumed to have the lowest measure and is
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therefore the best registration. This search strategy is actually a fast implementation of the

correlation approach.

The third method of spatial processing is to filter the images prior to correlation. If the

image is noisy, the peak of the correlation may not be discernible. In such cases, the

images should be prefiltered before correlation. The prefilter can be determined if the

noise in the image satisf,es certain statistical properties. Techniques which prefilter based

on the properties of the noise of the image in order to maximize the peak correlation with

respect to this noise are called matched filter techniques. Under certain assumptions, the

prefilter is a Laplacian filter or a gradient filter.

Frequency processing searches for the registration parameters in the frequency domain.

One method of frequency processing is phase corelation [55]. Giuen two intensity images

A, and A, with displacement (4.r, Ây) , i.e.,

Ar(x,y) = At(x - Lx,y - Ly) , (2.1e)

their corresponding Fourier transforms Sy(er, e) and S2(er, e) are related by

Sr(Q*,Qr) = S1(Q", Q) exP {-i2n(Lxq,+ Lyqy)} (2"20)

The phase of the cross-power spectrum of the two images is

(2.211

By taking the inverse Fourier transform of (2.2I), we will have a function which is

approximately zero everywhere except at the displacement which is needed to optimally

register the two images. The other method of frequency processing makes use of the

power cepstrum of image. This method is cumbersome to describe and details are

available [56].

Spatial and frequency processings are both only applicable for image misregistration with

global geometric transformations. In other words, they are suitable to register small

images. In order to register large images with local geometric transformation, control

point mapping or elastic matching techniques need to be used [57].

Recently a number of studies on SAR image registration have been reported. Gabriel and

Goldstein in 1988 [58] r"*orr"d the effect of small path pitch by resampling the image in

sz(qr, qr) st* (q*, qr) . = eXp {_j2n(Lxq"+ Lyqy)}
lsrk,,4r) s,x (Qr, er)
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the range direction. Image registration was implemented by finding spectral signal-to-

noise ratio of interference fringes and searching for the existence of maximal peak in the

power spectrum of the fringe. When the corresponding pixels are matched most closely,

the fringes of interferogram are most distinct and strongest. If misalignments exist, the

fringe patterns are noiser and the power spectrum is smoother. Li ancJ Golclstein in 1990

[48] used a statistical correlation of two amplitude images to determine the range and

azimuth pixel offset of any two images. The relative correlation coefficients between two

images at various offsets in range and azimuth were calculated. The offset that produced

maximum correlation was obtained by fitting the correlation coefficients over the discrete

pixel offsets. Lin et al. in l9g2 l59l defined an average fluctuation function of phase

difference image on large areas in the interferogram and minimised its values by subpixel

shifting in range and azimuth and scaling in range of the two images. In a recent paper[60J,

Fornaro and Franceschetti developed a new image registration procedure implemented at

the raw data processing stage. The two complex SAR images were generated with respect

to a common reference output system. The registration was achieved via a scaling and

shifting compensation that can be efficiently and easilv included in a standard SAR

processing code. Homer et al. applied the technique of sign change of subtraction image to

SAR image registration[61]. Determination of the optimal parameter associated with image

variation was described.

All the methods described above deal with a pair of SAR images. Multiple image

registration will be investigated in chapter 6.

2.7 Phase Unwrapping

The difference phase of two registrated images, which is directly related to the

topography, is only measured modulo 2n. In order to reconstruct the height

unambiguously, it is necessary to add the appropriate number of cycles of phase, which is

known as phase unwrapping.

The adaptive integration method of phase derivative for one-dimensional phase

unwrapping was proposed by Tribolett62l. This can be understood by reference to Figure

2.I2(a) which shows a one-dimensional sequence of phase values. The cycle is l. If we

make the assumption that adjacent phase values can not differ by more than half a cycle, it
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is clear from Figure 2.12(a) that to unwrap the phase, one cycle needs to be added to the

last three values as shown in Figure 2.12(b).

0.5 0.6 0.7 0.8 0.9 0.0 0.r 0.2 0.5 0.6 0.7 0.8 0.9 1.0 r.l r.2

(a) V/rapped phase values (b) Unwrapped phase values

Figure 2.12 One-dimensional phase unwrapping

One of the most successful approach to two-dimensional phase unwrapping was based on

identifying and linking a so-called residue[46]. In the case of two-dimensional phase

unwrapping, the consistency of the phase progression around each closed cycle of four

phase values is evaluated, under the same assumption that adjacent values can not differ

by more than half a cycle. In most cases the phase progression is consistent. But

occasionally this is not the case, leading to a positive or negative inconsistency. These

inconsistencies are named residues. The steps of one method for two-dimensional phase

unwrapping, known as the path-following method, includes residue identiûcation, branch

cut determination and phase unwrapping. Figure 2.13 shows an example of two-

dimensional phase unwrapping with the cycle equal to 1: (a) the original phase values, (b)

the residue value matrix, and (c) the result of phase unwrapping where the adjacent phase

is consistent except in the region of branch cut (solid line).
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Figure 2.!3 Two-dimensional phase unwrapping

Various approaches to two-dimensional phase unwrapping have been developed which are

classifled as path-following and least-square estimation. Prati et al. in 1990 [631 presented

a modifled path-following method by exploiting the information of phase and amplitude

29



Chapter 2: Background lnformation

of InSAR image. Lin et al. in rgg2 tsgl developed a phase unwrapping approach by

detecting the fringe lines in the phase difference image with edge detection techniques.

Gollaro et al. in 1993 tz6J introduced a statistical approach to phase unwrapping by

searching the phase integration path with a genetic algorithm. Xu and Cumming in 1999

developed an algorithm for determining the phase integration path by use of region-

growing technique[135]. The concept of multiresolution for phase unwrapping was

introduced by Davidson and Bamler in 1999 tl36l.

The least-square method of phase unwrapping was firstly described by Hunt in I9l9l6al.

Takajo and Takahashi in 1988 t66l gave a new least-squares phase estimation. Fornaro et

al. in 1996 l74l employed the Green's first identity to do two-dimensional phase

unwrapping. They presented a new algorithm for InSAR phase unwrapping based on the

finite element method in IggT Í7s1. Network programming was proposed for two-

dimensional phase unwrapping in 1993t2311. Oth"t techniques of the least-square method

are availab6Í61)-U3).

Although many papers on phase unwrapping have appeared. phase unwrapping is still an

area of active research. There remain a host of theoretical as well as practical issues that

are not totally resolved by any present phase unwrapping methodology. Even if this thesis

does not address phase unwrapping, it is suggested for further research.

2,8 Array Processing Fundamentalsl2]

Considering sensor alrays immersed in the far-field of a sinusoidal wave with amplitude

bo?) and carrier frequency o impinging the array from direction 00, the sensor converts

the signals in the medium to electrical signals. If ¡ is time and (x^,!^) are the

coordinates of mth sensor, then the field at the mth sensor z*(t) canbe represented by t2l

z^(t) = boQ) exp {ir;rt -f# (x.cos0o + y,sin0¿) } (2.22)

Dropping the carrier term for baseband processing, the output of the rn th sensor is

modelled by
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For an M element arÍay, the vector of the array output is expressed as

Z(t) = boU)a(0¡,)

K

(2.241

where Z(t) = [zr(t),...,2*(t))r and a(00) = [a, (0¿) ,...taM(ek)]2. If 1( signals

impinge on the array from directions 01, ..., 0u, the output vector takes the form

Z(t) = Luoe)a(ok) (2.25)

k=l

In the presence of an additive (baseband) noise W (t) , we get the model commonly used

rn ¿uTay processlng

Z(t) = A (e) s Q) +w (t) (2.26)

T
whereA(e) = [a(01),...,a(0")] andS(Ð = lbr(t),...,bKG)l

Assuming that the incident signals are uncorrelated with the receiver noise, the covariance

matrix of Z (t) is

c, = E{z(t)z'(t)} = AC,AH +c* (2.271

where E{ } denotes ensembl e average, C, = E {S (Ð S" (r) } is the covariance matrix of

signal sources, and C* = E{W Øú (Ð} is the covariance matrix of the noise. V/hen

the environment consists of K uncorrelated directional sources and uncorrelated white

noise, we have

C, = diag lp,, ..., p ¡ç) (2'281

and

C* = o?J e.2sl

where r, is the power of each source and o2, is the variance of white noise.

Based on (2.27), C, is Hermitian symmetrical and positive definite. The eigenvalues of

C, in descending order are always positive numbers, that is,

(2.30)
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and the corresponding eigenvectors ø, i=1,..., M are orthogonal, that is,

Hu.u.=tJ ô (2.31)
U

The eigen space decomposition of C, can be expressed by

C, = (JIYUH (2.32)

whereU=(u¡,...,uu)andÅ=diag(À,,...,L*).Byvirtureoftheorthogonalityofthe

eigenvectors, the space of receiver outputs can be decomposed into signal subspace and

noise subspace.

Assuming that the number of sensors is larger than that of sources signals, that is, M > K,

the eigenvalues and eigenvectors of C" can be divided into two sets. The number of

eigenvalues in the first set is equal to the number of these sources and their values are

larger than the power of the white noise; that is,

(2.33)

These eigenvalues are referred to as the signal eigenvalues. The range space of A , which

is called the signal subspace, is spanned by the corresponding eigenvectors.

The eigenvalues in the second set are of equal value. They are independent of the

directional sources and equal to the power of the white noise. These eigenvalues are

referred to as noise eigenvalues. The number of noise eigenvalues is M - K; that is,

Lx*t=...=\rru=o2* (2.34)

The corresponding eigenvectors belonging to the second set span the null space of AH

which is called noise subspace.

Hence the space of receiver outputs can be decomposed into the direct sum of the signal

subspace S, = span {a (01, Q1) , ..., a (0r, Qr) } = span { u1, ..., uy} and the noise

subspace ,S, = span { ø" * 1, .. ., u¡4} . The covariance matrix is decomposed into
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where À, = diag(Àr,...'À"), Ur= (uy...,ur), Ln= diag(À**y"',L¡4) and

(Jn = (u**1,...,u¡4). The projection matrices onto the signal and noise subspaces are

expressed as

, = u,ul = A (AH A)-t AH (2.36)

U,UI = I-.A1lít¡-ttH (2.371

respectively. It can be shown that P2,, = P rr, Pf,n

Thus far it has been assumed that the exact covariance matrix is known. However rn

practice the covariance matrix needs to be estimated from a finite number of snapshots N,,

and is usually estimated as

2t <,1zu (t) (2.38)

P

nP

= Prn,and Prr+Prn = I

N/

1

N,
cx

=l

The eigendecomposition of C, is given by

^ ^H ^HC, = UrLrU, +Url\nUn (2.3e)

where Â, and Â, are the estimated eigenvalues of signal and noise subspace. Ù, and Ù,

are the corresponding estimated eigenvectors. It is noted that the number of signal sources

K is supposed to be known before localisation of signal sources can be conducted.

Techniques for estimating K are available in the literature [103].

2.8.1 Beamform¡ng Methods

Propagating signals in space (wavefronts) contain much information about the sources

that produce them and their temporal and spatial characteristics allow us to estimate the

source locations. However other sources in addition to the one of interest usually exist in

the real world and noise always contaminates measured signals. Thus the required signal

processing is to enhance desired signals and attenuate other signals. One means of

enhancement is linear spatial filtering. For propagating signals, temporal and spatial filters

are employed to separate signals according to their frequency content and their directions

of propagation, respectively. Temporal filtering can be accomplished with a single sensor
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but spatial f,ltering requires an array of sensors which spatially samples the propagation

field.

The term beamforming[2]Ut7) refers to a spatial filter designed to constructively reinforce

a signal radiating from a specific direction and suppress signals from other directions.

Beamforming algorithms use constructive interference to focus the array's spatial f,lter

toward desired directions algorithmically rather than physically. In this thesis, the

beamforming by phase shifting narrow-band receiver outputs is considered. The

conventional beamforming output of the phase shift beamformer is expressed as

y(t,g) = !*r' @)Z(t) (2.4o)

where v (0) = [v, (0) t ...,rM(e) ] " is the vector of weights (the steering complex vector)

for forming a beam in direction 0, v, (0) = "*p U4*@Ì , e the steering

direction and d, the element space of an equispaced linear array.If Z(t) is a vector of

random variables, it follows that y (r, 0) is a random function. The mean output power of

the beam steered in direction 0 is then given by

P. (e) = n {ly(r, e¡ 121 = I

M"

H
v (e) C,v (e) (2.41)

This conventional beamformer may be viewed as a spatial matched filter when the spatial

noise is white.

The optimum beamformer has weights that optimize the signal processing in some way.

For example, minimum power with constraint (MPWC) beamformer minimises the output

power of the beamformer subject to the constraint that the output due to a signal from a

chosen steering 0o is held constant. Other optimum processors[2] harre been proposed with

different criteria for optimization such as maximum array gain (MAG), maximum

likelihood (ML) criterion and minimum mean-square error (MMSE). The weights for

these optimum beamformers are listed in Table 2.2 where p is a scaling factor and r*o is

the correlation coefficient between the desired signal and the array output.
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Table 2.2 Weights for optimum beamformers

TVpe MAG ML MPWC MMSE

Weights pC*-1v(06) C*- 1v(0s)/(vH(00)C*-1 v(00)) c*-1 v(06)/(vH(o¡)c*- 1 v(06)) c*-tt*o

2.8.2 Subspace Methods

Subspace methods have been used successfully in array processing to estimate the

directions of arrival (DoA) of plane wave signals incident upon a sensor array t85ì. 1¡"t

are a natural extension of beamforming approaches and utilise geometric properties of an

assumed plane wave model to provide a formal analytic framework for further theoretical

development and a computational framework for the practical applications. The

covariance matrix plays a key role in defining the subspaces of interest. Subspace methods

have a theoretical resolution that is not limited by the aperture of the affay, or the SNR.

They originated from Pisarenko's method tl29J. 1¡" popular multiple signal classification

(MUSIC) [too] upptoach is

(2.42)

where Ùn arc the eigenvectors defined in(2.39). MUSIC will be used to enhance the

elevational imaging in chapter 8. Other methods such as estimation of signal parameters

via rotational invariance techniques (ESPRIT) tll8l and weighted subspace fitting

(WsÐtttsl have been developed.

2.8.3 Array Cal ibration

The problem of array calibration has been considered in various frelds. Examples of array

calibration application are in telescopes t122l,rudio cameras [1231, sonar towed arrays [86ì,

synthetic aperture sonar [124ì, over-the-horizon ,udur[1251, space-time adaptive processing

(STAP) [126], ultrasound ¿ürays 11271 un¿ magnetic resonance imaging [128]. ManY

techniques have been developed for array calibration and they may be classified as active

or passive methods. The active ones make use of sources in known directions [120]. The

most common passive method is to utilize other assisted measurements. However it is

subject to the accuracy limitation of measurement devices. Appealing passive methods are

P rrr,r(o) =
a" (0) UnUna (0)
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the data-driven techniques which includes sharpness[122J, closure phase[142],

beamformingll4:l and subspace methodstS6l. Th" sharpness and closure phase methods

were used successfully in radio astronomy. The beamforming and subspace approaches

have been applied to towed sonar array shape estimation. They will be employed for ISAR

autofocus and phase correction of MPSAR in later chapters.

2.9 Summary

This chapter introduced many important concepts that are to be used throughout the thesis.

We began with a simplified description of the SAR system block diagram. The range

resolution is obtained by transmitting wideband signals. The azimuthal resolution is

achieved by synthesising the aperture introduced by the motion of the radar.

Then ISAR was introduced. The range resolution relies on the bandwidth of transmitted

signals and the azimuthal resolution is determined by the rotation angle of object relative

to KLOS. Ilxamples of ISAR images of Boeing-727 were demonstrated by processing

simulated data of NRL and illustrated the importance of motion compensation in the

image formation steps of ISAR processing. Existing techniques of ISAR image formation

and motion compensation methods were discussed in detail and autofocus was identified

as the topic to be further researched in later chapters.

Next the principle of InSAR was described. It is based on the coherence of SAR images

and calculates the elevation of terrain with the unwrapped phase of interferogram.

Examples of interferograms were shown by processing simulated and real data. Image

registration and phase unwrapping are the critical issues of InSAR processing. They were

reviewed in detail and image registration was identified as an important topic to be studied

for MPSAR. Although phase unwrapping is obviated in MPSAR processing as described

in chapter 5, it is still not yet solved thoroughly and is recommended for further

development.

Finally the techniques for array processing were highlighted. They included beamforming,

subspace methods and array calibration. They are employed in this thesis for calibrating

ISAR and MPSAR.
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3.1 lntroduction

The use of an array of sensors allows many advantages over the use of single sensor. Array

processing approaches including beamforming and subspace methods have been used for

sensor arrays in many fields such as radar [111], sonar [112], seismic exploration [113],

biomedical imaging [114], wireless communications [115], radio astronomy [l16] and laser

[159] to detect weak signals, to resolve closely-spaced targets and to estimate the bearing

and other properties of a signal source. Beamforming involves the steering of a beam to

obtain a spatial spectrum from which the signal bearings can be estimated and provides

gain for the detection of weak signals. Subspace methods make use of the eigenstructure

of the covariance matrix of received signals and its properties. They are based on the fact

that the signal subspace intersects the array manifold at locations corresponding to the

direction of signals. This chapter describes how to apply conventional beamforming,

optimum beamforming, signal subspace and noise subspace methods to ISAR autofocus.

Section 3.2 derives a signal model of ISAR autofocus by use of a point scatterer model.

Two new approaches for ISAR autofocus are developed in section 3.3 based on

maximizing the output powers of conventional and optimum beamformers. Section 3.4

presents two new approaches for ISAR autofocus by use of the signal and noise subspaces.

A subaperture processing scheme is described in section 3.5. Simulated data and real data

ars processed for both one-dimensional and two-dimensional ISAR imaging in section 3.6

and section 3.7, respectively.
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3.2 Signal Model of ISAR Autofocus

When an object such as an aircraft is illuminated by a radar, the backscattered radiation

may be determined from Maxwell's equations. However the exact solutions of Maxwell's

equations are often too sophisticated to use for complex objects and the backscatter from a

complex object is determined using the principles of specular, diffractive, multiple or

travelling wave scatterings[8oì. Travelling wave scattering is significant only when the

wavelength of the incident radiation is similar to the object size which is not the case for

the microwave frequencies considered here. Multiple scattering is caused by cavity

structures of an object and is a weak part of backscatter which is only important in some

specific applications such as radar target classif,cation. Normally specular scattering and

diffractive scattering account for the majority of backscatter from aircraft, with the former

usually being much larger in amplitude than the latter. Therefore it is usually a good

approximation to only consider the specular scattering.

For a distributed target, we define p (x, y) dx dy to be the overall reflectivity of the

differential area located at (.x. -v) on the object where, for convenience, g (,x, ,r,\ ineh-ldes

propagation effects and other gains. The received signal due to this differential area is

ds,*(x,y) = p (x, y) exp filf ,, @, y) \ dx dy (3.1)

where r (x,y) is the distance from the radar to (.r, y) when /th frequency signal f , of the

m th pulse is sent. By combining the received contribution from all parts of the object, the

total received signal becomes

(3.2)

where the integration is taken over the region occupied by the object.

For a complex object, p (x,y) is actually a function of aspect angle due to shadowing and

other effects and is also dependent on the frequency of the transmitted signal.

Nevertheless for ease of analysis, it is assumed that p (x,y) in (3.2) is independent of the

illuminating frequency and aspect angle. These assumptions are quite accurate for ISAR

because the object is viewed over a n¿urow range of viewing angles and a small relative

bandwidth (the ratio of bandwidth to centre frequency) is used.

,,^ = IJp 
(.x, y) exp Uff,, @, y) \ dx dy
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In principle, an exact representation of (3.2) implies an inf,nite number of point scatterers.

However, since noise and system imperfections prevent making exact measurements, the

approximation of an object by a finite and manageable number of point scatterers plus

noise may be entirely adequate for microwave frequency [81]. Therefore the discrete

version of (3.2) can be written as

(3.3)

where w,^ is an additive noise in frequency domain.

Suppose that a moving object is flying in a straight line ox as shown in Figure 3.1. The

motion of a rigid object can be decomposed into two parts: translational motion of a

certain reference point o on the object and rotational motion of the object about the point

o.Let the Cartesian coordinates xoy be fixed on the object with range along the y-axis

and cross-range along the -r-axis when the object is at its closest point of approach to the

radar. The radar transmits M stepped-frequency bursts. The aspect angle of the object

relative to the RLOS and the distance from the radar to the point a when the mth burst is

sentarerepresentedby 0^ and Ro^,respectively, where m = O,...,M-I

v / nros
(xr,yr)

o
Radar

,,* = }poexp {-iTftrk^} *wr^

r¡
o

x

Ro-
fkm

Figure 3.1 ISAR imaging geometry
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Chapter 3: Array Processing Approaches for ISAR Autofocus

Assume that the received signals can be approximated by using K scatterers on the object.

The kth scatterer is situated at a distance ro^ fromthe radar when the mth burst is sent.

