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Abstract

Synthetic Aperture Radars (SAR) have been widely utilized for military purposes and
civilian applications and make use of the relative motion between the radar and an object
to create a synthetic aperture to provide a high-resolution radar image. For proper coherent
processing of SAR signals, the shape of this synthetic aperture needs to be known to a
fraction of radar wavelength. In practice the turbulence and uncertainty of the relative
motion make the synthetic aperture different from its nominal shape degrading the SAR
high-resolution capability. How to compensate for the imperfection forms the basis of the

work conducted in this thesis.

This thesis investigates calibration for errors of a synthetic aperture in Inverse Synthetic
Aperture Radar (ISAR) and Multiple Pass Synthetic Aperture Radar (MPSAR). Both are
reviewed as the problems of array processing and are solved from the point of array

calibration.

A signal model for ISAR autofocus is derived by use of a scatterer model and four new
ISAR autofocus methods based on conventional beamforming, optimum beamforming,
signal subspace and noise subspace are developed. ISAR autofocus is effected by
adjusting the steering vector to maximize the output powers of conventional and optimum
beamformers. Alternatively it can be performed by projecting the steering vector into the
signal subspace and the noise subspace, respectively. A subaperture processing is
described to reduce the computational load. Computer simulations are conducted and real
data results of ISAR imaging are presented. Statistical analyses of the four methods are
carried out. The signal subspace method is identified to be the maximum likelihood (ML)

estimation for ISAR autofocus. The Cramer-Rao lower bound (CRLB) of the estimated

vii



Abstract

complex vector associated with ISAR autofocus and the CRLB of the estimated distance
between two scatterers are derived. Further the CRLBs are analysed to obtain useful

insight into the developed methods and ISAR autofocus.

A novel processing step for three-dimensional (3D) SAR imaging via MPSAR processing
is proposed which includes conventional SAR processing, image registration, phase
correction and elevational imaging. For multiple SAR image registration, the complex
correlation, the minimum distance and the image model matching approaches are
developed. With regard to phase correction, the eigenvector method, the terrain centroid
tracking and the strong scatterer reference are described. Frequency domain beamforming
is used for elevational imaging and the maximum entropy extrapolation and the subspace
methods are adopted to enhance elevational resolution. All developed methods are verified
for computer simulated data and first European Remote Sensing satellite (ERS-1) real data

of repeat orbits and their statistical performances are analysed.
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Cha pter 1 Introduction K\\" g

1.1 Motivation

Since its origins in the 1950s, synthetic aperture radar (SAR) has been extensively
developed (1 Tts advantages over other remote sensors of operating in all-weather
conditions and its high-resolution imaging have been exploited for civilian applications
and surveillance purposes. Many airborne and spaceborne SAR systems have been widely
utilized. Unlike other radars for target detection and tracking, SAR systems are used
primarily for mapping stationary targets (such as terrain, ocean and glacier) and imaging

moving objects (such as aircraft, ships and satellites).

SAR is able to produce two-dimensional high resolution images in the range and
azimuthal (cross-range) directions. High range resolution is obtained by transmitting a
wideband signal and high azimuthal resolution is achieved by synthesizing a large
aperture in azimuth. SAR is typically carried on a moving platform for air-to-ground
mapping of stationary terrain where motion of the platform creates the synthetic aperture.
Inverse SAR (ISAR), the inverse mode of SAR, is usually deployed on the earth for
ground-to-air imaging of moving objects. The synthetic aperture required for high

azimuthal resolution is provided by the motion of object.

SAR and ISAR imaging are coherent processes and require that the errors in synthesizing
the azimuthal aperture are less than a fraction of radar wavelength. However, in practice,
the synthesized aperture usually deviates much more than this from its designed shape due
to flight turbulence for SAR and unpredictable flight path for ISAR. In order to meet the

strict requirements of coherent processing, the actual shape of synthetic aperture should be
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precisely estimated and appropriate correction made prior to image formation. This

correction is called motion compensation.

Motion compensation of SAR imaging can be assisted with inertial navigation systems
(INS) and global position systems (GPS). However motion compensation for ISAR
imaging is more challenging than that of SAR because ISAR targets are often not
cooperative. Such compensation is usually conducted in two steps, that is, range
realignment (coarse compensation) and autofocus (fine compensation). Although many
approaches to ISAR autofocus have been proposed and developed, robust autofocus for

ISAR imaging has still remained a fascinating area of research.

Even if SAR or ISAR results in a two-dimensional high resolution image in the range and
azimuth, it can not resolve two scatterers locating at the same range-azimuth resolution
cell and different elevation. In some applications such as topographic mapping and
military reconnaissance, a three-dimensional (3D), i.e., range, azimuthal and elevational

high resolution image is required. Then interferometric SAR (InSAR) comes into being.

InSAR is a technique for extracting the 3D target information by using the phase content
of two complex SAR images acquired at two different spatial positions which form the
baseline of InNSAR. Normally InSAR signal processing includes: first two complex images
are registered; second the interferogram is formed by multiplying one image with the
conjugate of the other; third the principal value phase of the interferogram is unwrapped;

and finally the unwrapped phase and the baseline are used to calculate the terrain height.

The application of InSAR is primarily restricted by phase unwrapping and baseline
estimation. The phase unwrapping may be appropriate in a low-noise environment in
which the progression of wrapped phase is consistent. However in the more realistic high-
noise environment such as spaceborne SAR where the wrapped phase usually progresses
inconsistently, the phase unwrapping may become ambiguous. On the other hand, the
baseline estimation requires the existence of several ground control points which may also

be impractical in many situations.

InSAR only estimates the height of the terrain, but the reflectivity of the terrain remains
unknown. Multiple pass SAR (MPSAR) processing is a natural extension of conventional
InSAR. It makes use of more than two SAR imaging flight passes to synthesise an aperture

in elevation, resulting in improved accuracy and resolving power in the elevational
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direction. The resulting resolution in elevation, coupled with the resolving capability of
single-pass SAR imagery in range and azimuth, constructs a 3D SAR image. This 3D
SAR image provides the information about both the elevational variation and the
reflectivity of terrain which is important to terrain mapping, analysis and classification.
Nevertheless this topic of research is in its infancy and its theory and practice require

further investigation.

Based on the above motivations, two issues on SAR signal processing are addressed in
this thesis. One is the autofocus problem for ISAR imaging. The other is the 3D SAR
imaging via MPSAR processing. They are considered as problems of array processing and
are approached from the perspective of array calibration. The aim is twofold. One is to
apply the array processing approaches to ISAR and MPSAR which have been treated by
use of the intuitive methods. The other is to develop a unifying framework where the

intuitive methods for ISAR and MPSAR could be interpreted and evaluated in a new way.

1.2 Thesis Outline and Contributions

In Chapter 2, background material on SAR, ISAR, InSAR and array processing is
provided. ISAR processing can be divided into two steps: motion compensation and image
formation and existing techniques for these are reviewed and examples of simulated ISAR
images of Boeing-727 aircraft are demonstrated. Image registration and phase unwrapping
are critical issues of InSAR processing and previous methods for image registration and
phase unwrapping are outlined and interferograms of simulated data and first European
Remote Sensing satellite (ERS-1) real data are presented. Examples of one and two
dimensional phase unwrapping are given. Techniques of array processing including

beamforming, subspaces methods and array calibration are briefly reviewed.

In Chapter 3, some ideas from the calibration of antenna arrays are applied to ISAR
autofocus. First a signal model for ISAR autofocus is derived by use of a scatterer model.
Then two new approaches to ISAR autofocus are developed by adjusting the steering
vector to maximize the output powers of conventional and optimum beamformers
respectively. It is verified that the steering vector converges to the complex vector
corresponding to the translational motion of object if the covariance matrix is known

precisely. Next another two new ISAR autofocus approaches are developed based on the
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signal and noise subspaces of the covariance matrix. They make use of the orthogonality
between the noise subspace and the steering vector when the steering vector points to the
signal vector associated with the translational motion of object and are equivalent if the
covariance matrix is known. Subaperture processing is described and its advantage in
reducing computational complexity is pointed out. Finally computer simulations are
conducted and real data results are presented for both one-dimensional and two-
dimensional ISAR imaging. The main contributions are: (a) deriving the signal model
for ISAR autofocus, (b) developing four new ISAR autofocus methods based on
conventional beamforming, optimum beamforming, signal subspace and noise

subspace.

In Chapter 4, the approaches developed in previous chapter are considered from an
estimation perspective. The schemes for estimating covariance matrices are described.
The relations of the signal subspace method to conventional methods of ISAR autofocus
are identified. The signal subspace method is shown to be equivalent to the maximum
likelihood (ML) estimation of the complex vector corresponding to the translational
motion. Theoretical performance bounds (Cramer-Rao lower bounds; CRLB) for ISAR
autofocus and location are determined. The CRLB of the estimated complex vector
associated with the translational motion of object and the CRLB of the estimated distance
between two scatterers are derived. The statistical performances of conventional
beamforming, optimum beamforming, signal and noise subspace methods for calibration
are analysed and compared with the CRLBs versus signal-to-noise ratio (SNR). The main
contributions are: (a) the identification of ML estimation of the complex vector for
ISAR autofocus, (b) the determination of CRLBs for ISAR autofocus and location and

(c) the investigation of statistical performances of developed approaches.

In Chapter 5, novel processing steps for 3D SAR imaging via MPSAR processing are
proposed which include conventional SAR processing, image registration, phase
correction and elevational imaging based on a mathematical model for 3D SAR imaging
using 3D Fourier transform. The advantages of this method over typical InSAR are
highlighted. Computer simulations are conducted and ERS-1 data are processed to verify
the proposed processing steps. The main contribution is the development of new

processing steps for 3D SAR imaging via MPSAR processing.
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In Chapter 6, after an overview of the concepts of image registration, a model for
MPSAR images is derived. A new approach of SAR image registration by use of complex
correlation is developed for image pairs. Then a minimal distance approach and an image
model matching approach are proposed for multiple image registration. The complex
correlation and the image model matching approaches are compared with the conventional
amplitude correlation method by processing real data of ERS-1. The results show that they
register multiple images more precisely than the amplitude correlation method. The main
contributions are the developments of the complex correlation, the minimal distance

and the image model matching approaches for MPSAR image registration.

In Chapter 7, phased array calibration techniques are utilized for the phase correction of
multiple complex SAR images before the formation of focused beams in the elevational
direction. Three methods for phase correction are developed; eigenvector approach,
terrain centroid tracking and strong scatterer reference. The eigenvector approach is the
ML estimation of the phase factor. The terrain centroid tracking is valid for the terrain
where multiple strong scatterers exist whilst the strong scatterer reference is suitable for
the terrain where a dominant strong scatterer is detected. The proposed methods are
verified by processing the ERS-1 data. The main contributions are the developments of
the eigenvector approach, the terrain centroid tracking and the strong scatterer

reference for phase correction of MPSAR processing.

In Chapter 8, the formation and enhancement of elevational beams are studied. Multiple
receiving beams are formed for the elevational resolution which is efficiently implemented
with a discrete Fourier transform (DFT). A window is applied to control sidelobes and
zero-padding prior to DFT is used to increase the number of output beams. The elevational
resolution is enhanced by a maximum entropy data extrapolation or by a subspace method.
The maximum entropy data extrapolation extends the signal series of each pixel across
multiple SAR images forward and backward in the data domain using an auto-regressive
prediction filter. Then Fourier processing of extrapolated data produces a 3D
superresolution image. The subspace method makes use of the orthogonality between the
noise subspace and the signal subspace of covariance matrix of signal series to provide a
superresolution capability. The DFT processing, the maximum entropy data extrapolation
and the subspace method are compared by processing ERS-1 data. The main

contributions are (a) to use the DFT to beamform in elevation, (b) to apply the
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maximum entropy data extrapolation and the subspace method to enhance the

elevational resolution.

In Chapter 9, the thesis is summarised and conclusions are drawn. Topics for further

research are suggested.

There are three appendices. The eigendecomposition of a covariance matrix for ISAR
autofocus is presented in Appendix A. Appendix B derives the solution for eigenvalues
and eigenvectors of a 2x2 covariance matrix. The CRLB of the estimated distance

between two scatterers are derived in Appendix C.




Chapter 2 Background
Information

This chapter introduces some of the concepts associated with Synthetic Aperture Radar
(SAR), Inverse Synthetic Aperture Radar (ISAR), Interferometric Synthetic Aperture
Radar (InSAR) and array processing and provides a background for material presented in
later chapters. The discussion of SAR is very brief. Some good references on SAR are
books by Harger [77] Curlander and McDonough [78] and Wehner M. The descriptions of
ISAR and InSAR are written from a signal processing perspective. Other material on
ISAR and InSAR is available in books "7 and papers (4] [441 1431 Techniques for array
processing including beamforming, subspace methods and array calibration are
overviewed briefly. More detailed discussions on array processing theory are available in

the literature [ [831 11171

2.1 Synthetic Aperture Radar

Radar is an electromagnetic system mainly for the detection and tracking of objects. It
operates by transmitting a particular type of waveform and detecting the nature of the echo
signal to locate the object. However in many classical treatments, information on
structure, shape and size of object is unavailable because the object is considered as a

point target due to limited resolving capability of the radar.

In 1950s, a high resolution coherent radar, SAR, appeared where the object is regarded as

an extended target rather than a point target, which provides a discrimination in range and
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azimuthal directions where a large bandwidth waveform is used to achieve high resolution

in range and a synthetic aperture provides high resolution power in azimuth.

SAR is typically carried on a moving platform which is intended to be used in air-to-
ground imaging of terrain as shown in Figure 2.1. It operates almost independently of
meteorological conditions and sun illumination which makes it most suitable for
topographic mapping and large area surveillance tasks. Both airborne and spaceborne

SAR systems are now widely used.

terrain
swath

Figure 2.1 SAR strip mapping

A simplified block diagram of SAR is shown in Figure 2.2. A wideband signal is
generated by a transmitter and radiated into space by an antenna. A duplexer permits a
single antenna to be used for both transmission and reception. Reflecting objects intercept
and reradiate a portion of the transmitted signal; a small amount of signal returns back to
radar and is collected by the antenna coherently, i.e., the received signal is recorded in
amplitude and phase or in in-phase (I) and quadrature (Q) components. Range processing
produces the high range resolution profiles and azimuthal processing achieves the high

resolution in the azimuth.




Inverse SAR

signal
generation
antenna +
coherent range azimuthal image
™ duplexer | g - = >
receiver processing processing display

Figure 2.2 SAR block diagram

Besides strip mapping as shown in Figure 2.1, many other modes of SAR such as Doppler
Beam Sharpening (DBS)U, squint mode SARM spotlight SAR[] scan SAR!!, inverse
SAR (ISAR)!! and interferometric SAR (InSAR)!"?] have appeared. ISAR and InSAR

will be described below.

2.2 Inverse SAR

ISAR is the inverse mode of SAR 1. It is usually deployed on the earth which can be used
for ground-to-air imaging of non-cooperative moving targets such as missiles, satellites,
aircraft, ships and celestial objects at a long distances no matter whether it is rainy or
foggy, day or night. ISARs have been applied extensively for radio astronomy and military

purposes.

Figure 2.3 shows ISAR imaging an aircraft flying in a straight line. The relative motion
between radar and object can be decomposed into translational motion and rotational
motion 131, The translational motion represents the trajectory motion of a reference point
of the object. The rotational motion denotes the rotation of the object around the reference
point. Only the latter contributes to image formation. The former should be compensated

before image formation; this is called motion compensation.




Chapter 2: Background Information

aircraft

L —

Figure 2.3 ISAR imaging

After the translational motion is removed, ISAR imaging is changed into rotating platform
imaging as shown in Figure 2.4 where a ground-fixed radar is used to image object on

rotating platform. Radar images are produced using the range-Doppler principle [4],

Cra ,_x7
e

o
7_’( radar

Figure 2.4 Rotating platform imaging
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The range resolution t, of ISAR is determined by the bandwidth B, of the transmitted

signal according to following relation

T, = — @.1)

where ¢ is the speed of light. ISAR azimuthal resolution is created by the rotational
motion of object relative to the radar-line-of-sight (RLOS). The azimuthal resolution of
ISAR 1, is related to the angle A8 through which the object rotates relatively to RLOS

during the coherent processing time. The relation between t, and A8 is

A

e = 240

(2.2)
where A denotes the wavelength of the transmitted signal. (2.1) and (2.2) are valid when
the total rotation angle A® is so small that there is no point scatterer on the object which
may move through a range-Doppler resolution celll®). To avoid image degradation caused
by motion through a resolution cell while using the simple range-Doppler analysis, we
must limit the total rotation angle A®. For large rotating angle imaging and near field
imaging[141], the motion of scatterer through the range-Doppler resolution cells should be

compensated 51,

The signal processing used in ISAR imaging can be divided into two steps. The first is
motion compensation which removes the translational motion and simplifies ISAR
imaging into rotating platform imaging. The second step is image formation which
reconstructs the reflectivity distribution of an object. The typical ISAR signal processing
procedure is shown in Figure 2.5. Precise motion compensation is realized by a
combination of range realignment and phase compensation (autofocus). The image

formation includes angular estimation and image reconstruction.

11
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range phase angular image

image formation

I
|
I

reali gnment Compensatl()n estimation reconstruction
|
I
. . I
motion compensation |
I

Figure 2.5 ISAR signal processing procedure

2.3 ISAR Image Formation

2.3.1 Angular Estimation

After motion compensation, ISAR imaging is turned into rotating platform imaging and
ideally the rotating velocity should be constant, implying that the aspect change between
adjacent two pulses is same. However in practical situations, this is usually not the case
(221 and therefore, to precisely image, there is a need to compensate by resampling or
interpolating the aspect samples. Moreover in the case of large rotating angle imaging,
precise knowledge of the rotating angle of the object is required to compensate for the
motion of scatterer through range-Doppler resolution cells 1, Finally the ISAR image
needs to be scaled accurately in both the range and azimuthal dimensions in order to
provide object information such as length, size and shape. Improper scaling in range and
azimuth may result in distortion of the object image, making target classification and
identification difficult. Since the bandwidth of the transmitted signal is totally controlled,
range scaling is not a problem. However, for non-cooperative objects, the cross-range

scaling depends on the unknown aspect angle change and in order to scale the ISAR image

in azimuth, the aspect angle change must be accurately estimated.

The problem of ISAR azimuth scaling was first presented by Prickett and Chen in 1980 [3]
and Chen and Andrews in 1980 9] noticed the influence of angular nonuniformity.
Werness et al. in 1990 [?7] assumed that three prominent scatterers existed in an ISAR

image and used the first point to remove the translational motion, the second one to

12
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measure and compensate for the angular nonuniformity and the third point to estimate the
azimuthal scale factor. However the selection of multiple strong scatterers and
measurement of their phase components were infeasible in practical applications. Bocker
et al. in 1991 U1°] approximated the translational motion and rotational motion with
quadratic polynomials and an iterative procedure was applied to estimate the translational

1281 made use of a

motion and the nonuniform rotational motion. Delisle and Wu in 1994
two-receiver radar to compute the target angular trajectory although this may rarely be a
practical option. We in 1994 [29] developed an approach which was based on the principle
of tomographic imaging and the property of coherent processing to estimate the aspect
angle change from the wideband echo data and gave an improved approach based on
extended-coherent-processing in 1995 (301 Nash in 1994 B1] employed a polar-format-

processing imaging method to determine the aspect angle change.

2.3.2 Image Reconstruction

Image reconstruction is the estimation of the reflectivity distribution of an object by
processing the motion compensated echo data. The simple standard method is FFT range-
Doppler processing [4where the two-dimensional processing is decomposed into two one-
dimensional processings. Fast Fourier transform (FFT) is utilized in the range and azimuth
processing to enhance computational efficiency. The FFT range-Doppler processing
assumes that no point scatterers move through the range-Doppler resolution cells during

the coherent processing time which is only valid for small rotating angle imaging.

An image reconstruction method for large rotating angle imaging is extended-coherent-
processing (ECP) (41321 1 replaces the total coherent interval with a number of small
subintervals in which no point scatterers move through the range-Doppler resolution cells.
With subintervals of such size, the ISAR images can be calculated by the range-Doppler
processing. Then the subimages obtained in each subinterval are aligned in range and
range-rate to account for the relative motion of scatterers occurring between separate
subintervals and coherently summed to produce the extended image of the total coherent

duration.

Walker in 1980 [33] developed another large rotating angle imaging approach known as
polar-format-processing (PFP). After the translational motion is removed, the ISAR image

may be reconstructed by an inverse two-dimensional Fourier transform. In order to exploit

13
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FFT, received signals in polar coordinates are required to be interpolated into Cartesian

coordinates. The interpolation involves two steps; range and azimuthal interpolations.

Munson et al. in 1984 [34 interpreted spotlight-mode SAR as a tomographic
reconstruction problem. By use of the projection-slice theorem of computer-aided
tomography, ISAR image can be reconstructed using the convolution back-propagation

algorithm (CBP) in the case of large rotating angle imaging.

In conventional range-Doppler processing, range resolution and azimuthal resolution can
only be enhanced by increasing the effective bandwidth of the transmitted signal and the
total rotation angle of the object relative to RLOS, respectively. This course of action may
be undesirable in many practical applications of ISAR imaging. An alterative approach for
improving the resolution of ISAR image relies on the use of advanced super-resolution
signal processing methods. This technique will be used to enhance the elevational

resolution in chapter 8.

The maximum entropy method could be used in ISAR imaging (361 A modified approach
which extrapolated the observed data in the forward and backward directions with an
auto-regressive (AR) model and performed the FFT processing over the extended data
was shown to be robust to model order and noise 7. Gupta in 1994 [38] employed a two-
dimensional linear prediction to get super-resolution ISAR images. Nash [31) and Odentaal
et al. [ applied multiple signal classification (MUSIC) spectral estimation to ISAR
imaging. Hua et al. exploited Matrix Pencil (MP) high resolution spectral estimation
techniques to produce super-resolution capability of ISAR [40]. Super-resolution imaging

was formulated as a least square problem and solved by use of a Hopfield neural network
[41]

As an example, ISAR images of Boeing-727 are demonstrated. They were produced by
processing simulated data obtained from Naval Research Laboratory (NRL) of U.S.A.
through the internet. For the simulated data, a stepped frequency waveform was used. The
parameters of simulated data are listed in Table 2.1. Figure 2.6 (a) shows an impressive
image of aircraft by compared with the plan view in Figure 2.6 (b). However if ISAR
motion compensation is undone, the resulting image will be out of focus as shown in
Figure 2.6 (c). Consequently motion compensation plays a key role in ISAR imaging and

is discussed below.
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Table 2.1 Parameters of simulated ISAR data

Object Central frequency | PRF Bandwidth | No. of pulses | No. of range samples
Boeing-727 9 GHz 20 KHz 150 MHz 32 64
ISAR image

30}

251

201

Azimuth

104

]
10 20 30 40 50 60
Range

(a) ISAR image of Boeing-727

(b) Plan view of Boeing-727
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(c) ISAR image of Boeing-727 without motion compensation

Figure 2.6 ISAR images of Boeing-727

2.4 ISAR Motion Compensation

ISAR motion compensation estimates the undesirable translational motion of an object
using the echo data and subsequently compensates for it, thus changing ISAR imaging
into rotating platform imaging. The accuracy of ISAR motion compensation is usually
required to be less than a eighth of wavelength of the transmitted signal. This strict
requirement is usually satisfied by carrying out ISAR motion compensation in two steps;

range realignment and autofocus (phase compensation).

2.4.1 Range Realignment

After range compression of echo data, a series of high resolution range profiles are
obtained. Range walk can occur in these range profiles due to the translational motion of
the object between the transmitted pulses. Range realignment aligns the high resolution
range profiles in the range direction by placing the returns of different pulses from the
same scatterer in the same range cell. It is a coarse compensation of translational motion

and can be simply carried out by tracking a strong scatterer of the object in a short interval
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[6], However this approach will be likely to fail when fluctuations of the target return or

the level of scintillation noise become too high.

Two automatic algorithms were proposed to realign the echo datal®. The first, spatial
domain realignment, assumes that the amplitudes of adjacent range profiles are similar
except for a small range shift due to the tiny change of aspect angle during a pulse
repetition interval (PRI). The peak position of cross-correlation between these range
profiles is used to estimate this small range shift. The second, frequency domain
realignment, supposes that the differences between two adjacent complex range profiles
are the shift of range walk and the phase change due to the motion of the target centre.
Only the first of these differences needs to be estimated for range alignment and phase

correlation in the frequency domain is used to estimate it.

Recently, a Kalman filter has been employed for range realignment (71181 A two or three
state Kalman filter was used to provide the filtered estimates of the range shift. The Hough

transform was applied to range realignment in clutter environment o1,

2.4.2 Autofocus

After range realignment is accomplished, all range walks in range profiles should be less
than half a range resolution cell. The residual error of translational motion is then
minimized by phase compensation which is a fine compensation of translational motion.
Phase compensation is usually called autofocus with the reference point being termed the

focal point. The many ISAR autofocus methods which have appeared are reviewed below.

One simple approach to ISAR autofocus is to choose as the reference point a range cell
containing a strong scatterer'%). The phase exponential function of the reference point in

mth range profile can be estimated by

xnlm

exp {j0p} = | (23)

xnlml
where X m denotes the mth complex range profile resulting from the mth transmitted
pulse and n, is the reference range cell where the strong scatterer is located. All the range
profiles are corrected by the phase factor of the reference point. The reference range cell

(10]

n, can be detected with criteria such as minimal variance maximal average

amplitude, minimal entropy or maximal energy (],
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For a complex target that does not have a stable prominent scatterer, an estimate of the
pulse-to-pulse phase difference of the reference point can be made by taking the phase
differences for each range cell and averaging them weighted by the amplitudes of the
content of each range cell IB1 An alternative is to average the phase differences of only
the range cells which contain a strong scattererl'213] Since both approaches require

phase averaging, it is necessary to unwrap the phase.

The other method of autofocus is to estimate the track parameters of translational motion.

