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Abstract

This thesis is concerned with the mathematical characterisation and adaptive processing
of narrowband high frequency signals received by a very wide aperture antenna array
after reflection from the ionosphere. A major component of this research focuses on the
experimental validation of space-time signal processing models for the complex (amplitude
and phase) data received when a far-field source is propagated by a single-hop mid-latitude
ionospheric path. Deterministic and statistical signal models are described and validated
in terms of the accuracy with which they can represent the characteristics of complex-
valued wavefields received by a 2.8 km long uniform linear array over time intervals in the
order of a few seconds and a few minutes respectively.

The second major component of this research quantifies the effect of ionospheric prop-
agation on the interference cancellation performance of various adaptive beamforming
schemes. The improvements in output signal-to-noise ratio gained by adaptive beam-
forming relative to conventional beamforming are statistically quantified and compared
with predictions made by a multi-sensor HF channel model. Degradations in performance
caused by instrumental uncertainties are also considered and signal processing techniques
which compensate for the relevant hardware imperfections are proposed and experimen-
tally tested.
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B, Temporal bandwidth of ionospheric channel
c Speed of light in free space

d Ground distance between transmitter and receiver
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fr Bandwidth of linear FMCW
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gr Group range of ionospheric propagation path
H Hermitian or conjugate transpose
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Glossary

Array manifold The collection of all of array steering vectors or array response vec-
tors.

Array snapshot A vector containing the complex-valued samples recorded at a partic-
ular time instant or frequency bin by the receivers of the array

Beamforming Spectral analysis of the received array snapshots to estimate the direction-
of-arrival and/or the waveform of coherent and incoherent signals received by the
array

Beampattern The magnitude of the spatial transfer function presented by the beam-
former in the array to a far-field source

Coning For off-boresight sources, the coning effect causes the azimuth of the source
perceived with a ULA to appear closer to boresight as the elevation angle of incidence
Increases.

Distributed signal A statistical signal with a continuously distributed (i.e., non-discrete)
spatial, temporal or space-time power density function.

Doppler processing Spectral analysis of the data received from one PRI to another
to estimate the Doppler frequency distribution of the received coherent signals

Fast-time samples The time domain samples recorded in a particular receiver within

the PRI

Fine structure The complex-valued space-time distortions imposed on a particular
signal mode by irregularities in the ionospheric reflection process

Gross structure The gross structure of a narrowband ionospherically-propagated sig-
nal is determined by the superposition of monochromatic plane waves whose param-
eters best fit the spatial and temporal properties of the prevailing signal modes

Group range The group-range of a mode is the propagation path length from trans-

mitter to receiver assuming the mode travels this path at the speed of light in free
space

Main array A 2.8 km long narrowband uniform linear array known as the Jindalee
OTH radar receiving array
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Mode For single-hop propagation, a mode is a signal reflected from a localised region
of an ionospheric layer. Different signal modes may be reflected from well-separated
points within the same ionospheric layer or from distinct ionospheric layers. By
definition (in this thesis), different single-hop modes can be resolved from one another
in time-delay when the group-range resolution is 5 km.

Oblique sounder A system used to determine the mode content of a HF link as a
function of operating frequency.

Range processing Spectral analysis of the data received during the PRI to estimate
the time-delay distribution of the received coherent signals

Ray A monochromatic plane wave with a fixed amplitude, initial phase, Doppler fre-
quency and direction-of-arrival. ’

Receiver mismatch Receiver mismatch occurs when the difference between the fre-
quency responses of two or more receivers in the array varies across the passband of
interest

Slow-time samples The samples recorded from one PRI to another over the CIT at a
particular range cell

Spatial structure The spatial structure of a signal refers to the gain and phase rela-
tionship between the receiver outputs rather than their absolute value

Weight vector A vector containing the complex-valued weights used to beamform the
received array snapshots
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CHAPTER 1

Introduction

1.1 Introduction

Over-the-horizon (OTH) radars are used to perform early warning surveillance across
very wide areas in a cost-effective manner. Unlike traditional line-of-sight radars which
can only see as far as the horizon, skywave OTH radars reflect high frequency signals
(3-30 MHz) off the ionosphere to monitor both ship and aircraft movements around the
curvature of the earth. This inherently simple concept allows skywave OTH radar systems

to detect and track targets at ranges of up to 3000 km.

The Jindalee skywave over-the-horizon radar, constructed near Alice Springs in Cen-
tral Australia, is currently used for surveillance of Australia’s north and north-western
coastline regions. The location and coverage of the Jindalee OTH radar and two other
OTH radars being developed at Laverton, Western Australia, and Longreach, Queensland
are shown in Figure 1.1. The coverage of a ground-based microwave radar in the vicinity

of Darwin is also illustrated for comparison.

