Pharmacological control of transient lower oesophageal sphincter relaxations

Ilmars Lidums
MBBS FRACP

Gastrointestinal Medicine Unit
Department of Medicine
Royal Adelaide Hospital

Submitted for the degree of Doctor of Philosophy

The University of Adelaide

November 1999
Contents

Dedication .. ii

Contents .. iii

Thesis Summary ... viii

Declaration .. x

Acknowledgments .. xi

1. Anatomy and innervation of the oesophageal body 12
 1.1 Gross Anatomy ... 13
 1.2 Microscopic Anatomy .. 14
 1.3 Innervation of the oesophageal body 15
 1.3.1 Extrinsic innervation
 1.3.2 Intrinsic innervation

2. Normal function of the oesophageal body 21
 2.1 Introduction .. 22
 2.2 Primary peristalsis .. 22
 2.2.1 Function
 2.2.2 Motor patterns
 2.2.3 Control of primary peristalsis
 2.3 Secondary peristalsis .. 28
 2.3.1 Function
 2.3.2 Motor patterns
 2.3.3 Control of secondary peristalsis
3. Anatomy and innervation of the lower oesophageal sphincter

3.1 Gross Anatomy ... 33
3.2 Microscopic Anatomy .. 33
3.3 Innervation .. 34
 3.3.1 Extrinsic innervation
 3.3.2 Intrinsic innervation

4. Normal function of the lower oesophageal sphincter 37

4.1 Function ... 38
4.2 Motor patterns .. 38
 4.2.1 Basal lower oesophageal sphincter tone
 4.2.2 Lower oesophageal sphincter relaxation
4.3 Control ... 41
 4.3.1 Control of basal lower oesophageal sphincter pressure
 4.3.2 Control of lower oesophageal sphincter relaxation
4.4 Other factors influencing sphincter pressure 49
 4.4.1 Migrating Motor Complex
 4.4.2 Meals
 4.4.3 Sleep
 4.4.4 Exercise

5. Anatomy and innervation of the stomach 51

5.1 Gross Anatomy .. 52
5.2 Microscopic Anatomy ... 53
5.3 Innervation of the stomach 54
 5.3.1 Extrinsic innervation
 5.3.2 Intrinsic innervation

6. Normal function of the stomach 57

6.1 Motor patterns ... 58
6.2 Control ... 60
 6.2.1 Intrinsic control
 6.2.2 Extrinsic control
7. The antireflux barrier and mechanisms of gastro-oesophageal reflux

7.1 The antireflux barrier

7.1.1 Introduction
7.1.2 Role of the lower oesophageal sphincter in the antireflux barrier
7.1.3 Crural diaphragm
7.1.4 Other anatomical factors

7.2 Mechanisms of reflux

7.2.1 Introduction
7.2.2 Lower oesophageal sphincter
7.2.3 Effect of hiatus hernia
7.2.4 Role of the stomach
7.2.5 Role of oesophageal body: oesophageal acid clearance

8. Transient lower oesophageal sphincter relaxations

8.1 Introduction

8.2 Characteristics of transient lower oesophageal sphincter relaxations

8.2.1 Manometric characteristics
8.2.2 Other events

8.3 Triggers and modulating factors

8.3.1 Gastric distension
8.3.2 Pharyngeal activity
8.3.3 Posture
8.3.4 Sleep
8.3.5 Anaesthesia
8.3.6 Stress

8.4 Neural control

8.4.1 Vagal (efferent) pathway
8.4.2 Sensory (afferent) pathways
8.4.3 Crural diaphragm

8.5 Neural receptors and therapeutic implications

8.5.1 Cholecystokinin
8.5.2 Nitric oxide
8.5.3 Morphine
8.5.4 Anticholinergic agents
8.5.5 Sumatriptan
8.5.6 Other agents

8.6 Transient lower oesophageal sphincter relaxations in reflux disease

8.7 Summary
9. Recording methods and data analysis

9.1 Perfusion manometry
 9.1.1 Perfusion pump
 9.1.2 Manometric assemblies
 9.1.3 Manometric technique

9.2 Oesophageal pH

9.3 Gastric barostat

9.4 Data acquisition

9.5 Data analysis
 9.5.1 Oesophageal manometry
 9.5.2 pH data analysis
 9.5.3 Barostat data analysis
 9.5.4 Symptom assessment