The range between radar and the kth scatterer with coordinate (r¡,T¡) or (x¡,1) as

shown in Figure 3.1 is given by

rk^ = lR'o^* rf,+ 2Rorrosin (0. * yo)l' (3.4)

If the distance to the object is much larger than the size of the object, that is, Ro^r, rk, we

have the approximation;

,k^! Ro^+ xosin0,, + yocos0, (3.5)

Let po denote the complex reflected signal of the kth scatterer which is assumed to be

constant with changes in the illuminating frequency and the aspect angle. For each burst,

L stepped frequencies ft = fo+l\,f , I = 0,...,L-l , are used where ft and A,f are the

initial frequency and the frequency step, respectively. The received signal resulting from

the & th scatterer and the / th illuminating frequency durinlthe m th burst can be written as

p¿exp {-ilf,ro^}. The total received signal sr* caused by the /th illuminating

frequency of the z¿ th burst is

K K

,,* = Lp¿exp filnro^\ *wr^ = ) oo"*o {-i+ (fo+ tn¡ rt*} * wh (3.6)

(3.7)

k=1 k=l

After the pulse compression in the range direction using an inverse discrete Fourier

transform (IDFT) [l] and substitution of (3.5) and (3.6), the complex envelope in the n th

range cell of the mth burst becomes

L-l

) ",."^p {iz}"ry
/=0

K

xr^

L-l

{i(T"-!a,o^)ry *,'n^
k= I 1=0

- exp {-i!fon"*} en^+ w'n*

where
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Signal Model of ISAR Autofocus

€r^ = I oo"^p {-iTfr(xosin0. +yocosOr) }
K

k=7

K

k= I

(3.8)

*'n* m = 0,...,M-l n = 0,...,N-l is the complex envelope of the additive noise

and N is the total number of range cells. 'We assume that w'n^ is independent identically

distributed complex Gaussian noise components with zero mean and varianc " o', .

(3.1) indicates that the ISAR received signal consists of two terms. One is

exp 7-¡!¡on"^I induced by the translational motion of object which should be

compensated prior to image formation. The other is en*, corresponding to the rotational

motion of object, is used to construct the ISAR image.

Following range compression, range realignment is done to align the high resolution range

profiles in the range direction so that the returns of different pulses from the same scatterer

lie in the same range cell. After range realignment is accomplished, it holds that

rk(m+r)arkm m = O,...,M-2. If only the translational motion for ISAR autofocus is

considered and the rotational motion for image formation is ignored[6], a good

approximation is that two adjacent pulses have approximate equal value of aspect angle,

that is, 0^*ra0* * - 0,...,M-2. These approximations, discussed below, allow the

signal model xn^ of ISAR autofocus to be written as

{i (L- D(T -'#,r^)'

xnm= exp {-i!6n"^} eno+ w'n* (3.e)

where

"no= }p¡exp {-i+fr(.xosin0o + yocos0e) }

(3.10)

The complex envelope vector in the nthrunge cell can be expressed as the desired signal

{i (L-')(T -'#'*),

model
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Chapter 3: Array Processing Approaches for ISAR Autofocus

Xn = enoD+Wn (3.11)

(3.12)

(3.13)

where Xn = fxng,...,xn(u-t)f , Wn = fw'ng,...,w'n(u-t)lr, ¡, is the wavelength

corresponding to fs, and,I = ["*n tifn,ot,...,eXp {-ifn"<ru-r¡}lt wnicn is the

complex vector that ISAR autofocus needs to estimate. (3.11) is the vector form of signal

model for ISAR autofocus.

Although the above signal model is derived by use of a stepped frequency waveform, it is

straightforward to generalize it to other signal waveforms such as the short pulse and chirp

pulse-compression waveforms. It is noted that a similar signal model has been used for

SAR phase 
"ttot 

[82] rather than ISAR autofocus. The above derivation shows that the

signal model (3.11) is valid after both the range compression and the range realignment

have been accomplished for ISAR autofocus. Finally it is worth noticing that the complex

vector D is space invariant and does not correspond to a particular strong scatterer.

In order to satisfy the approximation 0**ta0*, the phase variation induced by the

rotational motion should be less than n/2 corresponding to a range error of X/B l4l.

Consider two adjacent mth and m + I th pulses; the exact signal returns from one scatterer

are

€n^ = pl exp {-iT (x, sin0, + y, cos0.) }

t!,.I:f-:, ï;-.i 
r 

4]exp u ( L - r ) (r; -,#, *),
"nL(t -i'o^)l

enTm+r) = Pl .*p{-.if(xrsin0.+r *}rcos0.*1)}

and the phase variation due to the rotational motion is

Â0. = T r"r(sin0.*, - sin0.) +y, (cosO.*, - cosO.) J

Limiting ÂQ, to be less than n/2, we have a strict constraint
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lx, (sin0.*, - sin0.)l + lr1 (cos0.*, - "or0.) | 
< |

By use of sin (õo^/2) = õ0^/2 for small õg^/2 where ô0. = 0^*t- 0r, we have

(3.r 5)

(3.16)

(3.17)

î.ôor'
8 {fx,cos [ (e, + 0.*r) /2]l+lrlsin [ (0. + e^+) /2] lÌ

Thus the sample interval /, of the synthetic aperture must satisfy

¡"R (t

8 {fx,cos [ (0. + 0.* r) /2)l+ llltitt [ (0. + A^+) /2 r lÌ
/. = Rrõ0. <

where R, is the distance between the radar and object. Figure 3.2 shows the required

Sampling interval versus 0^+0^*, where the parameters are chosen aS l, = 3cm,

xr = lm and lt = lm. It indicates that the required sampling interval decreases as the

aspect angle increases. The minimum sampling intervals are 26.51m and 79.53m when

the R, equals

the PRF to

respectively
{lx,cos [ (0,, * 0^*) /21 + ,sin I

met by
(Q*+ 0^

to 10km and 30km,

satisfy PRF >
8r,

where su is the speed of the object.

. This condition can be increasing

+) /21 Ì
o

E

È

o
E
Ø 60

40

20

10 30 40 60 70

Qm* 0 m*t (degree)

Figure 3.2 Sampling interval versus aspect angle

One requirement for range realignment to satisfy the approximation rkl**t) Zrkm is that

the variation of relative position between scatterers in range profile should be less than one

range resolution cell. Consider an example of two scatterers as shown in Figure 3.3, they

- - Bo=lokm_ Bo=3okm
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aÍe at first located at A and B. During the interval of two adjacent pulses, they rotate to

positions A1 and 81. The initial and final projections of two scatterers on range direction

(y axis) are dcosÐ* and dcos07¿,.1, respoctively where d is the distance between two

scatterers. The variation of relative position between two scatterers in range profiles needs

to satisfy dlcos 0,,, * , - cos erl < t, where x, is the range resolution. By use of

sin (ô0.) = õ0^, this relation becomes

ô0 (3.18)nl

This is a weak requirement as compared with (3.16) if I < t

v

A

A1

0,1*t

X

B1

B

Figure 3.3 Position variation of two scatterers

In standard ISAR autofocusing algorithms, Ro* is estimated and the range aligned signals

are corrected with the phase term exp tifn"^t. However, from (3.11) it can be seen

that for the above signal model, we only need to work with the x'n* = xnmexp {if n"*} .

Thus it is unnecessary to estimate Ro* and all that is required is an estimate of

exp ç!n,rÌ , obviating the need for phase unwrapping. In this thesis, we will develop

new approaches for estimating the exp {-if n"^} m = 0, ..., M -l , that is the complex

vector D rather than Ro^. The block diagram of ISAR processing without phase

unwrapping is shown in Figure 3.4.
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complex signal

vector estimation

range

compression

range

realignment

azimuth

processing

complex signal

vector compensation

Figure 3.4 ISAR processing without phase unwrapping

3.3 Beamforming Methods for ISAR Autofocus

It is assumed that the conventional beamformer with uniform shading across the array sets

the weights to be equal to the steering vector t2l. In conventional beamforming the steering

vector is parameteúzed by the steering angle; however for the present application it is

parameterized by the Ro*, namely, the range between the radar and the object when the

m th burst is transmitted. Loosely, this may be thought of as beamforming in range. Thus

the beamforming weight vector v is defined as

Tv = [v6, tl, ...,, (¡ø_¡l (3.r e)

(3.20)

where vm = exp{-if R"^¡ , ffi = 0, 1,.. .,M-1 . As discussed above it is not necessary

to determine the R,, only the v^ to carry out autofocus. We consider a number of

methods for doing so when the covariance matrix C, is known in this and next sections.

3.3.1 Conventional Beamforming Approach

The output of the conventional beamformer is given by

P
I
)

M-
c,v

H
v

c

where 11 denotes the Hermitian transpose and C, is the covariance matrix of the signal

vector in the n th range cell. Based on (3.11), we have
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C* = prDDu *o'*t,

where I, is an M x M identity matrix and p, = l"nol'. Then p, becomes

2

P = \r'DD'r*?Y
'MtM

(3.21)

(3.221

which, apart from an arbitrary scaling parameter, is maximized with the constraint

,uu = M when

voprl = D (3.23)

(3.23) means that when the unknown translational motion phase matches the actual

translational motion phase, P. attains its maximum

(3.241

Tf +h^ .+^^-iñ- r'Â^+^r -. l^^^ -^+ -^l-¿ +^ +L^ ;12-^^¿:^- ^î ^:^-^1 ^ 1r-- - --rr ruw ùrwwruré vvvlur v u\Jvù rruL P(JrrrL L\_, Lrlg uuçullull ur srËu¿n vççtul I) , ulv uutPut powgr

of the conventional beamformer will decrease.

As an example, computer simulations were conducted to calculate the output power of

conventional beamformer. In the simulation, we assumed a point scatterer flying in a

straight line at a constant speed su = 200 m/s. The initial range Rro and initial aspect

angle 0u were 30km and 0' respectively, as shown in Figure 3.1. A coherent radar

transmitted a narrowband waveform with central frequency 10 GHz and pulse-repetition-

interval (PRI) T = l/400s. The number of the transmitted waveforms M was 1024.In

order to display the variation of beamformer output the range from the object to the radar,

Rrr,, when zth pulse is transmitted is approximated by Ro* = Roo+ (sumT)2/ (2R"0) .

The steering vector is thus a function of Rro and su. Figure 3.5 shows the output power of

the conventional beamformer versus speed. It indicates that although the output power has

many local maxima, the output power achieves its global maximum when the search speed

is equal to the true value. The output power is asymmetrical with respect to the search

speed.

n
pPcmax

2
oÌt

M
+
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Figure 3.5 Output power P, of conventional beamformer

The conventional beamforming method for ISAR autofocus can be expressed as

maximization of the conventional beamformer output, that is,

(3.2s)

subject to the constraint ,', = M . The above optimization can be combined in a single

equation

max { \r'c,r¡
M-

'r*r - ¡t [vHv - M]1E=ru (3.26)

(3.28)

where p is a Lagrange multipler. By taking the gradient with respect to v and setting it to

zero, we have

Crv-¡tv = 0. (3.271

Thus p and v are found to be the eigenvalue and eigenvector of C*, respectively.

Substituting (3.27) into (3.25), we get

1HÀ.ì".
max{Lrv C*v} = max{¡} = ¡
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where À, is the eigenvalue of C, and À, is the maximum eigenvalue of C" and the

maximizing phases are given by the components of the eigenvector coffesponding to the

maximum eigenvalue.

3.3.2 Optimum Beamforming Approach

Four optimum beamformers, maximum array gain, maximum likelihood, minimum power

with constraint and minimum mean-square error, are described in section 2.8.I. If a

scaling parameter is selected properly, the maximum array gain beamformer is equivalent

to the maximum likelihood beamformer and the minimum mean-square error beamformer

is equivalent to the minimum power with constraint beamformer. The maximum

likelihood beamformer looks like the minimum power with constraint beamformer except

replacing C, with C, (the covariance matrix of the received noise). Based on the signal

model for ISAR autofocus, it is easily verified that the four optimum beamformers are

equivalent t2l. The output power of an optimum beamformer is given by

(u
Po = lv"C,

\-
)v (3.2e)

(3.30)

The special form of C, as given by (3.2t) allows its inverse to be written in the ¡otttr[233J

Then the output power of the optimum beamformer turns into

,)

C,t = o,llr- !r^'oi ,oo
or+ Mp,

- n /n2 ì

_tru - Y!-vtl nn'vj
oi+ Mp,

2

Po*o* = p^*3

-l
(3.31)

and by inspection this achieves its maximal value at the same point as the conventional

beamformer apart from a scaling factor, i.e., when

vopt2 = D (3.32)

with a maximal value of

",={o
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Figure 3.6 shows the output power P o of the optimum beamformer as a function of speed.

The parameters of simulation are the same as in section 3.3.1.It is indicated that the

beamwidth of the optimum beamformer is narrower than that of conventional

beamformer, the sidelobe level of optimal beamformer is lower than that of conventional

beamformer, and the local maximum is reduced.

140 '160 180 200
Speed (m/s)

220 240 260 280

Figure 3.6 Output power P o oÍ optimum beamformer

The optimum beamforming weights for ISAR autofocus are the v that give

(3.34)

with constr eunt vH v = M which is equivalent to

min {vH crlv} (3.3s)

subject to vHv = M. This constrained optimization can be converted into an unconstrained

optimization by defining the function

0

-5

-10

-20

ÉÞ

o
I
o
o
E
o
E
doo

-30

-35

-40

^u* 1(,'c;'u)-"

(3.36), = t'c;t, -tr[vHv - M]
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By setting V,e = 0, we have

I

Cr'v-p"v = 0 (3.37)

Thus p and v are identified to be the eigenvalue and eigenvector of Crt, respectively. As

C" is Hermitian symmetrical and positive definite, the eigen decomposition of C, has the

form

M

C,= 27",up! (3.38)

i=1

The inverse of C, can be expressed as

C, (3.3e)

Therefore I/¡t" and v are found to be the eigenvalue and eigenvector of Cr, respectively

Then (3.34) is changed into

(3.40)

when the estimated steering vector v is equal to the eigenvector u, of C, corresponding to

the maximal eigenvalue, that is,

(3.41)

Thus both the conventional and optimum approaches require the solution of an

eigenvector problem.

3.4 Subspace Methods for ISAR Autofocus

Based on the ISAR autofocus signal model (3.11), the covariance matrix of the received

signal is rewritten as

H
i

-u^1(u"c;'")-'r = max ,({,)-', =h

iuu
I
Li

M

i=1

v=ul
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where pn and, o', *"the powers of signal and noise, respectively. D is the complex vector

of translational motion and 1, is the identity matrix. It is shown in Appendix A that the

largest eigenvalue of C, is

(3.43)

and its corresponding eigenvector is

(3.44)

and all the other eigenvalues are equal to ol. Therefore the dimensions of signal subspace

and noise subspace are equal to I and M - | , respectively, for ISAR autofocus.

In order to visualize, consider an example where three pulses are transmitted by the radar,

that is, M = 3. The signal and noise subspaces may be represented as shown in Figure

3.7.The signal subspace is a one-dimensional space (a, axis in the diagram) and the noise

subspace is the uru, plane. The array manifold, defined as the locus of the steering vector,

is a spherical surface with the constraint ,'u = 3 and intersects the signal subspace at

point c when the steering vector v points to the complex vector D as shown in Figure 3.7.

At the point c the steering vector v has a maximum projection length onto the signal

subspace and a minimum projection onto the noise subspace. These properties are the

principles of the signal and noise subspace methods described below.

u1

signal subspace
array manifold

noise subspace

-a

?", = pnM+o2,

Dut=fu

v

\ /
\

u3

Figure 3.7 Eigen-space decomposition for ISAR autofocus
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3.4.1 Signal Subspace Approach

The third new approach for ISAR autofocus is to exploit the signal subspace. The

projection of the steering vector v onto the signal subspace is Prrv . The projection matrix

Pr., onto the signal subspace may be expressed as

(3.45)

which has eigenvalues of 1 and 0. The signal subspace approach for ISAR autofocus is to

maximize the projection of the steering vector on the signal subspace, that is,

P =oourJM

Vv (3.46)

with constraint vHv = M where ll ll is the Euclidean norm. Noting the P?, = P,,, (3.46)

is equivalent to

max ¡vH P rrv¡ (3.47)

subject to vH v = M. This optimization happens when the steering vector equals the

eigenvector coffesponding to the maximal eigenvalue of pr", that is,

(3.48)

3.4.2 Noise Subspace Approach

The fourth new approach for ISAR autofocus makes use of the noise subspace. The

dimension of the noise subspace is M - I and their corresponding eigenvectors are

denoted by ur, ..., uM . The projection matrix P, onto the noise subspace is

Pr, = (u2,...,ur) (u2,...,ur)' (3.4e)

The projection of the vector v onto the noise subspace is P rnv. The noise subspace

approach for ISAR autofocus is to minimizethe projection of the steering vector on the

noise subspace, namely,

max llr,,rll2

min llr,,vll2

with constr aint vH v = M whichis equivalent to

D
"-M
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min {vH P rnv}

subject to vH v = M . With the relation of P,n = I -D+, this minimum occurs if

(3.51)

(3.52)

Theoretically the noise subspace approach is equivalent to the signal subspace approach.

However in practice numeric computation occasionally results in some differences

between them.

3.5 Subaperture Processing

Subaperture or subarray processing techniques have been proposed for spatially

smoothing the covariance matrix in array processing when the signal sources are

correlated t1061 t1071. They have also used for estimating the shape of a towed alr:ay lt4sl.

Subaperture processing is used here to improve computational efficiency. Subaperture

processing of ISAR autofocus ûrst divides the entire synthesized aperture into many

subapertures which are connected through a sampled aperture point (circle point) as

shown in Figure 3.8, then conducts the beamforming or subspace processing for each

subaperture to estimate the complex signal vector corresponding to each subaperture, and

finally restores the complex signal vector for ISAR autofocus by summing the phases of

subapertures through the connecting point.

Subaperture 1 
I

, Subaperture Ns 
,

, Subaperture 2 
,

D
"-M

Figure 3.8 Subaperture arrangement
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The main advantage of subaperture processing is the reduction of computational load. The

number of numerical operations required to perform matrix eigendecomposition is

approximately proportional to the cube of the size of the matrix. For example if an M

pulse aperture is segmented into lf" subapertures with the same size of M" pulses, the

reduction ratio of computational complexity is ut llN,ul) The smaller each

subaperture, the greater reduction in computation. But subaperture processing is at the

expense of a small increase of the CRLB of D when the SNR is small as discussed in the

next chapter.

There are many schemes to determine the subapertures. Consider an extreme case where

each subaperture has two pulses, that is, M, = 2 and N, = M-I. For the mth

subaperture, the covariance matrix in the n th range cell is expressed as

Cr=P, " p {iT (Ro(^+t¡ - Ron

* o'.t (3.s3)

Ì1

2

. p {-jT (Ro (^* t) - Ro^) }

and the eigenvector corresponding to the largest eigenvalue of C, is

ul =

I

{-iT (Ro(^+t¡ - Ro*)
(3.54)

However in practice the covariance matrix has to be estimated by range cell averaging,

that is,

*'r1^*t¡l (3.ss)

the eigenvector corresponding to the largest eigenvalue of ð , derived in Appendix B, is

t.z,L.';.,fb^-C=x

I

ur=
t\*n^**n1^*t
n=l

where p, is a scalar as shown in Appendix B. Thus we have an estimation
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.*p {-iT (Ro<**t¡ -Ro*¡} = 
[

N

\ xr** xn 
1^ * t¡

n=l
n(m+l) (3.57)

Finally the elements of the estimated complex signal vector for the entire aperture can be

restored by summing the phase difference between adjacent subarrays, namely,

exp Uô. + r Ì = exp Uô,Ì " p {-j+ (Ro <^* r¡ -.R,.; 1 (3.58)

where D = te*pCIôo),...,êXp Uþr-,)lz and ôo = 0. (3.57) and (3.58) indicate that

when each subaperture is composed of two pulses, the eigendecomposition of the

covariance matrix can be obviated and replaced with the operations in the data domain to

estimate the complex vector of the entire aperture which results in a signif,cant reduction

of computation.

3.6 Computer Simulation

Computer simulations were conducted to verify the validity of beamforming and subspace

approaches for ISAR autofocus. One-dimensional and two-dimensional ISAR imaging

were both simulated. In the case of one-dimensional ISAR imaging, a narrowband signal

rather than a wideband signal was used resulting in high resolution only in cross-range.

One-dimensional version of the ISAR technique could be applied directly to a narrow

coherent radar to enhance the cross-range resolution. For two-dimensional ISAR imaging,

a wideband signal was used which produced a two-dimensional high resolution ISAR

image in range and cross-range directions.

3.6.1 One-dimens¡onal ISAR lmaging

The developed beamforming and subspace approaches were illustrated by simulation with

a simple target consisting of two point scatterers 15 m apart in cross-range, flying in a

straight line at constant velocity 200 m/s. The initial range R,o and initial aspect angle 0o

were 30 km and 0' , respectively as shown in Figure 3.1. A coherent radar transmitted a

narrowband waveform with central frequency 10 GHz and pulse-repetition-frequency

(PRF) 4OO Hz. The number of the üansmitted waveforms M was 1024. The received

signal was represented by
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2

,, = ) p¿exp tilforo.j +w* (3.5e)

k=l

where Pt = Pz = 1 and wm was complex Gaussian noise such that the signal-to-noise

ratio (SNR) was 20 dB. The covariance matrix was estimated by averaging l0 time

samples.