In a short time interval, the phase due to translational motion can be approximated by
~ 2
0, = a; (mT)" + a, (mT) +a,4 (2.9)

where T stands for PRI, a,, a, and a, are track parameters. The track parameters can be
determined by image contrast optinljzation[14] (151 [16] [17] Recently the parameters of
instantaneous frequency have been estimated via the maximum likelihood principle for

ISAR autofocus [18],

Another method based on phase gradient autofocus (PGA) was proposed for SAR phase
error correction ['), It has been used for ISAR autofocus 2% and a two-stage algorithm to

find the ML estimator of translational motion has been developed (211,

The range-Doppler principle assumes that object rotates with a constant velocity around a
fixed axis. However in practical situations, objects such as aircraft and ships are
manoeuvring. Yaw, roll and pitch result in the variations of rotation velocity and rotation
axis. The variation of rotation velocity brings about non-uniform rotating ISAR imaging
(221 and time-frequency analysis has been used in these situations!?3! 241[25] The variation
of rotation axis will change the image plane of ISAR, consequently blurring the ISAR

image[26].

As stated above, many techniques have been proposed for ISAR autofocus. Some of them
depend on the existence of strong scatterers. The others need to unwrap the phase to do
phase averaging or fitting. Most of them are only verified with simulated data and when

applied to real data, some work and some fail.

ISAR autofocus actually eliminates the effect of the undesirable translational motion of
object based on the estimated shape of synthesised aperture which is typically a problem

of array calibration. Whilst techniques of array calibration have been extensively
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developed by the array signal processing community, applying them to ISAR autofocus is
a novelty and thus contributes to the theory of ISAR imaging. In this thesis new
approaches for ISAR autofocus by use of the calibration techniques of antenna array will
be developed and verified with simulated and real data in chapter 3. Their statistical

performances will be investigated in chapter 4.

2.5 Interferometric SAR

As discussed above, SAR is a coherent imaging system in which the 2D complex SAR
image is an estimate of the complex reflectivity of the terrain. InSAR is a technique for
extracting 3D information about target by using the phase content of the 2D complex SAR

images as additional information that can be derived from the radar echo data.

Radar interferometry was first used in observation of the surfaces of Venus and the Moon
in 1969 2! and 1972 131, respectively. Graham in 1974 [44] was the first to introduce
InSAR for a topographic mapping and pointed out that two kinds of information were
required for the production of topographic map. Firstly, the various objects and features to
be mapped must be presented in an image with sufficient resolution to be identified.
Secondly, a three-dimensional measurement of position of a sufficient number of points

must be made to define the terrain surface. In 1986, Zebker and Goldstein [45]

presented
the first practical results of observation with a side-looking airborne radar. Goldstein et al.
in 1988 [0 extended the research from the airborne images to SEASAT satellite
observations. They used data acquired over the Cottonball Basin of Death Valley three
days apart and their resulting topographic map agreed very well with the Geological

Survey maps.

2.5.1 InSAR Principle

InSAR consists of two antenna receivers P, and P, as shown in Figure 2.7. The distance
between P, and P, is called the InSAR baseline B,. P, transmits pulse signals. P, and
P, receive the echo data simultaneously for one flight pass. Thus two complex images of

the same scene can be obtained by typical SAR signal processing.
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Figure 2.7 InNSAR geometry

The phase difference ¢ of returned signals between P, and P, corresponding to a given

scene scatterer A will be expressed as
1
2
90=2(r,-r) = Z%El:(rf +B,” +2r,B,cos (B+ ) ) - rI:I (25)

where r| and r, are the distances of A with respect to P, and P,, respectively. The
parameters that are measured by the radar or are assumed known are r,» H (platform
height), B, o (baseline orientation), A (wavelength) and ¢ (though it is modulo 27).

Hence r,, B (incidence angle) and & (terrain height) can be calculated from the relations

A
r, =r+ (g—n (2.6)
B [ri—B"z—rf] @7)
= arcco§| —m———— [— O 7
ZBarl
and
h = H—r cosB. (2.8)
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Thus the terrain height h, of a given pixel, can be obtained from the measured
interferometric phase ¢. Doing this over the whole image allows a three-dimensional
version of the target scene to be obtained at the same image resolution as the original two-

dimensional SAR images.

Use of a two-antenna system is one way to realize an InSAR system[44]. In this system, a
single data collection pass provides the necessary two-channel data in a controlled
fashion. This single-pass approach provides InSAR data without pass-to-pass alignment
problems and without the possibility of temporal changes in terrain inherent in a two-pass
system. However the two-antenna system requires a second antenna and must handle
twice the data recording rates in order to simultaneously collect the two data streams.

Typically, radome and antenna sizes limit the baseline length of a two-antenna system.

Another way to collect InSAR data is to make two sensor collection passes with a single
antenna system[48]. This approach is known as two pass InSAR. With two pass InSAR, the
¢ in (2.5) is doubled due to two-way propagation. An advantage of this two-pass single-
antenna system is that an existing single-channel SAR sensor can collect InSAR data
without modification. However this technique requires a stable high-performance
navigation subsystem. This subsystem ensures that the two data collection passes have
accurately known and nearly identical data collection geometries with the necessary
baseline separation. A significant disadvantage of this approach is that changes in terrain
condition between passes affect the InSAR phase measurements and ultimately

contaminate the terrain height measurement.

When the InSAR baseline B, is perpendicular to the flight direction, it is called across-
track InSAR and can be used to measure the terrain height as described above. It will be
addressed in this thesis. If the baseline is parallel to flight direction, it is called along-track

InSAR which may be used to measure the scene movement such as the mapping of water

[100] [202][203]

, the detection of moving objects and the measurement of directional

[204] .

currents

wave spectra

Differential InNSAR has been used for the measurement of small-scale movements in
vertical direction and provides a relative accuracy of the order of a few centimetres or

even less. The theory of differential InNSAR was firstly described by Gabriel et al. in 1988

[132]

[131] 1t has been used to measure distortions of earth crust due to earthquake and

[133] [134].

volcano eruptions and to detect small changes in ice sheet motion
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For topographic mapping, the InSAR signal processing procedure is shown in Figure 2.8.
The two SAR images should be processed with the same Doppler parameters to preserve
the coherence of two images. After image registration, the interferogram can be formed by
multiplying one registrated image with the conjugate of the other. Then the absolute phase
is restored by a two-dimensional phase unwrapping procedure. Finally the terrain
elevation can be calculated with (2.5) - (2.8). The critical steps of InSAR signal processing
are image regiétration and phase unwrapping which will be discussed in section 2.6 and

section 2.7, respectively.

SAR 1
imaging
: interferogram hase height
| image S ] T B
™| registration formation unwrapping calculation
SAR 2
imaging [

Figure 2.8 INnSAR signal processing procedure

Computer simulation of interferograms for flat terrain were conducted. In the simulation,
the altitude of satellite was 785 km, baseline 40 m, incidence angle 23°, and radar
wavelength 5.67 cm . Figure 2.9 shows the resulting interferogram. The real data acquired
by the first European Remote Sensing satellite (ERS-1) over the area of Bonn, Germany
with three-day repeat pass were processed. The interferogram is shown in Figure 2.10
where the radar wavelength is 5.67 cm and the baseline is about 45 m. The fringes in
Figure 2.9 are more distinct than those in Figure 2.10. This is due to the limited SNR of

real data and the urban terrain of ERS-1 experimental area.
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Azimuth

Figure 2.9 Simulated interferogram of flat terrain

Azimuth

Figure 2.10 Interferogram of ERS-1 data
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2.5.2 InSAR Error Analysis

Differentiation of (2.8) with respect to H, r» ¢, B,, o and A then allows the height error

to be found as follows

oh
3H =1, (2.9)
ai = —cosf, 2.10)
dar,
oh Ar sinf
on _ : ) (2.11)
[0} 27B sin (o0 + 3)
sin
oh = rysinf , (2.12)
dB, B, tan (ao.+ )
a—ﬁc = —r,sinf, (2.13)
¥, sin
oh _ 15inP (2.14)

oA Mtan (ai+B)°

(2.11), (2.12) and (2.13) show that the estimated height is a sensitive function of phase
difference ¢, baseline B, and baseline orientation o. This means that precise

measurements of phase difference and baseline are required for accurate topographic

mapping.

The phase differences that form the interferogram may be corrupted by phase noise, firstly
due to the finite signal-to-noise ratio in each of the two images, and secondly due to the
temporal decorrelation, and finally due to the baseline decorrelation. The temporal
decorrelation results from the variation of reflectivity of terrain between the two flight
passes[47]. Both nature and humans can significantly alter the terrain through processes
such as precipitation from rainfall or irrigation, wind, plant growth, clearing, construction,
and vehicle incursions. Similarly, tropospheric propagation changes related to weather
change can contribute to temporal decorrelation. The baseline decorrelation is due to the
change of looking angle between two passes and increases with baseline increase. The

critical baseline is the baseline length when statistical correlation between images of two
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flight passes approaches to zero (481 [49] The baseline decorrelation is explained by the

spectral shift of echo data of two flight passes (5011511,

The interferogram also suffers from shadowing or layover. Shadowing occurs when part
of the target scene is invisible to the radar and the corresponding parts of the image consist
of noise. Layover happens when there are two targets located in the same slant range cell.

The signals from those targets are superimposed.

An effective approach to reduce InSAR error is to make use of multiple flight passes. This

will be discussed in chapter 5.

2.6 Image Registration

Image registration is the first step of InSAR processing. It estimates the shifts of two SAR
images in range and azimuth so that an image pair is accurately aligned. The existing
methods of image registration are classified as spatial processing and frequency

processing.

(52]

Spatial processing includes correlation , sequential similarity detection (53]

, and
matched filtering [54] Two-dimensional correlation is a basic statistical approach used in

image registration. The correlation measure is defined as

C, i (Ax, Ay) = D N A (5,0 A, (x+Ax, y+Ay) (2.15)
x oy

where A, (x,y) and A,(x,y) represent the amplitudes of two SAR images and the

normalized correlation measure is expressed as

ZZ[A (x,9) =& ] [A, (x+ Ax, y + Ay) = 4]
C,, (Ax, Ay) = (2.16)

JZZ [A; () —44] Jzz [4y (x,y) A5

where 4, = N N ZZA (x,y), &, = N N ZZA (x,y) and (x,y) are indices in an

N, xN, point wmdow area which is located w1th1n an N, x N, point search area. Figure
2.11 illustrates the relationship between the search area and the window area. In general,

the correlation need be computed for all (N, —N, +1) (Ny, =N, + 1) possible translations
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of the window area within the search area to determine its maximal value and obtain a

translational estimate.

search
area

window
area

Figure 2.11 Relationship between search and window areas

Rotational and scaling search processes must be carried out in addition to translational
search if the angular and scale differences are severe. This costly search procedure can be
simpiified if some control points are available to determine the scale factor and rotation
initially. The scale factor and rotation are then updated from the translational correlation

results. The correlation can be calculated efficiently with the FFT B2],

The second method of spatial processing is to compute the sum of the absolute differences

between two images at each pixel, i.e.,

D, (Ax, Ay) = ZZIAI(x,y) — Ay (x+Ax, y + Ay)| 2.17)
x y

or the normalized measure which is defined as

D, (Ax,Ay) = 3 |4, (%) ~A[-A, (x+Ax, y + Ay) + 4. (2.18)
x Yy

These measures decrease with the degree of similarity; the difference being smallest when
two aligned images are most similar. A far more efficient improvement of this method is a
sequential search strategy. For each window of the image, one of the similarity measures
defined above is accumulated until the threshold is exceeded. For each window the
number of points that are examined before the threshold is exceeded is recorded. The

window which examines the most points is assumed to have the lowest measure and is
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therefore the best registration. This search strategy is actually a fast implementation of the

correlation approach.

The third method of spatial processing is to filter the images prior to correlation. If the
image is noisy, the peak of the correlation may not be discernible. In such cases, the
images should be prefiltered before correlation. The prefilter can be determined if the
noise in the image satisfies certain statistical properties. Techniques which prefilter based
on the properties of the noise of the image in order to maximize the peak correlation with
respect to this noise are called matched filter techniques. Under certain assumptions, the

prefilter is a Laplacian filter or a gradient filter.

Frequency processing searches for the registration parameters in the frequency domain.
One method of frequency processing is phase correlation [531. Given two intensity images

A, and A, with displacement (Ax, Ay) ,l.e.,

A,(x,y) = A (x—Ax,y-Ay), (2.19)
their corresponding Fourier transforms S, (q,, ) and S, (q,, q,) are related by
S,(4,q,) = S;(a, q,) exp {721 (Axq, +Ayq)) } . (2.20)
The phase of the cross-power spectrum of the two images is

S,(4, 4,) 81" (4, 4,)
15, (9,4,)S,* (4,5 4|

= exp {27 (Axq, + quy) 1. (2.21)

By taking the inverse Fourier transform of (2.21), we will have a function which is
approximately zero everywhere except at the displacement which is needed to optimally
register the two images. The other method of frequency processing makes use of the
power cepstrum of image. This method is cumbersome to describe and details are

available 9],

Spatial and frequency processings are both only applicable for image misregistration with
global geometric transformations. In other words, they are suitable to register small
images. In order to register large images with local geometric transformation, control

point mapping or elastic matching techniques need to be used (571,

Recently a number of studies on SAR image registration have been reported. Gabriel and

Goldstein in 1988 8] removed the effect of small path pitch by resampling the image in
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the range direction. Image registration was implemented by finding spectral signal-to-
noise ratio of interference fringes and searching for the existence of maximal peak in the
power spectrum of the fringe. When the corresponding pixels are matched most closely,
the fringes of interferogram are most distinct and strongest. If misalignments exist, the
fringe patterns are noiser and the power spectrum is smoother. Li and Goldstein in 1990
[48] used a statistical correlation of two amplitude images to determine the range and
azimuth pixel offset of any two images. The relative correlation coefficients between two
images at various offsets in range and azimuth were calculated. The offset that produced
maximum correlation was obtained by fitting the correlation coefficients over the discrete
pixel offsets. Lin et al. in 1992 P?! defined an average fluctuation function of phase
difference image on large areas in the interferogram and minimised its values by subpixel
shifting in range and azimuth and scaling in range of the two images. In a recent paper[60],
Fornaro and Franceschetti developed a new image registration procedure implemented at
the raw data processing stage. The two complex SAR images were generated with respect
to a common reference output system. The registration was achieved via a scaling and
shifting compensation that can be efficiently and easily included in a standard SAR
processing code. Homer et al. applied the technique of sign change of subtraction image to
SAR image re gistration[61]. Determination of the optimal parameter associated with image

variation was described.

All the methods described above deal with a pair of SAR images. Multiple image

registration will be investigated in chapter 6.

2.7 Phase Unwrapping

The difference phase of two registrated images, which is directly related to the
topography, is only measured modulo 27m. In order to reconstruct the height
unambiguously, it is necessary to add the appropriate number of cycles of phase, which is

known as phase unwrapping.

The adaptive integration method of phase derivative for one-dimensional phase
unwrapping was proposed by Tribolet!®2!. This can be understood by reference to Figure
2.12(a) which shows a one-dimensional sequence of phase values. The cycle is 1. If we

make the assumption that adjacent phase values can not differ by more than half a cycle, it
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is clear from Figure 2.12(a) that to unwrap the phase, one cycle needs to be added to the

last three values as shown in Figure 2.12(b).

0.50.60.70.80.90.00.10.2 05060.708091.01.11.2

(a) Wrapped phase values (b) Unwrapped phase values

Figure 2.12 One-dimensional phase unwrapping

One of the most successful approach to two-dimensional phase unwrapping was based on
identifying and linking a so-called residuel®). In the case of two-dimensional phase
unwrapping, the consistency of the phase progression around each closed cycle of four
phase values is evaluated, under the same assumption that adjacent values can not differ
by more than half a cycle. In most cases the phase progression is consistent. But
occasionally this is not the case, leading to a positive or negative inconsistency. These
inconsistencies are named residues. The steps of one method for two-dimensional phase
unwrapping, known as the path-following method, includes residue identification, branch
cut determination and phase unwrapping. Figure 2.13 shows an example of two-
dimensional phase unwrapping with the cycle equal to 1: (a) the original phase values, (b)
the residue value matrix, and (c) the result of phase unwrapping where the adjacent phase

is consistent except in the region of branch cut (solid line).

0.6 0.7 0.1 0.3 0.7 0.6 07 1.1 1.3 1.7
0.7 0.8 02 0.4 0.8 LI 07 08 12 1.4 1.8
0.6 0.7 0.3 0.1 0.4 Ol 9050 0.6 0.7\&1.1 1.4
0.5 0.6 0.4 0.7 0.1 RO 0.5 0.6 0.4 0.7 1.1
0.6 0.7 0.6 0.3 0.7 0000 0.6 0.7 0.6 0.3 0.7

(a) Wrapped phase values (b) Residue values  (c) Unwrapped phase values

Figure 2.13 Two-dimensional phase unwrapping

Various approaches to two-dimensional phase unwrapping have been developed which are
classified as path-following and least-square estimation. Prati et al. in 1990 (631 presented

a modified path-following method by exploiting the information of phase and amplitude
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of InSAR image. Lin et al. in 1992 [°] developed a phase unwrapping approach by
detecting the fringe lines in the phase difference image with edge detection techniques.
Gollaro et al. in 1998 7 introduced a statistical approach to phase unwrapping by
searching the phase integration path with a genetic algorithm. Xu and Cumming in 1999
developed an algorithm for determining the phase integration path by use of region-

[135]

growing technique''”~". The concept of multiresolution for phase unwrapping was

introduced by Davidson and Bamler in 1999 [136],

The least-square method of phase unwrapping was firstly described by Hunt in 1979 [64],
Takajo and Takahashi in 1988 [66] gave a new least-squares phase estimation. Fornaro et
al. in 1996 [74] employed the Green’s first identity to do two-dimensional phase
unwrapping. They presented a new algorithm for InSAR phase unwrapping based on the
finite element method in 1997 7?1, Network programming was proposed for two-
dimensional phase unwrapping in 199812311, Other techniques of the least-square method

are available [671-73],

Although many papers on phase unwrapping have appeared, phase unwrapping is still an
area of active research. There remain a host of theoretical as well as practical issues that
are not totally resolved by any present phase unwrapping methodology. Even if this thesis

does not address phase unwrapping, it is suggested for further research.

2.8 Array Processing Fundamentals!?!

Considering sensor arrays immersed in the far-field of a sinusoidal wave with amplitude
b, (1) and carrier frequency o impinging the array from direction 6, , the sensor converts

the signals in the medium to electrical signals. If ¢ is time and (x ) are the

m’ym

coordinates of m th sensor, then the field at the mth sensor z, () can be represented by [2]
. 2T .
z,,(t) = b, (t) exp {jot —J5 (x,c080, +y, sin6,) } . (2.22)

Dropping the carrier term for baseband processing, the output of the mth sensor is

modelled by

27 .
z,, (£) = b, (1) exp {_]T (x,co80, +y, sinB,)} = b, (t)a,(B,). (2.23)
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For an M element array, the vector of the array output is expressed as

Z(t) = b, ()a(6)) (2.24)

where Z(1) = [2,(1), ...z ()17 and a(8) = [a,(8)),...,a, (81 . If K signals

impinge on the array from directions 6, ..., 8, the output vector takes the form

K
Z(1) = Y b (Da(8)) . (2.25)
k=1

In the presence of an additive (baseband) noise W (¢) , we get the model commonly used

in array processing

Z(t) = A0S +W() (2.26)
where A (8) = [a(8,),...,a(8,)] and S(1) = [b, (1), ..., bx(D)] .
Assuming that the incident signals are uncorrelated with the receiver noise, the covariance

matrix of Z (¢) is

H H
C_=E{Z(HZ (} = ACA +C, 2.27)

X

where E{} denotes ensemble average, C, = E{S (1) s? (1) } is the covariance matrix of
signal sources, and C,, = E{W(?) WH(t)} is the covariance matrix of the noise. When
the environment consists of K uncorrelated directional sources and uncorrelated white

noise, we have

C, = diaglp, ..., pgl (2.28)
and
C = cfvl (2.29)

: 2 . : . .
where p, is the power of each source and o, is the variance of white noise.

Based on (2.27), C, is Hermitian symmetrical and positive definite. The eigenvalues of

C, in descending order are always positive numbers, that is,

AMZh,2...22,>0 (2.30)
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and the corresponding eigenvectors u; i=1,..., M are orthogonal, that is,

uﬂu. =9J... (2.31)
The eigen space decomposition of C, can be expressed by

C, = UAUH (2.32)

where U = (uy, ...,uy) and A = diag (A, ..., A;,) . By virture of the orthogonality of the
eigenvectors, the space of receiver outputs can be decomposed into signal subspace and

noise subspace.

Assuming that the number of sensors is larger than that of sources signals, that is, M > K,
the eigenvalues and eigenvectors of C_ can be divided into two sets. The number of
eigenvalues in the first set is equal to the number of these sources and their values are

larger than the power of the white noise; that is,
Az >-~-27*K>wa (2.33)

These eigenvalues are referred to as the signal eigenvalues. The range space of A, which

is called the signal subspace, is spanned by the corresponding eigenvectors.

The eigenvalues in the second set are of equal value. They are independent of the
directional sources and equal to the power of the white noise. These eigenvalues are

referred to as noise eigenvalues. The number of noise eigenvalues is M — K; that is,
Agir = o = Ay =05 (2.34)

The corresponding eigenvectors belonging to the second set span the null space of A"

which is called noise subspace.

Hence the space of receiver outputs can be decomposed into the direct sum of the signal
subspace S = span{a(0,,9,),...,a (0, ¢x)} = span{u,...,u,t and the noise
subspace S, = span{uy, ,,...,u,} . The covariance matrix is decomposed into

c, = UAU +U A U? (2.35)

nn-n
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where A, = diag(A}, ..., p), Ug= (up..oug), A = diag (Ag, > ..»Ay)  and
U = (ug,, ..., u) - The projection matrices onto the signal and noise subspaces are

expressed as

H H, .l H
P,=UU =A(AA) A {2.36)

-1
P =UU =I-AA"A) A" (2.37)

respectively. It can be shown that Pfs =P, PP =P

rn rn’?

and P, +P, = 1.

Thus far it has been assumed that the exact covariance matrix is known. However in
practice the covariance matrix needs to be estimated from a finite number of snapshots N,

and is usually estimated as

¢ = —ZZ(I)ZH(t). (2.38)

¢, = UAU, +U,A,U, (2.39)

where A, and A, are the estimated eigenvalues of signal and noise subspace. U, and U,
are the corresponding estimated eigenvectors. It is noted that the number of signal sources
K is supposed to be known before localisation of signal sources can be conducted.

Techniques for estimating K are available in the literature (103],

2.8.1 Beamforming Methods

Propagating signals in space (wavefronts) contain much information about the sources
that produce them and their temporal and spatiaf characteristics allow us to estimate the
source locations. However other sources in addition to the one of interest usually exist in
the real world and noise always contaminates measured signals. Thus the required signal
processing is to enhance desired signals and attenuate other signals. One means of
enhancement is linear spatial filtering. For propagating signals, temporal and spatial filters

are employed to separate signals according to their frequency content and their directions

of propagation, respectively. Temporal filtering can be accomplished with a single sensor
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but spatial filtering requires an array of sensors which spatially samples the propagation

field.

The term beamforming [2 1171

refers to a spatial filter designed to constructively reinforce
a signal radiating from a specific direction and suppress signals from other directions.
Beamforming algorithms use constructive interference to focus the array’s spatial filter
toward desired directions algorithmically rather than physically. In this thesis, the
beamforming by phase shifting narrow-band receiver outputs is considered. The

conventional beamforming output of the phase shift beamformer is expressed as
1 H
y(t,0) = 7 (0)Z(r) (2.40)

where v(8) = [v,(8),...,v,,(8)] " is the vector of weights (the steering complex vector)
2r(i—1)d;sin®

A
direction and d, the element space of an equispaced linear array. If Z(7) is a vector of

for forming a beam in direction 6, v,(8) = exp {j }, 6 the steering

random variables, it follows that y (z, ) is a random function. The mean output power of

the heam cteared
CANMMMSIESIESS

Tiiv s

P_(8) = E{ly(1,0)"} = #VH(B) C.v(8). (2.41)

This conventional beamformer may be viewed as a spatial matched filter when the spatial

noise is white.

The optimum beamformer has weights that optimize the signal processing in some way.
For example, minimum power with constraint (MPWC) beamformer minimises the output
power of the beamformer subject to the constraint that the output due to a signal from a
chosen steering 6, is held constant. Other optimum processors 2! have been proposed with
different criteria for optimization such as maximum array gain (MAG), maximum
likelihood (ML) criterion and minimum mean-square error (MMSE). The weights for
these optimum beamformers are listed in Table 2.2 where p is a scaling factor and r.g 18

the correlation coefficient between the desired signal and the array output.
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Table 2.2 Weights for optimum beamformers

Type MAG ML MPWC MMSE
Weights | pC,,"lv(8y) Cy, VO/(VO)C, V(Bp) | ClvB(vBC, IO | Cy'ryg

2.8.2 Subspace Methods

Subspace methods have been used successfully in array processing to estimate the
directions of arrival (DoA) of plane wave signals incident upon a sensor array [851 They
are a natural extension of beamforming approaches and utilise geometric properties of an
assumed plane wave model to provide a formal analytic framework for further theoretical
development and a computational framework for the practical applications. The
covariance matrix plays a key role in defining the subspaces of interest. Subspace methods
have a theoretical resolution that is not limited by the aperture of the array, or the SNR.
They originated from Pisarenko’s method (1291 The popular multiple signal classification

(MUSIC) 194 approach is

1
H PN § ’
a ®U,U,a(6)

Prusic(®) = (2.42)

where U, are the eigenvectors defined in (2.39). MUSIC will be used to enhance the
elevational imaging in chapter 8. Other methods such as estimation of signal parameters

via rotational invariance techniques (ESPRIT) (18] and weighted subspace fitting

(WSF)[Hg] have been developed.

2.8.3 Array Calibration

The problem of array calibration has been considered in various fields. Examples of array

[122], radio cameras 123 [86],

[125]

calibration application are in telescopes
[124]

, sonar towed arrays

synthetic aperture sonar , over-the-horizon radar , Space-time adaptive processing
(STAP) [126] ultrasound arrays [127) and magnetic resonance imaging [128] Many
techniques have been developed for array calibration and they may be classified as active
or passive methods. The active ones make use of sources in known directions (1201 The
most common passive method is to utilize other assisted measurements. However it is

subject to the accuracy limitation of measurement devices. Appealing passive methods are
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the data-driven techniques which includes sharpness!!??l, closure phase

[143]

[142]

beamforming and subspace methods[®]. The sharpness and closure phase methods
were used successfully in radio astronomy. The beamforming and subspace approaches
have been applied to towed sonar array shape estimation. They will be employed for ISAR

autofocus and phase correction of MPSAR in later chapters.