The successful operation of OTH radars such as Jindalee requires research in a variety
of different fields. Important areas of research extend from the physics of the ionosphere
to the design of antennas and computer hardware as well as software for signal processing
and frequency management. This thesis is concerned with research in the field of signal

processing to enhance the capabilities of Jindalee and other OTH radars.

The current chapter introduces the basic operational principles of OTH radar and
discusses the high frequency signal environment, a brief overview of signal processing and
frequency management for the Jindalee OTH radar is also included. Areas which require
further investigation are then described to motivate the specific research undertaken in

this thesis. The chapter concludes with a summary of the key contributions.
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Figure 1.1: Location and coverage of the Jindalee OTH radar (Alice Springs) and two
additional OTH radars nearing completion at Laverton and Longreach. The surveillance
area of the ground-based microwave (line-of-sight) radar close to Darwin is also shown for
comparison.

1.2 Principle of operation and signal environment

The principle of operation for a high frequency (HF) OTH skywave radar is illustrated in
Figure 1.2. Turning this inherently simple concept into a useful and reliable surveillance
tool creates many significant and serious technical challenges. These challenges arise from
uncertainties in the ionospheric reflection process as well as the ability of this mechanism
to propagate a host of other unwanted signals which can potentially mask the target signal
of interest.

The signals received by an OTH radar can be categorised as either coherent signals or
incoherent signals, as indicated by the flow-chart in Figure 1.3. Coherent signals originate
from the transmitted radar signal and may be classified as either distributed backscatter
from extended areas of terrain or sea-surface (clutter returns) or localised backscatter from
aircraft or ships (target echoes) as well as meteors (meteor echoes). Incoherent signals
are present irrespective of whether the transmitter is on or off and may be classified as
either man-made (interference) or naturally occurring (background noise).

Naturally occurring background noise is either of galactic origin (e.g., stars) or atmo-
spheric origin (e.g., lightning discharges), the spectral and spatial distribution of back-
ground noise can vary markedly as a function of time. Man-made interference may be
regarded as either unintentional (e.g., electrical machinery) or intentional (e.g., AM ra-

v dio stations). Interference received from man-made sources is often highly directional and

more powerful than background noise. Due to the large number of users, a significant pro-
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Figure 1.2: Principle of operation for a high frequency skywave over-the-horizon radar
(E-layer propagation is illustrated for the case of aircraft detection)

portion of the HF band is frequently occupied by man-made interference. Although not
shown in Figure 1.3, the radar receiver introduces its own unintentional noise contribution
which is commonly referred to as internal receiver noise.

Since the Jindalee receiver site is well isolated from the transmitter site and from
urban areas, the coherent and incoherent signals which reach the Jindalee receiver array
are almost exclusively propagated via the ionosphere. As a result, the properties of the
composite signal received by the radar are not only determined by the nature of the
co-channel signals but also by the characteristics of the ionospheric circuits which link
the various signal sources to the receiver array at the selected operating frequency. The
composite signal environment which the radar must contend with is largely determined
by the choice of operating frequency which in turn influences the effectiveness of signal
processing. For this reason, a combination of judicious signal processing and real-time

frequency management are essential for operational OTH radar systems.

OTH radar signal environment

|

Coherent signals incoherent signals
I
Clutter Retumns Radar Echoes Man-made Naturalty occurring
(eg temrain, sea surface) (eg targets, meteors) | l
Unintentional Intentional Aimospheric noise Galactic noise
(eg Electrical machinery) (eg Radio stations) (eg Lightning) (eg Stars)

F.igure 1.3: Composite signal environment for high frequency OTH radar
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1.3 Signal processing and frequency management

A conventional signal processing scheme which can be used to detect and estimate the
azimuth, range and Doppler frequency of target echoes from the received composite signal
has been described in (Lees 1987) while the capabilities and limitations of this scheme
are quantitatively discussed for the Jindalee OTH radar in (Sinnott 1987). The essential
features of the conventional signal processing scheme are overviewed with reference to
the Jindalee OTH radar in this section to introduce the fundamental capabilities and
limitations of this facility.

The frequency management system (FMS) described by (Earl and Ward 1986) was
developed to provide the Jindalee OTH radar with real-time advice on the most appropri-
ate choice of operating frequency for the radar mission at hand. The main considerations
which drive the frequency selection process are stated briefly in this section to expose

some significant technical tradeoffs as a lead into the motivation for research.