Figure 3.9 shows the cross-range ISAR images: (a) is the unfocused image (i.e. the DFT

amplitude of the received signal), (b) is the ideal focused image (i.e. using zero noise and

known Ro* to effect perfect focusing), (c) is the focused image with the conventional

beamforming approach, (d) is the focused image with the optimum beamforming

approach, (e) is the focused image with the signal subspace approach, (f) is the focused

image with the noise subspace approach and (g) is the focused image with the image

contrast method recently proposed[l6]t171. The cross-range resolution is 0.88 m. (a) is out

of focus because the two point scatterers disappear. Compared with (a), the focused

qualities of (c), (d), (e) and (f) are highly marked. Moreover (c), (d), (e) and (f) are in good

agrcemcnt with (b) anci (g).
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(a) Unfocused image
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(c) Focused image with the conventional beamforming approach
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(d) Focused image with the optimum beamforming approach
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(e) Focused image with the signal subspace approach
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Figure 3.9 Cross-range ISAR images of simulated data
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3.6.2 Two-dimens¡onal ISAR lmaging

As an example of two-dimensional ISAR imaging simulation, the scattering model of an

aircraft is shown in Figure 3.10. The return from the aircraft was assumed to be dominated

by scattering from its nose, engine intakes and exhausts, wing pods and horizontal

stabiliser extremities with metre coordinates (11,0) , (0,2), (0,-2), (-3.3,2),

(-3.3,-2) , (0,8) , (0,-8) , (-9,3), and (-9,-3) . The reflectivities of the nine

scatterers were equal. The radar transmitted a stepped-frequency waveform with an

effective bandwidth of 50 MHz which resulted in 3 m range resolution. The number of

stepped frequencies was 16 and the radar wavelength was 3 cm. The initial distance

between the radar and the aircraft was 30 km and the initial aspect angle was 0" as shown

in Figure 3.1. The aircraft was flying in a straight line with a speed of 200 m/s. The total

change of angle was 0.38' which provided a 2 m resolution in cross-range.

(e \
The received signals were generared by (3.6) wirh sNR = totog[ \ oit oiJ = ro o" .

They were processed by range compression, range realignment,táu=tåfocus än¿ range-

Doppler imaging. The covariance matrix was estimated by averaging over all the range

cells. Figure 3.11 shows the ISAR images of the simulated aircraft: (a) is the ISAR image

without autofocus, (b) is the ISAR image focused by the conventional beamformer

approach, (c) is the ISAR image focused by the optimum beamformer approach, (d) is the

ISAR image focused by the signal subspace approach and (e) is the ISAR image focused

by the noise subspace approach,. The reconstructed ISAR images have correspondences to

the scattering model of simulatcd aircraft as shown in Figure 3.10. The small difference

between (b) and (c) can be attributed to imperfection in the optimization associated with

size of the search steps.
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(c) Focused image with the optimum beamforming approach
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Figure 3.11 ISAR images of simulated aircraft
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3.7 Real Data Results

3.7.1 One-dimensional ISAR lmaging

The field experiment was carried out with a C-band tracking radar. The object was a

bomber which was flying in a straight line with a speed of 280 m/s. The range between

radar and object was about 18 km. The radar transmitted 2048 narcowband signals with

PRF 600 Hz. The coherent signal returns were collected and recorded with I and Q
channels. Figure 3.12 gives the results of processing real data with (a) being the unfocused

image, (b) being the focused image with the conventional beamforming approach, (c)

being the focused image with the optimum beamforming approach, (d) being the focused

image with the signal subspace approach, (e) being the focused image with the noise

subspace approach, and (Ð being the focused image with the image contrast method

t16ltl7l. The cross-range resolution is about lm for all methods. It is clear that (b), (c), (d)

and (e) are well focused compared with (a) and have an agreement with (f).
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(a) Unfocused image
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(e) Focused image with the noise subspace approach
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(f) Focused image with the image contrast approach

Figure 3.12 Cross-range ISAR images of real data

3.7.2 Two-dimens¡onal ISAR lmaging

Thanks to Professor B.D.Steinberg of the University of Pennsylvania, we received two-

dimensional experimental data of a Boeing-72l flying into the Philadelphia International

Airport. The range, speed and altitude of the aircraft were about 2.7 km , I20mls and a few

thousand feet, respectively. The central frequency of radar was 9.6GHz (X-band)

(?,, = 3.123 cm). Range resolution of lm was achieved by transmitting a narrow pulse of

width 7 ns. Signals in 120 range cells were recorded and the PRF was 400 Hz. The real

data were processed with range realignment, autofocus, and range-Doppler imaging. The

ISAR images of the Boeing-7Z7 are shown in Figure 3.13 where (a) is the unfocused

image, (b) is the focused image with the conventional beamforming approach, (c) is the

focused image with the optimum beamforming approach, (d) is the focused image with the

signal subspace approach and (e) is the focused image with the noise subspace approach.

Compared with the plan view of Boeing-727 as shown in Figure 2.6 (b), the focused

images with conventional and optimum beamforming, signal and noise subspace methods

are quite impressive.

0
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(e) Focused image with the noise subspace approach

Figure 3.13 ISAR images oÍ Boeing-727

Subaperture processing of the signal subspace approach was applied to the real data of the

Boeing-727. The ISAR images are shown in Figure 3.14 where (a) ¡f" = 2, M, = 16 and

(b) N" - 30, M, = 2. The focusing quality of Figure 3.14 is approximately the same as

that of Figure 3.13 (d) (i.e., the signal subspace approach for the entire aperture) because

as shown in the next chapter the CRLB of D for ISAR autofocus is almost independent of

M if the SNR is high enough. The computations associated with eigendecomposition arc

listed in Table 3.1 which illustrates that subaperture processing allows a dramatic

reduction in computation complexity. The computational loads in Figure 3.14 (a) and (b)

are reduced by a factor of 3.637 (124.13134.13) and 124.13 (124.13/l), respectively, as

compared with that in Figure 3.13 (d).
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Figure 3.14 ISAR images of Boeing-7Z7 wilh subaperture processing
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No subaperture
processing in
Figure 3.13(d)

Subaperture
processing 1 in
Figure 3.14 (a)

Subaperture
processing 2 in
Figure 3.14 (b)

Ms 31 16 2

Ns I 2 30

M.3N. 29791 8192 240

Normalization 124.13 34.13 1

Table 3.1 Computational operations of eigendecomposition

3.8 Conclusions

The original work reported in this chapter is the application of array processing techniques

including conventional beamformer, optimum beamformer, signal subspace and noise

subspace to ISAR autofocus. All techniques can be efficiently implemented using

eigendecomposition. They are listed below:

1. The signal model of ISAR autofocus is derived based on a point scatterer model which

provides a way to obviate the need for phase unwrapping.

2. Conventional and optimum beamformers are used to autofocus ISAR image by

adjusting the steering vector to maximize the output power of corresponding beamformer.

3. The signal subspace method is to maximizethe projection of the steering vector onto

the signal subspace of the covariance matrix. Alternatively the noise subspace method is

to minimize the projection of the steering vector onto the noise subspace of the covariance

matrix.

4. The subaperture processing is described to reduce the computational complexity. In the

extreme case where each subaperture consists of two pulses, the eigendecomposition of

covariance matrix may be obviated and replaced by a operation in the data domain which

results in a significant reduction in computation.

Computer simulations were conducted and real data were processed for both one-

dimensional and two-dimensional ISAR imaging. A simple object consisting of two

scatterers was simulated for one-dimensional ISAR imaging. A simulated aircraft model

was used for two-dimensional ISAR imaging. One-dimensional ISAR images of a bomber
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and two-dimensional ISAR images of Boeing-727 were obtained by processing the real

data with the four developed approaches.

The advantages of conventional beamfordrg, optimum beamforming, signal subspace

and noise subspace methods for ISAR autofocus are that the received signals are

processed with the covariance matrix rather than signal phase so that the problem of phase

unwrapping is obviated. The developed approaches promise to provide a deep insight and

potential application to other focusing problems.
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Cñøpter 4 Statistical Analysis of
ISAR Autofocus
Approaches

4.1 lntroduction

The derivations in the previous chapter are based on the assumption that the exact

covariance matrices are available. However in practice these must be estimated from a

finite number of data samples. In this chapter, we consider ISAR autofocus from an

estimation perspective and investigate the statistical performances of the approaches

developed in the previous chapter.

The likelihood function is the logarithm of the joint probability density function of the

measurement with respect to unknown parameters. The first derivative of the likelihood

function determines the position of the peak of the likelihood function, that is, the

maximum likelihood (ML) estimation of the unknown parameters. The second derivative

of the likelihood function at this peak position determines the limiting accuracy of

estimated parameters, i.e., the CRLB [84]. Further the CRLB gives the minimum variance

that an unbiased estimator can achieve. Comparison of the errors of estimators with the

CRLB enable us to evaluate the accuracy of developed approaches.

Several schemes to estimate the covariance matrix are described in section 4.2.'When

some strong scatterers exist, the signal subspace approach is simplified into the strong

scatterer reference method in section 4.3. Section 4.4 verifies that the signal subspace

approach for ISAR autofocus is the ML estimation of complex vector associated with the

translational motion of the object. The CRLB of the estimated complex vector related to

the translational motion of the object, which is the theoretical bound of ISAR autofocus, is

derived in section 4.5. The CRLB of the estimated distance between two scatterers, which
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is an indication of the ability of ISAR to resolve spatially separated scatterers, is given in

section 4.6. The behaviour of both CRLBs has been analysed as a function of the SNR,

number of range cells and number of pulses. Monte-Carlo simulations are conducted in

section 4.7; the statistical performances of conventional beamforming, optimum

beamforming, signal subspace and noise subspace for calibration are investigated and

compared to the CRLBs.

4.2 Covar¡ance Matrix Estimation

In the derivations of section 3.3 and section 3.4,we have used the exact covariance matrix

of the vector of received pulses which is defined as

c, = E {x,xl} (4.r)

where E denotes ensemble average. However in practice we only have a single

realization (snapshot) and need to derive schemes to sensibly estimate C".

By inspection of (3.11) the vector D is independent of range cell index and so the

covariance matrix can be estimated by replacing the ensemble average with one over

range cells. In the situation of ISAR autofocus, four schemes are proposed to estimate C,.

1. The ensemble averaging is approximated by averaging over all the range cells, that is,

,xf'

where N is the total number of range cells. This assumes that the estimated covariance is

constant for all range cells.

2. The ensemble averaging is approximated by averaging over N, to N, adjacent range

cells, that is,

N2

N

c,=#>
i=1

(4.2)X

cx 2 *,*i
i=Nt

The estimated covariance matrix is normally different for each range cell.
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Relation to Strong Scatterer Reference

3. The ensemble averaging is approximated by averaging over the range cells selected

where strong scatterers are located. This results in reduced computational load and SNR

enhancement.

4. The entire aperture is divided into many subapertures with the subaperture processing

as described in section 3.5. C, is estimated for each subaperture which has a

computational advantage over that for the entire aperture. Then the complex signal vector

for the entire aperture is estimated by combining the complex signal vectors estimated for

individual subapertures.

The above four schemes to estimate C, do not guarantee Ò, to be full rank. V/hen ô, is

singular, the i-t will be replaced by the Moore-Penrose gener alized inverse or pseudo-

inverse of Òr.

4.3 Relation to Strong Scatterer Reference Method

The strong scatterer reference method depends upon the existence of a prominent

scatterer[10]. As pointed out in section 3.2, the approaches developed in the previous

chapter do not need this condition. However if some strong scatterers are detected, they

are related to the strong scatterer reference method under certain approximation. If a

dominant strong scatterer exists in the nrthnnge cell, Ò* can be approximated as

Òr=xr,x!,+ õlt (4.4)

where e] ls ttre estimated power of additive noise. In this case, the largest eigenvalue of

Ô, ir ll4,ll' * e? where ll ll is the Euclidean norm and the corresponding eigenvector of

the signal subspace is

nl
(4.5)

(a.5) is equivalent to the strong scatterer referencing method[lO]. Consequently if a

dominate strong scatterer exists, the signal subspace approach simplifles to the strong

scatterer reference method.

If K strong scatterers exist in the range cells labelled k1,n2,...flK, Ò, has an

approximation

xu
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K

Ò.=!*\x^,xl + e?rt (4.6)

i=l

In this situation, the signal subspace approach fuses the signals of strong scatterers to do

autofocus which is similar to multiple scatterer algorithm (MSA¡ttzt and recursive MSA

(RVtSR;ttal. But the signal subspace approach combines the signals of strong scatterers

by estimating the covariance matrix averaged over them. MSA and RMSA calculate the

average phase of the signals of strong scatterers which needs to unwrap the phase.

Therefore the signal subspace method obviates the problem of phase unwrapping.

A strong scatterer was detected in the real data of the Boeing-727 as described in section

3.7.2 by use of the criterion of minimal normalized amplitude varianc"tl0l. Th" ISAR

image autofocused with this strong scatterer is shown in Figure 4.1 which is comparable to

Figure 3.13 (b) - (e).
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Figure 4.1 ISAR image of Boeing-727 with the strong scatterer reference
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4.4 ML Estimation for ISAR Autofocus

ISAR autofocus requires the estimation of the complex vector D corresponding to the

translational motion of object and it is shown here that the signal subspace approach is a

ML estimator for D. This estimate is formed by choosing that D which maximizes the

joint probability density of the set of observations. If the received noise is assumed to be

Gaussian distributed, the joint probability density function of a single observation is

p (x;D) = 'rE-M { det ( c,) } 
-t 

"*p 7-xH c,r x¡ (4.t1

where det ( ) denotes the determinant of a matrix. For multiple observations, the joint

probability density function of multiple independent observations is given by

(4.8)

N

where Ò. = h}*^*I is an estimator of the covariance matrix and Tr ( ) stands for the

trace of a matrïx. il{aximizing the log probability density function with respect to D leads

to minimization of

t (D) = Nln ( der (q) ) + r.[ ,r-t e .) (4.e)

where Cr= pnDDu *C* and C* is the covariance matrix of noise. ML estimation

generally requires a numerical optimization algorithm[232], ho*"ver the ML estimator of

D has an explicit solution. Minimizing (4.9) results in the following eeuatio¡[861

Cu, = L^orrr (4.10)

H

where Ô = , j Ò.ci , L^o, is the maximal eigenvalue of ð and z, is the corresponding

ergenvector.

If the receiver noise is spatially uncorrelated and has an equal power, that is, C, = o2*I ,

(4.10) can be changed into

Crul = L'^o*ul

p (xt, ...,x*;D) = n-MN { det (c,) }-""*p {-N Tr(+-tC)f

(4.11)

where L' 
^o* 

= L^oro'r. (4.11) indicates that the eigenvector coffesponding to the maximal

eigenvalue of ô, is the ML estimation of D.
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If the receiver noise is spatially correlated with known covariance matrix C*, the standard

prewhitening technique can be used. An example of a situation in which the receiver noise

is spatially correlated arises from multiple path propagation. The eigenvector u, of Ô

corresponding to maximal eigenvalue is estimated and the generalized eigenvector of i"
corresponding to maximal eigenvalue can be calculated hy cl/2u, although there are

considerable difficulties associated with estimating C, in practice.

4.5 CRLB of the Estimated Complex Vector

In (3.II), D is the complex vector associated with the translational motion of the object.

The CRLB of D indicates the accuracy limitation of ISAR autofocus. The CRLB of D

treated as a fixed, non-random but unknown vector is derived below.

The estimation variance of a complex variable is at first defined, then the relation of this

variance to the estimation variances of its real and imagery parts is found and f,nally the

estimation variances of the real and imagery parts are computed. Define the variance of

the mth element of the complex vector D as

Yar(b*) - E{lo*-o^l'}. @.121

It can be shown that t87l

u"'[4) ,olto-')^^ (4.10)

where ,/r-l is the inverse of the complex Fisher's information matrix ,I, . The elements of

Jo are calculated as

(JÐ *n - -E lnp (X;D) (4.14)

where fr ir a complex operator defined by

A = ð *; ð

òD^ òu^''òw^

where D^ = u*+iw^.
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CRLB of the Estimated Complex Vector

However (4.13) is not the best lower bound attainable and it is more appropriate to

consider the real and imaginary parts separately. For the real and the imaginary

components of D^, we have

-lYar (ît^) > J mm' (4.16)

(4.17)

(4.18)

rather than

Yar (fr^) > J( -1
)*^

Byuse of v-[4J = Yar(ît^) + Var (fr^) and (Jo) ** = (Ju) *^+ (Jr) mm,wehave

u".(4.), lt,-' ) *^ * lt *-' ) ^^, olt o-' ) ^*

-lThus a low bound that an estimator can reach easily is J
u

+mm) m
J

w
-')*

4 JD -t)^^ as was given in t871. lt,-t )*^* lt *t ) ^ ^ 
is calculated below.

In general the CRLB may be computed by a numerical method, however a closed-form

expression for the CRLB of D can be found and is given below. In the signal model of

(3.11), we assume that both ero and D are unknown where eno is the signal in the n th

range cell. Thus an ambiguity occurs when ero and D become k"no and k-tD,

respectively. If we set constraints 
"ou ", = ¡¡ where eo = (ess, ..., 

"¡,t - t,o)r and

Im (eoe) = 0, the ambiguity will be removed [88].

Let D = u* jw and eo = r+jt with constraints /o = 0 and 
"oH"o = N. Based on the

derivation in [88], the CRLBs of u and w ate given by

1
+ þ.'^mm ZN

(P)
mm

(4.1e)(r,-')

J,-l (4.2o1

where the noise covariance matrix C. = P+jQ, u^ the mth element of the vector ø,

)^* = **rr, *^*þu'^

Þ = (N-p o) tlZUpolo'C,-t nf ), oo = leool2 and (P) 
^^ 

the mth diagonal element of

the matrix P. Thus the CRLB of D^ takes the form

(4.21)

(

CRLB (D^) =fit"1 ***þ
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4.6 CRLB of the Estimated Distance Between Two
Scatterers

The accuracy of the estimated distance between two scatterers separated in cross-range is

one figure of merit of ISAR resolving capability and the CRLB for this is derived below.

In this analysis, the object is composed of two scatterers A and B with the coordinates

(xpt) and (x2,t2) as shown in Figure 4.2.When the distance between the radar and

the object is much larger than the size of object, the returned signal of the m th pulse can

be approximated as

Z^ = pt"*p {jT fr** xrsin0,, + y, cos0.ì }

+ p2exp {-j+ fr *+ xrsinl 
^+ 

yrcosl *l} + w 
^

(4.221

where p, and p, are proportional to the reflectivities of A and B , respectively. r^

denotes the distance between the radar and the centre of the two scatterers when the mth

puise is seît. w m is the aciciitive noise which rs the rndepenclent rclentrcally cllstrrbuted

complex Gaussian noise component with zero mean and varianc e o'* .

v / nr-os

A(xr'yr)
o

B(xz,yz)

rm

Radar

o

82

Figure 4.2 ISAR imaging of two scatterers



CRLB of the Estimated Distance Between

(4.23)

where d is the distance between the two scatterers, y is the angle between the ¡ axis and

a straight line through the point A and the point B , and

um = exp {-j'+l2r^+ (xr+ x2)sinO. + (y1 +lr) cos0.J } . The probability density

function of complex variable w 
^ 

is

Assuming, for simplicity, pr = p2 = p , (4.22) becomes

z^ = 2pco, {2f arin [0, + T] ] u^+ w^

p(w) =å*n{
1ÍCw t

I
p (z^;d) = iexp

lEO w

z^-2pcos {2f a"in[o^+ y)] ,^l

2

(4.241

If y, 0* and u- are assumed to be known, the joint probability density function of amm

single observation is

., zM-r;d) = - un(rro',) tnZrz*-2pcos {

wl

w
2

o

2
o w

and the joint probability density function of multiple independent observations is

M-l
p (zo, ..., ZM-r;d) = fln k^;d¡

(4.25)

(4.26)

(4.27)

(4.28)

¡-M
- (no'*) exp

2o lr^-zo"o" 
{2f ,inlo^+yl} u^

1

M-l
2

wm =0

Thus we get the log joint probability density function

2nd-=-
lv

sin [0, *yl]r^l
2

I (zo,

The lower bound of estimated variance, CRLB, is defined bytl8+l

CRLB (d) =

From Appendix C the CRLB of d is given by
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7r2CRLB (d) = (4.2s)

(4.30)

32n2 SNR ) sin [0, + T] 
2sin 

{ 
2{ti"[o,, 

+ y] ]
M-l

m=O

2

where SNR = p'/o*' denotes the signal-to-noise ratio (SNR). The important result is

that this CRLB is independent of u* and consequently it is not required to be known. It is

noted that in the above derivations we have actually formed the CRLB under the

assumption that y, { 0. } and SNR are all known. In practice this may not be the case;

however for comparison of different methods this approach is justified.