2.9 Summary

This chapter introduced many important concepts that are to be used throughout the thesis.
We began with a simplified description of the SAR system block diagram. The range
resolution is obtained by transmitting wideband signals. The azimuthal resolution is

achieved by synthesising the aperture introduced by the motion of the radar.

Then ISAR was introduced. The range resolution relies on the bandwidth of transmitted
signals and the azimuthal resolution is determined by the rotation angle of object relative
to RLOS. Examples of ISAR images of Boeing-727 were demonstrated by processing
simulated data of NRL and illustrated the importance of motion compensation in the
image formation steps of ISAR processing. Existing techniques of ISAR image formation
and motion compensation methods were discussed in detail and autofocus was identified

as the topic to be further researched in later chapters.

Next the principle of INSAR was described. It is based on the coherence of SAR images
and calculates the elevation of terrain with the unwrapped phase of interferogram.
Examples of interferograms were shown by processing simulated and real data. Image
registration and phase unwrapping are the critical issues of InSAR processing. They were
reviewed in detail and image registration was identified as an important topic to be studied
for MPSAR. Although phase unwrapping is obviated in MPSAR processing as described
in chapter 5, it is still not yet solved thoroughly and is recommended for further

development.

Finally the techniques for array processing were highlighted. They included beamforming,
subspace methods and array calibration. They are employed in this thesis for calibrating

ISAR and MPSAR.
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Chapter 3 Array Processing
Approaches for ISAR
Autofocus

3.1 Introduction

The use of an array of sensors allows many advantages over the use of single sensor. Array

processing approaches including beamforming and subspace methods have been used for

sensor arrays in many fields such as radar (it [112] [113].

[114]

sonar
[115]

, seismic exploration

[116] and laser

biomedical imaging , wireless communications , radio astronomy
[159] to detect weak signals, to resolve closely-spaced targets and to estimate the bearing
and other properties of a signal source. Beamforming involves the steering of a beam to
obtain a spatial spectrum from which the signal bearings can be estimated and provides
gain for the detection of weak signals. Subspace methods make use of the eigenstructure
of the covariance matrix of received signals and its properties. They are based on the fact
that the signal subspace intersects the array manifold at locations corresponding to the
direction of signals. This chapter describes how to apply conventional beamforming,

optimum beamforming, signal subspace and noise subspace methods to ISAR autofocus.

Section 3.2 derives a signal model of ISAR autofocus by use of a point scatterer model.
Two new approaches for ISAR autofocus are developed in section 3.3 based on
maximizing the output powers of conventional and optimum beamformers. Section 3.4
presents two new approaches for ISAR autofocus by use of the signal and noise subspaces.
A subaperture processing scheme is described in section 3.5. Simulated data and real data
are processed for both one-dimensional and two-dimensional ISAR imaging in section 3.6

and section 3.7, respectively.
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3.2 Signal Model of ISAR Autofocus

When an object such as an aircraft is illuminated by a radar, the backscattered radiation
may be determined from Maxwell’s equations. However the exact solutions of Maxwell’s
equations are often too sophisticated to use for complex objects and the backscatter from a
complex object is determined using the principles of specular, diffractive, multiple or
travelling wave scatterings[gol. Travelling wave scattering is significant only when the
wavelength of the incident radiation is similar to the object size which is not the case for
the microwave frequencies considered here. Multiple scattering is caused by cavity
structures of an object and is a weak part of backscatter which is only important in some
specific applications such as radar target classification. Normally specular scattering and
diffractive scattering account for the majority of backscatter from aircraft, with the former
usually being much larger in amplitude than the latter. Therefore it is usually a good

approximation to only consider the specular scattering.

For a distributed target, we define p(x,y) dxdy to be the overall reflectivity of the
differential area located at (x,y) on the object where, for convenience, p (x,y) includes

propagation effects and other gains. The received signal due to this differential area is
An
dsy, (%) = p (6 y) exp{—f;r (% y)} dxdy @.1)

where r (x,y) is the distance from the radar to (x,y) when /th frequency signal f, of the
mth pulse is sent. By combining the received contribution from all parts of the object, the

total received signal becomes
A4n
Sim = [ [P (53) exp {5 =fr (x,3) } dx dy ©2)

where the integration is taken over the region occupied by the object.

For a complex object, p (x,y) is actually a function of aspect angle due to shadowing and
other effects and is also dependent on the frequency of the transmitted signal.
Nevertheless for ease of analysis, it is assumed that p (x,y) in (3.2) is independent of the
illuminating frequency and aspect angle. These assumptions are quite accurate for ISAR
because the object is viewed over a narrow range of viewing angles and a small relative

bandwidth (the ratio of bandwidth to centre frequency) is used.
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In principle, an exact representation of (3.2) implies an infinite number of point scatterers.
However, since noise and system imperfections prevent making exact measurements, the
approximation of an object by a finite and manageable number of point scatterers plus
noise may be entirely adequate for microwave frequency [81] Therefore the discrete

version of (3.2) can be written as
_ AT
Sim = zk:PkeXP T kimd ¥ Wim (3.3)

where w,,, is an additive noise in frequency domain.

Suppose that a moving object is flying in a straight line ox as shown in Figure 3.1. The
motion of a rigid object can be decomposed into two parts: translational motion of a
certain reference point o on the object and rotational motion of the object about the point
o . Let the Cartesian coordinates xoy be fixed on the object with range along the y -axis
and cross-range along the x-axis when the object is at its closest point of approach to the
radar. The radar transmits M stepped-frequency bursts. The aspect angle of the object
relative to the RLOS and the distance from the radar to the point 0 when the m th burst is

sent are represented by 6, and R, , respectively, where m = 0,...,M -1 .

y o A RLOS
I

Iy o (XY1)
L 57
——————— B
X

Radar

Figure 3.1 ISAR imaging geometry
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Assume that the received signals can be approximated by using K scatterers on the object.
The kth scatterer is situated at a distance r,,, from the radar when the m th burst is sent.
The range between radar and the kth scatterer with coordinate (rp Y or (x,y,) as

shown in Figure 3.1 is given by

2 2 . 2
Tem = [R0m+rk+2R0mrks1n (6m+yk):| . (3.4)

If the distance to the object is much larger than the size of the object, that is, R, » r,, we

have the approximation;

Tim=R,,, + %800, +y cosB, . (3.5)

Let p, denote the complex reflected signal of the kth scatterer which is assumed to be
constant with changes in the illuminating frequency and the aspect angle. For each burst,
L stepped frequencies f, = fy+IAf, 1 = 0,...,L—1 , are used where f, and Af are the
initial frequency and the frequency step, respectively. The received signal resulting from
the k th scatterer and the /th illuminating frequency during the m th burst can be written as
P, EXPp {—j%nf,rkm} . The total received signal s, caused by the Ith illuminating

frequency of the m th burst is

K
A4m
Sim = Z P, eXp {—]?flrkm} tw,, = Z prexp { ] (fo+lAj) Temd T Wi (3.6)
k=1 k=1

After the pulse compression in the range direction using an inverse discrete Fourier
transform (IDFT) 11 and substitution of (3.5) and (3.6), the complex envelope in the nth

range cell of the m th burst becomes

L-1
2T
Xy = z 51, €EXP {jfl’ll}
1=0

2 4
z pyexp { J forkm} 2 exp {J(—nn - —nAf rkm)l} +w, 3.7)

k=1 =0

An
exp {_J_c'foRom} €t W

where
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K
4n .
€pm = 2 PLEXP {—J—C—fO (x,sin8, +y,cosO, )}
k=1
sin |:L( % - 2T;Afrkm)j| I .

exp 1 (L- 1) (2 -2, )y

w,, m=0.,M-1 n=0.,N-1 is the complex envelope of the additive noise
and N is the total number of range cells. We assume that w',  is independent identically

. . - . . . 2
distributed complex Gaussian noise components with zero mean and variance o, .

(3.7) indicates that the ISAR received signal consists of two terms. One is
exp {—jfcitfoRom} induced by the translational motion of object which should be
compensated prior to image formation. The other is e, , corresponding to the rotational

motion of object, is used to construct the ISAR image.

Following range compression, range realignment is done to align the high resolution range
profiles in the range direction so that the returns of different pulses from the same scatterer
lie in the same range cell. After range realignment is accomplished, it holds that
Temet) Elem M = 0,...,M—-2. If only the translational motion for ISAR autofocus is
considered and the rotational motion for image formation is ignored[6], a good
approximation is that two adjacent pulses have approximate equal value of aspect angle,
that is, 6, ,, =6, m =0,..,M-2. These approximations, discussed below, allow the

signal model x, of ISAR autofocus to be written as
AT .
X, = eXp {_]—C_fORom} €0t W (3.9)

where

K
AT .
e,0= 2 pLEXP {—]?fo (x,sin0, +y,cosB;) }
k=1

5 nn  2WAf ] : (3.10)
- [L( L c ko :l nn  2RAf )
- Tk )}

(=) e

The complex envelope vector in the nth range cell can be expressed as the desired signal

model
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X, =eD+W, (3.11)

where X, = [x,, X mo ) T, W, = [w,...w, (M_l)] T, A is the wavelength
T

corresponding to f,, and D = [exp {—j%Roo}, ..y EXP {—j%nRo (M_l)}:l which is the

complex vector that ISAR autofocus needs to estimate. (3.11) is the vector form of signal

model for ISAR autofocus.

Although the above signal model is derived by use of a stepped frequency waveform, it is
straightforward to generalize it to other signal waveforms such as the short pulse and chirp
pulse-compression waveforms. It is noted that a similar signal model has been used for

[82] rather than ISAR autofocus. The above derivation shows that the

SAR phase error
signal model (3.11) is valid after both the range compression and the range realignment
have been accomplished for ISAR autofocus. Finally it is worth noticing that the complex

vector D is space invariant and does not correspond to a particular strong scatterer.

In order to satisfy the approximation 6 the phase variation induced by the

mel= em ?
rotational motion should be less than m/2 corresponding to a range error of A/8 41,
Consider two adjacent mth and m + 1 th pulses; the exact signal returns from one scatterer

are

o
|

4n .
= p,exp {—]T (x,sin®, +y cosO )}

. nn  2RAf
sin I:L(T - Trkm):l (3.12)

Sin[(%_szrk )] exp {j(L_l)(nn Zn_célcrkm)}
= Tim

nm

T

A4rn .
€nim+1) = P1EXP {_JT (x,8in6, , , +y,cos6 _.,)}

. nn  2nAf
S‘“[L[T*_c""kwwn)] _— (ﬂ:n 2mAf E
. nn 2mAf exp{j(L-1) i A rk{m+1))}

Slnl: f_ ¢ rk{m+|) :|

and the phase variation due to the rotational motion is

Ad, = 47“[);1 (sin®, . —sin6, ) +y, (cosB, —cos6 )]. (3.14)

Limiting A¢, to be less than /2, we have a strict constraint

42



Signal Model of ISAR Autofocus

lxl (sin@,,, - sin(-)m)l + |y1 (cosB, ., — cos(-)m)| < % (3.15)

By use of sin (86,/2) =36,,/2 for small 86,,/2 where %6, =26,,,-6,,wehave

A
00 < - : 3.16
m <8 {[x,cos [ (8, +8,,,) /2| +p,sin [ (8, +6, ) /21[} (®16)
Thus the sample interval I of the synthetic aperture must satisfy
AR,
I.=R,86, < (3.17)

8 {[x,cos [(8,,+6,, ) /21 +[y;sin[ (8, +6,,)/2][}

where R is the distance between the radar and object. Figure 3.2 shows the required
sampling interval versus ©, +6,,, where the parameters are chosen as A = 3cm,
x, = lm and y; = 1 m. It indicates that the required sampling interval decreases as the
aspect angle increases. The minimum sampling intervals are 26.51m and 79.53 m when

the R, equals to 10km and 30km, respectively. This condition can be met by increasing
8s {|x,cos{(B_+0 /21| +|y,;sin[(0_+6 /2
the PRF to satisfy PRF > o Apricos LGB, ;3)"? [p15in 008, + 8, 1) 721}
o

m+1)

where s, is the speed of the object.

T
— - Ro=10km
— Ro=30km

1401 1

120
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10 20 a0 40 50 60 70 ) 90
Qm* O m«1  (degree)

Figure 3.2 Sampling interval versus aspect angle
One requirement for range realignment to satisfy the approximation r, ., .y =1y, is that

the variation of relative position between scatterers in range profile should be less than one

range resolution cell. Consider an example of two scatterers as shown in Figure 3.3, they
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are at first located at A and B. During the interval of two adjacent pulses, they rotate to
positions A; and B;. The initial and final projections of two scatterers on range direction
(y axis) are dcos®, and dcos®,, ,, respectively where d is the distance between two
scatterers. The variation of relative position between two scatterers in range profiles needs
to satisfy d|cosem L1~ Cos 9m| <1, where 1, is the range resolution. By use of

sin (86,,) = 66, , this relation becomes

T

r

86, < dsin[ (6 +6

m m+ 1

73] (3.18)

This is a weak requirement as compared with (3.16) if A<, .

y
A

A

. . A
s

Ot
a
Y .
s
. X
Fd
B,
B

Figure 3.3 Position variation of two scatterers

In standard ISAR autofocusing algorithms, R, is estimated and the range aligned signals
are corrected with the phase term exp { —j47nR0m} . However, from (3.11) it can be seen
that for the above signal model, we only need to work with the Xpm = X,m€Xp { j%z—tRom} .
Thus it is unnecessary to estimate R, ~and all that is required is an estimate of
exp { j4—}ch0 =) » Obviating the need for phase unwrapping. In this thesis, we will develop
new approaches for estimating the exp {—j4TnR0m} m = 0,...,M-1 ,thatis the complex
vector D rather than R . The block diagram of ISAR processing without phase

unwrapping is shown in Figure 3.4.
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range range complex signal
compression realignment vector estimation
complex signal azimuth
N .
vector compensation processing

Figure 3.4 ISAR processing without phase unwrapping

3.3 Beamforming Methods for ISAR Autofocus

It is assumed that the conventional beamformer with uniform shading across the array sets

the weights to be equal to the steering vector (21 In conventional beamforming the steering

vector is parameterized by the steering angle; however for the present application it is

parameterized by the R, namely, the range between the radar and the object when the

m th burst is transmitted. Loosely, this may be thought of as beamforming in range. Thus

the beamforming weight vector v is defined as
T
v =[vgv, ...,v(M_l)] (3.19)

AT . .
where v, = exp {—]—xRom} ,m=0,1,...,M—1. As discussed above it is not necessary
to determine the R, only the v, to carry out autofocus. We consider a number of

methods for doing so when the covariance matrix C, is known in this and next sections.

3.3.1 Conventional Beamforming Approach
The output of the conventional beamformer is given by

H

1
P = A7V Cy (3.20)

where H denotes the Hermitian transpose and C is the covariance matrix of the signal

vector in the nth range cell. Based on (3.11), we have
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H 2
C,=p,DD +0,.1, (3.21)

where 1), is an M x M identity matrix and p, = |en0|2. Then P, becomes

2
(o}

P, = 22, ppHy 4 (3.22)
v M

which, apart from an arbitrary scaling parameter, is maximized with the constraint
vy = M when

Vopil = D. (3.23)
(3.23) means that when the unknown translational motion phase matches the actual

translational motion phase, P, attains its maximum

(3.24)

T
1

=
-
>
-
3
-
bl
>
0]
s
)
>
)
e
5
.

of the conventional beamformer will decrease.

As an example, computer simulations were conducted to calculate the output power of
conventional beamformer. In the simulation, we assumed a point scatterer flying in a
straight line at a constant speed s, = 200 m/s. The initial range R , and initial aspect
angle 6, were 30 km and 0° respectively, as shown in Figure 3.1. A coherent radar
transmitted a narrowband waveform with central frequency 10 GHz and pulse-repetition-
interval (PRI) 7 = 1/400s. The number of the transmitted waveforms M was 1024. In
order to display the variation of beamformer output the range from the object to the radar,
R,,.» when mth pulse is transmitted is approximated by R,, = R, + (sva)Z/ (2R,,) -
The steering vector is thus a function of R , and s, . Figure 3.5 shows the output power of
the conventional beamformer versus speed. It indicates that although the output power has
many local maxima, the output power achieves its global maximum when the search speed
is equal to the true value. The output power is asymmetrical with respect to the search

speed.
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Figure 3.5 Output power P, of conventional beamformer

The conventional beamforming method for ISAR autofocus can be expressed as

maximization of the conventional beamformer output, that is,

H
max { sz Cov} (3.25)
M

subject to the constraint vy = M. The above optimization can be combined in a single

equation

€ = %vHva— 1 [vHv—M] (3.26)

where p is a Lagrange multipler. By taking the gradient with respect to v and setting it to

zero, we have
Cv—-uv = 0. (3.27)

Thus p and v are found to be the eigenvalue and eigenvector of C,, respectively.
Substituting (3.27) into (3.25), we get
A

1 HC A,
max{A7v V= max{M} = (3.28)
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where A, is the eigenvalue of C, and A, is the maximum eigenvalue of C, and the
maximizing phases are given by the components of the eigenvector corresponding to the

maximum eigenvalue.

3.3.2 Optimum Beamforming Approach

Four optimum beamformers, maximum array gain, maximum likelihood, minimum power
with constraint and minimum mean-square error, are described in section 2.8.1. If a
scaling parameter is selected properly, the maximum array gain beamformer is equivalent
to the maximum likelihood beamformer and the minimum mean-square error beamformer
is equivalent to the minimum power with constraint beamformer. The maximum
likelihood beamformer looks like the minimum power with constraint beamformer except
replacing C, with C,, (the covariance matrix of the received noise). Based on the signal
model for ISAR autofocus, it is easily verified that the four optimum beamformers are

equivalent (2] The output power of an optimum beamformer is given by

P, = L"“Cx"’) . (3.29)
The special form of C, as given by (3.21) allows its inverse to be written in the form[?33
2
-1 -2 p,/0 H
C, =o,l,-———DD". (3.30)
o,+Mp,
Then the output power of the optimum beamformer turns into
| » /s -1
P = {G;ZM - Z"—WvHDDHv} : (3.31)
c,+Mp,

and by inspection this achieves its maximal value at the same point as the conventional

beamformer apart from a scaling factor, i.e., when

Vopr = D | (3.32)

with a maximal value of

SKN

Pomax =p, + (3:33)
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Figure 3.6 shows the output power P, of the optimum beamformer as a function of speed.
The parameters of simulation are the same as in section 3.3.1. It is indicated that the
beamwidth of the optimum beamformer is narrower than that of conventional
beamformer, the sidelobe level of optimal beamformer is lower than that of conventional

beamformer, and the local maximum is reduced.

Beamformer Output (dB})

=30

i 1 i I 1
120 140 160 180 200 220 240 260 280
Speed (m/s)

Figure 3.6 Output power P, of optimum beamformer
The optimum beamforming weights for ISAR autofocus are the v that give
max {(vHC;lv)_l } (3.34)
with constraint v'v = M which is equivalent to
min {v"C_'v} (3.35)

subject to v v = M. This constrained optimization can be converted into an unconstrained

optimization by defining the function

£ = %VHC;lv—u[vHv—M]. (3.36)

49



Chapter 3: Array Processing Approaches for ISAR Autofocus

By setting Ve = 0, we have
C;Iv— w = 0. (3.37)

Thus p and v are identified to be the eigenvalue and eigenvector of C;l , respectively. As

C, is Hermitian symmetrical and positive definite, the eigen decomposition of C, has the

form
M
C, = 2 }"iuiu?‘ (3.38)
i=1
The inverse of C, can be expressed as
d 1
C;' = 2 —uiufl, (3.39)

Therefore 1/ and v are found to be the eigenvalue and eigenvector of C,, respectively.

Then (3.34) is changed into

(3.40)

g

max{(vHC;lv)—l} = max{(%)_l} =

when the estimated steering vector v is equal to the eigenvector u, of C, corresponding to

the maximal eigenvalue, that is,

V=u,. (3.41)

Thus both the conventional and optimum approaches require the solution of an

eigenvector problem.

3.4 Subspace Methods for ISAR Autofocus

Based on the ISAR autofocus signal model (3.11), the covariance matrix of the received

signal is rewritten as

C, = anDH + cfvl iy (3.42)
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where p, and cfv are the powers of signal and noise, respectively. D is the complex vector
of translational motion and 1,, is the identity matrix. It is shown in Appendix A that the

largest eigenvalue of C is
7
A, =pM+oc, (3.43)
and its corresponding eigenvector is

u, = (3.44)
and all the other eigenvalues are equal to va. Therefore the dimensions of signal subspace

and noise subspace are equal to 1 and M — 1, respectively, for ISAR autofocus.

In order to visualize, consider an example where three pulses are transmitted by the radar,
that is, M = 3. The signal and noise subspaces may be represented as shown in Figure
3.7. The signal subspace is a one-dimensional space (x, axis in the diagram) and the noise
subspace is the u,u, plane. The array manifold, defined as the locus of the steering vector,
is a spherical surface with the constraint vy = 3 and intersects the signal subspace at
point ¢ when the steering vector v points to the complex vector D as shown in Figure 3.7.
At the point c the steering vector v has a maximum projection length onto the signal
subspace and a minimum projection onto the noise subspace. These properties are the

principles of the signal and noise subspace methods described below.

uy

=

signal subspace
—_— array manifold

noise subspace

Figure 3.7 Eigen-space decomposition for ISAR autofocus
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3.4.1 Signal Subspace Approach

The third new approach for ISAR autofocus is to exploit the signal subspace. The
projection of the steering vector v onto the signal subspace is P, v. The projection matrix

P, onto the signal subspace may be expressed as

Bam —=a <4 (3.45)

which has eigenvalues of 1 and 0. The signal subspace approach for ISAR autofocus is to

maximize the projection of the steering vector on the signal subspace, that is,

max ||P”v||2 Vv (3.46)
with constraint v''v = M where Il ]| is the Euclidean norm. Noting the Pfs =P, ., (3.46)
is equivalent to
H
max {v P, v} (3.47)

subject to vy = M. This optimization happens when the steering vector equals the

eigenvector corresponding to the maximal eigenvalue of P, , that is,

(3.48)

SE

3.4.2 Noise Subspace Approach

The fourth new approach for ISAR autofocus makes use of the noise subspace. The
dimension of the noise subspace is M -1 and their corresponding eigenvectors are

denoted by u,, ..., u,, . The projection matrix P, onto the noise subspace is
_ H
P,, = (uy ..., Upg) (Ugs -5 ttyy) . (3.49)

The projection of the vector v onto the noise subspace is P,_v. The noise subspace
approach for ISAR autofocus is to minimize the projection of the steering vector on the

noise subspace, namely,
) 2
min “P mv” Yv (3.50)

with constraint v"'v = M which is equivalent to
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min {vHva} (3.51)

H
subject to vy = M. With the relation of P, =1- 21\17)_ , this minimum occurs if

(3.52)

SE

Theoretically the noise subspace approach is equivalent to the signal subspace approach.
However in practice numeric computation occasionally results in some differences

between them.

3.5 Subaperture Processing

Subaperture or subarray processing techniques have been proposed for spatially
smoothing the covariance matrix in array processing when the signal sources are
correlated [1061 11071, They have also used for estimating the shape of a towed array (1451
Subaperture processing is used here to improve computational efficiency. Subaperture
processing of ISAR autofocus first divides the entire synthesized aperture into many
subapertures which are connected through a sampled aperture point (circle point) as
shown in Figure 3.8, then conducts the beamforming or subspace processing for each
subaperture to estimate the complex signal vector corresponding to each subaperture, and

finally restores the complex signal vector for ISAR autofocus by summing the phases of

subapertures through the connecting point.

Subaperture / |

I | S Subaperture Ns |
| Subaperture 2 | [ I
| |

Figure 3.8 Subaperture arrangement
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The main advantage of subaperture processing is the reduction of computational load. The
number of numerical operations required to perform matrix eigendecomposition is
approximately proportional to the cube of the size of the matrix. For example if an M
pulse aperture is segmented into N_ subapertures with the same size of M, pulses, the
reduction ratio of computational complexity is M/ (NSM:J. The smaller each
subaperture, the greater reduction in computation. But subaperture processing is at the
expense of a small increase of the CRLB of D when the SNR is small as discussed in the

next chapter.

There are many schemes to determine the subapertures. Consider an extreme case where
each subaperture has two pulses, that is, M =2 and N, = M-1. For the mth

subaperture, the covariance matrix in the »th range cell is expressed as

Axn
1 exp {JT (Ro(m+1) _Rom)}

C,=p, + csfvl2 (3.53)

Ar
exp {—]T (Ro (m+1) —Rom) } I

and the eigenvector corresponding to the largest eigenvalue of C, is

1

U = (3.54)

Arn :
Exp {_JT (Ro (m+1) _Rom) }

However in practice the covariance matrix has to be estimated by range cell averaging,

that is,

N
A 1 Xnm
Cx - 1—\} Z l:xnm’k Xn (m+ 1)*] * (3.55)

the eigenvector corresponding to the largest eigenvalue of C , derived in Appendix B, is

1

_ N
1 *
Py Z *nm xn(m+1)

n=1

A

i (3.56)

where p, is a scalar as shown in Appendix B. Thus we have an estimation
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N

2 Xnm J"n(m+1)

n=1

; (3.57)

N
AT A A
exp {—]7 (Roym+1y —Rom) } = ( z X X (m+ 1)}/
n=1
Finally the elements of the estimated complex signal vector for the entire aperture can be

restored by summing the phase difference between adjacent subarrays, namely,
.2 .2 AT A 2
exp {jOm+1} = exp {jOn} exp {_JT (Ro(m+1) —Rom) } (3.58)

where D = [exp (jby), ..., exp Gdy_1)]  and &y = 0. (3.57) and (3.58) indicate that
when each subaperture is composed of two pulses, the eigendecomposition of the
covariance matrix can be obviated and replaced with the operations in the data domain to
estimate the complex vector of the entire aperture which results in a significant reduction

of computation.