1.3.1 Radar waveform

The Jindalee transmitter array pictured in Figure 1.4 radiates a saw-tooth linear sweep
frequency modulated continuous waveform (FMCW) in a narrowband frequency channel
selected by adjusting the carrier frequency and bandwidth of the linear FM pulse. This
radar signal illuminates the surveillance region for a designated period of time known as
the coherent processing interval (CPI) or dwell time during which a specified number of
linear FM pulses or FMCW sweeps are emitted.

The Jindalee receiver array pictured in Figure 1.5 makes use of a synchronised copy
of the transmitted waveform to demodulate or down-convert the received signals prior to
analog-to-digital conversion. The digital samples acquired by the receiver array during
a radar dwell are range processed, beamformed and Doppler processed to detect and
estimate the geographical location and radial velocity of targets within the surveillance

region.

1.3.2 Range processing

A down-converted radar echo has a frequency during the linear FM pulse repetition in-
terval (PRI) which is linearly dependent on the time-delay or group-range of the signal
path associated with the scatterer that gives rise to it. Range processing aims to resolve
the received radar echoes into different time-delay or group-range bins by applying a Fast
Fourier Transform (FFT) to the digital data acquired within each PRL

The range resolution is inversely proportional to the bandwidth of the transmitted
FMCW signal which is limited in practice by the availability of clear (unused) frequency
channels and the dispersive properties of the ionosphere. The range resolution is typically

between 3-30 km for OTH radar while the range accuracy and range coverage are typically
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between 10-40 km and 1000-3000 km respectively (Sinnott 1987). The range accuracy is
primarily limited by uncertainties in the height and tilt of the ionosphere at the signal
reflection point(s) while the range coverage is limited by the maximum usable frequency
(the frequency beyond which the signal passes through the ionosphere) as well as other

environmental factors.

1.3.3 Beamforming

The aim of beamforming is to receive signals which are incident from a specified array
“look” direction while attenuating signals incident from other directions as much as pos-
sible. A radar echo or interference signal originating from a point source in the far-field of
the array can, in the ideal case of specular reflection from the ionosphere, be represented
as a plane wave incident from a certain azimuth and elevation. For a uniform linear array
(ULA) such as Jindalee, a plane wave narrowband signal sampled at a particular time in-
stant by the receivers in the array will exhibit a spatial frequency dependent on the signal
direction-of-arrival (azimuth and elevation) and the inter-sensor spacing in wavelengths.
As a result, signals arriving with the same time-delay or group-range may be resolved in
azimuth by applying an FFT across the aperture (i.e., to the receiver outputs) at each
range bin.

The aperture of the Jindalee receiver array spans approximately 2.8 km and the az-
imuthal resolution (which is inversely proportional to the array aperture in wavelengths)
varies between 0.2-2.0 degrees over the HF band. The azimuth accuracy is in the or-
der of 1-5 degrees (Sinnott 1987) and is limited by the same ionospheric uncertainties as
the range accuracy although both bearing and range accuracy can usually be improved
through the recognition of ground features such as land-sea boundaries. The azimuth cov-
erage is roughly 45 degrees either side of the array boresight and is limited by ambiguities

arising when the inter-sensor spacing is greater than half the operating wavelength.

1.3.4 Doppler processing

A radar echo from a moving target has a frequency that is Doppler shifted in comparison
with clutter returns from the same azimuth and group-range due to the target’s radial
component of velocity relative to the ground or sea-surface. The target’s Doppler shift
manifests itself as a regular phase progression in the temporal samples recorded in each
receiver from one PRI to another. The rate of phase progression (i.e., Doppler frequency)
is determined by the carrier frequency and the target’s radial component of velocity.
Doppler processing aims to resolve target echoes and clutter returns with the same
azimuth and group-range into different Doppler frequency bins by applying an FFT to
the temporal samples recorded from one PRI to another during the dwell. The Doppler
resolution is determined by the inverse of the duration of the CPI which is typically in

the order of a few seconds for aircraft detection. Although a longer CPI is expected to
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Figure 1.4: The Jindalee OTH radar transmitter site at Harts Range (100 km north-east
of Alice Springs)

yield better Doppler resolution and more coherent gain of target signal energy, a very long
CPI becomes impractical when targets are maneuvering quickly and many surveillance
regions need to be monitored. As the CPI is lengthened it may additionally be required
to correct for temporal distortions imposed by the ionosphere on backscattered signals

(Anderson and Abramovich 1998).

1.3.5 Frequency management

The ionosphere is a dynamic and spatially inhomogeneous propagation medium with
frequency dependent characteristics. As a result, the quality of radar signal propagation
from the point of view of target detection varies as a function of time, geography and
operating frequency. To enhance OTH radar performance, the operating frequency needs
be chosen in real-time so as to optimise the probability of detecting targets located in
the geographical area of interest. The reader is referred to (Earl and Ward 1986) for an
excellent description of the methods and the equipment used for frequency management
in the Jindalee OTH radar.