4.7 Statistical Performance

In order to inspect the statistical performance of the conventional beamforming, the

optimum beamforming, the signal subspace and the noise subspace approaches for ISAR

autofocus, Monte-Carlo simulations were conducted. In the simulation, w^ was

independent identically distributed complex Gaussian noise components with zero mean

and varianc " o'* . Thus we had C* = o2*I ¡,t. The CRLB of each component corresponding

to the translational motion from (4.21) takes the form

CRLB (D.) = 1 - -!-l2M)

2
6w

N
1+-

2M SNR

where SNR = po/a'r. The term o'*lN is related to SNR due to the constraint enU en = N

in the derivation of CRLB

Figure 4.3 gives the CRLBs for various values of N (the number of range cells) with

M = 128 (the number of pulses) and o2, = 1 . It shows that the CRLBs of D decrease

with the increase of N and SNR. They are approximately proportion al to | / N if the SNR

is high enough. The CRLB reaches 0 dB, -10 dB and -20 dB when N is equal to 1, 10

and 100, respectively, in the case of high SNR.
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Figure 4.3 The CRLBs versus SNR for three N values

The CRLBs for N = 10 and three values of M are shown in Figure 4.4.We see that the

difference between them becomes indiscernible in the case of high SNR. In other words

the CRLB is almost independentof M if SNR is high enough where the CRLB approaches

-10 dB . This means that the subaperture processing is more effective for high SNR.
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The parameters of ISAR simulation were described in section 3.6.1. The statistics were

based on 100 simulations for each estimator at the specified SNR level. The mean square

errors of the complex vector estimated by the conventional beamforming approach (P" ),

the optimum beamforming approach (P,), the signal subspace approach (P,) and the

noise subspace approach (P,, ) versus SNR are shown in Figure 4.5 and compared with the

CRLB for M = I28 and N = 10. The figure indicates that P,, P, and P, approachthe

CRLB when SNR > 0 dB and P- reaches the CRLB as SNR > 5 dB .

o
!

U

õ
q
@
o
J

-10

-15 -10 -5 0
sNR (dB)

10 '15 20

Figure 4.5 Mean square error of the estimated complex vector

Monte-Carlo simulations were also conducted to analyse the accuracies of four ISAR

autofocus approaches for estimating the distance between two scatterers. The parameters

of simulation were available in section 3.6.1. After ISAR autofocus, ISAR images were

produced and the distance between the two scatterer was estimated by detecting the peak

position corresponding to the two scatterers. The statistics were based on 100 simulations

for each estimator at the specif,ed SNR level. Figure 4.6(a) shows the bias (mean error) of

the estimated distance between the two scatterers determined by P", Po, P, and Pn

versus SNR. It indicates that the SNR thresholds of the four approaches are -5 dB . When

SNR is higher than -5 dB , the bias of these methods approaches zero. This means that the

four approaches are the statistical unbiased estimators in this case. If SNR is below -5 dB ,

the bias increases.
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The mean square etrors of the estimated distance between two scatterers determined by

the four approaches are given in Figure 4.6(b) and compared with the CRLB. It is

illustrated that the experimental variances of the conventional beamfordng, the signal

subspace and the noise subspace approaches reach the CRLB when SNR > 15 dB . This

means that they are statistically efficient. Although the optimum beamforming approach

does not reach the CRLB, the mean squ¿ì.re error is close to the CRLB as SNR increases.
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Figure 4.6 Bias and mean square error of the estimated distance between
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4.8 Gonclusions

ISAR autofocus was studied from a statistical point of view and schemes to estimate the

covariance matrix were given. If several strong scatterers are detected, the signal subspace

approach was shown to be related to the strong scatterer reference method. The signal

subspace approach has been identified as the ML estimation of the complex signal vector

associated with ISAR autofocus. The theoretical low bounds for the mean square errors of

the estimated complex vector related to the translational motion of the object and the

estimated distance between two scatterers were derived. The CRLB of the complex vector

corresponding to the translational motion of object decreases with the increase of SNR

and the number of range cells. However it is approximately independent of the number of

transmitted pulses for high SNR which means that the subaperture processing is

particularly attractive in this situation. The CRLB of the estimated distance between two

scatterers is inversely proportional to SNR. Monte-Carlo simulations have demonstrated

that CRLBs appear to be a very tight bound on estimator performance for the approaches

developed in the previous chapter.
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Cfropter 5 3D SAR Imaging Via

MPSAR Processing

5.1 lntroduction

As described in chapter 2, SAR is able to produce a two-dimensional high resolution

image in the range and azimuthal directions. The high range resolution is obtained by

transmitting a wide-band signal and the high azimuthal resolution is achieved by

synthesizing an azimuthal aperture. InSAR is a technique which uses two SAR imaging

flight passes to produce the interferogram and reconstruct the digital elevation models

(DEM) by unwrapping the principal phase value of the interferogram. MPSAR (Multiple

Pass SAR) imaging is an extension of InSAR. It makes use of more than two SAR

imaging flight passes to synthesise an aperture in elevation which results in improved

accuracy and resolving power in the elevational direction t89l t901. The resulting resolution

in elevation, combined with the resolving capability of single-pass SAR imagery in range

and azimuth, produces a 3D SAR image. This chapter investigates the theory of 3D SAR

imaging and develops the approach to 3D SAR image reconstruction via MPSAR

processing.

The mathematical model of 3D SAR imaging is first presented in section 5.2. Then an

algorithm for 3D SAR imaging via MPSAR processing is developed in section 5.3'

Compared with InSAR benefits of MPSAR processing are highlighted in section 5.4.

Computer simulation is described in section 5.5 and the results of processing ERS-1 data

are shown in section 5.6 which confirm the effectiveness of MPSAR processing.
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Chapter 5: 3D SAR lmaging Via MPSAR Processing

5.2 Mathematical Model of 3D SAR lmaging

MPSAR imaging makes use of more than two flight passes which are parallel and equi-

spaced in elevation as shown in Figure 5.1 where x and z represent the ground range and

elevation, respectively. P, denotes the , th flight path where i = r, ..., N p. For each flight

path, the radar transmits a wideband signal and the returns are processed coherently to

produce a complex SAR image G,(x,l) where -r and y are the ground range and azimuth

coordinates. This SAR image formation step involves conventional processing.

P*n

R
dr

lp
p

R1

o yaxls X

Figure 5.1 Flight path distribution of MPSAR

The set of complex SAR images G, (,r, y) i=1,..., N p undergoes a post-processing stage to

produce a 3D image. This stage involving image registration, phase correction and

elevational processing of each pixel in all images is presented below. In other words, if we

considerthesetof image G,(x,l) i=|,...,No asasingle3Dimage G(x,y,i),thenthis
processing stage is applied along the I -axis of the image. The resulting 3D image is the

range-azimuth-elevation image p (x,y, z) of the observed terrain.

Now we develop the mathematical model of 3D SAR imaging and its interpretation will

help understanding of the processing steps of 3D SAR imaging presented in the next

section. Figure 5.2 shows the geometry of 3D SAR imaging. The ground range, azimuth

and elevation coordinates are represented by *, y and z, respectively. Consider a terrain

z
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Mathematical Modelof 3D SAR lmaging

patch whose centre is taken as the origin. The patch is assumed to be composed of a finite

number of point scatterers spread on its surface, each having its own elevation. Slant

ranges from the closest point B of approach for each flight path to the patch centre o and

scene point A with coordinates (x,y, z) are denoted by Ro and R, respectively'

Pi

B

,z)

I
terrain patch

Figure 5.2 3D SAR imaging geometry

For a transmitted signal, u (t) , the received signal, s, (t, Rs) , from point scatterer A is

z
R

Ro

x

s, (t, Ro) = P (x,1, ,) ,( )
(5.1)

where p (x,y,e) is the reflectivity of A which is assumed to be independent of frequency

and aspect angle. The total received signal from all scatterers of the distributed object is

given by

dx dy dz (5.2)

where the vector r is from the origin to the differential scattering volume element

dx dy dz as shown in Figure 5.2 and p (x,y, z) is the reflectivity density which includes

propagation effects and various system gains for convenience. The integration is carried

s,(r,Rs) = JO{*,1,2)u(t- )
v

I
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out over a terrain volume V. If we take the Fourier transform of (5.2) with respect to r, we

obtain

s (l Ro) = U (J) 
JO t*,r,.) "^p(

(x, Y, z) dx dy dz (5.3)
c

V

wherc U (fl is the complex Fourier spectrum of the transmitted signal. The output of a

filter 11 (f, Rù - u* (f) *r(¡T) matched to a reflection of the transmitted wavefronr

from an ideal scattere. (l) at the origin o is given by

,s, (lR0) = S (f,Ro)¡1(f Rd = lU U)ltJO {r,y, z) exp tifn (x,y, z)-Ro} dr dy dz (s.a)

where Ro is assumed to be known. If the range of the terrain is large compared with the

size of the terrain patch, that is, R (x, y, z) ,, r (x, y, z) , we have the approximation

v

q-

(5.s)

where r(x,y,z) and Ro are the corresponding range vectors as shown in Figure 5.2.

Define a vector q of the reference point as

R (x,y, z) = Ro- 
r (x' Y' z)' Ro

Ro

zfRo
tRo (5.6)

For a specitc frequency, 4 lies on the surface of a sphere as Ro is varied. For various

frequencies, q is mapped into a vector in a 3D data space (e", en,4.) . Thus we have

s"(q) = lu (f)l'Jo tr,y, z) exp {i2nq.1(x,y, z)} dxdydz. (s.7)

v

This implies that except for the factor lU (flf the output of motion compensation is a

f,nite inverse three-dimensional Fourier transform of the terrain reflectivity function

p (x,y,z) . This model is consistent with the result in [33].

The support region of q is shown in the data domain[33]. Each pulse is corresponding to a

solid radial line as shown in Figure 5.3 (a). Single flight path results in a shaded section

region as shown in Figure 5.3 (a). MPSAR processing produces a volume in a three-

(1) Thi, is the reference point for motion compensation.

92



Mathematical Model of 3D SAR lmaging

dimensional data space V, which is composed of slices of 2D data recorded for various

flight paths as shown in Figure 5.3 (b). Letting I = (Q,, Qr, Q

p@,y,2) can be estimated by the 3D Fourier transform of
,)
s, (er, Qr, Qr)

andr=(x,y,z) then

over limited
v (flf

support region V, that is,

P(x,Y,z) =

as shown in Figure 5.3 (c)

9z

ry,fffi exp {-i2n (xq, + t e, + zq,) } dq, dq, d'q, (s.8)

X

z
9z

9x v
9y

vf

(a) Single flight path data (b) Multiple flight path data

Figure 5.3 3D data and image space

(c) Image of object

The equation (5.8) indicates that the 3D reflectivity function p (x,y, z) can be estimated

by three lD Fourier transforms. These may be rcalized by wideband pulse compression in

x direction, azimuthal processing in y direction and elevational processing in z direction.

If the complex image of each flight path is available, (5.8) can be changed into

p (x, y, ò = IG (x, y, qr) exp {-j2nzer} de, (5.e)

qz

where G' (x, y, er) = J I t " 
<n* ey, e) /lU Al2 exp {-j2n (xq*+ yqy) } dq, dq, represents

a SAR complex imagé'6f single flight pass after motion compensation. (5.9) shows that

with MPSAR processing, p (x,y,z) , the 3D image, can be estimated by doing a one-

dimensional Fourier transform in each pixel cell of the multiple SAR complex image set.

In practice, we only have discrete flight passes. Thus we have

Np

p (x,y,.) = I G' (*,y,i) exp 7-j2nzq¡\ (5.10)

i= I
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where G'(x,y,i) denotes the complex SAR image of ithe flight path after motion

compensation. The spacing of adjacent flight paths d, determines the maximum

elevational distance u, that can be unambiguously estimated via the relationship

(s.11)

The elevational resolution t" depends on the aperture length d, in the elevational

direction by

(s.r2)

For a given number of flight paths, a small baseline d" reduces the ambiguity problem.

However this degrades the elevational resolution. There is a compromise between

elevational ambiguity and resolution. The baseline distribution needs to be designed for

specific requirement.

5.3 MPSAR Process¡ng Approach

Each flight pass performs conventional SAR processing including complex I, Q data

collection, range compression, quadratic phase correction and azimuthal compression

which results in multiple complex SAR images. However rather than forming thc absolute

value of the complex image at the last step, MPSAR processing uses each SAR image in

its complex form. Clearly the No complex SAR images G,(x,y) have different phases for

different values of i, which contain the information about the reflectivity distribution

along the elevational direction. The main function of MPSAR processing is to extract the

reflectivity distribution in the elevation from the No complex SAR images. In its simplest

form, the elevational imaging involves a straightforward Fourier transform of N, points

along the i -axis of G' (x, y, l) as shown in (5.10).

In the analysis of section 5.2, the motion of the SAR platform is assumed to be known so

that motion compensation is conducted precisely. However in practical applications, the

flight path is unknown or not known precisely causing individual complex SAR images to

be misaligned in the range and azimuth directions. This uncertainty of the flight path

u
ÀRo

2,1
e

ÀRo

E,

e

e
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induces an unknown phase factor, and thus each complex SAR image G,(x,l) needs to be

calibrated or corrected in phase prior to elevational imaging, namely,

p (x,y, ò = 2G,(x,t) exp UQ¿Ì exp {-i2nzq,} (5.13)

i=1

where 0¡ is the phase for correction caused by the uncertainty of each flight path

Based on the above analysis, a novel approach to MPSAR processing for 3D SAR

imaging was developed. The block diagram is shown Figure 5.4 where after conventional

SAR processing of each ûght path, two steps are conducted before elevational imaging.

One is image registration which aligns the returns resulted from the conìmon terrain in the

multiple images into the same image pixel cell. The other is phase correction which

multiplies each image by a phase factor to make the phases of the multiple complex

images cohere at the reference point of terrain. After image registration and phase

correction, a focused beam of the synthetic array is steered at the reference point. Finally

the elevational imaging is performed by scanning the focused beams in elevation using a

discrete Fourier transform (DFT).

Figure 5.4 Block diagram of MPSAR processing

In summary, MPSAR processing performs the following steps:

1. It carries out conventional SAR imaging for each flight path

No

SAR 1

imaging

SAR 2
imaging

elevational

imaging
lmage

registration

phase

correction

SAR NP

imaging

2. It registers multiple complex SAR images for the selected area of interest.
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3. It corrects the registered SAR images in phase. The correction of ith image is

determined by the position of ith flight path.

4. It performs an No -point DFT across various flight paths. This operation is the core of

3D SAR imaging where the DFT acts as an elevational filter with the output of each DFT

bin giving the reflectivity whose elevation is within a particular range.

Essentially, three orthogonal axises (range, azimuth and elevation) out of the 3D SAR

image field may be visualized by three 2D images in the range-azimuth (top view), range-

elevation (front view) and azimuth-elevation (side view) planes. The elevational

resolution can be illustrated in the range-elevation and azimuth-elevation images. The

range-azimuth image is a speckle-reduced version of a conventional SAR image which

will be discussed in section 5.4.

In section 5.2, a matched filter for motion compensation is applied to a patch of image

rather than to each pixel in order to reduce the computational complexity of motion

compensation. However the size of patch is limited by the phase error tolerance of the

SAR system and needs to be determined. 'When the image registration is accomplished,

the multiple SAR images are realigned in range and azimuth directions so that the signal

returns of multiple flight paths resulting from the same temain will located in the same

image pixel cell. After phase correction, the focused beam in elevation is formed and

points to the reference point o of the terrain patch as shown in Figure 5.2. Using the DFT

applies a linear phase across the synthesized elevational aperture to steer the beam away

from the reference point. This introduces a phase error due to the linear approximation for

R in (5.5). The appropriate size of terrain patch can be determined by limiting the phase

error, thus according to Figure 5.2, we have

22

I

')'
2Ro

The residual error AR in (5.5) is less than $;,rnurrr,

o*.*

If we restrain ÂR to be less than 1 . we have8'

R- Ro + (5.r 4)
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*rr+

r^o, = lt^ol.l

(5.16)

Thus the size of terrain patch rmax canbe determined by

2
(5.17)

With ERS-1 system, we have a satellite altitude of 785km, an incidence angle of 23o , and

a wavelength of 5.67cm, thus r^o* = 110 m .

5.4 Benefits of MPSAR Processing

As a natural extension of InSAR processing, MPSAR processing has following

advantages over InSAR processing at the expense of processing more than two flight

paths.

5.4.1 No Two-dimensional Phase Unwrapping

The phase in the interferogram of InSAR, which is directly related to the topography, is

only measured modulo 2n. In order to reconstruct the DEM unambiguously, it is

necessary to add the appropriate number of cycles of phase; this is known as phase

unwrapping and many algorithms have been investigate 6V6J162) - [76]. Phase unwrapping

may be appropriate in a low-noise environment, but in the more realistic high-noise

situations a large number of residues appear and thus the phase unwrapping becomes

infeasible which limits the application of typical InSAR. In the developed approach for

MPSAR processing, the problem of phase unwrapping is avoided. This advantage is at the

expense of the above limitation on patch size.

5.4.2 lmproved Elevational Resolution

Conventional InSAR processes two flight passes P, and P, as shown in Figure 5.5 (a).

The array aperture function in elevation consists of a pair of impulses spaced by baseline

d" . Consider the response of such an array to a narrow band signal arriving as a plane
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wavefront from an elevation 0 away from the broadside direction of the array. The

normalized instantaneous power output is

bp(o) = [*,("''ìtt)]' (5.18)

For example with O" = \ the beam-pattern in elevation is shown in Figure 5.5 (b); the

beamwidth is about 50'.
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ure 5.5 Flight passes of InSAR and elevational beampatterns of InSAR and
SAR
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MP

MPSAR processing deploys the array aperture in the elevation direction with more than

twoflightpasses P, i = 1,...,Np asshowninFigure5.l.Asimpleformof arrayisonein

which the elements are uniformly spaced, that is, z, = (i-l)d" i=|,...,No. The

resultant beampattern is

be@) = +

')

(5.1e)

where 0o is a direction of beam steering. If the spacing d" satisfies O, = \, the beam

patterns are shown in Figure 5.5 (c) which show the focused beam and resolution in the

elevationaldirectionwithabeamwidthof 11'11'forNo = 9 and0o = 0''Inthepractical

case of MPSAR processing, the element spacing may be non-uniform and sparse and the

positions of the elements may be uncertain. Receiver position effors give rise to increased

sidelobes whilst the sparse spacing results in grating lobes [117]. Comparing Figure 5.5 (c)

with Figure 5.5 (b), it is seen that MPSAR processing has enhanced resolution power in

elevation.
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5.4.3 Enhanced Ground-range Resolution

The flight pass may not be vertically one above another as shown in Figure 5.6. Then the

aperture synthesized by the multiple flight passes may be decomposed into the elevational

component and the ground-range component. The elevational aperture provides resolution

in elevation and the ground-range aperl"ure results in improved ground-range resolution"

P*b

PNp-b

z

a

Pz.
Pro

Figure 5.6 Flight passes of MPSAR with ground-range component

The slant-range resolution of a single-pass SAR results in a ground-range resolution rr, 
"

which may be expressed as [51]

x

(s.20)

where 1, = c/ (28*) is the slant range resolution, Ê, the beamsteer direction of the

synthesized aperture with respect to the broadside direction of the flight path array and y,

the slope angle of the teruain as shown in Figure 5.8. Similarly the presence of the aperture

component in the ground-range direction leads to the ground-range resolution ,r," which

is equal to

frcosTl
's," - ;ilG, _TJ

I
1¿ cos Yl

" cos (Þr -yr)
(5.211

where t" = (IRs) / (2dì with d, the length of the synthesized aperture for MpSAR

processing. Ír,, and xr," have a physical meaning in the wavenumber domain[5l]. They

are inversely proportional to the widths of two bands. In order to overcome the problem of
decorrelation of SAR images, these two bands need to be overlapped. The enhanced
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ground-range resolution ^Es , obtained by combination of the two bands, is finer

and is given by the following relation.

I
8, ,T

(5.221<1,g,J
-lar,,Ixr,,

The improved ratio 1, of ground-range resolution is

(5.23)

rR^tan (Êr - Tr) 
is the critical baseline length ta7ì.where B, - L2t,

For example, a simple case where flight paths are uniformly spaced with a baseline d, ,the

synthesized aperture d, = (No-l)d", and the resultant I, = l+ (Np-l) (d"/8,).

Figure 5.7 shows 1, versus d" for several numbers of flight paths. In order to satisfy the

overlapping of the bands in the wavenumber domain to keep the coherence of SAR

images, d" should be less than 8,. For specific d", I, increases linearly with No. If N, is

fixed, 1,. increases linearly with dr.

I =xg,' = 1+ 
Íg,' 

= , *!^r xr xr," B,

'16
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Figure 5.7 lmproved ratio of ground-range resolut¡on versus baseline for four N
values 
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5.4.4 Reduction in Layover and Shadowing

Typically InSAR suffers from layover and shadowing [92] as shown in Figure 5.8. Layover

occurs when two pafts (A and B ) of terrain with different ground ranges are located at the

same slant range. The signals from A and B are superimposed in the interferogram and

their elevations catt ttot be esLimated by unwrapping the phase of interferogram. MPSAR

imaging introduces the elevational resolution and discriminates A and B with different

elevational cells. A reduction in layover uncertainty results.

Shadowing happens when part of terrain (C) is invisible to flight pass p, and pr. The

corresponding parts of the SAR image consist of noise and the SNR of the interferogram

around C is low, making phase unwrapping difficult. V/ith MPSAR processing, the multi-

look effect may make C which is invisible to flight pass P, and P, visible to other flight

passes such as P,. Thus shadowing is reduced.
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Figure 5.8 Layover and shadowing

5.4.5 Speckle Suppression

'When a rudar illuminates a rough surface, the return signal consists of waves reflected

from many elementary scatterers within a resolution cell. The distances between the

elementary scatterers and the receiver vary due to the surface roughness. A strong signal is

received if the waves add relatively constructively; a weak signal is received if the waves

are out of phase. The effect causes a pixel to pixel variation in intensity which is called
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Benefits of MPSAR Processing

speckle. Unlike a passive incoherent sensor, SAR generates images by coherently

processing the returns from successive radar pulses with the path lengths and orientation

varying slightly from one pulse to another and consequently their images are highly

susceptible to the speckle effect.