3.6 Computer Simulation

Computer simulations were conducted to verify the validity of beamforming and subspace
approaches for ISAR autofocus. One-dimensional and two-dimensional ISAR imaging
were both simulated. In the case of one-dimensional ISAR imaging, a narrowband signal
rather than a wideband signal was used resulting in high resolution only in cross-range.
One-dimensional version of the ISAR technique could be applied directly to a narrow
coherent radar to enhance the cross-range resolution. For two-dimensional ISAR imaging,
a wideband signal was used which produced a two-dimensional high resolution ISAR

image in range and cross-range directions.

3.6.1 One-dimensional ISAR Imaging

The developed beamforming and subspace approaches were illustrated by simulation with
a simple target consisting of two point scatterers 15 m apart in cross-range, flying in a
straight line at constant velocity 200 m/s . The initial range R , and initial aspect angle 6
were 30 km and 0°, respectively as shown in Figure 3.1. A coherent radar transmitted a
narrowband waveform with central frequency 10 GHz and pulse-repetition-frequency
(PRF) 400 Hz. The number of the transmitted waveforms M was 1024. The received

signal was represented by
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2
A4n
Sp = Z PreXp {_JTfOrkm} +w, (3.59)
k=1
where p; = p, = 1 and w, was complex Gaussian noise such that the signal-to-noise
ratio (SNR) was 20 dB. The covariance matrix was estimated by averaging 10 time

samples.

Figure 3.9 shows the cross-range ISAR images: (a) is the unfocused image (i.e. the DFT
amplitude of the received signal), (b) is the ideal focused image (i.e. using zero noise and
known R, to effect perfect focusing), (c) is the focused image with the conventional
beamforming approach, (d) is the focused image with the optimum beamforming
approach, (e) is the focused image with the signal subspace approach, (f) is the focused
image with the noise subspace approach and (g) is the focused image with the image
contrast method recently proposed[16][17]. The cross-range resolution is 0.88 m. (a) is out
of focus because the two point scatterers disappear. Compared with (a), the focused
qualities of (c), (d), () and (f) are highly marked. Moreover (c), (d), (¢) and (f) are in good

agreement with (b) and (g).
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(c) Focused image with the conventional beamforming approach
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(f) Focused image with the noise subspace approach
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Figure 3.9 Cross-range ISAR images of simulated data

140

59



Chapter 3: Array Processing Approaches for ISAR Autofocus

3.6.2 Two-dimensional ISAR Imaging

As an example of two-dimensional ISAR imaging simulation, the scattering model of an
aircraft is shown in Figure 3.10. The return from the aircraft was assumed to be dominated
by scattering from its nose, engine intakes and exhausts, wing pods and horizontal
stabiliser extremities with metre coordinates (11,0), (0,2), (0,-2), (-3.3,2),
(-33,-2), (0,8), (0,-8), (-9,3), and (-9,-3). The reflectivities of the nine
scatterers were equal. The radar transmitted a stepped-frequency waveform with an
effective bandwidth of 50 MHz which resulted in 3 m range resolution. The number of
stepped frequencies was 16 and the radar wavelength was 3 cm. The initial distance
between the radar and the aircraft was 30 km and the initial aspect angle was 0° as shown
in Figure 3.1. The aircraft was flying in a straight line with a speed of 200 m/s. The total

change of angle was 038" which provided a 2 m resolution in cross-range.

The received signals were generated by (3.6) with SNR = 1010g[ i pi/ Gij = 20dB.
They were processed by range compression, range realignment, Aitofocus and range-
Doppler imaging. The covariance matrix was estimated by averaging over all the range
cells. Figure 3.11 shows the ISAR images of the simulated aircraft: (a) is the ISAR image
without autofocus, (b) is the ISAR image focused by the conventional beamformer
approach, (c) is the ISAR image focused by the optimum beamformer approach, (d) is the
ISAR image focused by the signal subspace approach and (e) is the ISAR image focused
by the noise subspace approach,. The reconstructed ISAR images have correspondences to
the scattering model of simulatcd aircraft as shown in Figure 3.10. The small difference
between (b) and (c) can be attributed to imperfection in the optimization associated with

size of the search steps.
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Figure 3.10 Scattering model of simulated aircraft
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Figure 3.11 ISAR images of simulated aircraft
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3.7 Real Data Results

3.7.1 One-dimensional ISAR Imaging

The field experiment was carried out with a C-band tracking radar. The object was a
bomber which was flying in a straight line with a speed of 280 m/s. The range between
radar and object was about 18 km. The radar transmitted 2048 narrowband signals with
PRF 600 Hz. The coherent signal returns were collected and recorded with I and Q
channels. Figure 3.12 gives the results of processing real data with (a) being the unfocused
image, (b) being the focused image with the conventional beamforming approach, (c)
being the focused image with the optimum beamforming approach, (d) being the focused
image with the signal subspace approach, (e) being the focused image with the noise
subspace approach, and (f) being the focused image with the image contrast method
(16]L17] The cross-range resolution is about 1m for all methods. It is clear that (b), (c), (d)

and (e) are well focused compared with (a) and have an agreement with (f).
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Figure 3.12 Cross-range ISAR images of real data

3.7.2 Two-dimensional ISAR Imaging

Thanks to Professor B.D.Steinberg of the University of Pennsylvania, we received two-
dimensional experimental data of a Boeing-727 flying into the Philadelphia International
Airport. The range, speed and altitude of the aircraft were about 2.7 km, 120m/s and a few
thousand feet, respectively. The central frequency of radar was 9.6GHz (X-band)
(A = 3.123 cm). Range resolution of 1m was achieved by transmitting a narrow pulse of
width 7 ns. Signals in 120 range cells were recorded and the PRF was 400 Hz. The real
data were processed with range realignment, autofocus, and range-Doppler imaging. The
ISAR images of the Boeing-727 are shown in Figure 3.13 where (a) is the unfocused
image, (b) is the focused image with the conventional beamforming approach, (c) is the
focused image with the optimum beamforming approach, (d) is the focused image with the
signal subspace approach and (e) is the focused image with the noise subspace approach.
Compared with the plan view of Boeing-727 as shown in Figure 2.6 (b), the focused
images with conventional and optimum beamforming, signal and noise subspace methods

are quite impressive.
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(b) Focused image with the conventional beamforming approach
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(d) Focused image with the signal subspace approach
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(e) Focused image with the noise subspace approach

Figure 3.13 ISAR images of Boeing-727

Subaperture processing of the signal subspace approach was applied to the real data of the
Boeing-727. The ISAR images are shown in Figure 3.14 where (a) N, = 2, M, = 16 and
(b) N, = 30, M = 2. The focusing quality of Figure 3.14 is approximately the same as
that of Figure 3.13 (d) (i.e., the signal subspace approach for the entire aperture) because
as shown in the next chapter the CRLB of D for ISAR autofocus is almost independent of
M if the SNR is high enough. The computations associated with eigendecomposition are
listed in Table 3.1 which illustrates that subaperture processing allows a dramatic
reduction in computation complexity. The computational loads in Figure 3.14 (a) and (b)
are reduced by a factor of 3.637 (124.13/34.13) and 124.13 (124.13/1), respectively, as
compared with that in Figure 3.13 (d).
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Figure 3.14 ISAR images of Boeing-727 with subaperture processing
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Table 3.1 Computational operations of eigendecomposition

No subaperture Subaperture Subaperture
processing in processing 1 in processing 2 in
Figure 3.13(d) Figure 3.14 (a) Figure 3.14 (b)
M, 31 16 2
N 1 2 30
Msst 29791 8192 240
Normalization 124.13 34.13 1

3.8 Conclusions

The original work reported in this chapter is the application of array processing techniques
including conventional beamformer, optimum beamformer, signal subspace and noise
subspace to ISAR autofocus. All techniques can be efficiently implemented using

eigendecomposition. They are listed below:

1. The signal model of ISAR autofocus is derived based on a point scatterer model which

provides a way to obviate the need for phase unwrapping.

2. Conventional and optimum beamformers are used to autofocus ISAR image by

adjusting the steering vector to maximize the output power of corresponding beamformer.

3. The signal subspace method is to maximize the projection of the steering vector onto
the signal subspace of the covariance matrix. Alternatively the noise subspace method is
to minimize the projection of the steering vector onto the noise subspace of the covariance

matrix.

4. The subaperture processing is described to reduce the computational complexity. In the
extreme case where each subaperture consists of two pulses, the eigendecomposition of
covariance matrix may be obviated and replaced by a operation in the data domain which

results in a significant reduction in computation.

Computer simulations were conducted and real data were processed for both one-
dimensional and two-dimensional ISAR imaging. A simple object consisting of two
scatterers was simulated for one-dimensional ISAR imaging. A simulated aircraft model

was used for two-dimensional ISAR imaging. One-dimensional ISAR images of a bomber
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and two-dimensional ISAR images of Boeing-727 were obtained by processing the real

data with the four developed approaches.

The advantages of conventional beamforming, optimum beamforming, signal subspace
and noise subspace methods for ISAR autofocus are that the received signals are
processed with the covariance matrix rather than signal phase so that the problem of phase
unwrapping is obviated. The developed approaches promise to provide a deep insight and

potential application to other focusing problems.
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Chapter 4 Statistical Analysis of
ISAR Autofocus
Approaches

4.1 Introduction

The derivations in the previous chapter are based on the assumption that the exact
covariance matrices are available. However in practice these must be estimated from a
finite number of data samples. In this chapter, we consider ISAR autofocus from an
estimation perspective and investigate the statistical performances of the approaches

developed in the previous chapter.

The likelihood function is the logarithm of the joint probability density function of the
measurement with respect to unknown parameters. The first derivative of the likelihood
function determines the position of the peak of the likelihood function, that is, the
maximum likelihood (ML) estimation of the unknown parameters. The second derivative
of the likelihood function at this peak position determines the limiting accuracy of
estimated parameters, i.e., the CRLB (841 Further the CRLB gives the minimum variance
that an unbiased estimator can achieve. Comparison of the errors of estimators with the

CRLB enable us to evaluate the accuracy of developed approaches.

Several schemes to estimate the covariance matrix are described in section 4.2. When
some strong scatterers exist, the signal subspace approach is simplified into the strong
scatterer reference method in section 4.3. Section 4.4 verifies that the signal subspace
approach for ISAR autofocus is the ML estimation of complex vector associated with the
translational motion of the object. The CRLB of the estimated complex vector related to
the translational motion of the object, which is the theoretical bound of ISAR autofocus, is

derived in section 4.5. The CRLB of the estimated distance between two scatterers, which
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is an indication of the ability of ISAR to resolve spatially separated scatterers, is given in
section 4.6. The behaviour of both CRLBs has been analysed as a function of the SNR,
number of range cells and number of pulses. Monte-Carlo simulations are conducted in
section 4.7; the statistical performances of conventional beamforming, optimum
beamforming, signal subspace and noise subspace for calibration are investigated and

compared to the CRLBs.

4.2 Covariance Matrix Estimation

In the derivations of section 3.3 and section 3.4, we have used the exact covariance matrix

of the vector of received pulses which is defined as

e = E{XanH} 4.1)

X

where E denotes ensemble average. However in practice we only have a single

realization (snapshot) and need to derive schemes to sensibly estimate C. .

By inspection of (3.11) the vector D is independent of range cell index and so the
covariance matrix can be estimated by replacing the ensemble average with one over

range cells. In the situation of ISAR autofocus, four schemes are proposed to estimate C, .

1. The ensemble averaging is approximated by averaging over all the range cells, that is,
¢ =1 ZX.X'.Y. 4.2)

where N is the total number of range cells. This assumes that the estimated covariance is

constant for all range cells.

2. The ensemble averaging is approximated by averaging over N, to N, adjacent range

cells, that is,

LG

A H

C, = NN E XX, . (4.3)
2 iz,

The estimated covariance matrix is normally different for each range cell.

76



Relation to Strong Scatterer Reference

3. The ensemble averaging is approximated by averaging over the range cells selected
where strong scatterers are located. This results in reduced computational load and SNR

enhancement.

4. The entire aperture is divided into many subapertures with the subaperture processing
as described in section 3.5. C, is estimated for each subaperture which has a
computational advantage over that for the entire aperture. Then the complex signal vector
for the entire aperture is estimated by combining the complex signal vectors estimated for

individual subapertures.

The above four schemes to estimate C, do not guarantee C, to be full rank. When C, is
singular, the C‘x_l will be replaced by the Moore-Penrose generalized inverse or pseudo-

inverse of C, .

4.3 Relation to Strong Scatterer Reference Method

The strong scatterer reference method depends upon the existence of a prominent
scatterer 101, As pointed out in section 3.2, the approaches developed in the previous
chapter do not need this condition. However if some strong scatterers are detected, they
are related to the strong scatterer reference method under certain approximation. If a

dominant strong scatterer exists in the », th range cell, C, can be approximated as

C,=X X'+ 671 (4.4)

o

where 6% is the estimated power of additive noise. In this case, the largest eigenvalue of
A A2 . . . .
C, is “an“2 + 67 where || || is the Euclidean norm and the corresponding eigenvector of

the signal subspace is

u = X (4.5)

n’
(4.5) is equivalent to the strong scatterer referencing method!!?1, Consequently if a
dominate strong scatterer exists, the signal subspace approach simplifies to the stron

g g P PP p g

scatterer reference method.

If K strong scatterers exist in the range cells labelled n,n,,...ng, C, has an

approximation
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K
= Z X +cs2 (4.6)

In this situation, the signal subspace approach fuses the signals of strong scatterers to do
autofocus which is similar to multiple scatterer algorithm (MSA)!!2! and recursive MSA
(RMSA) 131, But the signal subspace approach combines the signals of strong scatterers
by estimating the covariance matrix averaged over them. MSA and RMSA calculate the
average phase of the signals of strong scatterers which needs to unwrap the phase.

Therefore the signal subspace method obviates the problem of phase unwrapping.

A strong scatterer was detected in the real data of the Boeing-727 as described in section
3.7.2 by use of the criterion of minimal normalized amplitude variance!!?]. The ISAR

image autofocused with this strong scatterer is shown in Figure 4.1 which is comparable to

Figure 3.13 (b) - (e).
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Figure 4.1 ISAR image of Boeing-727 with the strong scatterer reference
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4.4 ML Estimation for ISAR Autofocus

ISAR autofocus requires the estimation of the complex vector D corresponding to the
translational motion of object and it is shown here that the signal subspace approach is a
ML estimator for D. This estimate is formed by choosing that D which maximizes the
joint probability density of the set of observations. If the received noise is assumed to be

Gaussian distributed, the joint probability density function of a single observation is
p(X:Dy = " {det(C)} "exp {-X"C, X} @7)

where det ( ) denotes the determinant of a matrix. For multiple observations, the joint

probability density function of multiple independent observations is given by

p(Xy . XyD) = m N L det(C)} NMexp {-N Tr( c,” Cx)} (4.8)
L
where €, = 7 2 Xan is an estimator of the covariance matrix and Tr( ) stands for the
trace of a matrix. Maximizing the log probability density function with respect to D leads

to minimization of
I(D) = Nln(det(C,)) + Tr(cx‘léxj (4.9)

where C, = anDH+ C, and C, is the covariance matrix of noise. ML estimation

generally requires a numerical optimization algorithm[232], however the ML estimator of

D has an explicit solution. Minimizing (4.9) results in the following equation[86]

Cu, = A, 1, (4.10)

H 1

where C = sz C‘xCWZ, Ao, 1S the maximal eigenvalue of C and u, is the corresponding

eigenvector.
If the receiver noise is spatially uncorrelated and has an equal power, that is, C, = cfvl ,
(4.10) can be changed into

éxul = Nt 4.11)

o . (4.11) indicates that the eigenvector corresponding to the maximal

where X', = Y S

eigenvalue of éx is the ML estimation of D .
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If the receiver noise is spatially correlated with known covariance matrix C,, , the standard
prewhitening technique can be used. An example of a situation in which the receiver noise
is spatially correlated arises from multiple path propagation. The eigenvector u, of C
corresponding to maximal eigenvalue is estimated and the generalized eigenvector of éx
corresponding to maximal eigenvalue can be calculated by Ca’/zu1 although there are

considerable difficulties associated with estimating C,, in practice.

4.5 CRLB of the Estimated Complex Vector

In (3.11), D is the complex vector associated with the translational motion of the object.
The CRLB of D indicates the accuracy limitation of ISAR autofocus. The CRLB of D

treated as a fixed, non-random but unknown vector is derived below.

The estimation variance of a complex variable is at first defined, then the relation of this
variance to the estimation variances of its real and imagery parts is found and finally the
estimation variances of the real and imagery parts are computed. Define the variance of

the m th element of the complex vector D as
Var(D,) = E{|D,-D,|'}. @.12)

It can be shown that [87]

Var(DAm) > 4(JD"1Jmm (4.13)

where J D_l is the inverse of the complex Fisher’s information matrix J,, . The elements of

J, are calculated as

_ o’ .
(p)pn = — E{a—mlnp (X,D)} (4.14)

where %— is a complex operator defined by

m

d 0 d

3D, ~ o, aw

m

(4.15)

where D, = u, +jw,, .
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However (4.13) is not the best lower bound attainable and it is more appropriate to
consider the real and imaginary parts separately. For the real and the imaginary

components of D, we have

A -1
Var (&2,) 2 (J“ )mm (4.16)

Var(#,) 2( 1,7 ), @.17)

By use of Var(DAm) = Var(#,) + Var(w,) and Up) ., = ) + (Jw)mm,we have

mm
s Vs 7! o1 -1
Var| D, |2\, |um T\ ) ZHIp  m: (4.18)

Thus a low bound that an estimator can reach easily is (Ju_l)mm + (Jw_l)mm rather than

4(JD_1)mm as was given in [87]. (Ju_l)mm + (Jw—l)mm is calculated below.

In general the CRLB may be computed by a numerical method, however a closed-form
expression for the CRLB of D can be found and is given below. In the signal model of
(3.11), we assume that both e, , and D are unknown where e, is the signal in the nth
range cell. Thus an ambiguity occurs when e,, and D become ke,, and K'D ,
respectively. If we set constraints eoHe0 = N where e, = (ey, ..., ey_ 1.0 T and

Im (ey,) = 0, the ambiguity will be removed (88],

Let D = u+jw and ¢, = r+jt with constraints ¢, = 0 and eOHeO = N. Based on the

derivation in [88], the CRLBs of u and w are given by

-1 1 2
(‘]u )mm = ﬁv (P) mm + me (4.19)

-1 1 2
(Jw )mm = m(P) mm+Bum (4.20)

where the noise covariance matrix C,, = P +jQ, u, the mth element of the vector u,
B= (N-py /(2Np0 [DHCW_ID]), Py = |e00|2 and (P),, the mth diagonal element of
the matrix P . Thus the CRLB of D,, takes the form

! (P) +B. (4.21)

CRLB (D,) = 5(P)
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4.6 CRLB of the Estimated Distance Between Two
Scatterers

The accuracy of the estimated distance between two scatterers separated in cross-range is

one figure of merit of ISAR resolving capability and the CRLB for this is derived below.

In this analysis, the object is composed of two scatterers A and B with the coordinates
(x;,y,) and (x,,y,) asshown in Figure 4.2. When the distance between the radar and
the object is much larger than the size of object, the returned signal of the mth pulse can

be approximated as

An .
Z,, = P;exp {—JT [r, +x;sin0 +y cos6, ]}
(4.22)
AT .
+ p,exp {—]7 [rm +x251n9m +yzcos(-)m] P +w,

where p, and p, are proportional to the reflectivities of A and B, respectively. r,
denotes the distance between the radar and the centre of the two scatterers when the mth
puise is sent. w, 1is the additive noise which is the independent identically distributed

i i . ; 2
complex Gaussian noise component with zero mean and variance o, .

y
RLOS
07
) A(x1,¥1)
o
¥ o
X
B(x2.¥2)
I'm
[ ]
Radar

Figure 4.2 ISAR imaging of two scatterers
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Assuming, for simplicity, p, = p, = p, (4.22) becomes
27, .
zZ, = 2pcos{7dsm[9m+y]}um+wm (4.23)

where d is the distance between the two scatterers, y is the angle between the x axis and
a straight line through the point A and the point B, and
u, = exp{ —jZTn [2r, + (x;+x,)sinB, + (y, +y,) cos®,]1}. The probability density

function of complex variable w,, is

! pi”
p(w) = ——exp > [ - (4.24)
o

w Cw

If v, 6, and u, are assumed to be known, the joint probability density function of a

single observation is

2

2, — 2pcos {%dsin (6, +7]}u,

1
p(z,d) = 5~ €Xp 5 (4.25)
TG w O w

and the joint probability density function of multiple independent observations is

M-1
p(z()’ ceey ZM—l;d) - HP (Zm,d)

m=10

M1 : (4.26)
M 1 2nd _. 2
= (no2w) exp {——2- Z z,, —2pcos {%sm [6,+Y]}u, }
Y Wm=0

Thus we get the log joint probability density function

e ond :
(Zg voor Zpy_13d) = —Mln(noi,)——z zm—2pcos{—;—t—sin [6,+7]}u, 4.27)

wm =0

The lower bound of estimated variance, CRLB, is defined by[184]

2 -l
CRLB (d) = [— E(a—fzﬂ A (4.28)
od

From Appendix C the CRLB of 4 is given by
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7\(2
CRLB (d) = — {4.29)
2 . 2. 2nd . 2
321 SNR ) sin [8,,+7] sin { ==sin [6,,+7] }
m=0

where SNR = pz/ owz denotes the signal-to-noise ratio (SNR). The important result is
that this CRLB is independent of u,, and consequently it is not required to be known. It is
noted that in the above derivations we have actually formed the CRLB under the
assumption that y, {8, } and SNR are all known. In practice this may not be the case;

however for comparison of different methods this approach is justified.

4.7 Statistical Performance

In order to inspect the statistical performance of the conventional beamforming, the
optimum beamforming, the signal subspace and the noise subspace approaches for ISAR
autofocus, Monte-Carlo simulations were conducted. In the simulation, w, Wwas
independent identically distributed complex Gaussian noise components with zero mean
and variance oi . Thus we had C,, = ofvl - The CRLB of each component corresponding

to the translational motion from (4.21) takes the form

2

CRLB(D,) = (1 —L)G—M; (4.30)
i 2M/ N 2M SNR

where SNR = p,/ cfv . The term ofv/N is related to SNR due to the constraint eOHeO =N

in the derivation of CRLB.

Figure 4.3 gives the CRLBs for various values of N (the number of range cells) with
M = 128 (the number of pulses) and GVZV = 1. It shows that the CRLBs of D decrease
with the increase of N and SNR. They are approximately proportional to 1/N if the SNR
is high enough. The CRLB reaches 0 dB, -10 dB and -20 dB when N is equal to 1, 10
and 100, respectively, in the case of high SNR.
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Figure 4.3 The CRLBs versus SNR for three N values

The CRLBs for N = 10 and three values of M are shown in Figure 4.4. We see that the
difference between them becomes indiscernible in the case of high SNR. In other words
the CRLB is almost independent of M if SNR is high enough where the CRLB approaches

—10 dB . This means that the subaperture processing is more effective for high SNR.
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Figure 4.4 The CRLBs versus SNR for three M values
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The parameters of ISAR simulation were described in section 3.6.1. The statistics were
based on 100 simulations for each estimator at the specified SNR level. The mean square
errors of the complex vector estimated by the conventional beamforming approach (P, ),
the optimum beamforming approach (P, ), the signal subspace approach (P,) and the
noise subspace approach (P, ) versus SNR are shown in Figure 4.5 and compared with the
CRLB for M = 128 and N = 10. The figure indicates that P_, P_ and P, approach the
CRLB when SNR>0dB and P, reaches the CRLB as SNR>5dB .

a0 T T T T T T T

20f- : - —— Pn |

Log Square Error (dB)

30 i i i 1 L 1 i
=20 -15 -10 -5

0
SNR (dB)

Figure 4.5 Mean square error of the estimated complex vector

Monte-Carlo simulations were also conducted to analyse the accuracies of four ISAR
autofocus approaches for estimating the distance between two scatterers. The parameters
of simulation were available in section 3.6.1. After ISAR autofocus, ISAR images were
produced and the distance between the two scatterer was estimated by detecting the peak
position corresponding to the two scatterers. The statistics were based on 100 simulations
for each estimator at the specified SNR level. Figure 4.6(a) shows the bias (mean error) of
the estimated distance between the two scatterers determined by P, P,, P, and P,
versus SNR. It indicates that the SNR thresholds of the four approaches are —5 dB. When
SNR is higher than -5 dB, the bias of these methods approaches zero. This means that the
four approaches are the statistical unbiased estimators in this case. If SNR is below -5 dB,

the bias increases.
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The mean square errors of the estimated distance between two scatterers determined by
the four approaches are given in Figure 4.6(b) and compared with the CRLB. It is
illustrated that the experimental variances of the conventional beamforming, the signal
subspace and the noise subspace approaches reach the CRLB when SNR >15 dB . This
means that they are statistically efficient. Although the optimum beamforming approach

does not reach the CRLB, the mean square error is close to the CRLB as SNR increases.
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Figure 4.6 Bias and mean square error of the estimated distance between
two scatterers
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4.8 Conclusions

ISAR autofocus was studied from a statistical point of view and schemes to estimate the
covariance matrix were given. If several strong scatterers are detected, the signal subspace
approach was shown to be related to the strong scatterer reference method. The signal
subspace approach has been identified as the ML estimation of the complex signal vector
associated with ISAR autofocus. The theoretical low bounds for the mean square errors of
the estimated complex vector related to the translational motion of the object and the
estimated distance between two scatterers were derived. The CRLB of the complex vector
corresponding to the translational motion of object decreases with the increase of SNR
and the number of range cells. However it is approximately independent of the number of
transmitted pulses for high SNR which means that the subaperture processing is
particularly attractive in this situation. The CRLB of the estimated distance between two
scatterers is inversely proportional to SNR. Monte-Carlo simulations have demonstrated
that CRLBs appear to be a very tight bound on estimator performance for the approaches

developed in the previous chapter.
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Chapter 5 3D SAR Imaging Via
MPSAR Processing

5.1 Introduction

As described in chapter 2, SAR is able to produce a two-dimensional high resolution
image in the range and azimuthal directions. The high range resolution is obtained by
transmitting a wide-band signal and the high azimuthal resolution is achieved by
synthesizing an azimuthal aperture. InSAR is a technique which uses two SAR imaging
flight passes to produce the interferogram and reconstruct the digital elevation models
(DEM) by unwrapping the principal phase value of the interferogram. MPSAR (Multiple
Pass SAR) imaging is an extension of InSAR. It makes use of more than two SAR
imaging flight passes to synthesise an aperture in elevation which results in improved
accuracy and resolving power in the elevational direction [891190] The resulting resolution
in elevation, combined with the resolving capability of single-pass SAR imagery in range
and azimuth, produces a 3D SAR image. This chapter investigates the theory of 3D SAR
imaging and develops the approach to 3D SAR image reconstruction via MPSAR

processing.