One of the most influential factors driving the choice of operating frequency in OTH
radar is the target signal-to-noise ratio (SNR). A technique known as backscatter sound-
ing is used to estimate the signal power backscattered from the surveillance region as a
function of frequency. These measurements are combined with measurements of the noise
power spectral density to yield an estimate of the signal-to-noise ratio in different fre-

quency channels across the HF band. The FMS system also monitors channel occupancy
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Figure 1.5: The Jindalee OTH radar receiver site at Mt Everard (40 km north-west of
Alice Springs)

so that frequency channels which are free of strong radio frequency interference (RFI)
from other users can be identified as potential candidates for radar operation. The SNR,
criterion for frequency channel evaluation is most important for aircraft detection since
the targets are typically detected against noise rather than clutter. Aircraft of fighter
size or larger can be detected by OTH radar, but detection becomes progressively more
difficult as the operating frequency decreases as this is typically associated with a decrease

in the radar cross section of the target and an increase in the background noise power.

The ionospheric propagation medium usually exhibits a stratified nature which often
results in a HF signal being reflected by a number of different ionospheric layers. As a
result, the received signal is often a superposition of multiple components or signal modes
which propagate along different ionospheric paths between the transmitter and receiver.
Different signal modes may experience different ionospherically-induced Doppler shifts
and Doppler spreads so the superposition of multiple modes tends to broaden the clutter
occupied region of Doppler space which can in turn obscure targets moving at a low
radial speed. An oblique sounder and mini-radar are employed in the FMS to respectively
provide information on the mode content and spectral characteristics of a HF link as a
function of operating frequency. The Doppler spectrum criterion for frequency channel
evaluation is especially relevant to ship detection where the targets are not travelling fast
and must often be detected against clutter rather than noise. Depending upon the sea
state (which also contributes to the Doppler spectrum characteristics of backscattered

signals) it is possible to detect steel-hulled ships of ocean-going size.
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1.4 Motivation for research

The relatively low computational complexity of conventional (FFT-based) beamforming
is a major advantage for antenna array systems which are required to operate in real-time
using computer hardware with relatively limited processing capacity. However, a signif-
icant disadvantage of the conventional beamformer is that it allows strong interference
signals to leak through the sidelobes of the beampattern and obscure the relatively weaker
target echoes in a significant number of beam steer directions. When conventional beam-
forming is used this deleterious situation can only be avoided by selecting clear frequency

channels which are not occupied by other users.

To find clear frequency channels, an omni-di;‘ectional (whip) antenna is used at the
receiver site to monitor the spectral occupancy of the HF band in real-time. The power
spectral density of interference-plus-noise signals is measured in adjacent narrowband
frequency channels across a selectable portion of the spectrum so that, in accordance with
broadcasting regulations, different frequency channels can be classified as either forbidden,
occupied or clear of other users. Aside from the performance benefits of operating on clear
frequency channels it is noted that Jindalee has a policy of non-interference with other
users.

Due to the heavy usage of the HF band there are often times at which the availability
of suitable clear frequency channels is significantly diminished. Such circumstances are
quite common at night time when the ionosphere is especially prone to allowing very
long distance propagation of radio waves. High user congestion in the HF band has the
potential to severely degrade OTH radar performance as it limits the scope which the
frequency management system has for optimising the selection of operating frequency.
More specifically, frequency channels which are optimum in terms of target signal reception
may contain powerful co-channel interference while the clear frequency channels, typically
found at the high end of the spectrum, may be inappropriate for radar signal propagation
to the geographical area of interest.

Dramatic advances have been made over the past two decades in the fields of computer
technology, antenna array hardware and adaptive array signal processing. As a result,
adaptive beamforming is now a more attractive and feasible alternative with respect to
conventional beamforming in operational antenna array systems. In the context of OTH
radar, adaptive beamforming provides a means for removing co-channel interference in
frequency channels which are potentially suitable for radar operation.

In the HF environment, interference signals are received by the array after reflec-
tion from the ionosphere which is a dynamic and spatially inhomogeneous propagation
medium. Despite the vast amount of theoretical research and computer simulations pub-
lished on the subject of array signal processing, there are very few experimental studies
which have quantitatively analysed the effect of ionospheric propagation on the interfer-

ence cancellation performance of various adaptive beamforming algorithms. Moreover, it
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is currently unclear how more effective adaptive beamforming algorithms should be de-
signed and optimised for different HF interference and noise scenarios. This is partly due
to the lack of ezxperimentally verified multi-sensor (space-time) signal processing models
of the ionospheric reflection process which can distort the structure HF signals over time
intervals commensurate with the CPI of OTH radar.