Speckle in SAR images complicates the image interpretation, reduces the effectiveness of

image segmentation, classification and other information extraction [109]. It has been

identified as a multiplicative noise which can not be reduced by simply increasing the

power of the radar transmitter. A basic method for SAR speckle suppression is to

incoherently average several frames obtained from a portion of the available azimuthal

spectral bandwidth. An example of this is multi-look SAR processing t1l which reduces

speckle by averagin1 Np intensity images and then taking the square root. The ensuing

improvement can be explained by considering the probability density of pixel intensity.

For a single look, the pixel intensity has a exponential distribution which coresponds a

very wide range of variation. By noncoherent averaging N, intensity images, the pixel

intensity will be changed into chi-square distribution which reduces the variance by a

factor of Nr.

Multi-look processing only considers the intensity and ignores the phase information. A

whitening filter was proposed to suppress speckle by use of fully polarimetric SAR images

and provided the maximum achievable reduction in speckleu44l. This algorithm estimated

the polarization covariance of the clutter and used this covariance to construct the

minimum speckle image. This whitening filter can also be used in MPSAR imaging by

replacing the polarization diversity with the spatial diversity. From (5.13), the profile of a

3D SAR image in the reference range-azimuth plane is the coherent summation of

multiple SAR images, namely,

( 0vx,p )

Ne

Zo,(x, y) exp {iQ,}
i=l

(s.241

As presented in chapter 7 ,the ML estimation of exp U0,) for phase correction will be the

eigenvector coffesponding to the maximum eigenvalue of the estimated covariance matrix

of the pixel vectors across multiple SAR images. As p (x, y,0) is the principal component

of the image in elevation, it has maximum SNR improvement and minimum specklelllOJ.
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5.5 Simulation Results

Computer simulations presented here were carried out based on ERS-1 system parameters

where the satellite operated at an altitude of 785km. The radar transmitted a linear-

frequency-modulated (LFM) signal with a bandwidth of 15.55MH2 and. a nominal

wavelength of 5.67cm. A point scatterer was located in a flat terrain. 17 flight passes

spaced 100m apart vertically as shown in Figure 5.9 were simulated. The distribution of

flight passes provided an elevational aperture of 1600m which is similar to that of ERS-I

data processed in the next section.

Flighr Path

Elevation

Range

Azimuth I

(a) (b)

Figure 5.9..Simulation of MPSAR processing: (a) one point scatterer terrain, (b)
f light path distribution

At first a matched filter was applied to obtain the SAR complex image for each flight path.

Then 17 SAR images were registered, corrected in phase to remove the deviation of flight

path, and resolved in the elevational direction for each image pixel with 32 point fast

Fourier transform (FFT). Figure 5.10 shows the 3D image of the scatterer illustrating the

two-dimensional point-spread-functions (PSF) with (a) in the range-azimuth plane, (b) in

the range-elevation plane, and (c) in the azimuth-elevation plane. The 3D image is

32x32x32 pixels. Each pixel has a size of 9.38m, I3.79m, and 6.90m in the range,

azimuthal and elevational directions. The theoretical resolutions in the range, azimuth and

elevation are 9.38m, 13.79m and 13.79m, respectively. The maximal unambiguous

distance in the elevation is 222.55m.
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Resolution and noise are two important performances for an imaging systems since both

impact the capability to perform image reconstruction. They are characteized by the PSF

of the imaging system. Resolution is characterizedby the 3dB width of the main lobe of

the PSF while noise is characterized by the height of the sidelobes. The one-dimensional

PSFs in range, azimuth and elevation are given in Figure 5.10(d) which show that the

MPSAR processing is able to provide the focused resolutions in range, azimuth and

elevation, the measured resolutions (3dB width of PSF) in range, azimuthal and

elevational directions are consistent with the theoretical resolutions and the peak sidelobes

have a level of -24d8, -23d8 and -15d8 in range, azimuth and elevation directions.
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Figure 5.10 PSFs of 3D SAR image
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5.6 ERS-I Data Results

MPSAR processing was tested using 9 SAR image data sets, acquired by the ERS-I

satellite over a small area in the southwest of the city of Bonn, Germany during the period

of 2-29 March, lgg2.Parameters of ERS-1 are listed in Table 5.1 t1401. The 9 flight paths

were parallel and their elevational positions are shown in Figure 5.11 where the four digit

numbers locating in the right above of each flight path are the ERS-1 orbit numbers. The 9

flight paths provided a synthesised aperture length of 1686m. For calibration an array of

19 corner reflectors (1.4 meters) was deployed by the Institute of Navigation, University

of Stuttgart, spreading 20km on the terrain as shown in Figure 5.12. The corner reflectors

acted as point scatterers which were designed to provide a large radar cross section (RCS)

over a wide range of aspect angles and frequencies [93].

Table 5.L Parameters of ERS-I

Altitude Central frequency Bandwidth Incidence angle Pulse width

785 km 5.3 GHz 1.5.55 MFIz ôrO.J 37.12 us
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Figure 5.11 Elevational relative positions of ERS-1 flight paths
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ERS-1 lmage of Bonn 1

Azimuth

Figure 5.12 ERS-1 SAR image

5.6.1 One Corner Reflector Terrain

First an image patch containing a corner reflector with 32 x 32 pixels as shown in Figure

5.13 was selected for MPSAR imaging. The 3D image was formed(l) Uy registering 9

SAR images, correcting them in phase, and beamforming in the elevation with DFT.

Figure 5.14 (a), (b) and (c) give the two-dimensional PSFs of 3D SAR image. The one-

dimensional PSFs are shown in Figure 5.14 (d). The 3D image is 32 x 32 x 16 pixels. Each

pixel has a size of 7.90m, 4.00m, and 6.73m in the range, azimuthal and elevational

directions. The resolutions in the range, azimuth, and elevation are 9.38m, 6.00m, and

13.45m, respectively. The focused resolution of the MPSAR processing in the elevation is

illustrated in Figure 5.14 (b), (c) and (d). The peak sidelobes in range, azimuth and

elevation are -20d8, -18d8 and -15d8, respectively. Figure 5.I4 (a) shows a reduced

speckle of the MPSAR processing compared with a single SAR image in Figure 5.15 (a)

and the multilook SAR image in Figure 5.15 (b). The dynamic ranges and the contour

levels in Figure 5.14 and Figure 5.15 are the same.

o
o)
L
(ú
(f

(l) The registration and correction algorithms are discussed in the following chapters.
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Elevation
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Figure 5.13 One corner reflector terrain
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Figure
reflector

5.15 SAR images of single look (a) and multi-look (b) for one corner
terrain

5.6.2 Two Corner Reflector Terrain

Next a patch of terrain having two corner reflectors with pixel dimensions 32x32 shown

in Figure 5.16 was chosen to do MPSAR imaging. The resulting 3D SAR image is shown

in Figure 5.17: (a) the range-azimuth image in which the two corner reflectors are located,

(b) and (c) the profiles of the two corner reflectors in the range-elevation plane where

different azimuthal slices have been selected to separate the two scatterers, (d) and (e) the

profiles of the two corner reflectors in the azimuth-elevation plane where different range

slices have been selected to separate the two scatterers. The focused elevation resolution is

apparent in the range-elevation and azimuth-elevation images. Enhancement of

elevational resolution is presented in chapter 8. The range-azimuth image has a decreased-

speckle with comparison with single and multi-look SAR images as shown in Figure 5.18

10

ç,4

0

0
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as the reference range-azimuth image has a maximum SNR improvement and a minimum

speckle as discussed in section 5.4.5.
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Figure 5.16 Two corner reflector terrain
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Figure 5.17 3D SAR image of two corner reflector terrain
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Figure 5.18 SAR images of single look (a) and multilook (b) for two corner reflector
terrain

5.7 Conclusions

MPSAR processing is the natural extension of conventional InSAR processing and has

good potential for many applications in spaceborne and airborne SAR systems.

Contributions of this chapter have been to formulate the 3D SAR imaging as a

beamforming problem and to develop the processing steps of MPSAR imaging which

include conventional SAR processing, image registration, phase correction and elevational

imaging. The benef,ts of MPSAR imaging over InSAR processing have been analysed.

They are to obviate the phase unwrapping, enhance the elevational and ground-range

resolutions, and reduce the phenomena of layover, shadow and speckle. MPSAR imaging

with 17 flight passes was simulated to illustrate 3D PSFs. The ERS-1 data for one and two
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corner reflector terrain were processed. The processing results show the ability to localize

in elevation and to reduce speckle in the range-azimuth image.

It is noted that the key steps of MPSAR imaging are image registration, phase correction

and elevational imaging which will be further studied in chapters 6,7 and 8, respectively.
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Cñøpter 6 lmage Registration for
MPSAR Processing

6.1 lntroduction

As discussed in chapter 5, the processing steps of MPSAR imaging are to f,rst co-register

multiple complex value SAR images, then to correct the registered images in phase to

form the focused beam, and finally to steer the focused beam in elevation. The initial step

of co-registering the multiple SAR images is particularly important as image

misregistration leads to reduced correlation between the images, and increased phase

noise within the interferogramlg4]. For example, misregistration of as little as 1/8 of a

resolution cell results in a phase noise standard deviation of approximately 23o and 42o for

SNR of - dB and 10d8, respectively. Misregistration of one resolution cell produces

complete decorrelation, and subsequently an inability to reconstruct the terrain height.

In this chapter, SAR image registration for MPSAR processing is investigated. Concepts

are reviewed in section 6.2. Section 6.3 describes a model and a new approach for

registering pairs of SAR images by use of complex correlation is proposed in section 6.4.

A minimal distance method and an image model matching approach based on this for

multiple images are developed in section 6.5. The complex correlation and the image

model matching approaches are used to process real ERS-I data and the results are

presented in section 6.6.
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6.2 Goncepts of lmage Registration

Image registration is a fundamental task in image processing for surveillance and remote

sensing applications. A series of images acquired in different times, different frequencies,

different spatial locations and differentpolarizations need to be aligned so that differences

in them can be detected and removed.

If we define images as two two-dimensional affays of a given size denoted by A, and A,

where Ar(x,l) and Ar(x,l) represent their amplitudes, then the transformations

between images can be expressed as

Ar(x,t) = g{At[ f (x, y) ] ] (6.r)

where f is a two-dimensional spatial coordinate transformation or geometric

transformation and g is a one-dimensional amplitude transformation or radiometric

transformation.

The amplitude of an image pixel is a function of the reflectivity of the corresponding

surface area and since different sensors have different responses the radiometric

transformation is applicable for the registration of images acquired by different sensors.

The radiometric transformation may not be necessary to register images resulting from

same sensor because it can be combined with sensor system calibration. In this chapter,

the registration of multiple SAR images acquired with same sensor at different times and

spatial positions is investigated. The radiometric correction is assumed to have been

accomplished by SAR system calibration leaving only the geometric distortions require to

be corrected. The conesponding geometric transformations can be classified as rigid,

affine, perspective and curved[57].

The geometrical transformation that maps the coordinate system of one image into the

other can be either global or local as shown in Figure 6.1. The global one influences the

transformation of the image as a whole when one of geometrical parameters changes. In a

local transformation such a change influences only part of the image. It is identified in

section 6.3 that the geometrical transformation for MPSAR images is a local one and the

image registration needs to be conducted locally.
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(a) (b) (c)

Figure 6.1 Global and local geometrical transformations (a) original (b) global (c)
local

Multiple images are registrated if pixels coffesponding to same scene point in difforent

images have the same coordinates. Figure 6.2 depicts the registration requirement for

three images. The shaded elements represent image cells of same scene point, and the

coordinates (x,, )¡) i = I,2,3 locate the point in each image. Registration of three images

istomake xr = xz = xz a;îd!1 = !2 = !3'

The registration process can be divided into three phases: enhancement, correlation, and

overlay. Enhancement refers to the preprocessing necessary to improve the accuracy of

registration; correlation is the process of determining the misregistrations of matched

points; and overlay is the geometric transformation process which produces the registered

imagery. The crux of the registration process is to determine the spatial misregistrations of

matched points.

A3

A2

A I

Figure 6.2 Multiple image registration requirement
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6.3 Model for MPSAR lmages

Although many methods of image registration have appeared, the ideal registration

method does not exist. One has to compromise between accuracy, speed and interactivity

and to choose the best method for a specific application. In this section, a model for

multiple pass SAR images is describedtTgl which helps to identify the type of geometric

distortion of multiple SAR images and to develop appropriate approaches for multiple

SAR image registration.

If we only consider the surface backscattering of terrain without allowing for penetration

of the microwave energy below the surface, the reflection function can be modelled by

P (x,y, z) = o(x, y) ô (z- h(x,y)) (6.2)

where o (x, y) represents the surface reflectivity density at coordinates (.r, y) , h (.r, y) is

the terrain elevation for the same point, and ô (x) is a Dirac delta function. Substituting

(6.2), (5.5) and (5.6) into (5.3), the signal in 3D data space prior to motion compensation

can be expressed bv

s(q) = , A JI"(.r, 
y) exp lj2nq,h(x,y) I explj2n(xq,+tø))exp[-r+]dxdy. (6.s)

xy

Due to the small variation of azimuthal and elevational angle within a subimage, the

support region of the signal in 3D data space for a single flight path as shown in Figure 5.3

(a) can be approximated by a plane[79J which can be expressed as

Q, = ktQr+ k2Q, (6.4)

Thus the returned signal corresponding to this flight path is

S (q*, qy) = U (f) JIt f*,y) exp ¡2n (kp"+ krer) h (x, y)l
x,

exp li2n (xq, + t a) I explrff] o.o,
(6.s)

The signal support region in the e,oey plane as shown in Figure 6.3 is offset from the

origi¡[79J. The signal translated to the origin is
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s' (q,, er) = s (q"+ Qs, Qy) = u A JIo' @,v) exp U2Tc(kßx+ k2Q) h (x,v)l
xy

exp [i2n (xq,+ tø)) expþff] *.t
(6.6)

(6.8)

where o' (x,y) = o (x,y) exp {i2nktgoh (x, y) } exp {j2nxqo} .

9y

-T-

9o
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v

-t-

Figure 6.3 Signal support region

The SAR complex image from a single flight path is produced by a two-dimensional

Fourier transform of S'(q", e) in the range and azimuthal directions which is formulated

AS

G(x,y) = JJJJu U)o'(x',y') exp yLn(kp,+kre)h(x',y')f
Qfl''x'Y'

exp U2n (x' q, t y' q ) l".n [-rT] o*' or' 
"* 

p L-i2n (xq, + t a r) ) dø, dq,

4nR^1-i-i-l dx'dv'

(6.7)

I1 U (f) is assumed to be constant over the support region, G (x,y) can be simplified by

changing the order of integration into

= JJr, (krh(x',y) +)c -x,krh(x,y') +y -y)o'(x,y) "^pI
x'y'

G (x,y

and sinc (-r) = ( sin.r) / x . The width of

The spatial bandwidths B" and B, as shown

in Figure 6.3 are dependent on the bandwidth of transmitted signals and the ehange of

aspect angle, respectively. If we assume that the terrain elevation h(x,y) varies slowly

119



Chapter 6: lmage Registration for MPSAR Processing

enough to be considered constant over the mainlobe width of So function, the complex

SAR image of a single flight may be interpreted as a convolution summation

G (x + d,x',y +Atl') = Sa(x,y) @ o' (x,y) exp [-janRo/?,"1 (6.e)

with the shifts A.r' = krh(x,y) and Ay' = kzh(*,y).Equation (6.9) indicates that a

reflectivity value for any position in the physical scene will be translated in the SAR

image to a new position. The translation is dependent on the flight pass and elevational

function h(x,y). Therefore the geometric transformation for multiple image registration

is identified to be a local translational transformation.

In order to correct the local translational distortion, image registration for multiple SAR

images is generally accomplished in four steps. Firstly, each SAR image is divided into

many subimages. The size of a subimage may be determined by the criteria discussed in

section 5.3. Secondly, measurements are made of the local misregistrations from one

subimage to the other subimages. Thirdly, misregistrations are then used to calculate a

warping function, which maps a location in one subimage to the corresponding location in

the other. Finally, the subimage is resampled so that it overlays the other precisely.

For each subimage, the local translation can be approximated by the global translation.

The complex SAR subimages corresponding to the first and the second flight pass are

expressed by

Gr(x + A,x1,!+ Âyr) = 
IJt, 

(x - *,y' -y), 1.x, y'; exp I

Gr(x + A,x2, ! + Lyz) = JJt, (x - x,y -y) o' (x, yl 
"*p [-;

x'y'

-l dx' dy' (6.10)
4nR,

?,,

4nR,
À

dx' dy'. (6.11)

With reference to Figure 5.I, R2 is expressed as

Rz = Rr lt.'**'r-(k)'l' (6.12)

Considering Rr ,, d", R2 may be changed into

Rz = Rr +d"cosþ

The image model for the subimage of the second pass can be approximated by
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Complex Correlation Approach

Gr(x, y) = G t (x - Lx,y - Áy) exp -l( (6.14)

. (6.15)

(6.17)

(6.18)

)

where A,x = Lxt-A,x, and Á) = Ayr -Lyz.

6.4 Complex Correlation APProach

In this section a distance measure between image pairs is introduced as an indicator of

image registration. Image registration is investigated and a complex correlation approach

is proposed.

Define a distance measure D[G,(x,y),Gt(",y)] between two images G,(x,l) and

G,(x,t) satisfying

The conventional amplitude correlation method for image registration makes use of only

the amplitude of an image and discards its phase. Based on the criterion of minimal

distance between image envelopes, that is,

(Â.x, Ay) = Arg min (otlct (", y) l, lcr(x + Lx', y + 
^y') 

ll ) , (6.16)

the misregistrations A.r and Ay in range and azimuth between two images can be

estimated by searching the minimum distance between image pair with respect to Ax' and

Ây' . If the distance measure is chosen as

DIG,(x,y), Gt(x,y)] > o YG,(x,Y) + G,(x,t)

DIG,(x,y), G¡(¡, y) ] = 0

olG,(x,y), Gt@,y)l = DlGt(x,Y), Gt(x,l))

D lG, (x, y), G t @, y) + G o(x,)) I < D lG, (x, y), Gt (¡, y) I + D IG t (x, y), G o@, l) )

otlct(", y) l, lcr(x,Ðl) = ?ì (lG, (x, Ðl-lcr(*,Ðl)' ,

the solution to the minimum in (6.16) is found by the conventional amplitude correlation

which estimates Ax and Ây with the peak position of two-dimensional correlation of

image amplitude in the range and azimuth directions with the relation of

lcr{x,y) I = lcr(x - Lx,!- ¡y) 
|
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The problem with amplitude correlation measures is the broad and flat nature of the peak

regions in the correlation surface. A disadvantage of broad peaks is that registration

accuracy is reduced, and small perturbation due to noise has a large effect on accuracy.

This broad peak characteristic of amplitude correlation techniques results from the fact

that information of spatial relationships between image pairs is ignored significantly. One

approach to solve this problem involves the preferential use of phase information in the

images. The relative roles of amplitude and phase were examined in [95] where it was

found that the phase information was considerably more important than the amplitude

information in preserving the visual intelligibility of the image. Therefore it is reasonable

to process both the amplitude and the phase of SAR image for image registration.

By use of the principle of minimal distance between complex SAR images rather than the

image envelopes, the misregistrations Â-r and Ly can be determined by

(Åx, Ay) = Arg min (DLGt(x,y), Gr(x+ Lx',y +Ay') I ) (6.1e)

If the distance. meâsure tak-es the forn

DIGr(x,y), Gz(x, y) ] = IIlo, (x,y) -Gz@,Ðl' , (6.20)

x,

the above minimization happens at the peak position of two-dimensional correlation

function of the complex image pair. The complex correlation is defined as

C,r(Lx, Ây) = II", (*,y) Gz* (x + A,x,y + Ay) (6.2r )
xy

This complex correlation can be computed efficiently in the frequency domain. Thus

(6.14) can be rewritten as

Gr(x, y) = G t (x - Lx,y - Ay) exp (-jgzr) (6.221

where gzt = 4nd,cosþ/ I. The two-dimensional Fourier transform of (6.22) is

52(er, e) = exp (-igzr) S1(e,, e) exp {-jzn(Lxq"+ Lyqy)} (6.23)

The phase term of two-dimensional Fourier transform of C , (Ax, Ây) can be written as
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F ICn (Ax, Ay) ]

IC,., (Ax, Âl) 1

Taking a two-dimensional inverse Fourier transform, then

F-1 - exp (-"lgzr) ô ("- L'x,y - Ly) (6.25)

where ô (x, y) is a two-dimensional Dirac delta function. The position of the peak of

in the range and azimuth directions determine the

The image model of complex correlation (6.22) is different from that of the phase

correlation method (2.19) and (6.22) is defined in the complex domain rather than in the

real domain. Experimental results indicate that the peak of complex correlation is sharper

and the sidelobes are smaller as compared with those of conventional amplitude

correlation.

6.5 Multiple lmage Registration

Typical existing methods of multiple image registration register one pair of images at a

time and repeat the operation until all the images are registered. However the registration

result is dependent on the order of images and it suffers from image drift error due to the

accumulation of errors in the correlation estimation and image variations caused by the

decorrelation of SAR images[47]. In order to reduce those errors, the correlation of all

images in one step rather than the corelation of image pairs should be used. In this

section, a minimal distance approach is firstly proposed, then an image model matching

approach is developed to improve computational effrciency.