The mathematical model of 3D SAR imaging is first presented in section 5.2. Then an
algorithm for 3D SAR imaging via MPSAR processing is developed in section 5.3.
Compared with InSAR benefits of MPSAR processing are highlighted in section 54.
Computer simulation is described in section 5.5 and the results of processing ERS-1 data

are shown in section 5.6 which confirm the effectiveness of MPSAR processing.
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5.2 Mathematical Model of 3D SAR Imaging

MPSAR imaging makes use of more than two flight passes which are parallel and equi-
spaced in elevation as shown in Figure 5.1 where x and z represent the ground range and
elevation, respectively. P; denotes the ith flight path where i = 1, ..., N, . For each flight
path, the radar transmits a wideband signal and the returns are processed coherently to
produce a complex SAR image G, (x,y) where x and y are the ground range and azimuth

coordinates. This SAR image formation step involves conventional processing.

e YV axis X

Figure 5.1 Flight path distribution of MPSAR

The set of complex SAR images G, (x,y) i=l,..., N, undergoes a post-processing stage to
produce a 3D image. This stage involving image registration, phase correction and
elevational processing of each pixel in all images is presented below. In other words, if we
consider the set of image G, (x,y) i=1,..., Np as a single 3D image G (x,y, i) , then this
processing stage is applied along the i-axis of the image. The resulting 3D image is the

range-azimuth-elevation image p (x, y, z) of the observed terrain.

Now we develop the mathematical model of 3D SAR imaging and its interpretation will
help understanding of the processing steps of 3D SAR imaging presented in the next
section. Figure 5.2 shows the geometry of 3D SAR imaging. The ground range, azimuth

and elevation coordinates are represented by x, y and z, respectively. Consider a terrain
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patch whose centre is taken as the origin. The patch is assumed to be composed of a finite
number of point scatterers spread on its surface, each having its own elevation. Slant
ranges from the closest point B of approach for each flight path to the patch centre o and

scene point A with coordinates (x,y,z) are denoted by R, and R, respectively.

et

terrain patch

Figure 5.2 3D SAR imaging geometry

For a transmitted signal, u (¢) , the received signal, s, (1, R)) , from point scatterer A is

2R (x, ¥, 2) ) o

C

sr (t’ RO) =p (-x’ Vs Z) u(f—

where p (x,y,z) is the reflectivity of A which is assumed to be independent of frequency
and aspect angle. The total received signal from all scatterers of the distributed object is

given by

s, (L Ry = Jp (x,9,2) u(t— 2R—(“‘£~J'—~Zl) dx dy dz (5.2)
! _

where the vector r is from the origin to the differential scattering volume element
dx dy dz as shown in Figure 5.2 and p (x,y,z) is the reflectivity density which includes

propagation effects and various system gains for convenience. The integration is carried
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out over a terrain volume V. If we take the Fourier transform of (5.2) with respect to ¢, we

obtain

SURY = U oy, exp BB ) 4y gy a; 53
\4

where U (f) is the complex Fourier spectrum of the transmitted signal. The output of a
T
filter H(f,R,) = U* (f) exp ( j —69) matched to a reflection of the transmitted wavefront

from an ideal scatterer (! at the origin o is given by

4T"fR (%7, 2) Ry} dx dy dz (54)

2 .

S,(iRy) = SUSRYH(, Ry = |U(N] Ip(x,y,z)eXP{—J
14

where R, is assumed to be known. If the range of the terrain is large compared with the

size of the terrain patch, that is, R (x, y, z) » r (x, y, z) , we have the approximation

r(X,y, Z) ' RO

R(x’yaz)ERO_ R
0

(5.5)
where r(x,y,z) and R, are the corresponding range vectors as shown in Figure 5.2.
Define a vector ¢ of the reference point as

g = R

; (5.6)
c RO

For a specific frequency, ¢ lies on the surface of a sphere as R, is varied. For various

frequencies, ¢ is mapped into a vector in a 3D data space (g, 4,,4,) - Thus we have

S,(@ = UM o5y, 2)exp {j2mg ¥ (x,y,2)} dxdydz. )
\4

This implies that except for the factor |U (f) l2 the output of motion compensation is a
finite inverse three-dimensional Fourier transform of the terrain reflectivity function

P (x,y,z) . This model is consistent with the result in [33].

The support region of ¢ is shown in the data domain33]. Each pulse is corresponding to a
solid radial line as shown in Figure 5.3 (a). Single flight path results in a shaded section

region as shown in Figure 5.3 (a). MPSAR processing produces a volume in a three-

(@ This is the reference point for motion compensation.
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dimensional data space V, which is composed of slices of 2D data recorded for various

flight paths as shown in Figure 5.3 (b). Letting ¢ = (q,,49,, q,) and r = (x,y,z) then

p(x,y,z) can be estimated by the 3D Fourier transform of Mliq—z) over limited
U
support region V., that is, @
S (qx’ qy’ qz N
p(x,y,2) = _[” exp {27 (xq, +yq,+2q,) } dg,dq,dq, (58)
4,9,4;
as shown in Figure 5.3 (c).
9 z
qx y
| &
X
d !

(a) Single flight path data (b) Multiple flight path data (c) Image of object

Figure 5.3 3D data and image space

The equation (5.8) indicates that the 3D reflectivity function p (x,y,z) can be estimated
by three 1D Fourier transforms. These may be realized by wideband pulse compression in
x direction, azimuthal processing in y direction and elevational processing in z direction.

If the complex image of each flight path is available, (5.8) can be changed into

p(x,y,2) = JG' (x,y,q,) exp {—j27nzq,} dg, (5.9)
q,

where G'(x,y,q,) = ,”So (4,9, 9) /U () |2exp {-j2n (xq,+yq,) } dq,dq, represents
a SAR complex imagd*8f single flight pass after motion compensation. (5.9) shows that
with MPSAR processing, p (x,y,z) , the 3D image, can be estimated by doing a one-
dimensional Fourier transform in each pixel cell of the multiple SAR complex image set.

In practice, we only have discrete flight passes. Thus we have

N,

p(x32) = 3 G (xy i) exp{~j2nzq;} (5.10)
i=1
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where G'(x,y,i) denotes the complex SAR image of ithe flight path after motion
compensation. The spacing of adjacent flight paths d, determines the maximum

elevational distance u, that can be unambiguously estimated via the relationship

(5.11)

The elevational resolution t, depends on the aperture length d, in the elevational

direction by

o E— (5.12)

For a given number of flight paths, a small baseline d, reduces the ambiguity problem.
However this degrades the elevational resolution. There is a compromise between
elevational ambiguity and resolution. The baseline distribution needs to be designed for

specific requirement.

5.3 MPSAR Processing Approach

Each flight pass performs conventional SAR processing including complex I, Q data
collection, range compression, quadratic phase correction and azimuthal compression
which results in multiple complex SAR images. However rather than forming the absolute
value of the complex image at the last step, MPSAR processing uses each SAR image in
its complex form. Clearly the N, complex SAR images G, (x,y) have different phases for
different values of i, which contain the information about the reflectivity distribution
along the elevational direction. The main function of MPSAR processing is to extract the
reflectivity distribution in the elevation from the N , complex SAR images. In its simplest
form, the elevational imaging involves a straightforward Fourier transform of N, points

along the i-axis of G'(x,y,i) as shown in (5.10).

In the analysis of section 5.2, the motion of the SAR platform is assumed to be known so
that motion compensation is conducted precisely. However in practical applications, the
flight path is unknown or not known precisely causing individual complex SAR images to

be misaligned in the range and azimuth directions. This uncertainty of the flight path
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induces an unknown phase factor, and thus each complex SAR image G, (x, y) needs to be

calibrated or corrected in phase prior to elevational imaging, namely,

Np
p(%y.2) = D G,(xy)exp{jo}exp{~j2nzq;} (5.13)

i=1
where ¢, is the phase for correction caused by the uncertainty of each flight path.

Based on the above analysis, a novel approach to MPSAR processing for 3D SAR
imaging was developed. The block diagram is shown Figure 5.4 where after conventional
SAR processing of each fight path, two steps are conducted before elevational imaging.
One is image registration which aligns the returns resulted from the common terrain in the
multiple images into the same image pixel cell. The other is phase correction which
multiplies each image by a phase factor to make the phases of the multiple complex
images cohere at the reference point of terrain. After image registration and phase
correction, a focused beam of the synthetic array is steered at the reference point. Finally
the elevational imaging is performed by scanning the focused beams in elevation using a

discrete Fourier transform (DFT).

SAR 1
imaging

SAR 2
imaging

=

image phase elevational

registration correction imaging

SAR N,
imaging

Figure 5.4 Block diagram of MPSAR processing

In summary, MPSAR processing performs the following steps:
1. It carries out conventional SAR imaging for each flight path.

2. It registers multiple complex SAR images for the selected area of interest.
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3. It corrects the registered SAR images in phase. The correction of ith image is

determined by the position of i th flight path.

4. It performs an N ,-point DFT across various flight paths. This operation is the core of
3D SAR imaging where the DFT acts as an elevational filter with the output of each DFT

bin giving the reflectivity whose elevation is within a particular range.

Essentially, three orthogonal axises (range, azimuth and elevation) out of the 3D SAR
image field may be visualized by three 2D images in the range-azimuth (top view), range-
elevation (front view) and azimuth-elevation (side view) planes. The elevational
resolution can be illustrated in the range-elevation and azimuth-elevation images. The
range-azimuth image is a speckle-reduced version of a conventional SAR image which

will be discussed in section 5.4.

In section 5.2, a matched filter for motion compensation is applied to a patch of image
rather than to each pixel in order to reduce the computational complexity of motion
compensation. However the size of patch is limited by the phase error tolerance of the
SAR system and needs to be determined. When the image registration is accomplished,
the multiple SAR images are realigned in range and azimuth directions so that the signal
returns of multiple flight paths resulting from the same terrain will located in the same
image pixel cell. After phase correction, the focused beam in elevation is formed and
points to the reference point o of the terrain patch as shown in Figure 5.2. Using the DFT
applies a linear phase across the synthesized elevational aperture to steer the beam away
from the reference point. This introduces a phase error due to the linear approximation for
R in (5.5). The appropriate size of terrain patch can be determined by limiting the phase

error, thus according to Figure 5.2, we have

1
2,2 -p 2
R=|R, +r -2 O-r - (5.14)
2
The residual error AR in (5.5) is less than # , that is,
0
2
AR < 570' (5.15)

If we restrain AR to be less than % , we have
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Ry>—. (5.16)

Thus the size of terrain patch r, can be determined by

1

1 p
Tmax = E(ROX) . (5.17)

With ERS-1 system, we have a satellite altitude of 785km, an incidence angle of 23, and

a wavelength of 5.67cm, thus r,,,, = 110 m.

5.4 Benefits of MPSAR Processing

As a natural extension of InSAR processing, MPSAR processing has following
advantages over InSAR processing at the expense of processing more than two flight

paths.

5.4.1 No Two-dimensional Phase Unwrapping

The phase in the interferogram of InSAR, which is directly related to the topography, is
only measured modulo 2n. In order to reconstruct the DEM unambiguously, it is
necessary to add the appropriate number of cycles of phase; this is known as phase
unwrapping and many algorithms have been investigated [46] [62] - [76] phase unwrapping
may be appropriate in a low-noise environment, but in the more realistic high-noise
situations a large number of residues appear and thus the phase unwrapping becomes
infeasible which limits the application of typical InSAR. In the developed approach for
MPSAR processing, the problem of phase unwrapping is avoided. This advantage is at the

expense of the above limitation on patch size.

5.4.2 Improved Elevational Resolution

Conventional InSAR processes two flight passes P, and P, as shown in Figure 5.5 (a).
The array aperture function in elevation consists of a pair of impulses spaced by baseline

d, . Consider the response of such an array to a narrow band signal arriving as a plane
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wavefront from an elevation 6 away from the broadside direction of the array. The

normalized instantaneous power output is

b,(8) = I:cos(nde;ine):lz.

(5.18)

N>

For example with d, = = the beam-pattern in elevation is shown in Figure 5.5 (b); the

beamwidth is about 50° .

Beampattern (dB)

_50 s I L I i '
-80 -80 -40 -20 0 20 40 60 80
Elevation Angle {(deg)

(b) Elevational beampattern of InNSAR
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Beampattern (dB)

1 i i
-20 0 20
Elevation Angle (deg)

(c) Elevational beampattern of MPSAR

Figure 5.5 Flight passes of InSAR and elevational beampatterns of InNSAR and
MPSAR

MPSAR processing deploys the array aperture in the elevation direction with more than
two flight passes P, i = 1,...,N,, as shown in Figure 5.1. A simple form of array is one in
which the elements are uniformly spaced, that is, z; = (i-1)d, i=l,.., Np. The

resultant beampattern is

5 ande(sinﬂ—sineo) 2
| | s

b,(0) = — A ; (5.19)

2 7td (sin® — sinB,)
N, sin( £ T 0)

where 8, is a direction of beam steering. If the spacing d, satisfies d, = %“, the beam
patterns are shown in Figure 5.5 (c) which show the focused beam and resolution in the
elevational direction with a beamwidth of 11.11° for N, =9 and 6, = 0’ . In the practical
case of MPSAR processing, the element spacing may be non-uniform and sparse and the
positions of the elements may be uncertain. Receiver position errors give rise to increased
sidelobes whilst the sparse spacing results in grating lobes (7, Comparing Figure 5.5 (c)

with Figure 5.5 (b), it is seen that MPSAR processing has enhanced resolution power in

elevation.
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5.4.3 Enhanced Ground-range Resolution

The flight pass may not be vertically one above another as shown in Figure 5.6. Then the
aperture synthesized by the multiple flight passes may be decomposed into the elevational
component and the ground-range component. The elevational aperture provides resolution

in elevation and the ground-range aperture results in improved ground-range resolution.

V4 ‘ PNIb

>

Figure 5.6 Flight passes of MPSAR with ground-range component

The slant-range resolution of a single-pass SAR results in a ground-range resolution 7t .

which may be expressed as [°!

T,CO8Y,

7, = —3 1 (5.20)
2 Sin (B]‘Yl)

where T = ¢/ (2B,) is the slant range resolution, B, the beamsteer direction of the
synthesized aperture with respect to the broadside direction of the flight path array and Y
the slope angle of the terrain as shown in Figure 5.8. Similarly the presence of the aperture
component in the ground-range direction leads to the ground-range resolution < ¢ Which

1s equal to

T,CO8Y,

T, i (5.21)
&¢  cos(B;-v,)

where 1, = (AR;)/ (2d;) with d, the length of the synthesized aperture for MPSAR
processing. 7, = and 1 . have a physical meaning in the wavenumber domainP1l, They
are inversely proportional to the widths of two bands. In order to overcome the problem of

decorrelation of SAR images, these two bands need to be overlapped. The enhanced
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]

ground-range resolution 1, , obtained by combination of the two bands, is finer tH-an'-_Tg s

and is given by the following relation.

1 -1 ¥I
rg_('cg’s+tg,e) <T, g (5.22)
The improved ratio I, of ground-range resolution is

T d
1r=f:_-s=1+ g*S=1+FT (5.23)
g 8,

a

<
[

c

AR,tan (B, -v;)
27,

where B, = is the critical baseline length [471,

For example, a simple case where flight paths are uniformly spaced with a baseline 4, , the
synthesized aperture d, = (N, - 1)d,, and the resultant 7 =1+ (N, - 1) (d,/B,) .
Figure 5.7 shows I_ versus d, for several numbers of flight paths. In order to satisfy the
overlapping of the bands in the wavenumber domain to keep the coherence of SAR
images, d, should be less than B_. For specific d,, I, increases linearly with N,,. If N, is

fixed, I, increases linearly with d, .

186 T T T T T T T T T
— Np=2
14} — —Mp=4
-— Np=8
—4— Np=16
12 :
10
= 8f .
6h- RO |
4 > SXE > s drpasssca
21 i -'--._’_,.--"3-' .
E "I ===
o i L 1 1 1 1 1 1 L
[0} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

de/Bc

Figure 5.7 Improved ratio of ground-range resolution versus baseline for four N,
values
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5.4.4 Reduction in Layover and Shadowing

Typically InSAR suffers from layover and shadowing (92} a5 shown in Figure 5.8. Layover
occurs when two parts (A and B) of terrain with different ground ranges are located at the
same slant range. The signals from A and B are superimposed in the interferogram and
their elevations can not be estimated by unwrapping the phase of interferogram. MPSAR
imaging introduces the elevational resolution and discriminates A and B with different

elevational cells. A reduction in layover uncertainty results.

Shadowing happens when part of terrain (C) is invisible to flight pass P, and P,. The
corresponding parts of the SAR image consist of noise and the SNR of the interferogram
around C is low, making phase unwrapping difficult. With MPSAR processing, the multi-
look effect may make C which is invisible to flight pass P, and P, visible to other flight

passes such as P, . Thus shadowing is reduced.

Figure 5.8 Layover and shadowing

5.4.5 Speckle Suppression

When a radar illuminates a rough surface, the return signal consists of waves reflected
from many elementary scatterers within a resolution cell. The distances between the
elementary scatterers and the receiver vary due to the surface roughness. A strong signal is
received if the waves add relatively constructively; a weak signal is received if the waves

are out of phase. The effect causes a pixel to pixel variation in intensity which is called
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speckle. Unlike a passive incoherent sensor, SAR generates images by coherently
processing the returns from successive radar pulses with the path lengths and orientation
varying slightly from one pulse to another and consequently their images are highly

susceptible to the speckle effect.

Speckle in SAR images complicates the image interpretation, reduces the effectiveness of
image segmentation, classification and other information extraction (1091 1t has been
identified as a multiplicative noise which can not be reduced by simply increasing the
power of the radar transmitter. A basic method for SAR speckle suppression is to
incoherently average several frames obtained from a portion of the available azimuthal
spectral bandwidth. An example of this is multi-look SAR processing (1) which reduces
speckle by averaging N, intensity images and then taking the square root. The ensuing
improvement can be explained by considering the probability density of pixel intensity.
For a single look, the pixel intensity has a exponential distribution which corresponds a
very wide range of variation. By noncoherent averaging N, intensity images, the pixel
intensity will be changed into chi-square distribution which reduces the variance by a

factor of Np .

Multi-look processing only considers the intensity and ignores the phase information. A
whitening filter was proposed to suppress speckle by use of fully polarimetric SAR images
and provided the maximum achievable reduction in speckle[144]. This algorithm estimated
the polarization covariance of the clutter and used this covariance to construct the
minimum speckle image. This whitening filter can also be used in MPSAR imaging by
replacing the polarization diversity with the spatial diversity. From (5.13), the profile of a
3D SAR image in the reference range-azimuth plane is the coherent summation of

multiple SAR images, namely,

NP
p(5,0) = ) G (xy) exp{jo;}. (5.24)

i=1
As presented in chapter 7, the ML estimation of exp {j¢,} for phase correction will be the
eigenvector corresponding to the maximum eigenvalue of the estimated covariance matrix
of the pixel vectors across multiple SAR images. As p (x, y, 0) is the principal component

of the image in elevation, it has maximum SNR improvement and minimum specklemo].

103



Chapter 5: 3D SAR Imaging Via MPSAR Processing

5.5 Simulation Results

Computer simulations presented here were carried out based on ERS-1 system parameters
where the satellite operated at an altitude of 785km. The radar transmitted a linear-
frequency-modulated (LFM) signal with a bandwidth of 15.55MHz and a nominal
wavelength of 5.67cm. A point scatterer was located in a flat terrain. 17 flight passes
spaced 100m apart vertically as shown in Figure 5.9 were simulated. The distribution of
flight passes provided an elevational aperture of 1600m which is similar to that of ERS-1

data processed in the next section.

Flight Path

‘ Elevation

/ Range

Azimuth

100

(@) (b)

Figure 5.9 Simulation of MPSAR processing: (a) one point scatterer terrain, (b)
flight path distribution

At first a matched filter was applied to obtain the SAR complex image for each flight path.
Then 17 SAR images were registered, corrected in phase to remove the deviation of flight
path, and resolved in the elevational direction for each image pixel with 32 point fast
Fourier transform (FFT). Figure 5.10 shows the 3D image of the scatterer illustrating the
two-dimensional point-spread-functions (PSF) with (a) in the range-azimuth plane, (b) in
the range-elevation plane, and (c) in the azimuth-elevation plane. The 3D image is
32x32x32 pixels. Each pixel has a size of 9.38m, 13.79m, and 6.90m in the range,
azimuthal and elevational directions. The theoretical resolutions in the range, azimuth and
elevation are 9.38m, 13.79m and 13.79m, respectively. The maximal unambiguous

distance in the elevation is 222.55m.
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Resolution and noise are two important performances for an imaging systems since both

impact the capability to perform image reconstruction. They are characterized by the PSF

of the imaging system. Resolution is characterized by the 3dB width of the main lobe of

the PSF while noise is characterized by the height of the sidelobes. The one-dimensional

PSFs in range, azimuth and elevation are given in Figure 5.10(d) which show that the

MPSAR processing is able to provide the focused resolutions in range, azimuth and

elevation, the measured resolutions (3dB width of PSF) in range, azimuthal and

elevational directions are consistent with the theoretical resolutions and the peak sidelobes

have a level of -24dB, -23dB and -15dB in range, azimuth and elevation directions.
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Figure 5.10 PSFs of 3D SAR image
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(d) PSFs in range, azimuth and elevation
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5.6 ERS-1 Data Results

MPSAR processing was tested using 9 SAR image data sets, acquired by the ERS-1
satellite over a small area in the southwest of the city of Bonn, Germany during the period
of 2-29 March, 1992. Parameters of ERS-1 are listed in Table 5.1 [140]. The 9 flight paths
were parallel and their elevational positions are shown in Figure 5.11 where the four digit
numbers locating in the right above of each flight path are the ERS-1 orbit numbers. The 9
flight paths provided a synthesised aperture length of 1686m. For calibration an array of
19 corner reflectors (1.4 meters) was deployed by the Institute of Navigation, University
of Stuttgart, spreading 20km on the terrain as shown in Figure 5.12. The corner reflectors
acted as point scatterers which were designed to provide a large radar cross section (RCS)

over a wide range of aspect angles and frequencies [*31.

Table 5.1 Parameters of ERS-1

Figure 5.11 Elevational relative positions of ERS-1 flight paths

Altitude Central frequency | Bandwidth | Incidence angle Pulse width
785 km 5.3 GHz 15.55 MHz 2730 37.12 us
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ERS-1 Image of Bonn 1

Range

Azimuth

Figure 5.12 ERS-1 SAR image

5.6.1 One Corner Reflector Terrain

First an image patch containing a corner reflector with 32 x 32 pixels as shown in Figure
5.13 was selected for MPSAR imaging. The 3D image was formed! by registering 9
SAR images, correcting them in phase, and beamforming in the elevation with DFT.
Figure 5.14 (a), (b) and (c) give the two-dimensional PSFs of 3D SAR image. The one-
dimensional PSFs are shown in Figure 5.14 (d). The 3D image is 32 x 32 x 16 pixels. Each
pixel has a size of 7.90m, 4.00m, and 6.73m in the range, azimuthal and elevational
directions. The resolutions in the range, azimuth, and elevation are 9.38m, 6.00m, and
13.45m, respectively. The focused resolution of the MPSAR processing in the elevation is
illustrated in Figure 5.14 (b), (c) and (d). The peak sidelobes in range, azimuth and
elevation are -20dB, -18dB and -15dB, respectively. Figure 5.14 (a) shows a reduced
speckle of the MPSAR processing compared with a single SAR image in Figure 5.15 (a)
and the multi-look SAR image in Figure 5.15 (b). The dynamic ranges and the contour

levels in Figure 5.14 and Figure 5.15 are the same.

M The registration and correction algorithms are discussed in the following chapters.
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Figure 5.13 One corner reflector terrain
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Figure 5.14 3D SAR image of one corner reflector terrain
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Figure 5.15 SAR images of single look (a) and multi-look (b) for one corner

reflector terrain

5.6.2 Two Corner Reflector Terrain

Next a patch of terrain having two corner reflectors with pixel dimensions 32 x 32 shown
in Figure 5.16 was chosen to do MPSAR imaging. The resulting 3D SAR image is shown
in Figure 5.17: (a) the range-azimuth image in which the two corner reflectors are located,
(b) and (c) the profiles of the two corner reflectors in the range-elevation plane where
different azimuthal slices have been selected to separate the two scatterers, (d) and (e) the
profiles of the two corner reflectors in the azimuth-elevation plane where different range
slices have been selected to separate the two scatterers. The focused elevation resolution is
apparent in the range-elevation and azimuth-elevation images. Enhancement of
elevational resolution is presented in chapter 8. The range-azimuth image has a decreased-

speckle with comparison with single and multi-look SAR images as shown in Figure 5.18
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as the reference range-azimuth image has a maximum SNR improvement and a minimum

speckle as discussed in section 5.4.5.
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Figure 5.16 Two corner reflector terrain
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(a) Range-azimuth image across the two scatterers
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(b) Range-elevation image across the first scatterer
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(e) Azimuth-elevation image across the second scatterer

Figure 5.17 3D SAR image of two corner reflector terrain
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Figure 5.18 SAR images of single look (a) and multilook (b) for two corner reflector
terrain

5.7 Conclusions

MPSAR processing is the natural extension of conventional InSAR processing and has
good potential for many applications in spaceborne and airborne SAR systems.
Contributions of this chapter have been to formulate the 3D SAR imaging as a
beamforming problem and to develop the processing steps of MPSAR imaging which
include conventional SAR processing, image registration, phase correction and elevational
imaging. The benefits of MPSAR imaging over InSAR processing have been analysed.
They are to obviate the phase unwrapping, enhance the elevational and ground-range
resolutions, and reduce the phenomena of layover, shadow and speckle. MPSAR imaging

with 17 flight passes was simulated to illustrate 3D PSFs. The ERS-1 data for one and two

112



Conclusions

comer reflector terrain were processed. The processing results show the ability to localize

in elevation and to reduce speckle in the range-azimuth image.