A major component of the thesis is devoted to the development of mathematical mod-
els that represent the space-time characteristics of ionospherically-propagated HF signals
received by a very wide aperture antenna array. The central aim of this component is
to determine the domain of validity for the different models and to quantify the fidelity
with which they can predict the characteristics of ionospherically-propagated signal-fields
received by the array. A secondary component of this thesis is concerned with evaluating
the interference cancellation performance of various adaptive beamforming schemes rela-
tive to the conventional beamformer by experiment and simulation using the previously
derived models. This component also involves the identification and compensation of
hardware related aspects which can limit adaptive beamformer performance in practice.

The research work presented in this thesis is particularly relevant to development of
OTH radar systems which treat signal processing and frequency management as a global
optimisation problem. To enhance target detection, future OTH radar systems will be
required to measure the spatial properties of co-channel interference across the HF band
so that the choice of operating frequency and adaptive beamforming algorithm can be
optimised jointly in order to provide the best possible output SNR in the beam steer

directions considered important for surveillance.

1.5 Main contributions

The process of signal reflection from each ionospheric layer is by no means mirror like and
can induce appreciable distortions upon individual propagation modes. A wave interfer-
ence model for the “fine structure” of an ionospheric mode has been proposed by various
investigators but the ability of this model to represent real wavefields over typical OTH

radar CPI has not been experimentally quantified.

The second chapter experimentally quantifies the accuracy with
which space-time wave interference models can represent the
complex-valued wavefields received from ionospheric modes on a
mid-latitude path by a very wide aperture antenna array over a
typical OTH radar CPI.

The dynamic nature of the ionosphere causes changes in the wavefields of ionospheric
modes with respect to time. It has been shown that for narrow signal bandwidths in the

order of 10 kHz and short time intervals in the order of 10 minutes the temporal proper-
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ties or Doppler spectrum of a quiet mid-latitude ionospheric channel may be adequately
described by a stationary statistical model. Despite its importance to the HF interfer-
ence rejection problem, the incorporation of the spatial properties (DOA spectrum) of
ionospheric channels in a statistically stationary space-time generalisation of this model
has not received as much attention in terms of theoretical derivation and experimental

validation.

The third chapter develops a space-time stationary statistical
model of the ionospheric channel based on the scattering of radio
waves from a dynamic and spatially irregular ionospheric plasma
and experimentally validates the ability of such a model to repre-

sent the observed mode wavefields in a statistical sense.

The deterministic and statistical ionospheric channel models referred to above may be
combined into a generalised parametric space-time signal processing model which can be
used to simulate the complex-valued samples received from coherent and incoherent HF
signals propagated via the ionosphere. In the case of interference, the different propagation
modes cannot be isolated in time-delay to facilitate the estimation of model parameters
associated with each propagation mode. The ability to estimate these model parameters
is considered important for future FMS systems which may be required to quantify the

directional characteristics of co-channel interference.

The fourth chapter proposes a novel closed-form space-time pa-
rameter estimation technique based on the generalised mathemat-
ical model of the ionospheric channel that estimates the param-
eters of individual signal modes optimally according to the least
squares criterion in a computationally attractive manner when the

different modes cannot be resolved in time-delay.

The costs associated with the operational implementation of adaptive beamformers
in preference to conventional beamformers can only be justified in terms of the resulting
performance improvement which is usually measured in terms of signal-to-interference plus
noise ratio (SINR) at the beam output. Although adaptive beamforming has been applied
in many diverse practical applications, the uniqueness of the HF environment requires
a specific study into the performance improvement which can be achieved by different
adaptive beamforming schemes. In addition, the experimental performance of adaptive
beamformers operating on a very wide aperture HF antenna array has not previously been
compared with that predicted by multi-sensor signal processing models of the ionospheric

channel(s) which propagate the interference in terms of output SINR distributions.
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The fifth chapter evaluates the experimental performance of var-
ious adaptive beamforming schemes relative to the conventional
beamformer and assesses the ability of a statistically stationary
space-time signal processing model to forecast the relative output

SINR distributions observed in practice.

Differences in the analog transfer functions of the receivers in the array is an instru-
mental factor known as receiver mismatch which can severely limit the effectiveness of
interference suppression by means of adaptive beamforming. While the problem of cali-
brating for uncertainties in the array manifold with HF sources of opportunity has already
been researched, the complementary problem of using HF sources of opportunity to es-
timate digital compensation for receiver mismatch has (to the author’s knowledge) not

been addressed in the context of HF arrays.