6.5.1 Minimal Distance Approach

Let A,x, and Ày, i = 1,...,N, be the misregistrations of the ith image G,(x,l) in the

range and azimuthal directions with respect to the terrain coordinates. Multiple image

registration depends on a cost function
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Cr(Lxr, Lyt, ..., LxNt,Ây"r) = I >
No Nu

i=ll=i+l

where G,(x+Lx,,tiay,) istheimage of G,(x,y) withshifts ax, and ay, inrangeand

azimuthal directions, respectively. The misregistrations of multiple images can be

determined by minimizing (6.26), that is,

[l.rf,lyf, ..., L*Io,LyI,) = Arg min (cr(Lx, Lyt, ..., LxNtalruo) ) (6.271

which is called the minimal distance method.

This minimal distance method considers the correlation of multiple images to be

processed rather than the correlation of image pairs. It is less affected by the SAR image

decorrelation than the conventional method for image pairs. Moreover, as the method

calculates the correlation as a whole instead of computing the multiple correlations

between two images it avoids the problem of error accumulation in correlation estimation

and the effect of image order. However the computational load is enormous because it
requires the optimization of multiple variables. Although it is a good method for multiple

image registration, it is impractical especially when the number of images is large.

6.5.2 lmage Model Matching Approach

A new algorithm for multiple image registration named image model matching is now

developed for practical applications. It is assumed that each image is derived from a

reference image M (x, y) by the addition of noise. The cost function of multiple image

registration is expressed as

N,

Cr(Axr, Lyt, ..., LxNt, ¡r*o) = 2 "t",(x 
+ Lx¡,y + 

^y,) 
, M (x, y)f (6.28)

i=l

Minimizing (6.28) is equivalent to minimizing the distance of each image from the

reference image, that is,

min[Cr(A,x, L!1, ..., Lx¡¡., LIN)) = I min {DIG,(x + A,xry + A},) , M (x,y)l}
No

i=l

The misregistrations can be estimated by
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[o"?,or?,.. 
.,L*Io,ori,) = Arg min (cr(Lxr,Äyr,.. .,LxN;ay"o)) (6.30)

It is noted that the optimization of 2N, variables in (6.27) is simplified into the No

optimizations of 2 variables ín (6.29). Therefore the computational burden of the image

model match approach is greatly reduced by compared with the minimal distance

approach.

The image model matching method matches each image to the reference image rather than

each other image so that the effects of image order and image drift are eliminated and the

effect of image variation is reduced. The critical step of image model matching method is

how to estimate the reference image. We f,rst measure th" lryl = 
Ne (N{ - 1) 

distances\z) 2

between all image pairs to determine the misregistrations and distances. The initial

reference image Mr(x,l) is formed by summing two registered images with the minimal

distance, i.e.,

Mr(x,!) = sum [Go (x + Lx¡,,y + Lyù, Gr(x+ A,xuy +Ay,)] (6.31)

where k,l = Argmin lD(G¡(x + Lxr,y+Ay,),G*(x+ Lx^,y + Ly^))1, Yi+m,

i, m = l, ..., Np. 
'When SNR is high, the two images can be summed coherently. If SNR is

low, they are added incoherently.

Thentheremainingimagesarereorderedas G,(x,1l) i = 1,2,...,Np-2 andarematched

to Mr(x,l) to determine the misregistrations and distances. The reference image

Mr(x,l) is produced by summing Mr(x,t) with one registered image which has a

minimal distance with Mr(x,y) , namely,

Mr(x,l) = sum[Mr (x,y),GoG+A,x¡r,! +Âyr)] (6.32)

where k= Argmin[D(G,(x+ Lx,,y+Ay,),Mr(x,y))]V, - 1,.'.,N0-2. The above

procedure is repeated Nr-2 times until the model M*r-r(.x,y) is produced andimages

G,(x,!) i = l, ...,N, have been registered.

We can further elaborate the image model to increase the accuracy of multiple image

registration by iterating the match of the ref'erence image to each image G,(x,t) until the

misregistrations Ar,, Ly ii l, ..., N p remain constant.
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6.6 Exper¡ment Results

An experimental study was carried out to measure the performances of the complex

correlation approach and the image model matching approach using multiple SAR images

of the same terrain acquired by ERS-I. The similarity of multiple SAR images was

determined by the SNR of the SAR image, the baseline of flight path and the time interval

between flightst47l. It increases with an increase of SNR or a decrease of baseline and time

interval. The amplitude correlation method, being a standard method, was used as a

comparison. The experiment included 162 pairs of SAR subimage data sets obtained from

9 flight paths by choosing subregions with a size of 50 x 50 pixels containing strong

scatterers as illustrated in section 5.6. The translational offset of two images within each

pair was known to within a pixel by use of ground control points. For each offset, a

window size of 32x32 was selected in the calculation of the registration measure. This

allowed for offsets of up to +9 pixel positions in each direction.

6.6.1 Complex Correlation Approach

With the aim to determine the robustness of the proposed method to image dissimilarity,

the SAR image pairs were grouped according to their similarity. The similarity of each

image pair was measured by the correlation coeff,cient of the two amplitude images

evaluated at a known translational offset as defined by (2.16). Registration results were

measured by the correct probability of registration for the image pairs within the given

image similarity category. Figure 6.4 presents the results of the complex correlation of
(6.21) (solid line) and the amplitude conelation of (2.15) (dash line) graphically. Ir

indicates that both provide correct registration when the image similarity is greater than

0.7 for the amplitude correlation and 0.5 for the complex correlation. However, as the

similarity of image pairs drops, the complex correlation performs more robustly than the

amplitude correlation. The complex correlation continues to provide an accuracy of SOVo

even if similarity value goes as low as 0.35.
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Figure 6.4 Registration accuracy versus image similarity

Figures 6.5 and 6.6 show the amplitudes of correlation functions of the complex and

amplitude correlation approaches, respectively in the mesh map (a) and in contour map

(b). Figure 6.7 compares the profiles of their amplitudes of correlation functions. They

demonstrate that the complex correlation reduces the sidelobe of correlation function

significantly and the correlation peak of the complex correlation is a little sharper than that

of the amplitude correlation.
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6.6.2 lmage Model Matching Approach

The new image model matching approach was used to register the SAR subimage pairs of
ERS-1 used in previous section. The distance measure between images of a pair Gr(x,l)
and Gr(x,t) was chosen as in (6.20). The image model is updated by the incoherent

summation, that is,

Com Corêlalion
Amp Correlat¡on

Com Corelal¡on
Amp CorrelÊt¡oD
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Figure 6.8 gives the correct probability of image registration using the image model

matching approach (solid line) and the amplitude correlation (dash line). It shows that

both provide correct registration if image similarity is greater than 0.6 for the image model

matching approach and O.7 for the amplitude correlation. However the image model

matching degrades more slowly as the correlation coefficient decreases. The thresholds of

registration accuracy 80Vo for the image model matching and the amplitude correlation are

0.37 and 0.46, respectively.
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Figure 6.8 Registration accuracy versus image similarity

In Figure 6.9, the dash line denotes the correlation coefflcient histogram of image pairs

and the solid line is the correlation coefficient histogram between the reference image and

each image. It is seen that the reference image has a better correlation with multiple

images and so the image model matching approach can increase the accuracy of multiple

image registration.

Model Matching
Amp Correlat¡on
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6.6.3 Effect on 3D SAR lmages

The effect of image registration on 3D SAR imaging was illustrated by MPSAR

processing the ERS-I data of one corner reflector terrain as described in section 5.6.

Figure 6.10 gives the 3D image before image registration. It indicates that the signals

resulting from the comer reflector are distributed in several range and azimuth cells. 3D

SAR image after image registration is shown in Figure 6.11. It is seen that the signals

corresponding to the corner reflector are located in the same range and azimuth cell.

However they are still scattered over the elevational direction. The next chapter discusses

phase correction to form a focused elevational beam.

- 
Reference with each image
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6.7 eonclusions

Image registration is a key step of InSAR and MPSAR processing. The contributions in

this chapter are

1. to make use of complex correlation instead of amplitude correlation to improve the

accuracy of SAR image registration.

2. to develop the methods for multiple SAR image registration by use of the correlation of

multiple images rather than the correlation for image pairs.

The model for multiple pass SAR images is described. The geometric transformation of

SAR image registration is identified to be the local translation. The complex correlation

approach is developed for the SAR image model. The conventional correlation only uses

the amplitudes of images and discards the phases of images resulting in the high sidelobes

and the broad peak of the correlation function. The complex correlation utilizes both the

amplitude and phase of SAR image to increase the registration accuracy.

The multiple image registration is then studied. The minimal distance approach is the ideal

method. It makes use of the correlation of multiple images to reduce image drift error

resulting from the accumulation of error in correlation estimation and image variation

error caused by the SAR image decorrelation. In order to reduce the computational load of

the minimal distance approach, the image model matching is developed.

Finally the complex correlation and the image model matching approaches are used to

process the real data of ERS-I. The processing results show that they are both able to

increase the registration accuracy for the same image similarity, and to reduce the image

coherence requirement for the same registration accuracy compared with the conventional

amplitude correlation. The complex correlation can enhance the peak and reduce the

sidelobe magnitudes of correlation functions. The image model matching is able to

improve the coherence of multiple images by use of the reference image. The

effectiveness of image registration is demonstrated by 3D ERS-I SAR images.
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Cftøpter 7 Phase Correction for
MPSAR Processing

7.1 lntroduction

The processing steps of MPSAR imaging have been investigated in chapter 5 which

include first registration of multiple complex value SAR images, then phase correction of

the registered images for beamforming, and finally beamforming in the elevational

direction. Image registration of multiple SAR images was studied in previous chapter and

the elevational beamforming will be discussed in next chapter. This chapter focuses on the

phase correction of complex SAR images. Since phased array techniques are used to form

the elevational beams, phase correction can be determined using array calibration

princiPles lt2ol Ítztl .

The organization of this chapter is as follows. The role of phase correction for SAR

images is presented in section 7.2. In section 7.3, three methods of phase correction:

eigenvector, terrain centroid tracking, and strong scatterer reference are developed. These

approaches to phase correction are verif,ed by processing the real data of ERS-1 in section

7 .4 and statistical performances of phase correction are investigated in section 7.5'

7.2 Role of Phase Correction

In the analysis of chapter 5, it is assumed that the multiple flight paths are parallel and

equi-spaced in elevation, and thus the beam output formed by summing the registered

images enhances a plane wavefront signal incident the flight path array from the broadside

direction as shown in Figure 7.1.
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PNp

PNp-1

P2

P1

Figure 7.1 Flight path linear array steered at broadside direction

However in practice the flight paths are uncertain and deviate from their nominal position

and the propagation medium in ionosphere and troposphere may be inhomogeneous[146].

These defects may destroy the above capability of coherent summation. In order to correct

the uncertainty of flight paths and compensate for anomalies in the propagation medium, a

phase shift is required to be attached to each flight path as shown in Figure j.2 to form a

foeused beam in the elevation.

Pup

D
'Np-1

anomaly

P1

Figure .7.2 Flight path .array with..self-calibration to compensate for flight path
uncertainty and propagation ànomalies
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Many techniques have been developed to determine the phase factors for array calibration

as reviewed in section 2.8.3. A data-driven technique is used for self-calibration where no

assisted device is required for calibration measurement. The beamforming and subspace

approaches were applied to ISAR autofocus in chapter 3. Due to their theoretical

equivalence the signal subspace method is adopted for phase correction in this chapter.

7.3 Phase Correction

MPSAR imaging carries out the phase correction to form a focused elevational beam.

However phase correction is dependent upon precise information on flight paths and

propagation medium (i.e. distortions need to be known to be the order of 7u/8). In this

section, three methods of phase correction are developed based on array self-calibration

which do not need the information about flight path and propagation medium.

Based on (6.14), the image model after image registration can be written as

Gr(x,y) = Gt (x, y) exp (-"l9zl) (7.1)

where Gr(x,t) and Gr(x,t) are the subimages of the f,rst and the second flight path,

respectively whose size can be determined by the criteria discussed in chapter 5,

gzt = 4nd"cosþ/?", d" the baseline between the first and second flight path, p the

incidence angle as shown in Figure 5.1 and À the radar wavelength. For the complex

image corresponding to the i th flight path, (7.1) generalizes to

G,(x,l) = G¡-r(x,l) exp (-ig;,,-,) = Gt(x,y) exp (-iQr) ?'21

t

where Q. = ) e,,n-,. Defining a pixel vector V (x,y) = [Gr (x,y), ..., GNp@,y)lr and

n=2

considering the SAR system additive noise, (7 .2) has the form for each pixel

V (x,y) = Gr(x,l) Dr+ W (r,y) (7.3)

where D"= [1,exp(-jQz),...,exp(-jQN")]r and W(x,y) = Lwt(x,y),'-,wN,Q,y)lr.

wr(x,!) is assumed to be independent identically distributed complex Gaussian noise

components with zero mean and varian "" o'r. The task of phase correction is to first
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estimate the complex signal vector D", andthen to compensate the multiple complex SAR

images by conjugating with D".

It is pointed that the image model (7.3) has an analogy with the signal model (3.11) for

ISAR autofocus. Therefore the conventional beamforming, the optimum beamforming,

the signal and noise subspace methods developed in chapter 3 for ISAR autofocus can

theoretically be applied to phase conection for MPSAR processing. Due to the

equivalence of these methods, only the eigenvector method, that is the signal subspace

method, is discussed and then its simplified versions such as terrain centroid tracking and

strong scatterer reference are described.

7.3.1 Eigenvector Method

The covariance matrix of V(x, y) is

cr(x,t) = E{v(x,Ðf @,y)} = lGr(x,t)l2D"D"H+c, (7.4)

where C* = o'*t is the covariance matrix of noise and I the identity matrix. It is verified

in Appendix A that the largest eigenvalue of Cr(.x, y) is

À, = lG, (*,Ðl (7.s)

and its corresponding normalized eigenvector is

(7.6)

and all the other eigenvalues are equal to ol. Q .6) shows that the eigenvector

corresponding to the largest eigenvalue of Cr(x,y) ,being proportionalto Dr, can be used

for phase correction.

The eigenvector method also realizes the ML estimation of D, as follows. The joint

probability density function of a single pixel vector is

'Nr* o'*

u
D

e

Np
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It is assumed that the individual pixel vectors in the subimage are independent and have

the same covariance matrix. Thus the joint probability density function of

V = ÍV(.r1,)1) ,...,V(rN,Nr,y",",)l , that is the probability density function of all of the

pixel vectors in the subimage, is the product of the probability density functions for

individual pixel vectors and is given by

p (v;D") = n-NoN'N'{ det (cu @,y))} 
-4"'"*p 

{-N,N, rr(c;t (", v) Ôu)} (7'8)

4N,

where ôu = ñ}' Z, @,, t ¡) vH (x ¡, t ¡) and N' and N, are the pixel dimensions of the

SAR subimugJioíiufttge and azimuth, respectively. Maximizing the log probability density

function with respectto {D",lGr(x,f) l2} results in the following eQuatio¡¡ [86J

ÒrD"*, = 62rL*orD"¡øt (7.9)

where X*o, i, the largest eigenvalue of Òy and Dr*, is the corresponding eigenvector.

(7.9) shows that the eigenvector of Ôy corresponding to the largest eigenvalue is the ML

estimator of De

7.3.2 Terrain Centroid Tracking

A new method for phase correction, terrain centroid tracking, is described below which

makes use of the subaperture processing of the eigenvector approach to reduce the

computational complexity when the number of flight paths is large. The terrain centroid

tracking method considers the limiting case where each subaperture consists of two

adjacent flight paths. It first forms the interferograms between these adjacent flight paths,

then estimates the phase differences of the terrain centroid by averaging the phase within

each of the interferograms and finally restores the phase of the terrain centroid for phase

correction by accumulating the phase differences. Terrain centroid tracking is derived

below.

For the i th subaperture formed by two flight passes P, and P,*r, the image model of

(7.3) becomes

f;.',.r,:'rrl 
= t't''r) 

["*p rrå,.,,,,] 
. 
[,:;:î;],]

(7.10)
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where 9¡*t,¡ = Q¡* r -Q¡ is the phase difference and the covariance matrix is estimated as

C
1

åå V,.',.,:,1,',,1 
Þ'. (x' v) G ¡"'* (x' ,,)Y-¡r¡¡¿

xy
(7.r1)

(7.12)

(7.13)

'I'he eigenvector corresponding to the largest eigenvalue of ër, derived in Appendix B, is

I

u
G*¡(*,y)Gi*r(x,!

where k is a scalar. Thus the ML estimator of the exponential phase difference can be

expressed as

N, N,

exp 00¡ + r, ¡) = N,

I, o*, (t,y) G¡*1(x,t)
)= I

I

)

which is the average phase of the interferogram formed by adjacent flight paths p, and

P,*r.This phase average is weighted by the amplitude of the interferogram and it is
called the phase difference of the terrain centroid. Thus this method tracks the terrain

centroid rather than some strong scatterers.

Then the complex exponential phase of the terrain centroid in each flight path for phase

correction can be obtained by setting the initial phase to be zero and multiplying

exPUQ¡*r,¡Ì i = 1,...,N0-1 inflightpathseriestoretainthecontinuationof phasefor

the entire aperture.

7.3.3 Strong Scatterer Reference

When K strong scatterers exist in the terrain, the effective SNR is enhanced if the

summation in (7.13) is calculated only over the subset of pixels (x¡,t¡)k = 1,...,K
where strong scatterers are located, i.e.,

142



Phase Correction

exp UQ¡ + l, i) =

K

2 ",* 
(x ¡, ! ¡,) G, *, (x¡, I ¡)

I o,* (x ¡, ! ¡) G, *, (x¡, ! ¡)

(7.141

=1

If one prominent strong scatterer with coordinate (x¿,1) is detected in the terrain, the

estimated phase difference is approximated by

exp U0¡ + l, j) =
G,* (x¿,1) G,*1(x¿,!¿)

(7.1s)
G,* (x¿,1) G,*1(x¿,!¿)

In this case, the phase difference of the terrain centroid is estimated by the phase

difference of the dominant strong scatterer which effectively becomes the centroid of the

terrain. With initiation exp Uôr) = Gr(x¿,yì /lGt(x¿,t¿) | , then the complex exponential

phase of the terrain centroid in each flight path is estimated by

exp CIô¡ + r) = exp Uô¡) exp 0Q¡ + r, ¡) =
G,* t(xo,l¿) (7.16)
G,*r(x¿,!¿)

In such a case, the phase correction is actually to compensate the complex images by

referencing the phase of the strong scatterer which is the popular method for SAR system

calibration.

In summary the eigenvector method is the ML estimation for phase correction. The terrain

centroid tracking and the strong scatterer reference are the simplifred schemes of the

eigenvector method. The computational operations of the above three methods are given

in Table 7.1 where N" and N, are the pixel dimensions of SAR image in the range and

azimuth directions, N, is the number of flight path and a Householder transformation is

used for the eigendecomposition of covariance matrix[234]. The number of divisions for

the three methods are almost the same, the strong scatterer reference does not need any

additions, and its operation of multiplication is less than those of the eigenvector method

and the terrain centroid tracking. A numeric example of Table '7.1 for the experiment in

thischapterisshowninTable 7'2wheteN* = 32, N, = 32 andN, = 9 ' Itisseenthatthe

ratio of multiplications for these three methods is about No + 1 :2:I and the ratio of

additions between the eigenvector method and the terrain centroid tracking is

approximately Nr:1.

N, 1
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Division Multiplication Addition

Eigenvector
method

No N*NrNo+N*NrNo2+4/3 No3 N*NrNo2+4/3N03

Te(aincentroid
tracking

No-l 2NxNyNp-NxNr+No-l NxNyNp-NxNy

Strong scat-

terer reference
No NxNyNp 0

Table 7.1 Computational operations of phase correction

Thble 7.2 Numeric example of Table 7.1

7.4 Exper¡ment Results

The three methods proposed for phase correction were used to process the 9 SAR image

data sets acquired by the ERS-1 satellite presented in chapter 5. An image patch satisfying

the conditions discussed in chapter 5 was selected for MPSAR processing. The 9 SAR

images were first registered with the image model matching approach, and then corrected

in phase by the three methods developed in this chapter, and finally conventionally

beamformed in elevation to produce the 3D SAR images.

The Integrated sidelobe ratio (ISLB;tt+zl is a useful criterion to measure the focusing

quality. It is defined as the ratio of the energy in mainlobe to that in sidelobes, that is,

(7.17)

where E* denotes the energy in the mainlobe with a 3dB bandwidth and E, is the total

energy. The larger the ISLR, the smaller the sidelobes and the better the resolution

capability.