It is noted that the key steps of MPSAR imaging are image registration, phase correction

and elevational imaging which will be further studied in chapters 6, 7 and 8, respectively.

113



Chapter 5: 3D SAR Imaging Via MPSAR Processing

114



Chapter 6 Image Registration for
MPSAR Processing

6.1 Introduction

As discussed in chapter 5, the processing steps of MPSAR imaging are to first co-register
multiple complex value SAR images, then to correct the registered images in phase to
form the focused beam, and finally to steer the focused beam in elevation. The initial step
of co-registering the multiple SAR images is particularly important as image
misregistration leads to reduced correlation between the images, and increased phase
noise within the interferogram[94]. For example, misregistration of as little as 1/8 of a
resolution cell results in a phase noise standard deviation of approximately 23° and 42° for
SNR of ~dB and 10dB, respectively. Misregistration of one resolution cell produces

complete decorrelation, and subsequently an inability to reconstruct the terrain height.

In this chapter, SAR image registration for MPSAR processing is investigated. Concepts
are reviewed in section 6.2. Section 6.3 describes a model and a new approach for
registering pairs of SAR images by use of complex correlation is proposed in section 6.4.
A minimal distance method and an image model matching approach based on this for
multiple images are developed in section 6.5. The complex correlation and the image
model matching approaches are used to process real ERS-1 data and the results are

presented in section 6.6.
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6.2 Concepts of Image Registration

Image registration is a fundamental task in image processing for surveillance and remote
sensing applications. A series of images acquired in different times, different frequencies,
different spatial locations and different polarizations need to be aligned so that differences

in them can be detected and removed.

If we define images as two two-dimensional arrays of a given size denoted by A, and A,
where A, (x,y) and A, (x,y) represent their amplitudes, then the transformations

between images can be expressed as
A () = g{A [f(x ]} (6.1)

where f is a two-dimensional spatial coordinate transformation or geometric
transformation and g is a one-dimensional amplitude transformation or radiometric

transformation.

The amplitude of an image pixel is a function of the reflectivity of the corresponding
surface area and since different sensors have different responses the radiometric
transformation is applicable for the registration of images acquired by different sensors.
The radiometric transformation may not be necessary to register images resulting from
same sensor because it can be combined with sensor system calibration. In this chapter,
the registration of multiple SAR images acquired with same sensor at different times and
spatial positions is investigated. The radiometric correction is assumed to have been
accomplished by SAR system calibration leaving only the geometric distortions require to
be corrected. The corresponding geometric transformations can be classified as rigid,

affine, perspective and curved®”.

The geometrical transformation that maps the coordinate system of one image into the
other can be either global or local as shown in Figure 6.1. The global one influences the
transformation of the image as a whole when one of geometrical parameters changes. In a
local transformation such a change influences only part of the image. It is identified in
section 6.3 that the geometrical transformation for MPSAR images is a local one and the

image registration needs to be conducted locally.
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€)) (b) (©)

Figure 6.1 Global and local geometrical transformations (a) original (b) global (c)
local

Multiple images are registrated if pixels corresponding to same scene point in different
images have the same coordinates. Figure 6.2 depicts the registration requirement for
three images. The shaded elements represent image cells of same scene point, and the
coordinates (x,y,)i = 1,2, 3 locate the point in each image. Registration of three images

istomake x, = x, = x; and y, = y, = y;.

The registration process can be divided into three phases: enhancement, correlation, and
overlay. Enhancement refers to the preprocessing necessary to improve the accuracy of
registration; correlation is the process of determining the misregistrations of matched
points; and overlay is the geometric transformation process which produces the registered
imagery. The crux of the registration process is to determine the spatial misregistrations of

matched points.

i i

) A /S S LS
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A i 2
/S /S S S S
Vi e A A
A 4 I
////’4/

Figure 6.2 Multiple image registration requirement
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6.3 Model for MPSAR Images

Although many methods of image registration have appeared, the ideal registration
method does not exist. One has to compromise between accuracy, speed and interactivity
and to choose the best method for a specific application. In this section, a model for
multiple pass SAR images is described!”?! which helps to identify the type of geometric
distortion of multiple SAR images and to develop appropriate approaches for multiple

SAR image registration.

If we only consider the surface backscattering of terrain without allowing for penetration

of the microwave energy below the surface, the reflection function can be modelled by
P(xy2) =0(xy)8(z-h(xy)) (6.2)

where o (x,y) represents the surface reflectivity density at coordinates (x,y) , & (x,y) is
the terrain elevation for the same point, and & (x) is a Dirac delta function. Substituting
(6.2), (5.5) and (5.6) into (5.3), the signal in 3D data space prior to motion compensation

can be expressed by

: : AR,
S(g) = U [[o(xy)exp [j2mg,h ()] exp [12ﬂ(qu+yqy)]exr>[—1 T ]dxdy. (6:3)
Xy

Due to the small variation of azimuthal and elevational angle within a subimage, the
support region of the signal in 3D data space for a single flight path as shown in Figure 5.3

(a) can be approximated by a plane[79]

which can be expressed as
9, = kiq,+kyq,. (6.4)

Thus the returned signal corresponding to this flight path is

$(4,,4,) = U [[o(xy) exp (127 (kyg, +kyq,) h (35,7)]
= ; (6.5)

) 4nR,
exp [j2n (xq, +yq,) ] exp [—]T] dxdy

The signal support region in the 4,09, plane as shown in Figure 6.3 is offset from the

origin[79]. The signal translated to the origin is
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S' (40 4y) = S(a,+dpq) = U [[0' (x,y) exp [j2m (kyq, + kg h (1, 7)]
(6.6)

) ATR,
exp [j27 (xq, + yqy) ] exp [— T] dxdy

where o' (x,y)

o (x,y) exp {j2nk,goh (x,y) } exp {j27xq,} .

Figure 6.3 Signal support region

The SAR complex image from a single flight path is produced by a two-dimensional
Fourier transform of §'(q,, q,) in the range and azimuthal directions which is formulated

as

Gy = [[[[utho (x,y) exp lj2m (kyg, + kyg)) h (x,¥)]
44y 6.7)

4nR
exp [j2m (x'q, +¥'q,) ] exp [— To] dx' dy'exp [-j27 (xq, + yq,) ] dq, dg,

If U(p) is assumed to be constant over the support region, G (x,y) can be simplified by

changing the order of integration into

) . ' ATR,
G(%y) = [[S, Uk (¥,y) +x -2 k;h (2,5) +¥ =y) &' (2, ¥) exp[ T ]dxdy ©8)

x'y
where S, (x,y) = BB, sm(.[XB ]slnc( "") and sinc (x) = (sinx)/x. The width of
mainlobe of the sinc function is BT. by %T The spatial bandwidths B, and B, as shown
in Figure 6.3 are dependent on the bandwidth of transmitted signals and the change of

aspect angle, respectively. If we assume that the terrain elevation h (x,y) varies slowly
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enough to be considered constant over the mainlobe width of S, function, the complex

SAR image of a single flight may be interpreted as a convolution summation

G(x+Ax,y+Ay) = Sa(x,y) ®0'(x,y)exp [-j4mR,/A] (6.9)

with the shifts Ax' = k h(x,y) and Ay' = k,h(x,y) . Equation (6.9) indicates that a
reflectivity value for any position in the physical scene will be translated in the SAR
image to a new position. The translation is dependent on the flight pass and elevational
function 4 (x, y) . Therefore the geometric transformation for multiple image registration

is identified to be a local translational transformation.

In order to correct the local translational distortion, image registration for multiple SAR
images is generally accomplished in four steps. Firstly, each SAR image is divided into
many subimages. The size of a subimage may be determined by the criteria discussed in
section 5.3. Secondly, measurements are made of the local misregistrations from one
subimage to the other subimages. Thirdly, misregistrations are then used to calculate a
warping function, which maps a location in one subimage to the corresponding location in

the other. Finally, the subimage is resampled so that it overlays the other precisely.

For each subimage, the local translation can be approximated by the global translation.

The complex SAR subimages corresponding to the first and the second flight pass are

expressed by
: ; ATR,
G, (x+Ax;,y+4y,)) = “.Sa (xX'—x,y-y)o' (x,y") exp [—]T} dx' dy' (6.10)
x'y'
. o A4ATR,
G, (x+Axy,y+Ay,) = '”Sa (X'=x,y'-y)o' (¥, y) exp l:_]_l_jl dx' dy'. (6.11)
x'y
With reference to Figure 5.1, R, is expressed as
!
2d, d, 72
R, = R1{1+R—lcosB+(E)] ; (6.12)
Considering R, » d,, R, may be changed into
R, = R, +d,cosP. (6.13)

The image model for the subimage of the second pass can be approximated by
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4n:decosl3)

G, (x%y) =G (x- Ax, y—Ay) exp(——jbl— (6.14)

where Ax = Ax; —Ax, and Ay = Ay, —Ay,.

6.4 Complex Correlation Approach

In this section a distance measure between image pairs is introduced as an indicator of
image registration. Image registration is investigated and a complex correlation approach

is proposed.

Define a distance measure PD[G,(x,y),G,(x,y)] between two images G,(x,y) and

G,(x,y) satisfying

D[G,(x,¥),G,;(x,5)] >0 VG, (x,y) #G,(x,y)
D[G,;(x,5),G;(x,y)] =0
D[G,;(x,¥), G (%, )] = DIG,(x,y),G;(x,¥)]
DIG,(x,),G,(x,y) + G, (%,)] <DIG;(x,y), G, (x, )] + D[G;(x,¥), G, (%) ]

. (6.15)

The conventional amplitude correlation method for image registration makes use of only
the amplitude of an image and discards its phase. Based on the criterion of minimal

distance between image envelopes, that is,
(Ax,Ay) = Argmin (D[|G, (x, )|, |G, (x+Ax,y + Ay)|1) , (6.16)
the misregistrations Ax and Ay in range and azimuth between two images can be

estimated by searching the minimum distance between image pair with respect to Ax' and

Ay'. If the distance measure is chosen as

DI|G, (5] |G, w W] = Y (G, (63|~ |G, s 1], (6.17)
Xy

the solution to the minimum in (6.16) is found by the conventional amplitude correlation
which estimates Ax and Ay with the peak position of two-dimensional correlation of

image amplitude in the range and azimuth directions with the relation of

|G, (%, )| = |G, (x—Ax, y - Ay)|. (6.18)
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The problem with amplitude correlation measures is the broad and flat nature of the peak
regions in the correlation surface. A disadvantage of broad peaks is that registration

accuracy is reduced, and small perturbation due to noise has a large effect on accuracy.

This broad peak characteristic of amplitude correlation techniques results from the fact
that information of spatial relationships between image pairs is ignored significantly. One
approach to solve this problem involves the preferential use of phase information in the
images. The relative roles of amplitude and phase were examined in [95] where it was
found that the phase information was considerably more important than the amplitude
information in preserving the visual intelligibility of the image. Therefore it is reasonable

to process both the amplitude and the phase of SAR image for image registration.

By use of the principle of minimal distance between complex SAR images rather than the

image envelopes, the misregistrations Ax and Ay can be determined by

(Ax, Ay) = Arg min (DG, (x,¥), G, (x+Ax, y+Ay) 1) . (6.19)

DIG, (%), G, (x9)] = ¥ Y|G, (x,) -G, (x,»)|", (6.20)
x y

the above minimization happens at the peak position of two-dimensional correlation

function of the complex image pair. The complex correlation is defined as

C,3(Ax, Ay) = 3N G, (x,y) G* (x+Ax,y + Ay) . (6:21)
ey

This complex correlation can be computed efficiently in the frequency domain. Thus

(6.14) can be rewritten as
G, (%) = G (x—Ax, y - Ay) exp (5j§,) (6.22)
where ¢,, = 4nd,cosB/A. The two-dimensional Fourier transform of (6.22) is
5,4, a)) = exp (59y) S, (4, q,) exp {~j27 (Axq, + Ayq,) } . (6:23)

The phase term of two-dimensional Fourier transform of C,5 (Ax, Ay) can be written as
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FICs(Ax,Ay)]  $,(4,4,)5," (4, 4,)
[FIC,s (Ax, AN 1| ~ [, (9, 9,) S, (2, 4|

= exp (—jPy) exp {-j27 (Axq, +Ayq,)) } (624)

Taking a two-dimensional inverse Fourier transform, then

1] S5 q.4,)8," (4, 4,) ]
1 2 \Hp Hy/ ) oy .

- S — | = exp (j@,) 8 (x—Ax,y—Ay) (6.25)
[I‘Sz (40 9,)S," (4, 4,)] 21

where & (x,y) is a two-dimensional Dirac delta function. The position of the peak of
-1 |: Sg (9, q).) S|$ (qx’ q}.)

; |S2 (4, 4,)5,* (4, ‘7:.-)|
misregistration Ax and Ay .

] in the range and azimuth directions determine the

The image model of complex correlation (6.22) is different from that of the phase
correlation method (2.19) and (6.22) is defined in the complex domain rather than in the
real domain. Experimental results indicate that the peak of complex correlation is sharper
and the sidelobes are smaller as compared with those of conventional amplitude

correlation.

6.5 Multiple Image Registration

Typical existing methods of multiple image registration register one pair of images at a
time and repeat the operation until all the images are registered. However the registration
result is dependent on the order of images and it suffers from image drift error due to the
accumulation of errors in the correlation estimation and image variations caused by the
decorrelation of SAR images[47]. In order to reduce those errors, the correlation of all
images in one step rather than the correlation of image pairs should be used. In this
section, a minimal distance approach is firstly proposed, then an image model matching

approach is developed to improve computational efficiency.

6.5.1 Minimal Distance Approach

Let Ax; and Ay, i = 1, ...,Np be the misregistrations of the ith image G, (x,y) in the
range and azimuthal directions with respect to the terrain coordinates. Multiple image

registration depends on a cost function
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N, N

14 P
Cy(Axp, Ayps oo Ay, Ayy) = D Y DIG, (x+Ax, y+Ay), G (x+Ax, y + Ay) ] (626)
i=1l=i+1

where G, (x + Ax;, y + Ay,) is the image of G, (x,y) with shifts Ax; and Ay, in range and
azimuthal directions, respectively. The misregistrations of multiple images can be

determined by minimizing (6.26), that is,
0, 0 0 0 .
(Axl, Ayl, - AxN 3 Apr) = Arg min (C1 (Axl, Ayl, o AxN A Apr)) (6.27)
14 14

which is called the minimal distance method.

This minimal distance method considers the correlation of multiple images to be
processed rather than the correlation of image pairs. It is less affected by the SAR image
decorrelation than the conventional method for image pairs. Moreover, as the method
calculates the correlation as a whole instead of computing the multiple correlations
between two images it avoids the problem of error accumulation in correlation estimation
and the effect of image order. However the computational load is enormous because it
requires the optimization of multiple variables. Although it is a good method for multiple

image registration, it is impractical especially when the number of images is large.

6.5.2 Image Model Matching Approach

A new algorithm for multiple image registration named image model matching is now
developed for practical applications. It is assumed that each image is derived from a
reference image M (x,y) by the addition of noise. The cost function of multiple image

registration is expressed as

N,

C, (Ax, Ay, ..., Apr, Apr) = z DG, (x+Ax,y+ Ay}, M(x,y)]. (6.28)
i=1
Minimizing (6.28) is equivalent to minimizing the distance of each image from the

reference image, that is,

AG
min [c, (Axl, Ay, ... Apr, Apr) ] = 2 min {D[Gi (x+ Axl., y+Ay),M(x,y)]}. (629)

i=1

The misregistrations can be estimated by
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(A &), o Ay, 837 | = Acg min (C, (Axy, Ay, . Axy, Ay)) (6.30)
p P 4 I4

It is noted that the optimization of 2N, variables in (6.27) is simplified into the N,
optimizations of 2 variables in (6.29). Therefore the computational burden of the image
model match approach is greatly reduced by compared with the minimal distance

approach.

The image model matching method matches each image to the reference image rather than
each other image so that the effects of image order and image drift are eliminated and the

effect of image variation is reduced. The critical step of image model matching method is
N (N _-1)
= 2w P =
2
between all image pairs to determine the misregistrations and distances. The initial

how to estimate the reference image. We first measure the (A;P) distances
reference image M, (x,y) is formed by summing two registered images with the minimal

distance, i.e.,

M, (x,y) = sum [G, (x + Ax,, y + Ay), G, (x+Ax,y+Ay)] (6.31)

where k1= Argmin[fD(Gi(x+Axl.,y+Ayl.),Gm(x+Axm,y+Aym))], Yi£m,
im=1,..,N e When SNR is high, the two images can be summed coherently. If SNR is

low, they are added incoherently.

Then the remaining images are reordered as G;(x,y) i = 1,2,...,N,~ 2 and are matched
“to M, (x,y) to determine the misregistrations and distances. The reference image
M, (x,y) is produced by summing M, (x,y) with one registered image which has a

minimal distance with M, (x,y) , namely,

M, (x,y) = sum[M, (x,y), G (x+Ax,y+ Ay ] (6.32)

where k= Argmin[D(G,;(x+Ax,y+Ay,), M, (x,¥))] Vi =1, ...,Np—2. The above
procedure is repeated N, -2 times until the model M,, _, (x,y) is produced and images
P

G, (xy) i =1, ...,Np have been registered.

We can further elaborate the image model to increase the accuracy of multiple image
registration by iterating the match of the reference image to each image G, (x, y) until the

misregistrations Ax,, Ay;i = 1, ...,Np remain constant.
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6.6 Experiment Results

An experimental study was carried out to measure the performances of the complex
correlation approach and the image model matching approach using multiple SAR images
of the same terrain acquired by ERS-1. The similarity of multiple SAR images was
determined by the SNR of the SAR image, the baseline of flight path and the time interval
between ﬂights[47]. It increases with an increase of SNR or a decrease of baseline and time
interval. The amplitude correlation method, being a standard method, was used as a
comparison. The experiment included 162 pairs of SAR subimage data sets obtained from
9 flight paths by choosing subregions with a size of 50 x50 pixels containing strong
scatterers as illustrated in section 5.6. The translational offset of two images within each
pair was known to within a pixel by use of ground control points. For each offset, a
window size of 32 x 32 was selected in the calculation of the registration measure. This

allowed for offsets of up to 9 pixel positions in each direction.

6.6.1 Complex Correlation Approach

With the aim to determine the robustness of the proposed method to image dissimilarity,
the SAR image pairs were grouped according to their similarity. The similarity of each
image pair was measured by the correlation coefficient of the two amplitude images
evaluated at a known translational offset as defined by (2.16). Registration results were
measured by the correct probability of registration for the image pairs within the given
image similarity category. Figure 6.4 presents the results of the complex correlation of
(6.21) (solid line) and the amplitude correlation of (2.15) (dash line) graphically. It
indicates that both provide correct registration when the image similarity is greater than
0.7 for the amplitude correlation and 0.5 for the complex correlation. However, as the
similarity of image pairs drops, the complex correlation performs more robustly than the
amplitude correlation. The complex correlation continues to provide an accuracy of 80%

even if similarity value goes as low as 0.35.
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Figure 6.4 Registration accuracy versus image similarity

Figures 6.5 and 6.6 show the amplitudes of correlation functions of the complex and
amplitude correlation approaches, respectively in the mesh map (a) and in contour map
(b). Figure 6.7 compares the profiles of their amplitudes of correlation functions. They
demonstrate that the complex correlation reduces the sidelobe of correlation function
significantly and the correlation peak of the complex correlation is a little sharper than that

of the amplitude correlation.
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Figure 6.5 Amplitude of correlation function of complex correlation
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Figure 6.7 Profiles of the amplitudes of complex and amplitude correlation
functions

6.6.2 Image Model Matching Approach

The new image model matching approach was used to register the SAR subimage pairs of
ERS-1 used in previous section. The distance measure between images of a pair G, (x,y)
and G, (x,y) was chosen as in (6.20). The image model is updated by the incoherent

summation, that is,

sum (M (x,y), G (x,y)) = M (x,y)| +|G (x, y)|. (6.33)
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Figure 6.8 gives the correct probability of image registration using the image model
matching approach (solid line) and the amplitude correlation (dash line). It shows that
both provide correct registration if image similarity is greater than 0.6 for the image model
matching approach and 0.7 for the amplitude correlation. However the image model
matching degrades more slowly as the correlation coefficient decreases. The thresholds of
registration accuracy 80% for the image model matching and the amplitude correlation are

0.37 and 0.46, respectively.
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Figure 6.8 Registration accuracy versus image similarity

In Figure 6.9, the dash line denotes the correlation coefficient histogram of image pairs
and the solid line is the correlation coefficient histogram between the reference image and
each image. It is seen that the reference image has a better correlation with multiple
images and so the image model matching approach can increase the accuracy of multiple

image registration.

131



Chapter 6: Image Registration for MPSAR Processing

04 T T ] T I I T
] ; . — Reference image with each image
= = |mage pairs
0.35 -
0.3 -
0.25} ErH = Rt ahauahevaslna - . e mm v

Probability
o
N
L]

o

b

o
T

0 X i L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Correlation Coefficient

Figure 6.9 Histogram of correlation coefficients

6.6.3 Effect on 3D SAR Images

The effect of image registration on 3D SAR imaging was illustrated by MPSAR
processing the ERS-1 data of one corner reflector terrain as described in section 5.6.
Figure 6.10 gives the 3D image before image registration. It indicates that the signals
resulting from the corner reflector are distributed in several range and azimuth cells. 3D
SAR image after image registration is shown in Figure 6.11. It is seen that the signals
corresponding to the corner reflector are located in the same range and azimuth cell.
However they are still scattered over the elevational direction. The next chapter discusses

phase correction to form a focused elevational beam.
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(c) Azimuth-elevation image

Figure 6.10 3D SAR image before image registration
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Figure 6.11 3D SAR image after image registration with the image model matching

134



Conclusions

6.7 Conclusions

Image registration is a key step of InNSAR and MPSAR processing. The contributions in

this chapter are

1. to make use of complex correlation instead of amplitude correlation to improve the

accuracy of SAR image registration.

2. to develop the methods for multiple SAR image registration by use of the correlation of

multiple images rather than the correlation for image pairs.

The model for multiple pass SAR images is described. The geometric transformation of
SAR image registration is identified to be the local translation. The complex correlation
approach is developed for the SAR image model. The conventional correlation only uses
the amplitudes of images and discards the phases of images resulting in the high sidelobes
and the broad peak of the correlation function. The complex correlation utilizes both the

amplitude and phase of SAR image to increase the registration accuracy.

The multiple image registration is then studied. The minimal distance approach is the ideal
method. It makes use of the correlation of multiple images to reduce image drift error
resulting from the accumulation of error in correlation estimation and image variation
error caused by the SAR image decorrelation. In order to reduce the computational load of

the minimal distance approach, the image model matching is developed.

Finally the complex correlation and the image model matching approaches are used to
process the real data of ERS-1. The processing results show that they are both able to
increase the registration accuracy for the same image similarity, and to reduce the image
coherence requirement for the same registration accuracy compared with the conventional
amplitude correlation. The complex correlation can enhance the peak and reduce the
sidelobe magnitudes of correlation functions. The image model matching is able to
improve the coherence of multiple images by use of the reference image. The

effectiveness of image registration is demonstrated by 3D ERS-1 SAR images.
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Chapter 7 Phase Correction for
MPSAR Processing

7.1 Introduction

The processing steps of MPSAR imaging have been investigated in chapter 5 which
include first registration of multiple complex value SAR images, then phase correction of
the registered images for beamforming, and finally beamforming in the elevational
direction. Image registration of multiple SAR images was studied in previous chapter and
the elevational beamforming will be discussed in next chapter. This chapter focuses on the
phase correction of complex SAR images. Since phased array techniques are used to form
the elevational beams, phase correction can be determined using array calibration

principles (1207 (121,

The organization of this chapter is as follows. The role of phase correction for SAR
images is presented in section 7.2. In section 7.3, three methods of phase correction:
eigenvector, terrain centroid tracking, and strong scatterer reference are developed. These
approaches to phase correction are verified by processing the real data of ERS-1 in section

7.4 and statistical performances of phase correction are investigated in section 7.5.

7.2 Role of Phase Correction

In the analysis of chapter 5, it is assumed that the multiple flight paths are parallel and
equi-spaced in elevation, and thus the beam output formed by summing the registered
images enhances a plane wavefront signal incident the flight path array from the broadside

direction as shown in Figure 7.1.

137



Chapter 7: Phase Correction for MPSAR Processing

l .
/\J P2 I

Figure 7.1 Flight path linear array steered at broadside direction

However in practice the flight paths are uncertain and deviate from their nominal position
and the propagation medium in ionosphere and troposphere may be inhomogeneous!146],
These defects may destroy the above capability of coherent summation. In order to correct
the uncertainty of flight paths and compensate for anomalies in the propagation medium, a
phase shift is required to be attached to each flight path as shown in Figure 7.2 to form a

focused beam in the elevation.
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Propagation anomaly

Processor

Figure 7.2 Flight path array with self-calibration to compensate for flight path
uncertainty and propagation anomalies
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Many techniques have been developed to determine the phase factors for array calibration
as reviewed in section 2.8.3. A data-driven technique is used for self-calibration where no
assisted device is required for calibration measurement. The beamforming and subspace
approaches were applied to ISAR autofocus in chapter 3. Due to their theoretical

equivalence the signal subspace method is adopted for phase correction in this chapter.