The sixth chapter introduces a new signal processing algorithm
which is capable of estimating digital corrections for receiver mis-
match using HF interference sources of opportunity, the effective-
ness of the proposed technique is experimentally demonstrated
by using a radio broadcast of opportunity to compensate for real

receiver mismatch.

The main body of the thesis is completed with the conclusions in chapter 7, this is fol-
lowed the appendices and bibliography. The numbers in parentheses refer to publications

as listed on page xxv.






CHAPTER 2

Wave interference model

A HF signal which propagates beyond the line-of-sight is often reflected from multiple
points within the ionosphere. A popular model for the signal resulting at the receiver
consists of a superposition of multiple plane waves which emanate from the different
ionospheric reflection points. The principle aim of this chapter is to quantitatively assess
the virtues and limitations of the wave interference model in both the spatial and temporal

domain using experimental data collected by a very wide aperture antenna array.

Section 2.1 contains background information and a literature survey on the subject
of wave interference in ionospheric propagation, this section serves to highlight areas
of research which require further exploration as well as to introduce and motivate the
specific experimental study undertaken in this chapter. The experimental facility and
procedure used to collect data for this study are described in section 2.2, this is followed
by a preliminary analysis of the data in section 2.3. The purpose of this analysis is to
quantify the essential spatial and temporal characteristics of the HF link under study,
these characteristics include the mean direction-of-arrival and Doppler shift of each signal

mode propagated during the experiment.

A mathematical space-time model of HF signals reflected by the ionosphere is derived
in section 2.4, this model is based on the wave interference principle and mathematically
relates the experimental setup to the theoretically expected antenna array measurements.
Section 2.5 discusses a parameter estimation technique which can be applied to this model
and proposes a measure for assessing the accuracy with which the estimated signal model
can represent the experimental data. Wave interference signal models are estimated from
experimental data recorded on a mid-latitude ionospheric circuit in section 2.6, the ac-
curacy with which these models can represent the space-time complex-valued samples of

real HF signal-fields recorded by the array is also quantitatively assessed.

13
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2.1 Literature review

To present a concise literature review relevant to this particular study it is necessary to
define the nature of this research in more detail. This particular research is devoted to
the study of one-way oblique ionospheric circuits which propagate signals from a distant
HF emitter to a receiving antenna array. The study of point-to-point ionospheric circuits
is important for HF communication and HF direction finding systems and is currently
of great relevance to the problem of interference rejection in OTH radar. Within this
framework, the present work is concerned with the ionospheric propagation of narrowband
signals which typically have bandwidths in the order of tens of kilohertz and are not
significantly affected by the dispersive properties of the ionosphere. Although wideband
HF systems exist, it is worth noting that most HF arrays operate on narrowband signals

and this includes the Jindalee OTH radar receiving array.

2.1.1 Background

A wide variety of high frequency (HF) systems rely on the ionosphere as a propagation
medium for the transmission/reception of HF signals over distances well beyond the line-
of-sight. Examples include HF communication links for transferring data or speech over
long distances, direction finding networks for locating the position of distant HF emitters
and OTH radars for detecting and tracking the movements of remote aircraft. In practice,
the performance of HF systems utilising the ionosphere depends not only on the choice
of operating parameters but also upon the characteristics of the propagation medium or
ionospheric channel.

The ionosphere is typically composed of multiple reflecting layers so in this medium
propagation is usually by multipath components or signal modes. Due to the spatially
inhomogeneous and dynamic nature of the ionosphere, the process of signal reflection from
each layer is by no means “mirror-like” and can at times induce appreciable distortion
on individual signal modes. Both of these ionospheric propagation effects (i.e., multipath
and individual signal mode distortion) are generally not entirely predictable and have the
potential to impair system performance.

System performance can often be enhanced through the use of judicious signal pro-
cessing algorithms which are designed to remove undesired signals and to provide compen-
sation for the contaminating effects which the ionospheric reflection process has imparted
on the desired signal structure. Modern signal processing algorithms are usually designed
and optimised on the basis of mathematical models for the received signals, and not sur-
prisingly, the practical effectiveness of model-based algorithms is largely determined by
the fidelity with which the assumed data model represents the actual characteristics of the
signal-field as it is seen by the antenna sensor(s). For this reason, users of HF systems are

interested in analysing and modeling the characteristics of ionospherically-propagated sig-
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nals measured by their sensor(s), particularly those characteristics which can potentially
limit the performance of their systems.