8.,
ISLR - Er- E,

Division Multiplication Addition

Eigenvector
method

9 93132 83916

Ter¡aincentroid
tracking

t'74t6 8192

Strong scat-
terer reference

9 9216 0
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7.4.1 One Gorner Reflector Terrain
At first an image patch containing a corner reflector was processed. The reconstructed 3D

image was visualized with three 2D profiles, that is, the range-azimuth image, the range-

elevation image and the azimuth-elevation image; the resolution of elevation being shown

in the range-elevation image and the azimuth-elevation image. Figure 6.11 is the 3D

image without phase correction. Figure 7.3, Figure '7 .4 and Figure 7 .5 are the 3D images

where the phase correction is carried out by the strong scatterer reference, the terrain

centroid tracking and the eigenvector method, respectively. In these figures (a) is the

rcnge-azimuth image, (b) is the range-elevation image and (c) is the azimuth-elevation

rmage.
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(a) Range-azimuth image
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(b) Range-elevation image
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Figure 7.3 3D SAR image with the strong scatterer reference
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Figure 7.4 3D SAR image with the terrain centroid tracking
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(c) Azimuth-elevation image
Figure 7.5 3D SAR image with the eigenvector method

By comparing with Figure 6.I 1, the focusing quality in Figures 7 .3, 7 .4 and 7 .5 is clearly

better indicating the effectiveness of phase correction. Although these methods are

theoretically related, differences do arise due to details in the estimation as discussed in

section 7.3. The ISLRs of these SAR images are listed in Table 7.3 which shows that

Figure 7.3 is the best and Figure 7.5 is better than Figure 7 .4. The loss of SNR caused by

estimating the covariance matrix over the non-signal cells makes Figure 7.3 superior to

Figure 7.5. The difference between Figure 7.4 and Figure 7.5 is due to the fact that the

subaperture processing of the eigenvector method results in a little increase of CRLB of

estimated complex vector as discussed in section 4.7.

Thble 7.3 ISLRs of 3D SAR images for one corner reflector terrain

7.4.2 Two Corner Reflector Terrain

Secondly a subimage containing two corner reflectors at different ranges and azimuths as

shown in Figure 5.16 was chosen. Figure 7.6 displays the 3D image without phase

correction where (a) is the profiles of the first corner reflector in the range-elevation and

rsLR (dB)

No phase
correctionin
Figure 6.11

Strong scatterer
reference in Figure
7.3

Terrain centroid
tracking in Figure
7.4

Eigenvector
method in Figure
7.5

Reflector 0.0473 9.3415 2.0967 3.2679
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azimuth-elevation planes and (b) is the profiles of the second corner reflector in the range-

elevation and azimuth-elevation planes. It is seen that the elevational beam is out of focus

without phase correction.
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(a) Elevation prof,les of the first corner reflector
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Bângê

(b) Elevation profiles of the second corner reflector

Figure 7.6 3D SAR image without phase correction

Figure '1.7 andFigure 7.8 give the 3D images where the phase correction is conducted by

the strong scatterer reference method with referencing the f,rst and the second corner

reflector, respectively. They show that the elevational beam focuses on the corner reflector

to be referenced but the other corner reflector is out offocus.
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Figure 7.7
correction

(b) Elevation profiles of the second corner reflector
3D sAR image with the first corner reflector reference for phase

I
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(b) Elevation profiles of the second corner reflector

Figure 7.8 3D SAR image with the second corner reflector reference for phase
correction

Figure 7.9 andFigure 7.10 are the 3D images where the phase correction is performed by

the terrain centroid tracking and the eigenvector method, respectively. They show that the

two corner reflectors are focused simultaneously at the expense of some widening of the

beamwidth.

0
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(b) Elevation profiles of the second corner reflector

Figure 7.9 3D SAR image with the terrain centroid tracking for phase correction
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Figure 7.10 3D SAR image with the eigenvector method for phase correction

The ISLRs of the two corner reflectors in the above 3D images are given in Table 7 '4

which show the focusing quality of the three methods for phase correction. The ISLRs are

increased by use of the phase correction to form a focused beam. The strong scatterer

reference is able to enhance the ISLR of the referenced corner reflector signif,cantly but

does not necessarily increase the ISLR of the second reflector. The terrain centroid

tracking and the eigenvector method improve the ISLRs of both two corner reflectors

properly rather than that of a specific corner reflector.
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rsLR (dB)

No phase
correction in
Figure 7.6

Strong
reflector I
reference in
Figure 7.7

Strong
reflector 2
reference in
Figure 7.8

Terrain centroid
tracking in
Figure 7.9

2.3814

Eigenvector
methodinFigure
7.10

2.8560Reflector 1 1.5296 9.7353 o.8'728

Reflector 2 -1.4972 0.8251 4.O973 1.5679 1.716t

Table 7.4ISLRs of 3D sAR images for two corner reflector terrain

7.5 Statistical Analysis

Statistical tests were conducted to inspect the robustness of phase correction. Consider a

terrain containing a strong scatterer, 17 SAR images with equally-spaced flight paths were

simulated and white noise was added before MPSAR imaging. The strong scatterer

reference method was used for phase correction. Other parameters of the simulation were

given in section 5.5. The focusing quality of 3D images was measured by the ISLR of the

strong sea-tterer. This statistics lvas based on 100 independent realizations for a specific

SNR. Figure 7 .lI gives the mean ISLR of the scatterer versus SNR of the SAR images. In

particular the ISLR is reduced by greater than 3dB with respect to the asymptotic SNR

limits when the SNR drops below 5dB.

-40

a

=

-5 1510
sNR ld8)

Figure 7.11 Mean ISLR versus SNR

In order to measure the effect of subimage size on the focusing quality of a 3D SAR

image, a terrain consisting of two strong scatterers having the same elevational coordinate

and different distances in the range-azimuth plane was simulated. 3D SAR image was
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formed by phase correction with the reference of one strong scatterer and the focusing

quality of the 3D image was measured by the ISLR of the other scatterer. This focusing

quality versus the distance between the two scatterers is shown in Figure 7.I2.It indicates

that a subimage with a size up to 110m can be focused with an ISLR above 3dB which is

consistent with the result in section 5.3.

to @70@$1@110
(m

50

Figure 7.12 ISLR versus subimage size

7.6 Gonclusions

Phased array calibration techniques have been employed to effect phase correction to

obtain a focused beam in the elevational direction for MPSAR. The original work in this

chapter is to apply the methods of array calibration to determine the phase factor for phase

correction. Three approaches for phase correction of MPSAR processing are developed.

1. The eigenvector method makes use of the eigenvector corresponding to the largest

eigenvalue of the covariance matrix of pixel vector which is the ML estimator for phase

correction.

2.The terrain centroid tracking is the subaperture processing of the eigenvector method

when each subaperture consists of adjacent two flight paths. It has a reduced

computational load (multiplication) by a factor of 5 in Table 7 .2 bttt results in a small

increase of estimated variance bound compared with the eigenvector method.

5
I
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3. If a prominent strong scatterer exists, the strong scatterer reference regards the signal

vector of the strong scatterer as the eigenvector corresponding to the largest eigenvalue of
estimated covariance matrix. It is straight forward and easy to implement.

The three approaches were verified by processing the ERS-I data for one and two corner

reflector terrains and the statistical performances were analysed. It is concluded that the

eigenvector method is versatile for phase correction. However in practical applications it
is limited by the accurate estimation of the covariance matrix and the computational load

for eigendecomposition when the number of flight paths increases. If a strong scatterer is

identified in the terrain, the strong scatterer reference can replace the eigenvector approach

effectively to eliminate the SNR loss in estimating the covariance matrix. When no strong

scatterer exists in the terrain, the terrain centroid tracking may be used to obviate the

estimation of the covariance matrix and the eigendecomposition of the estimated

covariance matrix. Selecting a phase correction method suitable for terrain type yields a

satisfactory focused elevational resolution with reduced computational complexity.
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Cftøpter I

8.1 lntroduction

MPSAR imaging as described in chapter 5 involves three steps. First is registration of

multiple complex value SAR images, second is phase correction of the registered images,

and third is beamforming in the elevational direction. The registration and the phase

correction of multiple SAR images have been investigated in chapter 6 and chapter 7,

respectively. In this chapter, the elevational imaging with multiple beams in elevation and

the enhancement of elevational resolution by super-resolution processing are studied.

This chapter is structured as follows. Frequency domain beamforming in elevation by use

of the DFT is described in section 8.2.In section 8.3, the two methods for enhancement of

elevational resolution are investigated: the frrst is a maximal entropy extrapolation for

linear enhancement and the second is a subspace method for nonlinear enhancement. The

developed approaches for the formation and enhancement of elevational resolution are

illustrated by processing the real data of ERS-1 in section 8.4. Statistical performances of

elevational imaging and resolution are analysed in section 8.5.

8,2 Elevational lmaging

MPSAR imaging is able to produce a 3D radar image as a function of range, azimuth and

elevation. High range resolution is achieved by pulse compression of the wideband

transmitted signals. Azimuthal and elevational resolutions rely on the synthesized aperture

in azimuth and elevation, respectively. In this section, phased array beamforming
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techniques based on frequency domain beamforming are used to obtain the elevational

resolution by forming many receiving beams in the elevational direction.

After phase correction, an elevational beam is formed in the broadside direction of the

flight path array by coherent addition of the complex images. However signals from other

directions are not in phase and will not be reinforced. To form an image in these

directions, the complex image of each flight path is required to be shifted in phase to

compensate the difference of propagation path in order to sum them coherently. Due to the

fact that the variation of azimuthal aspect angle within a subimage is negligible, the

difference of propagation path for the ; th flight path with respect to the first flight path as

shown in Figure 8.1 is

Lr¡t = (r- 1) drsin9, (8.1)

where d, is the baseline between adjacent two flight paths and 0, the elevational signal

direction. Thus the corresponding phase shift is expressed as

4n
\¡t = i (t- l) d"sin0, (8.2)

due to two-way propagation. The frequency-domain beamforming approach steers the

elevational receiving beam by varying î¡¡ as shown in Figure 8.1. Two groups of phase

shifters are illustrated. The first group 0¡ conducts the phase correction to compensate for
the uncertainty of flight path and propagation anomalies as discussed in chapter 7. The

second group rì¡¿ applies a linear phase across the flight path array to scan the focused

beam electronically in the elevational direction.

PNp-1

a

a

a

2P

P1

Figure 8.1 Focusing and scanning the elevational beam
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For an equi-spaced flight path array, the steering phase factor is exp {-i+(t - 1) d,sinl¡} ,

thus the output of the elevational beamformer, an estimator of reflectivity p (x,y, z) , is

expressed as

No

Þ (x,y, r) = iG' (x,y,i) exp {-i+ (t - 1) d"sinl¡} (8.3)

i=l

where G' (x, y, i) = G ¡(x, y) exp ("lQ;) and (8.3) can be computed efficiently using an N r-
point DFT.

Use of an N, point DFT produces multiple receiving beams in directions 0, given bY

l,l.+sin (o¿) = l,**, (8.4)

Shading weight coefflcients b, i = l, ...,Np are generally applied to the individual phase

corrected images to control the mainlobe width and the sidelobe levels of the elevational

beams[99]. In order to increase the number of elevational beams steered, the windowed

and phase-corrected images b,G' (x, y, i) i = I, ..., N o can be appended with zeros prior to

DFT of the extended datat98l.

8.3 Super-resolut¡on Processing

Whilst zero-padding of b,G'(x,y,i) increases the number of steered elevational beams,

the elevational resolution remains unchanged because zero-padding does not increase the

array aperture and the elevational resolution is determined by the aperture length in

elevation which is known as Rayleigh resolution. The Rayleigh resolution can only be

enhanced by increasing the effective aperture length, which is impractical for MPSAR

processing. Super-resolution processing of MPSAR allows the Rayleigh resolution to be

overcome and consequently it is to be preferred as it reduces the number of flight paths

required and mitigates the decorelation of SAR images.

The model of multiple complex sinusoids in (8.3) allows modern spectral estimation

techniques to be used to increase the spectral resolution beyond the Rayleigh limit. Super-

resolution processing techniques include maximum entropy (ME), auto-regressive (AR),

moving average (MA), auto-regressive moving average (ARMA), multiple signal
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classification (MUSIC) and estimation of signal parameters via rotational invariance

techniques (ESPRIT). In this section two of these methods are used to enhance the

elevational resolution. One is the maximum entropy extrapolation of the observed data

where the extrapolation procedure is carried out for each pixel cell of multiple registered

and phase corrected SAR images in the clata domain. The Fourier transform of the

extrapolated data produces enhanced elevational resolution. The other is the subspace

method which makes use of the orthogonality between the noise subspace and the signal

subspace of the covariance matrix of the observed data to provide the super-resolution

capability.

The block diagram of elevational super-resolution is shown in Figure 8.2. After image

registration and phase correction, the data across multiple SAR images with the same

pixel position, that is the output of the flight path array at this pixel, form a pixel series.

Instead of DFT processing, high resolution spectral analysis such as maximum entropy

extrapolation and subspace methods is applied to each pixel series to enhance the

elevational resolution.

No

Figure 8.2 Block diagram of elevational super-resolution processing

8.3.1 Linear Super-resolution

The philosophy of maximum entropy spectral estimation is that all extrapolations of the

measured data should be consistent with the available data and should make minimal

assumptions regarding unavailable data. For a one-dimensional regularly sampled

stationary Gaussian process, maximum entropy is equivalent to using the assumption of an

SAR
images

pixcl

serles spectral analysis

high

available?

new

end
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AR process [35] and there are two main ways to estimate the AR spectrum. The first

approach is to estimate the prediction coefficients and to calculate the spectrum using the

estimated prediction coefficients. The second approach also estimates the prediction

coefficients, but then extrapolates the observed data in both directions with the estimated

prediction coeff,cients, and finally applies a Fourier transform to the extrapolated data.

Since both approaches use the same prediction coefficients, they should provide

essentially the same spectral estimation. However the first approach only estimates the

porwer spectrum and ignores the phase spectrum. The second approach, despite being

more computation-intensive, produces both the power and phase spectra and this is

sometimes more useful for sonar and radar applications U01l U021. In this section the

second approach is employed. It is called linear super-resolution because it invokes DFT

and preserves the phase information.

The block diagram of the proposed linear super-resolution is shown in Figure 8.3' The

pixel series G' (r, y, i) at pixel (x, y) is at first used to estimate the prediction coefflcients

using the Burg algorithm which guarantees numerical stabilitytlO3l. Thit algorithm has a

lattice structure with each stage determined by a reflection coefflcient. The reflection

coefficient to(x,t) at stage k is estimated by minimizing the sum of the forward and

backward prediction error powers and is given by

Nr- 7

-z > 4- r@, y, Ð 
"1,- I (x, !, i - r)

tk(x,y) = No- 1

i=k (8.5)

(8.7)

Q¿r-, (x, y, i)l' *1"i,-, (x, !,t - 1) l')
i=k

where the forward and backward prediction errors are calculated by

"l{*,1, i) = /*-t(x,!, i) + to@,Ð 
"1,-1(x,y, 

i - l) i=k+1, ..',Nr- l,

"!{",1, 
i) = e!-r(x,!,i - 1) + to* (x,Ð ¿k-r(x,!, i) i=k,..., Nr-2

/o{*,1,i) = G'(x,y,i) i=1,..., Nr-r,

Np

(8.6)

(8.8)

(8.s)

with initial value

"un{t, 
l, i) = G' (x,y, i) i=2, .)
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The prediction coefficients of the k order transversal filter are determined by the reflection

coefficients using the Levinson recursion

ho(x,!, i¡ = 
hr'-'(x'!' i) + to@'l) h*-t* (x'l' k- i) i=l' ,k-r

(8.10)
to(x, l) i=k

which is a fast algorithmu03l. The process is repeated e times until the prediction

coefficients hn(x,y,k) k=1,...,Q are estimated where Q is the AR model order to be

used.

Then the pixel series is extrapolated forward and backward to the length NoF where F is a

factor of extrapolation. The forward extrapolation of data is given by

o

G' (r, y, Nr+ i) = Z ha(x,y, k) G' (x, y, Nr+ i - k) i>0 (8.11)

k=l

and the backward extrapolation of data is done by

v
G'(x,y,-i) = 2rn* (x,y,k) G'(x,y,k-i) i > o (8.12)

k=r

Finally the extrapolated pixel series is Fourier transformed to produce the super-

resolution.

Figure 8.3 Linear super-resolution diagram

The selection of model order is a critical step. If the model order is too low, the spectrum

has all the peaks smoothed. On the other hand, if the order is too large, the spectrum may

contain spurious peaks. Many criteria such as Akaike Information Criterion (AIC) and

Minimum Description Length (MDL) have been proposed to estimate the model

order[103]. An effective approach to determine the model order e of AR for the short data

in radar and sonar applicationr ir [101J [102ì
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Q < Np/3 (8.13)

and the extrapolation factor F is select"¿ ut [101] [102J

F = 2-4 (8.14)

8.3.2 Nonlinear Super-resolut¡on

Linear super-resolution extrapolates the elevational aperture with the AR model in the

data domain and Fourier transforms the extrapolated data to obtain the super-resolution.

However its improvement is limitedtl02ì. 16" subspace method makes use of the

eigendecomposition of the covariance matrix of the observed data. The orthogonality

between the noise subspace and the signal subspace of the covariance matrix produces

super-resolution. The resolution capability of the subspace method is theoretically

unlimited in the absence of noise. But it only provides the location of individual scatterers

in elevation and its spectrum has no information about amplitude and phase of

reflectivityllO4l. Due to this fact it is called nonlinear super-resolution. However once the

elevations of the individual scatterers have been obtained the complex amplitude

information can be obtained by solving a linear least-square problem.

The block diagram of nonlinear super-resolution is shown in Figure 8.4. The covarlance

matrix of the pixel series is at first estimated, the eigenstructure of the estimated

covariance matrix is analysed to determine the subspaces of signal and noise, and a high

resolution spectrum is calculated from the eigenvectors of the noise subspace.

Figure 8.4 Nonlinear super-resolution diagram

From (8.3), the observed model(l) is formulated as

'a

pixel
senes

spectral

calculation

covarrance

matrix
estimation

eigenanalysis

of estimated

covariance

matrix

(1) Note this can be thought of as the inverse model of (8.3)
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K

G'(x,y,r) = I p(x,y,z,) exp Uf ti_ l)d,sinl,¡ +w,(x,l) '-r,...,Np (8.1s)

I=1

where it is assumed that K scatterers exist in the elevation with reflectivity p (x, y, z,) and

w,(x,t) is an additive noise which is assumed to be independently Gaussian distributed.

Defining a Kx I vector Zr, = [p(x,y,z1),...,p(x,y,zK)]r and Noxl vectors

V *, = fG' (x, !, l), ..., G' (x, y, N p) l', W *, = Lw t (x, y), ..., w Nn@, y)lz, we have

V*, = ArrÐ*r*Wr, (8.1G)

where NoxK matrix A,, = (ar,...,ay) and a, = [t, ,"^p(J+(Np- t)a"rme,)]r.
The subspace method makes use of the eigenstructure of the covariance matrix of the

observed data. From (8.16), the covariance matrix can be expressed as

(8.17)

where E denotes the ensemble avetage, H the complex conjugate transpose,

^ - -l o F H\ ^-t ^ !r-- -- | .,t y u\o*yo*y ) .Lt\r Lw rlle çuvarlancg malrlx OI tne nofse. II wr\x, y) fS aSSUmed tO

be independent noise with mean zero and variance o*2 , then (s.17) becomes

C*, = ArrL*rA"r'*o*'I (g.rg)

where 1 is the identity matrix. The eigenvalues in descending order and their

corresponding eigenvectors of c, are denoted by Àr ZLz2...=ÀNr and e1,...,eN.,

respectively. By use of the orthogonality between the noise subspace and the signai

subspace, i.e.,

spanfe * * y ..., €¡¡r) I span far, ..., a*), (8.1e)

the linear combinations of noise subspace vectors with arbitrary weighting å, such as

p

c,, = nlv,rv*r') = o*rn"rA*rH +c*

u,(lf r,¡ ",1') - "' (,)( a (z)
pI (8.20)

i=K+l i=K+l

will be zero whenever steeringvector a(z) locates in the signal subspace. In practice,

estimation errors cause (8.20) not to be zerc exactly, but close to zero. This means that the

position of each scatterer can be estimated by searching the peak position of the reciprocal

of (8.20), i.e.,

164



Super-resolution Processing

þ (x,y, z) =
1

j u,(1"'r'¡',1')
i=K+l

(8.21)

(8.221

(8.23)

(e.241

Two specific algorithms have been proposed. Selecting b, = ! yields MUSIC t1041

1

Þ(x,y,z) = Nì)

Choosing b¡ = l/Li results in the eigenvector approach [105]

Þ(x,y,z) =
1

K
lo' {r) ",lt

I+

No

i,("'e>",1')
i=K+l

The peaks in the elevation spectrum indicate the location of the individual scatterers.

However the spectral amplitudes of these peaks contain no information with regard to the

reflectivity of individual scatterers. Having estimated the locations of the different

scatterers, reflectivity estimation remains a separate task and can be obtained via the least

square solution [104].

In the above analysis the covariance matrix is assumed to be known. In practice it needs to

be estimated by time averaging. This averaging results in a full rank covariance matrix.

For MPSAR processing, only one snapshot of each flight path is available at a time

implying that the estimate of C,, would be singular and the subspace method would not

work properly.