7.3 Phase Correction

MPSAR imaging carries out the phase correction to form a focused elevational beam.
However phase correction is dependent upon precise information on flight paths and
propagation medium (i.e. distortions need to be known to be the order of 1/8). In this
section, three methods of phase correction are developed based on array self-calibration

which do not need the information about flight path and propagation medium.
Based on (6.14), the image model after image registration can be written as
G, (x,y) = G, (x,y)exp (-7 Py)) .1

where G, (x,y) and G, (x,y) are the subimages of the first and the second flight path,
respectively whose size can be determined by the criteria discussed in chapter 5,
¢,, = 4mnd,cosB/A, d, the baseline between the first and second flight path, B the
incidence angle as shown in Figure 5.1 and A the radar wavelength. For the complex

image corresponding to the i th flight path, (7.1) generalizes to
G, (xy) = G;_;(x,y)exp (5@, ;1) = G (xy)exp(7¢) (7.2)

where ¢, = z ¢, ,_,- Defining a pixel vector V(x,y) = [G, (x, ¥)s .o Gy (%, y)]T and
’ P

n=2

considering the SAR system additive noise, (7.2) has the form for each pixel

Vix,y) = G (x,)D,+W(x,) (7.3)

where D, = [1, exp (—j9,), ..., exp (—j¢Np)]T and W(x,y) = [w, (x3), .., wy (x, I
w, (x,y) is assumed to be independent identically distributed complex Gaussian noise

. . 2 . .
components with zero mean and variance o, . The task of phase correction is to first
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estimate the complex signal vector D,, and then to compensate the multiple complex SAR

images by conjugating with D, .

It is pointed that the image model (7.3) has an analogy with the signal model (3.11) for
ISAR autofocus. Therefore the conventional beamforming, the optimum beamforming,
the signal and noise subspace methods developed in chapter 3 for ISAR autofocus can
theoretically be applied to phase correction for MPSAR processing. Due to the
equivalence of these methods, only the eigenvector method, that is the signal subspace
method, is discussed and then its simplified versions such as terrain centroid tracking and

strong scatterer reference are described.

7.3.1 Eigenvector Method

The covariance matrix of V(x, y) is
2 H
Cy(xy) = E{Vxy» V' (x»} = |G,y ['D,D, +C, (7.4)

where C,, = val is the covariance matrix of noise and I the identity matrix. It is verified

in Appendix A that the largest eigenvalue of C,, (x, y) is
2 2
A = |G1 (x, y)| Np +0,, (7.5)
and its corresponding normalized eigenvector is

uy = (7.6)

'Uzlmb

and all the other eigenvalues are equal to cfv. (7.6) shows that the eigenvector
corresponding to the largest eigenvalue of Cy, (x, y) , being proportional to D,, can be used

for phase correction.

The eigenvector method also realizes the ML estimation of D, as follows. The joint

probability density function of a single pixel vector is

PV (YD) =1 "{det(Cy(53)} Texp IV (1) € ) VT, @1
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It is assumed that the individual pixel vectors in the subimage are independent and have
the same covariance matrix. Thus the joint probability density function of
V=1[VQE,y) - V(xNxNy, yNINy)] , that is the probability density function of all of the
pixel vectors in the subimage, is the product of the probability density functions for

individual pixel vectors and is given by

~N,N,N, -N,N, -1 A
p(ViD) =mn { det(Cy(x,5))} exp{—NxNy Tr{ Cy, (%, y)Cy |} (7.8)
N,N,
where Cy = NlN 2 V(x,y,) vH (x,y;) and N and N, are the pixel dimensions of the
Y
SAR sublmage in range and azimuth, respectively. Maximizing the log probability density

function with respectto {D,, |G1 (x,) | 1} results in the following equation [86]

CyD,yyy = Oy D (7.9)

w' 'max~ eML

where A is the largest eigenvalue of Cy and D,,,, is the corresponding eigenvector.
(7.9) shows that the eigenvector of €y, corresponding to the largest eigenvalue is the ML

estimator of D, .

7.3.2 Terrain Centroid Tracking

A new method for phase correction, terrain centroid tracking, is described below which
makes use of the subaperture processing of the eigenvector approach to reduce the
computational complexity when the number of flight paths is large. The terrain centroid
tracking method considers the limiting case where each subaperture consists of two
adjacent flight paths. It first forms the interferograms between these adjacent flight paths,
then estimates the phase differences of the terrain centroid by averaging the phase within
each of the interferograms and finally restores the phase of the terrain centroid for phase
correction by accumulating the phase differences. Terrain centroid tracking is derived

below.

For the ith subaperture formed by two flight passes P, and P,_, , the image model of
(7.3) becomes

Gy | _ G, (x,y) [ -1 ] MRS ») (7.10)
Gi+1 (x,y) exp (](p,q_]‘,') W1 (x,y)
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where ¢,, ; ; = ¢,,, — ¢, is the phase difference and the covariance matrix is estimated as

N, N
G,

Gy (x, Yy
The eigenvector corresponding to the largest eigenvalue of Cy, derived in Appendix B, is

1
(7.12)

X ¥y
kY Y G*i(63) Gy (1,7)
x=ly=1
where k is a scalar. Thus the ML estimator of the exponential phase difference can be

expressed as

exp (j§;, ;) = (7.13)

N, N

Y ZG (%) Gy (%)
; 2
2

T
2 i (% y) G,’+1(x,}’)

which is the average phase of the interferogram formed by adjacent flight paths P, and
P,,, . This phase average is weighted by the amplitude of the interferogram and it is
called the phase difference of the terrain centroid. Thus this method tracks the terrain

centroid rather than some strong scatterers.

Then the complex exponential phase of the tetrain centroid in each flight path for phase
correction can be obtained by setting the initial phase to be zero and multiplying
exp{jf;,1;t i=1,.., N, -1 in flight path series to retain the continuation of phase for

the entire aperture.

7.3.3 Strong Scatterer Reference

When K strong scatterers exist in the terrain, the effective SNR is enhanced if the
summation in (7.13) is calculated only over the subset of pixels (xpy)k=1,..,K

where strong scatterers are located, i.e.,
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K

2 Gi* (xk, yk) G,'+1 (xk, yk)
exp (j§;, 1) = i : (7.14)

z G,'* (xk, yk) Gi+1 (xk, yk)
k=1

If one prominent strong scatterer with coordinate (x,y,) is detected in the terrain, the
estimated phase difference is approximated by
G,'* (x4 yd) Gi +1(xp yd)

exp (j®;,, ) = . (7.15)
LT TG (39 Gy (5 )|

In this case, the phase difference of the terrain centroid is estimated by the phase
difference of the dominant strong scatterer which effectively becomes the centroid of the
terrain. With initiation exp (j§;) = G, (xpy)7 |G1 (xpy d)| , then the complex exponential
phase of the terrain centroid in each flight path is estimated by

G (xp¥g)

P (i) = exp (60 oxp (811 = 5

—_— i=l,...,N —1. (7.16)
i+l (xd’yd)l

P
In such a case, the phase correction is actually to compensate the complex images by
referencing the phase of the strong scatterer which is the popular method for SAR system

calibration.

In summary the eigenvector method is the ML estimation for phase correction. The terrain
centroid tracking and the strong scatterer reference are the simplified schemes of the
eigenvector method. The computational operations of the above three methods are given
in Table 7.1 where N, and N, are the pixel dimensions of SAR image in the range and
azimuth directions, N, is the number of flight path and a Householder transformation is
used for the eigendecomposition of covariance matrix!?34]. The number of divisions for
the three methods are almost the same, the strong scatterer reference does not need any
additions, and its operation of multiplication is less than those of the eigenvector method
and the terrain centroid tracking. A numeric example of Table 7.1 for the experiment in
this chapter is shown in Table 7.2 where N, = 32, Ny = 32 and Np = 9, It is seen that the
ratio of multiplications for these three methods is about N,+1:2:1 and the ratio of
additions between the eigenvector method and the terrain centroid tracking is

approximately N, :1.
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Table 7.1 Computational operations of phase correction

Division Multiplication Addition

Ei 2 3 2 3

igenvector N, NN N +N;N, Ny +4/3Nj, NxNyN,“+4/3N,
method
Terrain centroid Np-1 2NN yNpNxNy+Np-1 NNy Np-NyNy
tracking
Strong scat- Np N,N,Nj, 0
terer reference

Table 7.2 Numeric example of Table 7.1

Division Multiplication Addition
Eigenvector 9 93132 83916
method
Terraincentroid | 8 17416 8192
tracking
Strong scat- 9 9216 0
terer reference

7.4 Experiment Results

The three methods proposed for phase correction were used to process the 9 SAR image
data sets acquired by the ERS-1 satellite presented in chapter 5. An image patch satisfying
the conditions discussed in chapter 5 was selected for MPSAR processing. The 9 SAR
images were first registered with the image model matching approach, and then corrected
in phase by the three methods developed in this chapter, and finally conventionally

beamformed in elevation to produce the 3D SAR images.

The Integrated sidelobe ratio (ISLR)!47] is a useful ‘criterion to measure the focusing

quality. It is defined as the ratio of the energy in mainlobe to that in sidelobes, that is,

ISLR Fu
“E-L, (7.17)
where E,, denotes the energy in the mainlobe with a 3dB bandwidth and E, is the total
energy. The larger the ISLR, the smaller the sidelobes and the better the resolution

capability.
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7.4.1 One Corner Reflector Terrain
At first an image patch containing a corner reflector was processed. The reconstructed 3D

image was visualized with three 2D profiles, that is, the range-azimuth image, the range-
elevation image and the azimuth-elevation image; the resolution of elevation being shown
in the range-elevation image and the azimuth-elevation image. Figure 6.11 is the 3D
image without phase correction. Figure 7.3, Figure 7.4 and Figure 7.5 are the 3D images
where the phase correction is carried out by the strong scatterer reference, the terrain
centroid tracking and the eigenvector method, respectively. In these figures (a) is the
range-azimuth image, (b) is the range-elevation image and (c) is the azimuth-elevation

image.
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(a) Range-azimuth image

Elevation
-—

I s . i i 1
L} 10 15 20 5 =
Range

(b) Range-elevation image
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Figure 7.3 3D SAR image with the strong scatterer reference
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(c) Azimuth-elevation image
Figure 7.4 3D SAR image with the terrain centroid tracking
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(c) Azimuth-elevation image
Figure 7.5 3D SAR image with the eigenvector method

By comparing with Figure 6.11, the focusing quality in Figures 7.3, 7.4 and 7.5 is clearly
better indicating the effectiveness of phase correction. Although these methods are
theoretically related, differences do arise due to details in the estimation as discussed in
section 7.3. The ISLRs of these SAR images are listed in Table 7.3 which shows that
Figure 7.3 is the best and Figure 7.5 is better than Figure 7.4. The loss of SNR caused by
estimating the covariance matrix over the non-signal cells makes Figure 7.3 superior to
Figure 7.5. The difference between Figure 7.4 and Figure 7.5 is due to the fact that the
subaperture processing of the eigenvector method results in a little increase of CRLB of

estimated complex vector as discussed in section 4.7.

Table 7.3 ISLRs of 3D SAR images for one corner reflector terrain

No phase Strong scatterer Terrain centroid Eigenvector
correctionin | reference in Figure tracking in Figure | method in Figure
ISLR (dB) Figure 6.11 73 7.4 7.5
Reflector 0.0473 9.3415 2.0967 3.2679

7.4.2 Two Corner Reflector Terrain

Secondly a subimage containing two corner reflectors at different ranges and azimuths as
shown in Figure 5.16 was chosen. Figure 7.6 displays the 3D image without phase

correction where (a) is the profiles of the first corner reflector in the range-elevation and
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azimuth-elevation planes and (b) is the profiles of the second corner reflector in the range-

elevation and azimuth-elevation planes. It is seen that the elevational beam is out of focus

without phase correction.
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(a) Elevation profiles of the first corner reflector
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(b) Elevation profiles of the second corner reflector
Figure 7.6 3D SAR image without phase correction

Figure 7.7 and Figure 7.8 give the 3D images where the phase correction is conducted by
the strong scatterer reference method with referencing the first and the second corner
reflector, respectively. They show that the elevational beam focuses on the corner reflector

to be referenced but the other corner reflector is out of focus.
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(b) Elevation profiles of the second corner reflector

Figure 7.7 3D SAR image with the first corner reflector reference for phase
correction
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(b) Elevation profiles of the second corner reflector

Figure 7.8 3D SAR image with the second corner reflector reference for phase
correction

Figure 7.9 and Figure 7.10 are the 3D images where the phase correction is performed by
the terrain centroid tracking and the eigenvector method, respectively. They show that the
two corner reflectors are focused simultaneously at the expense of some widening of the

beamwidth.
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(b) Elevation profiles of the second corner reflector

Figure 7.9 3D SAR image with the terrain centroid tracking for phase correction
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(b) Elevation profiles of the second corner reflector
Figure 7.10 3D SAR image with the eigenvector method for phase correction

The ISLRs of the two corner reflectors in the above 3D images are given in Table 7.4
which show the focusing quality of the three methods for phase correction. The ISLRs are
increased by use of the phase correction to form a focused beam. The strong scatterer
reference is able to enhance the ISLR of the referenced corner reflector significantly but
does not necessarily increase the ISLR of the second reflector. The terrain centroid
tracking and the eigenvector method improve the ISLRs of both two corner reflectors

properly rather than that of a specific corner reflector.
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Table 7.4 ISLRs of 3D SAR images for two corner reflector terrain

Strong Strong
No phase reflector 1 reflector 2 Terrain centroid | Eigenvector
correctionin | reference in reference in tracking in method in Figure
ISLR (dB) | Figure 7.6 Figure 7.7 Figure 7.8 Figure 7.9 7.10
Reflector 1 1.5296 9.7353 0.8728 2.3814 2.8560
Reflector 2 | -1.4972 0.8251 4.0973 1.5679 1.7161

7.5 Statistical Analysis

Statistical tests were conducted to inspect the robustness of phase correction. Consider a
terrain containing a strong scatterer, 17 SAR images with equally-spaced flight paths were
simulated and white noise was added before MPSAR imaging. The strong scatterer
reference method was used for phase correction. Other parameters of the simulation were
given in section 5.5. The focusing quality of 3D images was measured by the ISLR of the
strong scatterer. This statistics was ions for a specifi

SNR. Figure 7.11 gives the mean ISLR of the scatterer versus SNR of the SAR images. In
particular the ISLR is reduced by greater than 3dB with respect to the asymptotic SNR

limits when the SNR drops below 5dB.

Mean ISLR (dB)
) Y i

L L
£ 10 15 20
SNR {dB)

Figure 7.11 Mean ISLR versus SNR

In order to measure the effect of subimage size on the focusing quality of a 3D SAR
image, a terrain consisting of two strong scatterers having the same elevational coordinate

and different distances in the range-azimuth plane was simulated. 3D SAR image was
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formed by phase correction with the reference of one strong scaiterer and the focusing
quality of the 3D image was measured by the ISLR of the other scatterer. This focusing
quality versus the distance between the two scatterers is shown in Figure 7. 12. It indicates
that a subimage with a size up to 110m can be focused with an ISLR above 3dB which is

consistent with the result in section 5.3.

ISLA (dB)
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Distance {(m)

Figure 7.12 ISLR versus subimage size

7.6 Conclusions

Phased array calibration techniques have been employed to effect phase correction to
obtain a focused beam in the elevational direction for MPSAR. The original work in this
chapter is to apply the methods of array calibration to determine the phase factor for phase

correction. Three approaches for phase correction of MPSAR processing are developed.

1. The eigenvector method makes use of the eigenvector corresponding to the largest
eigenvalue of the covariance matrix of pixel vector which is the ML estimator for phase

correction.

2. The terrain centroid tracking is the subaperture processing of the eigenvector method
when each subaperture consists of adjacent two flight paths. It has a reduced
computational load (multiplication) by a factor of 5 in Table 7.2 but results in a small

increase of estimated variance bound compared with the eigenvector method.
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3. If a prominent strong scatterer exists, the strong scatterer reference regards the signal
vector of the strong scatterer as the eigenvector corresponding to the largest eigenvalue of

estimated covariance matrix. It is straight forward and easy to implement.

The three approaches were verified by processing the ERS-1 data for one and two corner
reflector terrains and the statistical performances were analysed. It is concluded that the
eigenvector method is versatile for phase correction. However in practical applications it
is limited by the accurate estimation of the covariance matrix and the computational load
for eigendecomposition when the number of flight paths increases. If a strong scatterer is
identified in the terrain, the strong scatterer reference can replace the eigenvector approach
effectively to eliminate the SNR loss in estimating the covariance matrix. When no strong
scatterer exists in the terrain, the terrain centroid tracking may be used to obviate the
estimation of the covariance matrix and the eigendecomposition of the estimated
covariance matrix. Selecting a phase correction method suitable for terrain type yields a

satisfactory focused elevational resolution with reduced computational complexity.
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Chapter 8 Elevational Imaging and
Super-resolution for
MPSAR Processing

8.1 Introduction

MPSAR imaging as described in chapter 5 involves three steps. First is registration of
multiple complex value SAR images, second is phase correction of the registered images,
and third is beamforming in the elevational direction. The registration and the phase
correction of multiple SAR images have been investigated in chapter 6 and chapter 7,
respectively. In this chapter, the elevational imaging with multiple beams in elevation and

the enhancement of elevational resolution by super-resolution processing are studied.

This chapter is structured as follows. Frequency domain beamforming in elevation by use
of the DFT is described in section 8.2. In section 8.3, the two methods for enhancement of
elevational resolution are investigated: the first is a maximal entropy extrapolation for
linear enhancement and the second is a subspace method for nonlinear enhancement. The
developed approaches for the formation and enhancement of elevational resolution are
illustrated by processing the real data of ERS-1 in section 8.4. Statistical performances of

elevational imaging and resolution are analysed in section 8.5.

8.2 Elevational Imaging

MPSAR imaging is able to produce a 3D radar image as a function of range, azimuth and
elevation. High range resolution is achieved by pulse compression of the wideband
transmitted signals. Azimuthal and elevational resolutions rely on the synthesized aperture

in azimuth and elevation, respectively. In this section, phased array beamforming
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techniques based on frequency domain beamforming are used to obtain the elevational

resolution by forming many receiving beams in the elevational direction.

After phase correction, an elevational beam is formed in the broadside direction of the
flight path array by coherent addition of the complex images. However signals from other
directions are not in phase and will not be reinforced. To form an image in these
directions, the complex image of each flight path is required to be shifted in phase to
compensate the difference of propagation path in order to sum them coherently. Due to the
fact that the variation of azimuthal aspect angle within a subimage is negligible, the
difference of propagation path for the ith flight path with respect to the first flight path as

shown in Figure 8.1 is

Ar, = (i-1)d,sin8, (8.1)

where d, is the baseline between adjacent two flight paths and 6, the elevational signal

direction. Thus the corresponding phase shift is expressed as

4n

M, = n (i—-1)d, sin9, (8.2)
due to two-way propagation. The frequency-domain beamforming approach steers the
elevational receiving beam by varying m,, as shown in Figure 8.1. Two groups of phase
shifters are illustrated. The first group ¢, conducts the phase correction to compensate for
the uncertainty of flight path and propagation anomalies as discussed in chapter 7. The
second group m,, applies a linear phase across the flight path array to scan the focused

beam electronically in the elevational direction.

/ T Mgl
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ONp-1 TNNp-11
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Figure 8.1 Focusing and scanning the elevational beam
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For an equi-spaced flight path array, the steering phase factor is exp {—jf;—:—t (i-1)d,sin®,;} ,
thus the output of the elevational beamformer, an estimator of reflectivity p (x,y, z) , 1S

expressed as

N
s S . AT :
puy2) = 3G (mydexp{=ia (i-1)d,sin0} ©3)

i=1
where G' (x,y,i) = G,(x,y)exp (j¢,) and (8.3) can be computed efficiently using an N -
point DFT.

Useof an N, point DFT produces multiple receiving beams in directions 6, given by
N
sin(0) = > |l<=L. (8.4)

Shading weight coefficients b, i = 1,..., N, are generally applied to the individual phase
corrected images to control the mainlobe width and the sidelobe levels of the elevational
beams®). In order to increase the number of elevational beams steered, the windowed
and phase-corrected images b,G' (x,y,i) i = 1,...,N , can be appended with zeros prior to

DFT of the extended datal®8],

8.3 Super-resolution Processing

Whilst zero-padding of b,G' (x,y, i) increases the number of steered elevational beams,
the elevational resolution remains unchanged because zero-padding does not increase the
array aperture and the elevational resolution is determined by the aperture length in
elevation which is known as Rayleigh resolution. The Rayleigh resolution can only be
enhanced by increasing the effective aperture length, which is impractical for MPSAR
processing. Super-resolution processing of MPSAR allows the Rayleigh resolution to be
overcome and consequently it is to be preferred as it reduces the number of flight paths

required and mitigates the decorrelation of SAR images.

The model of multiple complex sinusoids in (8.3) allows modern spectral estimation
techniques to be used to increase the spectral resolution beyond the Rayleigh limit. Super-
resolution processing techniques include maximum entropy (ME), auto-regressive (AR),

moving average (MA), auto-regressive moving average (ARMA), multiple signal
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classification (MUSIC) and estimation of signal parameters via rotational invariance
techniques (ESPRIT). In this section two of these methods are used to enhance the
elevational resolution. One is the maximum entropy extrapolation of the observed data
where the extrapolation procedure is carried out for each pixel cell of multiple registered
and phase corrected SAR images in the data domain. The Fourier transform of the
extrapolated data produces enhanced elevational resolution. The other is the subspace
method which makes use of the orthogonality between the noise subspace and the signal
subspace of the covariance matrix of the observed data to provide the super-resolution

capability.

The block diagram of elevational super-resolution is shown in Figure 8.2. After image
registration and phase correction, the data across multiple SAR images with the same
pixel position, that is the output of the flight path array at this pixel, form a pixel series.
Instead of DFT processing, high resolution spectral analysis such as maximum entropy
extrapolation and subspace methods is applied to each pixel series to enhance the

elevational resolution.

SAR pixcl high resolution
images series spectral analysis

Yei new pixel

available?

Figure 8.2 Block diagram of elevational super-resolution processing

8.3.1 Linear Super-resolution

The philosophy of maximum entropy spectral estimation is that all extrapolations of the
measured data should be consistent with the available data and should make minimal
assumptions regarding unavailable data. For a one-dimensional regularly sampled

stationary Gaussian process, maximum entropy is equivalent to using the assumption of an
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AR process [35] and there are two main ways to estimate the AR spectrum. The first
approach is to estimate the prediction coefficients and to calculate the spectrum using the
estimated prediction coefficients. The second approach also estimates the prediction
coefficients, but then extrapolates the observed data in both directions with the estimated
prediction coefficients, and finally applies a Fourier transform to the extrapolated data.
Since both approaches use the same prediction coefficients, they should provide
essentially the same spectral estimation. However the first approach only estimates the
power spectrum and ignores the phase spectrum. The second approach, despite being
more computation-intensive, produces both the power and phase spectra and this is
sometimes more useful for sonar and radar applications (1011 11021 15 this section the
second approach is employed. It is called linear super-resolution because it invokes DFT

and preserves the phase information.

The block diagram of the proposed linear super-resolution is shown in Figure 8.3. The
pixel series G' (x, y, i) atpixel (x,y) is at first used to estimate the prediction coefficients
using the Burg algorithm which guarantees numerical stability[103]. This algorithm has a
lattice structure with each stage determined by a reflection coefficient. The reflection
coefficient 1, (x,y) at stage k is estimated by minimizing the sum of the forward and

backward prediction error powers and is given by

N -1
" b % .
-2 z e’,:_l(x,y, e, (x,y,i—1)
tk(x’y) = N -1 =k (8.5)

5 (vce ")|2+|ei_1(x,y,i—1)|2)

i=k

where the forward and backward prediction errors are calculated by

e)]:(x,y, i) = e’,;_l(x,y, i) +1t,(x,y) el,:_l(x,y,i—l) i=k+1,...,Np—1, (8.6)
b . b i . :
Ly i) = eh_ (uy i 1) +1F (59 oy (63 i) izk,..., N, =2 ®7)

with initial value

& (xy,i) = G(xyi) i=l..,N,—1, 8.8)
eg (x,y,0) = G (x,9,0) i:2,...,Np—2. (8.9)
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The prediction coefficients of the k order transversal filter are determined by the reflection
coefficients using the Levinson recursion
e Cen D ek F (6, k-i) =l k-1
h (%, 0) = _ . (8.10)
2 (x,y) i=k
which is a fast algorithm[193]. The process is repeated Q times until the prediction
coefficients hQ (x,y,k) k=1,..., Q are estimated where Q is the AR model order to be

used.

Then the pixel series is extrapolated forward and backward to the length N F where F is a
factor of extrapolation. The forward extrapolation of data is given by
Q

G (6, N,+i) = Y hy (%K) G (x,y,N +i-k) i>0 (8.11)
k=1

and the backward extrapolation of data is done by

~

124
G 6y =) = Y hg* (3.0 G (x,y,k-i) i>0. (6.12)
k=1

Finally the extrapolated pixel series is Fourier transformed to produce the super-

resolution.
dicti series Fours
i rediction . ourier
pixel : ) p-| CXtrapolation
series coefficient — ¢ f
forward & ransrorm
calculation
backward

Figure 8.3 Linear super-resolution diagram

The selection of model order is a critical step. If the model order is too low, the spectrum
has all the peaks smoothed. On the other hand, if the order is too large, the spectrum may
contain spurious peaks. Many criteria such as Akaike Information Criterion (AIC) and
Minimum Description Length (MDL) have been proposed to estimate the model
order!!%3]. An effective approach to determine the model order Q of AR for the short data

in radar and sonar applications is (1011 (102]
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Q< Np/3 , (8.13)

and the extrapolation factor F is selected as [101] [102]

F=2~-4, (8.14)

8.3.2 Nonlinear Super-resolution

Linear super-resolution extrapolates the elevational aperture with the AR model in the
data domain and Fourier transforms the extrapolated data to obtain the super-resolution.
However its improvement is limited!1%2], The subspace method makes use of the
eigendecomposition of the covariance matrix of the observed data. The orthogonality
between the noise subspace and the signal subspace of the covariance matrix produces
super-resolution. The resolution capability of the subspace method is theoretically
unlimited in the absence of noise. But it only provides the location of individual scatterers
in elevation and its spectrum has no information about amplitude and phase of
reﬂectivity[104]. Due to this fact it is called nonlinear super-resolution. However once the
elevations of the individual scatterers have been obtained the complex amplitude

information can be obtained by solving a linear least-square problem.