A relatively simple signal-field model results when each ionospheric layer is considered
as a smooth “copper sheet” reflector of radio waves, in this case the signal received from
a far-field source is modelled as a superposition of plane waves each of which can be
parameterised by a complex amplitude, direction of propagation (azimuth and elevation),
Doppler shift and polarisation state. Such a model represents what may be referred to
as the “gross” structure of an ionospherically-propagated signal, in many respects, this
deterministic model plays a central role in the development of many signal detection and
signal parameter estimation algorithms.

The reflecting layers of the ionosphere are known to contain randomly changing irreg-
ularities in electron density which induce distortions on the ideal signal structure assumed
in the case of specular reflection. Ionospherically-induced distortions can influence the
amplitude, phase and polarisation state of a signal mode. The spatial and temporal de-
partures of a signal mode from an ideal (specularly reflected) plane wave due to these
distortions gives each propagating mode its “fine” structure. A variety of different models
have been proposed to explain the fine structure of ionospheric modes, a popular model
describes fine structure as a superposition of a small number of sub-modes or rays which
have similar Doppler frequencies and closely spaced directions of arrival. The various rays
in this model are presumed to result from relatively few specular reflection points within
an ionospheric layer that move over time.

The combination of experimental and mathematical techniques used to estimate the
parameters of interest for each component ray are collectively referred to as wavefront
analysis (WFA) techniques. In practice, WFA has traditionally been applied to decompose
the gross structure of composite signal wavefields by assuming that each propagation
mode undergoes specular reflection. The lack of analysis on isolated ionospheric modes
has led to much debate regarding the ability of the wave interference model to additionally
represent fine structure. Although the literature review encompasses both gross and fine
structure analysis, it is emphasised that the focus of this experimental study is to quantify
the ability of the wave interference model to represent the fine structure of signal modes

propagated over a one-hop mid-latitude ionospheric circuit.

2.1.2 Studies of gross structure

In the multipath ionospheric environment it is often assumed that the gross structure
of the signal-field can be modelled as a superposition of plane waves corresponding to
the different modes of propagation. Most HF array systems are required to estimate
the direction-of-arrival (DOA) of the incident propagation modes in order to partially or
fully satisfy their operational objective. The DOA estimation problem provides a suitable

vehicle for discussing previous experimental studies based on gross structure models of



16 CHAPTER 2. WAVE INTERFERENCE MODEL

ionospheric propagation and the practical difficulties which have been encountered in
estimating the parameters of these models (i.e., the directions-of-arrival of real ionospheric
modes).

HF array systems initially used interferometry or classical beamforming techniques to
estimate the mode directions-of-arrival. A major obstacle encountered by these systems
was that many array apertures were not always large enough to resolve the different
propagation modes. As a result, the initial emphasis was more on avoiding the deleterious
effects of multipath propagation rather than to resolve the different modes. Wavefront
testing methods were developed by Treharne (1967) and more recently in (Warrington,
Thomas and Jones 1990) so that estimates of the emitter DOA in HF direction finding
systems were only taken at times when the received wavefront closely resembled a plane
wavefront. These techniques, which rely on relative fading between modes to give times
of quasi-unimodal propagation, severely restrict the situations under which data can be
acquired and are therefore of limited utility (Hayden 1961).

A class of so-called superresolution algorithms were developed in the field of array sig-
nal processing to enhance the resolution capabilities of sensor arrays. The MUltiple Slg-
nal Classification (MUSIC) superresolution algorithm, originally developed by (Schmidt
1979), sparked tremendous interest in this area and led to the development and analysis
of different superresolution algorithms. Despite the vast quantity of published theoretical
analysis and computer simulation results on superresolution algorithms, there has been
comparatively little reported on the ability of such algorithms to resolve the directions-
of-arrival of different propagation modes in the HF environment.

A 16 element linear antenna array with an aperture of 120 m was used by (Creek-
more, Bronez and Keizer 1993) to estimate the DOA of propagation modes originating
from known AM radio broadcasts of opportunity. MUSIC and three other superresolution
techniques were used to resolve the number of ionospherically-propagated modes assumed
to propagate from each source. The authors concluded that the propagation modes ap-
peared to be “spatially extended” due to temporal variations in the ionosphere. In other
words, the discrete planar wavefront model assumed by the adopted superresolution tech-
niques did not appear to be strictly valid in practice. This propagation effect, which arises
due to the fine structure of the ionospheric reflection process, significantly complicated
the process of identifying the correct number of modes and associating a single bearing
per mode as both quantities appeared to fluctuate with respect to time.

