A NEW HILBERT TIME WARPING PRINCIPLE FOR PATTERN MATCHING

BY

ARULNESAN MAHESWARAN

B.E. (1st Class Hons.; UNSW; Oct. 6, 1982)

A thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy

UNIVERSITY OF ADELAIDE

MARCH 1985
TABLE OF CONTENTS

List of figures vi
List of tables xii
Main mathematical symbols used xiii
Abbreviations xvi
Abstract xvii
Statement of originality xix
Acknowledgements xx

CHAPTER 1 - INTRODUCTION

1.1 Subject Coverage 1.1
1.2 Sample Point Distortions and Correspondences 1.2
1.3 Dynamic Time Warping 1.3
1.4 The New Algorithm 1.4
1.5 Outline of Thesis 1.11

CHAPTER 2 - DYNAMIC TIME WARPING PRINCIPLE

2.1 Time Normalized Distance Definition 2.1
2.2 Constraints on the Warping Path 2.3
2.3 Dynamic Time Warping 2.4

CHAPTER 3 - THEORETICAL STUDY OF THE HILBERT WARPING PRINCIPLE

3.1 Derivation of Distortion Characteristics for Hilbert Warpable Signals 3.1
3.2 Theoretical Illustrations of the HW Procedure 3.5
3.3 Geometry of the HW Principle 3.7

CHAPTER 4 - PROCEDURES FOR ASSOCIATING SAMPLING INSTANTS

4.1 DIW Algorithm Used by Itakura 4.1
4.2 DIW Algorithm Used by Sakoe and Chiba 4.7
 4.2.1 The Weighting Coefficient 4.7
 4.2.2 The Slope Constraint 4.11
4.3 Sample Association in HW Algorithm and Advantages

CHAPTER 5 - THE HILBERT WARPING (HW) ALGORITHM

5.1 The Hilbert Transformer
5.2 Sample Association
5.3 Application of HW

CHAPTER 6 - PRECONDITIONING OF SIGNALS AND PHASE UNWRAPPING

6.1 Endpoint Problems and Modification of DW Algorithm
6.2 Preconditioning for the HW Algorithm
6.3 Phase Unwrapping

CHAPTER 7 - METHODS OF RESOLUTION OF THE HILBERT LOOP

7.1 Hilbert Loop
7.2 The Loop and the Derivatives of Phase
7.3 Segmentation and Point to Point Association in the Complex Plane
7.4 Monotonic Smoothing of Phase Curve and the Hilbert Phase Warping (HW) Criterion
7.5 Conclusion

CHAPTER 8 - THE NEUTRAL PHASE SAMPLER

8.1 The Necessity of a Neutral Phase Sampler
8.2 Neutral Phase Sampler and Linear Monotonic Phase Curves
8.3 Non-Linear, Non-Monotonic Phase Curves and the Neutral Phase Sampler
8.4 Conclusion

CHAPTER 9 - COMPUTATIONAL CONSIDERATIONS IN THE HW ALGORITHM AND COMPARISONS WITH DW ALGORITHMS

9.1 The Initial Stage of the HW Algorithm
9.2 The Middle Stage of HW
9.3 The Final Stage of HW
9.4 Conclusion
CHAPTER 10 - PRACTICAL APPLICATION OF THE HW ALGORITHM AND COMPARISON WITH DTW ALGORITHMS

10.1 Application of HW for Phonocardiograms 10.1
10.2 Speech Signal Processing and HW 10.2
 10.2.1 The All-Pole Model for Speech Signals 10.7
 10.2.2 The Formant Analysis 10.12
 10.2.3 The Speech Time Contours
10.3 Hilbert Warping of Speech Parameters 10.15
10.4 Comparison of HW and DTW 10.27

CHAPTER 11 - CONCLUSION

APPENDIX 1 - ANALYTIC SIGNALS AND HILBERT PAIRS

APPENDIX 2 - HILBERT TRANSFORM THEORY

References
ABSTRACT

In many pattern matching tasks, an important preliminary operation is a transformation of the time or space scale to compensate for object distance or position, or for irrelevant variations, such as the tempo of speech.

A new algorithm based on the phase of the analytic signal representation of the signal patterns has been developed. For example, if two sinewaves are represented in analytic signal form $S_A(t) = s(t) + j\phi(t)$, and ϕ, the Hilbert transform of $s(t)$, is plotted against $s(t)$, then the resultant figure is a circle. Similar properties pertain to other time functions subjected to time compression or expansion, which may itself be slowly time varying. Each function in the set to be compared requires only one warping to transform it to a function of phase. The phases of the signals are compared with a common phase scale, and signal samples corresponding to matching phases are mapped to a new time series, in the order of the phase sequence of the common phase scale. Each phase point of the common phase scale is associated with a corresponding signal sample. The new time series is defined as the Hilbert warped (HW) version of the original time series.

The most significant and accurate application of this method is to time warp the sampled version of an analogue signal, where the sampling instants have been slowly time varying and there is no significant amplitude distortion. The analysis of the above class of signals has been illustrated in this thesis, and the application is extended to practical signals such as biomedical signals and speech parameter contours, where significant amplitude distortion has been observed.
The performance of the new algorithm is found to be superior for warping speech parameter contours due to computational efficiency and accurate representation of the warping neighbourhood, when compared with the conventional dynamic time warping algorithm (DTW), where computational efficiency can only be improved by a priori information on the warping neighbourhood, and by the use of preconditioning through the identification of signal endpoints or fixed points.