The block diagram of nonlinear super-resolution is shown in Figure 8.4. The covariance
matrix of the pixel series is at first estimated, the eigenstructure of the estimated
covariance matrix is analysed to determine the subspaces of signal and noise, and a high

resolution spectrum is calculated from the eigenvectors of the noise subspace.

eigenanalysis
i covariance ) el
pixel ) of estimated p 3
series matrix [ — i en
. calculation
estimation covariance
matrix

Figure 8.4 Nonlinear super-resolution diagram

From (8.3), the observed modelD is formulated as

() Note this can be thought of as the inverse model of (8.3).
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K
\ . Arn . . .
G (x,y,i) = Z p (x,y,2,) exp {JTn(l_ 1)d,sin®,} +w,(x,y) 1=1,...,Np (8.15)

I=1
where it is assumed that K scatterers exist in the elevation with reflectivity p (x, y,z,) and
w; (x,y) is an additive noise which is assumed to be independently Gaussian distributed.
Defining a Kx1 vector ny = [Py, 2), P (x,20)] T and Np x1 vectors

] ) T T
ny = [G'(x,y,1),...,G (x,y,Np)] , ny = [w,(x,y), ..., WNP (x,y)1 , we have

V'xy = Axyzxy + ny (8.16)
here N x K matrix A_ = da =1 AT N ~1)d sine, ||

where N, X K matrix ey = (a,..;ag) and a, = [1, ..., exp ]T( o )d,sing,

The subspace method makes use of the eigenstructure of the covariance matrix of the

observed data. From (8.16), the covariance matrix can be expressed as

H H
Cy=E(v, v, =44 "+c, ©.17)

where E denotes the ensemble average, H the complex conjugate transpose,

H‘ Pove. ¥ el

-l V
jdlub

IAX - E\ L

- the covariance mairix of the noise. If w;(x,y) is assumed to

02
xy“xy w

be independent noise with mean zero and variance cwz, then (8.17) becomes

C =A_A A H+o i (8.18)

Xy xy Txyxy w

where [ is the identity matrix. The eigenvalues in descending order and their
corresponding eigenvectlors of C,, are denoted by A 22,>...2), and e, .., e, ,

4 14
respectively. By use of the orthogonality between the noise subspace and the signal

subspace, i.e.,

span [eg ., |, ..., eNF] L span la, ..., agl, (8.19)

the linear combinations of noise subspace vectors with arbitrary weighting b, such as

N, N,
2
Z bi(laﬂ () el.| ) =4 (z)[ 2 bieie?)a (2) (8.20)
i=K+1 i=K+1

will be zero whenever steering vector a(z) locates in the signal subspace. In practice,
estimation errors cause (8.20) not to be zero exactly, but close to zero. This means that the
position of each scatterer can be estimated by searching the peak position of the reciprocal

of (8.20), i.e.,
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N 1
p(xy.2) = —5 . (8.21)

i bi(I“H(Z) e,.|2)

i=K+1

Two specific algorithms have been proposed. Selecting b, = 1 yields MUSIC [104]

A 1
p(xy2) = —x : (8.22)
4 H 2
2 la (2) eil
i=K+1
Choosing b, = 1/A; results in the eigenvector approach [105]
" 1
p(x,y,2) = N , (8.23)
1(| # 2
5 il @ef)

i=K+1 !

The peaks in the elevation spectrum indicate the location of the individual scatterers.
However the spectral amplitudes of these peaks contain no information with regard to the
reflectivity of individual scatterers. Having estimated the locations of the different
scatterers, reflectivity estimation remains a separate task and can be obtained via the least

square solution 02y

In the above analysis the covariance matrix is assumed to be known. In practice it needs to
be estimated by time averaging. This averaging results in a full rank covariance matrix.
For MPSAR processing, only one snapshot of each flight path is available at a time
implying that the estimate of C, would be singular and the subspace method would not

work properly.

Spatial smoothing can be used to replace the time averaging[106]. The scheme we adopt to
do the spatial smoothing over adjacent image pixels is shown in Figure 8.5 where V', is
the pixel vector across multiple SAR images. The covariance matrix of the pixel vector for

location (x,y) can be estimated by averaging

. 1 - . - = ~
ny = 5 (ny + Cx—l,y +Cyy ,yt Cx,y—l + Cx,y+1) (8.24)
where éxy = %(V’xyV'ny+0NpV'xyv'ny0Np) and ONp is an prNp exchange matrix

which is defined as
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The size of spatial smoothing region determines the rank of the estimated covariance. The
spatial smoothing has to pay the penalty of resolution Yeduction in the range and azimuth
directions. The second term in C‘xy introduced by the exchange matrix helps to reduce this
penalty, that is, it increases the resolutions in range and azimuth directions by use of

backward spatial smoothing[lm].

Vip - )
I I
| ~ ad !
l N : - |
~ V.X'Iy //
| ~ ~ |
I ’ > y » I
ny-] ny ny+1
| p 5 |
: // Vx"']y \\ |I
s
[ g N |
- ~
| e ~ 1
» R e \V’N N
Vi1 Ny

Figure 8.5 Spatial smoothing scheme

A simple idea for separating eigenvectors into the signal and noise subspaces is to
examine the eigenvalues of the covariance matrix with (2.33) and (2.34). However in
practice it does not work well especially when the signal-to-noise ratio is low. The
dimension of the signal subspace can be determined automatically with AIC [198)which is

defined as

N, N
1 2 2 ~—
AIC (K) = (N,-K) [mN — z li:|+(Np—K) z InX; +K(2N,-K).  (825)
p i=K+1 i=K+1

The dimension of the signal subspace is determined by selecting the minimum value of

AIC (K) withrespectto KX .
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8.4 Experiment Results

The methods for elevational imaging and super-resolution processing described above
were used to process ERS-1 SAR image data sets. An image patch with 32 x 32 pixels was
selected for MPSAR processing. The 9 SAR images were firstly registered with the image
model matching developed in chapter 6, and then corrected in phase by the eigenvector
method discussed in chapter 7, and finally imaged in elevation with linear and nonlinear
super-resolution techniques. The reconstructed 3D image was visualized with three 2D
profiles, that is, the range-azimuth image, the range-elevation image and the azimuth-
elevation image. The resolution of elevation is illustrated in the range-elevation and the

azimuth-elevation profiles.

The computational operations of the DFT processing, the linear and nonlinear super-
resolution processings are given in Table 8.1 where N, and N, are the pixel dimensions of
SAR image in the range and azimuth directions, N, is the number of flight path, N, is the
number of extrapolated flight path, Q is the order of AR model, X is the dimension of the
signal subspace and a Householder transformation is used for the eigendecomposition of
covariance matrix. The DFT processing does not need any division and the number of
multiplications and additions required are less than those of the linear and nonlinear super-
resolution processing. An example of Table 8.1 for the experiment in this chapter is shown
in Table 8.2 where N, = 32, N, = 32, Np =9,N,=32,0=3 and K = 2. It is seen
that the ratio of multiplication and addition for these three methods is about 1:15:25 and

ratio of division between the linear and nonlinear super-resolution is approximately 1:3.

Table 8.1 Computational operations of elevational imaging

Division Multiplication Addition
DFT processing 0 NxNpr2 N,NyN,2-N,NyN,
fitr}ear super-reso- | NyNyQ NNy (N +NQ+4NQ- NNy (N >+NQ+3N,Q+
uton 2Q2-3Q) Ny-2N.-3/2Q%-5/2Q)
Nonlin'ear super- NxNy(Np+2) NxNy(7 /3Np3 +6Np2- NxNy(7 /3Np3 +9Np2-
resolution Ksz-K N,) KNp2)
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Table 8.2 Numeric example of Table 8.1

Division Multiplication Addition
DFT processing 0 82944 73728
Linear super-resolution | 3072 1229824 1152000
Nonlinear super-reso- 11264 2055168 2322432
lution

8.4.1 One Corner Reflector Terrain

First an image patch containing a corner reflector was processed. The 9-point data of each
pixel were weighted by Hamming window, zero-padded to length 16, and transformed by
DFT. The resulting 3D image is shown in Figure 8.6. Figure 8.7 is the 3D image without
weighting. As illustrated in Figure 8.6 and Figure 8.7, the sidelobes are reduced by means

of Hamming weight but the point spread function has a wider mainlobe.
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Figure 8.6 3D SAR image with Hamming weight
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Figure 8.7 3D SAR image without weight

For the linear super-resolution technique, the data were extrapolated forward and
backward from 9 to 32. The 32-point data were windowed by Hamming weight and
transformed with DFT. The nonlinear super-resolution padded the eigenvectors of the
noise subspace from length 9 to 32 with zeros, and then computed the elevational
spectrum. The 3D images acquired by the linear and nonlinear super-resolution are shown
in Figure 8.8 and Figure 8.9, respectively. For comparison, the conventional processing by
windowing 9-point data, zero-padding to length 32 and transforming the 32-point data
with DFT is shown in Figure 8.10. The AR model order for linear super-resolution was
selected as 3 by use of (8.13). MUSIC was used for the nonlinear super-resolution, and the
dimension of signal subspace was chosen as 1 from (8.25). As shown in Figure 8.8, Figure
8.9 and Figure 8.10, the linear and nonlinear super-resolutions are able to enhance
elevational resolution compared with the conventional DFT processing. The support
region of the corner reflector in the elevation is narrowed approximately by a factor of 3
and 4 compared with the DFT processing when the linear and nonlinear super-resolutions
are used, respectively. This means that the nonlinear super-resolution is more powerful
than the linear super-resolution. However the computational load of the former is more
expensive than that of the latter as shown in Table 8.2 and Figure 8.9 indicates that the
spatial smoothing of the nonlinear method results in resolution reduction in the range

direction.
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Figure 8.8 3D SAR image with linear super-resolution
£y 30|
-4 e . Yerwrwswy - i + T et »: e 25
r g E 20| siias Y
£ 5 5
= Ll *
W 10
8 ]
: 10 is 2 S ¥ 5 I 16 » 2 0
Range Azimuth
Figure 8.9 3D SAR image with nonlinear super-resolution
o+ »
o I — ; S | O | S
20 0
£ 5
:
wis i 15
10! 10
13 sk
.‘I- 1.0 156 ?ls 3.0 ; 1.0 1‘5 z:: 3“5
Rangs Azimuth

Figure 8.10 3D SAR image with zero-padding and DFT
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8.4.2 Two Corner Reflector Terrain

Second a subimage containing two corner reflectors was chosen. Figure 8.11 is the 3D
image with Hamming window, zero-padding to length 16 and DFT where (a) shows the
profiles of the first corner reflector in the range-elevation and azimuth-elevation planes
and (b) shows the profiles of the second corner reflector in the range-elevation and

azimuth-elevation planes. The 3D image without windowing is shown in Figure 8.12.
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(a) Elevation profiles of the first corner reflector
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(b) Elevation profiles of the second corner reflector

Figure 8.11 3D SAR image with Hamming weight
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(a) Elevation profiles of the first corner reflector
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(b) Elevation profiles of the second corner reflector

Figure 8.12 3D SAR image without weight

Figure 8.13 and Figure 8.14 are the super-resolution images produced by the linear and
nonlinear methods, respectively. The order of AR model for the data extrapolation was 3
by use of (8.13). MUSIC was used for the subspace method and the dimension of signal
space was selected as 2 from (8.25). The image with Hamming window, zero-padding to

length 32 and DFT is given in Figure 8.15.

The processing results are consistent with those of one corner reflector terrain and indicate
that windowing reduces the sidelobes, zero-padding increases the number of elevational
beams but does not enhance the elevational resolution, and the linear and nonlinear super-
resolutions techniques enhance the elevational resolution. The resolution improvement

factors of the linear and nonlinear methods are 3 and 4, respectively.
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Figure 8.13 3D SAR image with linear super-resolution
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(a) Elevation profiles of the first corner reflector
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(b) Elevation profiles of the second corner reflector
Figure 8.14 3D SAR image with nonlinear super-resolution
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(b) Elevation profiles of the second corner reflector
Figure 8.15 3D SAR image with zero-padding and DFT
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8.5 Statistical Analysis

In this section, statistical performances of height estimators are investigated. Monte-Carlo
simulations were conducted to calculate the mean and the standard deviation of the height
estimator. In the simulations, it was assumed that a strong scatterer located at a height of
12 meter and 17 equally-spaced flight paths were used for MPSAR processing. Other
parameters of the simulations are available in section 5.5. Simulated SAR images were
added with some white noise before MPSAR imaging. The height of the scatterer was
detected by the peak of 3D image intensity in the elevational direction with a search grid

of 0.1m. The statistics were inferred from 100 simulations for each set of SNR.

Figure 8.16 shows the mean and standard deviation of the estimated height error of the
scatterer versus SNR determined by the DFT elevational imaging. It indicates that the
DFT elevational estimator is unbiased and the threshold of SNR for mean and standard
deviation is OdB. Since this is height estimation of a single scatterer it is not necessary to

repeat for super-resolution algorithms as they essentially give the same results.

Mean and Standard Derivation of Height Ertor {m)

-5 LJ H
SNR (dB)

Figure 8.16 Mean and standard deviation of height error

In order to analyse the elevational resolution capability, two strong scatterers having same
range and azimuthal coordinates and spacing 48 meter apart in the elevational direction to
be easily resolved were simulated. Elevational imaging was conducted by DFT, linear
super-resolution and nonlinear super-resolution methods, respectively. The relative height
of these two strong scatterers were detected by the peaks of 3D image intensity in the
elevational direction. The order of AR model for linear super-resolution was 5 and the
dimension of signal subspace for nonlinear super-resolution was selected as 2. The mean

and standard deviation of the estimated relative height difference error versus SNR are
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shown in Figure 8.17, Figure 8.18 and Figure 8.19, respectively. They show that the three
estimators appear to be asymptotically unbiased, and that the DFT is able to resolve the
two scatterers precisely when SNR is greater than 15dB, linear super-resolution achieves
this if SNR is above 10dB and nonlinear super-resolution is sensitive to noise and has a

larger estimation standard deviation than other two methods.
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Figure 8.17 Relative height difference error determined by DFT imaging
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Figure 8.18 Relative height difference error determined by linear super-resolution
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Mean and Standard Derivation of Relative Heighl Error (m)
i i
o

5 o &
SNR (dB}

Figure 8.19 Relative height difference error determined by nonlinear super-
resolution

8.6 Conclusions

The original work reported in this chapter has been the application of phased array
techniques to form multiple receiving beams for elevational imaging and to utilize the

methods of modern spectral estimation to enhance the elevational resolution.

At each pixel, a focused elevational beam is formed using images that have been
registered and phase corrected. This beam is scanned in elevation electronically by use of
DFT which produces multiple beams to do elevational resolution. The linear super-
resolution extrapolates the elevational aperture forward and backward in the data domain
using an auto-regressive prediction filter. Fourier processing of extrapolated data produces
the 3D super-resolution image. The nonlinear super-resolution makes use of the
covariance matrix of pixel series. The orthogonality between the noise subspace and the

signal subspace of the covariance matrix gives the super-resolution capability.

The DFT, linear and nonlinear super-resolution processings were used to process the ERS-
1 data with repeat orbits. The processing results show that the DFT processing produces
the 3D SAR images of one and two corner reflector terrain with the Rayleigh resolution in
elevation. The linear and nonlinear processings can narrow the beamwidth of elevational
beam pattern or the point-spread-function (PSF). The resolution is approximately
enhanced by a factor of 3 and 4 when the linear and nonlinear super-resolutions are used,

respectively. However the nonlinear super-resolution is sensitive to noise and has a large
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estimation variance. The computational complexities of the three methods have been

compared for real time implementation.
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Chapter 9 Summary

9.1 Overview

In this thesis, array processing techniques have been applied to ISAR autofocus and

MPSAR imaging. The work presented in this thesis is overviewed below.

Chapter 2 described the fundamental material about SAR, ISAR, InSAR and array
processing. Motion compensation and image formation were identified as the two main
steps of ISAR processing. The methods of ISAR image formation and motion
compensation were reviewed. ISAR images of Boeing-727 were presented by processing
the simulated data from NRL. It was found that autofocus was a key step of ISAR imaging
and autofocus should receive particular emphasis in this thesis. Typical InSAR processing
included image registration and phase unwrapping. Numerous methods for image
registration and phase unwrapping were overviewed. The interferogram of flat terrain was
simulated and the interferogram of ERS-1 data was generated. Examples of one and two
dimensional phase unwrapping were illustrated. MPSAR, an extension of InSAR, was
suggested to be further researched in this thesis. Beamforming, subspace methods and

array calibration for array processing were also briefly reviewed.

In chapter 3, ISAR autofocus was conducted by conventional beamforming, optimum
beamforming, signal subspace and noise subspace methods. The signal model of ISAR
autofocus was established. Adjusting the steering vector to maximize the output powers of
conventional and optimum beamformers made the steering vector of beamformer
converge to the exact signal vector corresponding to the translational motion of object in

the case of the known covariance matrix. Signal and noise subspace methods were applied
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to ISAR autofocus which were based on the fact that the noise subspace was orthogonal to
the steering vector when this steering vector pointed to the signal vector associated with
ISAR autofocus. Subaperture processing was described to improve computational
efficiency. One-dimensional and two-dimensional ISAR autofocus by processing the
simulated and real data show that the four developed methods are able to produce high

quality ISAR images.

In chapter 4, statistical properties of the four methods developed in chapter 3 were
examined. The signal subspace method was related to the strong scatterer reference
method by approximately estimating the covariance matrix over the range cells where the
strong scatterers were located. The signal subspace method was recognized to be ML
estimation of the complex vector corresponding to ISAR autofocus. The CRLB of the
complex signal vector corresponding to ISAR autofocus and the CRLB of the distance
between two scatterers were derived and used to establish a lower bound on the
estimator’s variance. The statistical performances of conventional beamforming, optimum
beamforming, signal subspace and noise subspace methods were analysed and show that

they are statistically etficient.

Chapter 5 described the mathematical model for 3D SAR imaging. The processing steps
of MPSAR imaging were proposed which included conventional SAR processing, image
registration, phase correction and elevational beamforming. MPSAR imaging was found
to be an extension of InSAR. Its advantages over InSAR were highlighted. Results of
processing simulated and ERS-1 real data show that the developed processing steps for

MPSAR imaging are able to produce the focused 3D PSFs.

In chapter 6, a model for MPSAR was described and the complex correlation was
proposed for SAR image pair registration based on the this model. The minimal distance
and the image model matching approaches were developed for multiple SAR image
registration. The complex correlation and the image model matching methods have been
used to process ERS-1 image sets. The results illustrate that complex correlation can
enhance the peak and reduce sidelobes of the correlation function and the image model
matching is able to improve the coherence of multiple images by use of the reference

image.

In chapter 7, array calibration techniques were applied to correct the multiple complex

SAR images prior to construction of focused beams in the elevation. The eigenvector
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method, the terrain centroid tracking and the strong scatterer reference were proposed for
phase correction and described in detail. The eigenvector method is the ML estimator of
phase correction. The terrain centroid tracking and the strong scatterer reference are the
simplified versions of the eigenvector method. The three proposed methods were verified
by processing the ERS-1 data, their statistical performances were analysed with respect to
SNR and the size of subimage and their computational complexities were discussed. The
results show that phase correction is able to produce a focused 3D PSF with a ISLR of

3dB when SNR drops to 5dB or the size of subimage increases to 110m.

Finally, in chapter 8 the elevational imaging was obtained by forming multiple beams. The
elevational resolution was enhanced by two methods. One was the maximum entropy
extrapolation for linear super-resolution. The other was the subspace method for non-
linear super-resolution. The 3D SAR images were produced by processing ERS-1 data
with the DFT processing, the linear and nonlinear super-resolution methods. Their
statistical performances were analysed and the computational complexities were
compared. The results of 3D SAR imaging show that the DFT processing produces the
Rayleigh resolution in elevation, the linear and nonlinear super-resolution are able to

enhance the elevational resolution approximately by a factor of 3 and 4, respectively.

9.2 Contributions

The key contributions to knowledge of this dissertation are:

1. the derivation of the signal model for ISAR autofocus which avoids the problem of

phase unwrapping.

2. the development of ISAR autofocus methods via maximizing the output powers of

conventional and optimum beamformers.

3. the development of signal and noise subspace methods for ISAR autofocus by either
maximizing the projection of steering vector to the signal subspace or minimizing the

projection of steering vector to the noise subspace.
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4. the derivation of the ML estimator of ISAR autofocus and the determination of the
CRLB for the complex signal vector corresponding to the translational motion of an object

and the CRLB of the distance between two scatterers.

5. the development of processing steps for MPSAR imaging which include conventional

SAR processing, image registration, phase correction and elevational beamforming.

6. the development of the complex correlation, the minimal distance and the image model

matching approaches for multiple SAR image registration.

7. the development of the eigenvector method, the terrain centroid tracking and the strong

scatterer reference for phase correction of MPSAR processing.

8. the development of elevational imaging with the DFT and enhancément of elevational

resolution with the maximum entropy extrapolation and the subspace methods.

9.3 Fuiure Work

Although this thesis has presented a comprehensive overview of ISAR autofocus and
MPSAR imaging, there is still some work to do. We now outline a number of issues which

need to be addressed. Possible future work includes:

1. recursive forms of beamforming and subspace methods for ISAR autofocus where the
optimum steering vector can be efficiently derived by updating the estimation of the

steering vector using the signal vector in each range cell.
2. extension of subspace methods to ISAR autofocus for multiple moving objects.

3. the preprocessing multiple complex SAR images to remove the noise and enhance the

coherence between multiple SAR images.

4. elevational imaging based on tomographic principle.
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9.4 Conclusions

This thesis has investigated a novel application of array processing methods to calibration
for ISAR and MPSAR. It achieves two objectives. One is to apply a rigorously
mathematical approach to problems which have traditionally been solved using the
conventional methods. The other is to develop a unifying framework where the

conventional methods could be interpreted and evaluated from a different point of view.

The techniques were analysed in detail from several aspects such as conventional
beamforming, optimum beamforming, signal subspace, noise subspace, image
registration, phase correction, elevational imaging and super-resolution. Their statistical
performances were examined and their computational complexities were compared.
Several important results were found in this thesis by processing the simulated and real
data. They have shown how the techniques of array calibration can be used successfully in
ISAR and MPSAR and provide valuable insights which have a potential application in

modern airborne and spaceborne SAR systems.
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Appendix A The Eigen
Decomposition of C,

The covariance matrix C, of the received signal for ISAR autofocus was derived in
chapter 3. The eigen decomposition of C, is calculated below which was cited in chapters

3and 7.If C, is an M x M matrix, it has an eigen decomposition

Cu. = hu, (A1)

where A, is an eigenvalue and u; is the corresponding eigenvector. A; i=1,..., M are the

solutions of characteristic equation

det (C.—Al) = 0. (A.2)
From section 3.2, C, is expressed as
H 2
C.=p, DD +0o,l, . (A.3)

Thus C, is a Hermitian symmetric positive definite matrix. By use of the relation

det{ ke, + ") = det () k+vC]ly ). (A.4)
we have
det (C,—Al) = ( DD +( e x)IM)
=p, det(DD +—(0‘ - ) )
(A.5)
1 M 2
= —+ det (c —x)l
pn[pn Gi—)»j [ w M:l
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Thus (A.2) is changed into

(ci—l+Mpn)(cfv—k)M_l = 0.

Therefore the eigenvalues of C_ are
2
A =0, +Mp,
2 .
A =0, i=2,...,M.

Substituting A, into (A.1), we get

(A.6)

(A7)

(A.8)

(A.9)
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Appendix B The Eigenvalues and
Eigenvectors of a 2x2
Covariance Matrix

The subaperture processing approach was discussed in chapter 3. If the subaperture is
made of two adjacent pulses, subaperture processing of the signal subspace method needs
the eigen decomposition of a 2x2 covariance matrix as discussed in chapter 3. The

estimated 2 x 2 matrix C, is expressed as

N
2 |xnm|2 z xnm n(m+1)
zxnm n(m+1) len(m+1)l

ul

(@Y
]

(B.1)

The characteristic equation of C, is

det (C,-A,)) =0 (B2)

where A; i=1,2 is an eigenvalue of C, . The solutions of characteristic equation are

( N N \

> ]+ s |
n=1

N N 2
2
My = (2 | — z |xn(m+1)|2] + [Pl7en (B.3)
n=1 n=1
N

*
2 Xum xn(m+ 1)

n=1

2
4

where A, > X, and the corresponding eigenvectors are
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Uy 5 = . (B.4)
k5 2 X

nmbxn(m-r 1)
n=1

where k, , are expressed as

{ N ) N 5 3
2 Pnman| =X Pl £
n=1 n=1
r/ N ) N ) 2 11 N 2
k1,2 = (Z Ixnml - 2 |xn(m+1)| J + ’ /(2 foatrr$xn(m+l) ] (B.5)
n=1 n=1 n=1
N 2
4 anm*xn(m+l) J
L n=1 g
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Appendix C  First and Second
Derivatives of

[ d

Zop 0 g 18

In order to calculate the CRLB of the estimated distance between two scatterers, the first

and second derivatives of likelihood function I(z, ..., z,,_,3d) respect to the distance d

between the two scatterers need to be derived and they are given below.

The first partial derivative of I (zy, ..., z,,_;d) withrespect to d is

] = . 2md .
= TzTpsm[Gm+'Y]Sln{%sm[em"'ﬂ}

SIS

2
[, 2%, + u* 2, ] + = sin [6,, +7] sin {“i)fisin (6, + v}

A

The second partial derivative of [(z, ...,z,,_;:d) withrespectto d has the form

2 M-1_ o
al _ 1 8np . 2 2nd .
vl z - sin [8,, +7] "cos {==sin [6,,+ 7] }
Wm=0
321:2 2

[,y + w2, ] +

£ vy (6, +171] %cos {%isin (6, +7v1}

The expectation of the second partial derivative is

M-1 2
{2 LT 0o, e (i, 1)
(o)

{u,Elz*,] +u*,Elz,]1}

321:2 sin [0, + Y] cos{—sm[e +v1}

(c.1)

(C.2)

(c.3)
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From section 4.6, we have

Elz,] = 2pcos {22dsin [6,,+7] }u,,. e
Thus (C.3) becomes
2 2 2M-1 5
E[a lz] = 32n g 2 sin [(-)m+y]zsin {z%lsin [6,+v1} . (C.5)
ad 0-3)7\’ m=0
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