10. Effect of atropine on gastro-oesophageal reflux and transient lower oesophageal sphincter relaxations in patients with gastro-oesophageal reflux disease

10.1 Introduction

10.2 Methods
 10.2.1 Subjects
 10.2.2 Recording methods
 10.2.3 Study protocol
 10.2.4 Data analysis
 10.2.5 Statistical analysis

10.3 Results

10.4 Discussion

11. Effect of peripheral cholinergic blockade on gastro-oesophageal reflux and transient lower oesophageal sphincter relaxations in normal subjects

11.1 Introduction

11.2 Methods
 11.2.1 Subjects
 11.2.2 Recording methods
 11.2.3 Study protocol
 11.2.4 Data analysis
 11.2.5 Statistical analysis

11.3 Results

11.4 Discussion
12. Effect of atropine on proximal gastric motor and sensory function in normal subjects.......................... 145
 12.1 Introduction.. 146
 12.2 Methods .. 146
 12.2.1 Subjects
 12.2.2 Recording methods
 12.2.3 Study protocol
 12.2.4 Data analysis
 12.2.5 Statistical analysis
 12.3 Results... 151
 12.4 Discussion... 157

13. Pharmacological control of transient lower oesophageal sphincter relaxations and gastro-oesophageal reflux by the GABA\textsubscript{B} agonist baclofen in normal human subjects 161
 13.1 Introduction.. 162
 13.2 Methods .. 163
 13.2.1 Subjects
 13.2.2 Recording methods
 13.2.3 Study protocol
 13.2.4 Data analysis
 13.2.5 Statistical analysis
 13.3 Results... 166
 13.4 Discussion... 174

Appendix.. 178

Bibliography.. 181
Thesis Summary

The work contained in this thesis investigates pharmacological control of transient lower oesophageal sphincter relaxations as a treatment of gastro-oesophageal reflux. Two major classes of pharmaceutical agents were explored; anticholinergic agents and the GABA_B agonist, baclofen.

Transient lower oesophageal sphincter relaxation is the principal mechanism of reflux in normal subjects and in the majority of patients with gastro-oesophageal reflux disease. The anticholinergic agent, atropine, has previously been shown to inhibit gastro-oesophageal reflux in normal subjects by inhibition of transient lower oesophageal sphincter relaxations. Because reflux occurs during absent basal lower oesophageal sphincter pressure in a significant minority of patients with gastro-oesophageal reflux disease, the effects of atropine may not be the same as in normal subjects. The effect of atropine in reflux patients was therefore examined. This study showed that atropine inhibits reflux in patients with reflux disease largely by inhibition of transient lower oesophageal sphincter relaxations.

The site at which atropine exerts its effect on transient lower oesophageal sphincter relaxations is unknown. Transient lower oesophageal sphincter relaxation is believed to be neurally mediated through vagal pathways, stimulated by gastric distension and integrated in the brainstem. Atropine could potentially act centrally, in the brainstem, or peripherally, by altering the mechanical properties of the proximal stomach. Therefore, the site of action of atropine was investigated by examining the effect of atropine on proximal gastric function and the effect of a peripherally acting anticholinergic agent on the triggering of transient lower oesophageal sphincter relaxations. These studies support the notion that atropine inhibits transient lower oesophageal sphincter relaxations by acting centrally in the brainstem.
As gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter within the central nervous system and inhibitory GABA_B receptors are abundant in the brainstem, the effects of the GABA_B receptor agonist baclofen on transient lower oesophageal sphincter relaxations and gastro-oesophageal reflux were investigated in normal subjects. This study showed that baclofen significantly inhibited the rate of transient lower oesophageal sphincter relaxations and thereby reduced the rate of reflux episodes, suggesting that GABA_B receptor agonists may have a potential therapeutic role in the treatment of reflux disease.