Spatial smoothing can be used to replace the time averaginguo6l. The scheme we adopt to

do the spatial smoothing over adjacent image pixels is shown in Figure 8.5 where I/,, is

the pixel vector across multiple SAR images. The covariance matrix of the pixel vector for

location (x,y) canbe estimated by averaging

è,y
1-
à(r-rr Cr-r y* Cr*t,y* Cr,y-t+ Cr,y*t)

where Ô,y=!(nrru'r*o*ov,rv'.o*,) and o*o is an NrxN, exchange matrix

which is defined as

165



Ghapter 8: Elevational lmaging and super-resotution for MpsAR processing

1

I

I
I

The size of spatial smoothing region determines the rank of the estimated covariance. The

spatial smoothing has to pay the penalty of resolutionleduction in the range and azimuth

directions. The second term in ðr, introduced by the exchange matrix helps to reduce this

penalty, that is, it increases the resolutions in range and azimuth directions by use of
backward spatial smoothingllOTJ.
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Figure 8.5 Spatial smoothing scheme

A simple idea for separating eigenvectors into the signal and noise subspaces is to
examine the eigenvalues of the covariance matrix with (2.33) and (2.34). However in
practice it does not work well especially when the signal-to-noise ratio is low. The

dimension of the signal subspace can be determined automatically with AJC tl0slwhich is

defined as

'V'N* Ny

AIC(rO = (Np-K) ln
Np

_K
1

No

i=K+l

N,

j=K+l
(8.2s)

The dimension of the signal subspace is determined by selecting the minimum value of
AIC (iK) with respect to K.
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8.4 Exper¡ment Results

The methods for elevational imaging and super-resolution processing described above

were used to process ERS-1 SAR image data sets. An image patch with 32 x 32 pixels was

selected for MPSAR processing. The 9 SAR images were firstly registered with the image

model matching developed in chapter 6, and then corrected in phase by the eigenvector

method discussed in chapter 7, and finally imaged in elevation with linear and nonlinear

super-resolution techniques. The reconstructed 3D image was visualized with three 2D

profiles, that is, the range-azimuth image, the range-elevation image and the azimuth-

elevation image. The resolution of elevation is illustrated in the range-elevation and the

azimuth-elevation profl les.

The computational operations of the DFT processing, the linear and nonlinear super-

resolution processings are given in Table 8.1 where \ and N, are the pixel dimensions of

SAR image in the range and azimuth directions, No is the number of flight path, N" is the

number of extrapolated flight path, Q is the order of AR model, K is the dimension of the

signal subspace and a Householder transformation is used for the eigendecomposition of

covariance matrix. The DFT processing does not need any division and the number of

multiplications and additions required are less than those of the linear and nonlinear super-

resolution processing. An example of Table 8.1 for the experiment in this chapter is shown

in Table 8.2 where N, = 32, N, = 32, Nr, = 9, N, - 32' Q = 3 and K = Z'ltis seen

that the ratio of multiplication and addition for these three methods is about l:15:25 and

ratio of division between the linear and nonlinear super-resolution is approximately 1:3.

Thble S.L Computational operations of elevational imaging

Division Multiplication Addition

DFT processing 0 NxNyNp2 NxNyNp2-N*NyNp

Linear super-reso-

lution
NXNYQ N*Nr(N"2+N"q+4NoQ-

2Q2-3Q)

N*Nr(Nr2+N"Q+3NoQ+

Np-2Ne-3/2Q2-5l2Q)

Nonlinear super-

resolution

N*Nr(No+2) N*Nr(7/3N03+6N02-

KNp2-KNp)

N*Nr(7/3N03+9Nn2-

KNp2)
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Division Multiplication Addition
DFT processing 0 82944 73728

Linear super-resolution 3072 1229824 I I 52000

Nonlinear super-reso-
lution

11264 2055 168 2322432

Thble 8.2 Numeric example of Table 8.1

8.4.1 One Gorner Reflector Terrain

First an image patch containing a corner reflector was processed. The 9-point data of each

pixel were weighted by Hamming window, zero-padded to length 16, and transformed by

DFT. The resulting 3D image is shown in Figure 8.6. Figure 8.7 is the 3D image without

weighting. As illustrated in Figure 8.6 and Figure 8.7, the sidelobes are reduced by means

of Hamming weight but the point spread function has a wider mainlobe.

l6 16

å à

10 b 25 t5 25Bang.

Figure 8.6 3D SAR image with Hamming weight
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16

10 15 15

Rå4€

Figure 8"7 3D SAR image without weight

For the linear super-resolution technique, the data were extrapolated forward and

backward from 9 to 32. The 32-point data were windowed by Hamming weight and

transformed with DFT. The nonlinear super-resolution padded the eigenvectors of the

noise subspace from length 9 to 32 with zeros, and then computed the elevational

spectrum. The 3D images acquired by the linear and nonlinear super-resolution are shown

in Figure 8.8 and Figure 8.9, respectively. For comparison, the conventional processing by

windowing 9-point data, zero-padding to length 32 and transforming the 32-point data

with DFT is shown in Figure 8.10. The AR model order for linear super-resolution was

selected as 3 by use of (8.13). MUSIC was used for the nonlinear super-resolution, and the

dimension of signal subspace was chosen as I from (8.25). As shown in Figure 8.8, Figure

8.9 and Figure 8.10, the linear and nonlinear super-resolutions are able to enhance

elevational resolution compared with the conventional DFT processing. The support

region of the corner reflector in the elevation is narrowed approximately by a factor of 3

and 4 compared with the DFT processing when the linear and nonlinear super-resolutions

are used, respectively. This means that the nonlinear super-resolution is more powerful

than the linear super-resolution. However the computational load of the former is more

expensive than that of the latter as shown in Table 8.2 and Figure 8.9 indicates that the

spatial smoothing of the nonlinear method results in resolution reduction in the range

direction.
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Figure 8.8 3D SAR image with linear super-resolution
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Figure 8.9 3D SAR image with nonlinear super-resolution
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Figure 8.10 3D SAR image with zero-padding and DFT
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8.4.2 Two Gorner Reflector Terrain

Second a subimage containing two corner reflectors was chosen. Figure 8.11 is the 3D

image with Hamming window, zero-padding to length 16 and DFT where (a) shows the

profrles of the first corner reflector in the range-elevation and azimuth-elevation planes

and (b) shows the profiles of the second corner reflector in the range-elevation and

azimuth-elevation planes. The 3D image without windowing is shown in Figure 8.12.
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(a) Elevation profiles of the first corner reflector
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(b) Elevation profiles of the second corner reflector

Figure 8.11 3D SAR image with Hamming weight
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(a) Elevation profiles of the first corner reflector

t5æ
EÊE€

(b) Elevation profiles of the second corner reflector

Figure 8.12 3D SAR image without weight

Figure 8.13 and Figure 8.I4 are the super-resolution images produced by the linear and

nonlinear methods, respectively. The order of AR model for the data extrapolation was 3

by use of (8.13). MUSIC was used for the subspace method and the dimension of signal

space was selected as 2 from (8.25). The image with Hamming window, zero-padding to

length 32 and DFT is given in Figure 8.15.

Tho processing results are consistent with those of one corner reflector terrain and indicate

that windowing reduces the sidelobes, zero-padding increases the number of elevational

beams but does not enhance the elevational resolution, and the linear and nonlinear super-

resolutions techniques enhance the elevational resolution. The resolution improvement

factors of the linear and nonlinear methods are 3 and 4, respectively.

I
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Figure 8.13 3D SAR image with linear super-resolution
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(b) Elevation profiles of the second corner reflector
Figure 8.14 3D SAR image with nonlinear super-resolution
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(b) Elevation prof,les of the second corner reflector
Figure 8.15 3D SAR image with zero-padding and DFT
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8.5 Statistical Analysis

In this section, statistical performances of height estimators are investigated. Monte-Carlo

simulations were conducted to calculate the mean and the standard deviation of the height

estimator. In the simulations, it was assumed that a strong scatterer located at a height of

12 meter and 17 equally-spaced flight paths were used for MPSAR processing. Other

parameters of the simulations are available in section 5.5. Simulated SAR images were

added with some white noise before MPSAR imaging. The height of the scatterer was

detected by the peak of 3D image intensity in the elevational direction with a search grid

of 0.lm. The statistics were inferred from 100 simulations for each set of SNR.

Figure 8.16 shows the mean and standard deviation of the estimated height error of the

scatterer versus SNR determined by the DFT elevational imaging. It indicates that the

DFT elevational estimator is unbiased and the threshold of SNR for mean and standard

deviation is QdB. Since this is height estimation of a single scatterer it is not necessary to

repeat for super-resolution algorithms as they essentially give the same results.

E
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-15 o 1o 20
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Figure 8.16 Mean and standard deviation of height error

In order to analyse the elevational resolution capability, two strong scatterers having same

range and azimuthal coordinates and spacing 48 meter apart in the elevational direction to

be easily resolved were simulated. Elevational imaging was conducted by DFT, linear

super-resolution and nonlinear super-resolution methods, respectively. The relative height

of these two strong scatterers were detected by the peaks of 3D image intensity in the

elevational direction. The order of AR model for linear super-resolution was 5 and the

dimension of signal subspace for nonlinear super-resolution was selected as 2. The mean

and standard deviation of the estimated relative height difference error versus SNR are
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shown in Figure 8.17, Figure 8.18 and Figure 8.19, respectively. They show that the three

estimators appear to be asymptotically unbiased, and that the DFT is able to resolve the

two scatterers precisely when SNR is greater than 15d8, linear super-resolution achieves

this if SNR is above 10dB and nonlinear super-resolution is sensitive to noise and has a

larger estimation standard deviation than other two methods.
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Figure 8.17 Relative height difference error determined by DFT imaging
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Figure 8.18 Relative height difference error determined by linear super-resolution
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Figure 8.19 Relative height difference error determined by nonlinear super-
resolution

8.6 Conclusions

The original work reported in this chapter has been the application of phased array

techniques to form multiple receiving beams for elevational imaging and to utilize the

methods of modem spectral estimation to enhance the elevational resolution.

At each pixel, a focused elevational beam is formed using images that have been

registered and phase corrected. This beam is scanned in elevation electronically by use of

DFT which produces multiple beams to do elevational resolution. The linear super-

resolution extrapolates the elevational aperture forward and backward in the data domain

using an auto-regressive prediction fllter. Fourier processing of extrapolated data produces

the 3D super-resolution image. The nonlinear super-resolution makes use of the

covariance matrix of pixel series. The orthogonality between the noise subspace and the

signal subspace of the covariance matrix gives the super-resolution capability.

The DFT, linear and nonlinear super-resolution processings were used to process the ERS-

1 data with repeat orbits. The processing results show that the DFT processing produces

the 3D SAR images of one and two corner reflector terrain with the Rayleigh resolution in

elevation. The linear and nonlinear processings can narrow the beamwidth of elevational

beam pattern or the point-spread-function (PSF). The resolution is approximately

enhanced by a factor of 3 and 4 when the linear and nonlinear super-resolutions are used,

respectively. However the nonlinear super-resolution is sensitive to noise and has a large

177



chapter 8: Elevational lmaging and super-resolution for MpsAR processing

estimation variance. The computational complexities of the three methods have been

compared for real time implementation.
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9.1 Overview

In this thesis, array processing techniques have been applied to ISAR autofocus and

MPSAR imaging. The work presented in this thesis is overviewed below.

Chapter 2 described the fundamental material about SAR, ISAR, InSAR and array

processing. Motion compensation and image formation were identified as the two main

steps of ISAR processing. The methods of ISAR image formation and motion

compensation were reviewed. ISAR images of Boeing-J27 werc presented by processing

the simulated data from NRL. It was found that autofocus was a key step of ISAR imaging

and autofocus should receive particular emphasis in this thesis. Typical InSAR processing

included image registration and phase unwrapping. Numerous methods for image

registration and phase unwrapping were overviewed. The interferogram of flat terrain was

simulated and the interferogram of ERS-I data was generated. Examples of one and two

dimensional phase unwrapping were illustrated. MPSAR, an extension of InSAR, was

suggested to be further researched in this thesis. Beamforming, subspace methods and

array calibration for array processing were also briefly reviewed.

In chapter 3, ISAR autofocus was conducted by conventional beamforming, optimum

beamforming, signal subspace and noise subspace methods. The signal model of ISAR

autofocus was established. Adjusting the steering vector to maximize the output powers of

conventional and optimum beamformers made the steering vector of beamformer

converge to the exact signal vector corresponding to the translational motion of object in

the case of the known covariance matrix. Signal and noise subspace methods were applied
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to ISAR autofocus which were based on the fact that the noise subspace was orthogonal to

the steering vector when this steering vector pointed to the signal vector associated with

ISAR autofocus. Subaperture processing was described to improve computational

efficiency. One-dimensional and two-dimensional ISAR autofocus by processing the

simulated and real data show that the four developed methods are ahle to procluce high

quality ISAR images.

In chapter 4, statistical properties of the four methods developed in chapter 3 were

examined. The signal subspace method was related to the strong scatterer reference

method by approximately estimating the covariance matrix over the range cells where the

strong scatterers were located. The signal subspace method was recognized. to be ML
estimation of the complex vector corresponding to ISAR autofocus. The CRLB of the

complex signal vector corresponding to ISAR autofocus and the CRLB of the distance

between two scatterers were derived and used to establish a lower bound on the

estimator's variance. The statistical performances of conventional beamforming, optimum

beamforming, signal subspace and noise subspace methods were analysed and show that

they are statrstically efficient.

Chapter 5 described the mathematical model for 3D SAR imaging. The processing steps

of MPSAR imaging were proposed which included conventional SAR processing, image

registration, phase correction and elevational beamforming. MPSAR imaging was found

to be an extension of InSAR. Its advantages over InSAR were highlighted. Results of
processing simulated and ERS-I real data show that the developed processing steps for

MPSAR imaging are able to produce the focused 3D pSFs.

In chapter 6, a model for MPSAR was described and the complex correlation was

proposed for SAR image pair registration based on the this model. The minimal distance

and the image model matching approaches were developed for multiple SAR image

registration. The complex correlation and the image model matching methods have been

used to process ERS-I image sets. The results illustrate that complex correlation can

enhance the peak and reduce sidelobes of the correlation function and the image model

matching is able to improve the coherence of multiple images by use of the reference

image.

In chapter 7, arcay calibration techniques were applied to correct the multiple complex

SAR images prior to construction of focused beams in the elevation. The eigenvector
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method, the terrain centroid tracking and the strong scatterer reference were proposed for

phase correction and described in detail. The eigenvector method is the ML estimator of

phase correction. The terrain centroid tracking and the strong scatterer reference are the

simplified versions of the eigenvector method. The three proposed methods were verif,ed

by processing the ERS-1 data, their statistical performances were analysed with respect to

SNR and the size of subimage and their computational complexities were discussed. The

results show that phase correction is able to produce a focused 3D PSF with a ISLR of

3dB when SNR drops to 5dB or the size of subimage increases to 110m.

Finally, in chapter 8 the elevational imaging was obtained by forming multiple beams. The

elevational resolution was enhanced by two methods. One was the maximum entropy

extrapolation for linear super-resolution. The other was the subspace method for non-

linear super-resolution. The 3D SAR images were produced by processing ERS-I data

with the DFT processing, the linear and nonlinear super-resolution methods. Their

statistical performances were analysed and the computational complexities were

compared. The results of 3D SAR imaging show that the DFT processing produces the

Rayleigh resolution in elevation, the linear and nonlinear super-resolution are able to

enhance the elevational resolution approximately by a factor of 3 and 4, respectively.

9.2 Contributions

The key contributions to knowledge of this dissertation are:

1. the derivation of the signal model for ISAR autofocus which avoids the problem of

phase unwrapping.

2. the development of ISAR autofocus methods via maximizing the output powers of

conventional and optimum beamformers.

3. the development of signal and noise subspace methods for ISAR autofocus by either

maximizing the projection of steering vector to the signal subspace or minimizing the

projection of steering vector to the noise subspace.
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4. the derivation of the ML estimator of ISAR autofocus and the determination of the

CRLB for the complex signal vector corresponding to the translational motion of an object

and the CRLB of the distance between two scatterers.

5. the development of processing steps for MPSAR imaging which include conventional

SAR processing, image registration, phase correction and elevational beamforming.

6. the development of the complex correlation, the minimal distance and the image model

matching approaches for multiple SAR image registration.

7 . the development of the eigenvector method, the terrain centroid tracking and the strong

scatterer reference for phase correction of MpSAR processing.

8. the development of elevational imaging with the DFT and enhancement of elevational

resolution with the maximum entropy extrapolation and the subspace methods.

Ã^Fv..r Fulure worK

Although this thesis has presented a comprehensive overview of ISAR autofocus and

MPSAR imaging, there is still some work to do. We now outline a number of issues which
need to be addressed. Possible future work includes:

1. recursive forms of beamforming and subspace methods for ISAR autofocus where the

optimum steering vector can be eff,ciently derived by updating the estimation of the

steering vector using the signal vector in each range cell.

2. extension of subspace methods to ISAR autofocus for multiple moving objects.

3. the preprocessing multiple complex SAR images to remove the noise and enhance the

coherence between multiple SAR images.

4. elevational imaging based on tomographic principle.
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9.4 Conclusions

This thesis has investigated a novel application of array processing methods to calibration

for ISAR and MPSAR. It achieves two objectives. One is to apply a rigorously

mathematical approach to problems which have traditionally been solved using the

conventional methods. The other is to develop a unifying framework where the

conventional methods could be interpreted and evaluated from a different point of view.

The techniques were analysed in detail from several aspects such as conventional

beamforming, optimum beamforming, signal subspace, noise subspace, image

registration, phase correction, elevational imaging and super-resolution. Their statistical

performances were examined and their computational complexities were compared.

Several important results were found in this thesis by processing the simulated and real

data. They have shown how the techniques of array calibration can be used successfully in

ISAR and MPSAR and provide valuable insights which have a potential application in

modern airborne and spacebome SAR systems.
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Appenli4A The Eigen
, ofcx

The covariance matrix C" of the received signal for ISAR autofocus was derived in

chapter 3. The eigen decomposition of C" is calculated below which was cited in chapters

3 and 7.If C* is an M x M matrix, it has an eigen decomposition

Cru, = \vru, (4.1)

where 1,, is an eigenvalue and u, is the corresponding eigenvector. 1,, i=1,...,M arcthe

solutions of characteristic equation

det(C,-À4 = g (4.2)

From section 3.2, C* is expressed as

C* = pnDD'*o'rt, (A.3)

Thus C, is a Hermitian symmetric positive deûnite matrix. By use of the relation

a"t(tq *ruu) = det(C") lt *r'c;tr) (A.4)

we have

det(C, -?vI) = a"t(r,ooT.("i, -^)rr)
= n,a.t(no' * |("',-^),-)

="(;.h)0"¡("1 -^)''l
(A.5)
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Thus (4.2) is changed into

Therefore the eigenvalues of C" are

Substituting 1., into (A.l), we get

\ = o2r¡ MPn,

L¡ = o2* i=2,...,M

("i- x*un,)(o'.-^)'-r = o

D
M

ul

(A.6)

(A.7)

(4.8)

(A.e)

186



Appunli4ß

The subaperture processing approach was discussed in chapter 3. If the subaperture is

made of two adjacent pulses, subaperture processing of the signal subspace method needs

the eigen decomposition of a 2x2 covariance matrix as discussed in chapter 3. The

estimated 2x2 matrix Ô, is expressed as

N

n=l

N

N

n=l

2l*,^l' \*n^'n(z+r)+
e.=LN n (8.1)

(B.2)

(8.3)

\ x,^* x n 1* * t'1 2l', ø * t¡12

N

=1

n=l
N

The characteristic equation of C, is

det (C, - 1.,1¡ = g

where )v, i=1,2 is an eigenvalue of Òr. The solutions of characteristic equation are

N

Ll*,^l' + Zlxnr^*¡
n=l
N

2 +

2 I
,

Àr, 2l*,*1"- I1", <**t¡12 + (2N)
2

n=l n=l

olþ,.,-.,n(m+t)
2

where Lr, L, and the corresponding eigenvectors are
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xn(m+l)

(8.4)

(8.5)

where kr,, arc expressed as

/vN

I l', r-*ttl2-Zl*,*l'*
n=l n=l

)'2lr,*l'-Ilr,@*t.tl2
I
2

¡r

n=l

N

n=l

)
kt,z = +

4 xn** xn 
1m + l'1

t
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Appenli4C First and Second
Derivatives of
I z0'..') zM-1 da

)

In order to calculate the CRLB of the estimated distance between two scatterers, the first

and second derivatives of likelihood function l(2o, ...,2M-r;d) respect to the distance d

between the two scatterers need to be derived and they are given below.

The first partial derivative of I (zo, ..., ZM -,;d) with respect to d is

The second partial derivative of I (zo, ..., z, - r;d) with respect to d has the form

M-1

* = -¿,Ìr4;sin [0, + v] sin {2#si"[0- + v] ]

fu^z* ^+ 
u* *z*) * $rt" [0, + T] sin {ffsin [0,n + y] ]

à't r (:'srr'
# = ¿\"#sin [0.+Y]2cos f i"[o'+Y] ]

fr*z* ^+ 
u* *z^) .t#sin [0, + y] 

2cos {ffri^lo. + y] ]

(c.1)

(c.2)

(c.3)

The expectation of the second partial derivative is

"I
2

òt
)= 

t*)=r$,," [0, + y] 
2cos 

{ 
2f 

",n[0, 
+ y] ]

{u^E[z**) +u*^Elz*]]

.'#sin Ig. + y12cos {ffrinl0. + y] ]

òd2
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(c.4)

(c.5)

From section 4.6, we have

Thus (C.3) becomes

E[z^] = 2pcos (fati"[o*+yl]u^

) = t#i"* 
[0. + T] 

2 
sin 724'in [0,, + T] ] 

2
2

at
"Iðd2
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