An irregular two-dimensional array with 8 elements and an effective aperture of about
8 wavelengths was used by (Tarran 1997) to determine the azimuth and elevation of signal
modes which propagated from a known transmitter over a 1235 km mid-latitude path. The
MUSIC algorithm was used to estimate the direction-of-arrival of two dominant modes
at a rate of 30 azimuth-elevation bearings per second. The resulting azimuth-elevation
scatter plot demonstrates spreads in the order of a few degrees for each of the modes in

both dimensions, this led the author to conclude that ionospheric reflection can cause very
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rapid and significant fluctuations in the mode bearings. These results provided further
evidence that a plane wave of fixed direction-of-arrival is not always a good model for
individual signal modes even over short periods of time.

A regular 6 element circular array of 50 m diameter was used by (Moyle and War-
rrington 1997) to estimate the directions-of-arrival of the modes which propagated over a
controlled 778 km mid-latitude ionospheric circuit. The ionospheric circuit was controlled
in the sense that oblique sounding methods were used to identify the mode structure
which prevailed for the path at the time of recording. Although three distinct propa-
gation modes were resolved in range by the ionogram at the operating frequency, the
application of MUSIC and a number of other superresolution algorithms were unable to
resolve the directions-of-arrival of all three propagation modes. The authors concluded
that the inability to resolve all three modes may have been due to the poorly matched
reception channels in the array and the relatively small aperture.

A T-element V-shaped array with a greatest dimension of 350 m was used by (Zatman
and Strangeways 1994) to resolve multi-moded HF transmissions of opportunity. The
MUSIC and Direction of Arrival by Signal Elimination (DOSE) algorithms were described
in (Zatman and Strangeways 1994) and applied to estimate the azimuth and elevation
angles of the various ionospheric modes. While neither algorithm performed consistently
well, it was concluded that the inability of MUSIC to consistently resolve the propagation
modes was possibly due the high correlation existing between the different modes, the
additive noise present in the data and the effects of mutual coupling between the antenna
elements.

A uniform linear array (ULA) with an aperture of 1.4 km was used in (3) to intercept
two high signal-to-noise radio interference sources of opportunity. One of these sources was
received over a controlled mid-latitude ionospheric path while the other source propagated
to the array via the typically perturbed equatorial ionosphere. To resolve the potentially
correlated modes, the outputs of 16 well calibrated digital receivers were considered in
groups of 12 receivers in order to form the spatially smoothed MUSIC spectra as described
by (Pillai 1989). On the controlled circuit it was demonstrated that spatial smoothing
significantly improved the ability of MUSIC to resolve two identified propagation modes
which were highly correlated over the observation interval. A time-sequence of MUSIC
spectra were evaluated at a rate of 60 Hz to show the temporal variation of the mode
directions-of-arrival during a typical OTH radar CPI of approximately 4.2 seconds. The
experimental results demonstrated a smooth temporal variation of the mode DOA’s for
both of the sources, these variations were in the order one degree for the modes propagated
via the equatorial ionosphere and fractions of a degree for the modes propagated on the
mid-latitude path.

It is clear from the experimental results reported in the literature that estimating the
gross structure of an ionospherically-propagated wavefield requires well-calibrated wide

aperture arrays, low noise levels and in many cases the use of superresolution techniques
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which are insensitive to inter-mode correlations. While the above-mentioned system at-
tributes are frequently necessary for resolving different ionospheric propagation modes,
the practical effectiveness of these systems relies on the accuracy of the assumed gross
structure model (i.e., a known number of specularly reflected signal modes). It is evident
that the presence of mode fine structure has posed significant problems in the resolution
of signal-fields presumed to obey this relatively simple propagation model, and moreover,
the deleterious effects of fine structure are amplified by the increased system sensitivity
required to achieve the initial objective of gross-structure model parameter estimation.
Many HF systems stand to benefit from a more detailed understanding of mode fine
structure, this is especially true for modern very wide aperture HF antenna arrays such
as Jindalee where great care has been taken to reduce the influence of array imperfections,
site errors and noise. The desire to improve the operational performance of such arrays

has led investigators to study the fine structure of ionospheric modes.

2.1.3 Studies of fine structure

The first experimental investigation on mode fine structure with a very wide aperture
array was conducted by (Sweeney 1970). This study made use of a 2.5 km uniform linear
array (ULA) to sample the amplitude and phase of ionospheric modes propagated over a
2550 km mid-latitude path. The ULA was composed of 8 non-overlapping subarrays with
each subarray consisting of 32 vertical whip antennas spaced 10 m apart. The 32 vertical
whips in each subarray were connected to an analog beamformer to form a subarray
output, the 8 subarray outputs were sampled by 8 well calibrated digital receivers to
allow digital beamforming,.

A linear FMCW waveform was used in one experiment to separate the different prop-
agation modes on the basis of time-of-arrival. Classical digital beamforming and range
processing was carried out via a two-dimensional Discrete Fourier Transform (DFT) to
compute the azimuth-range power spectral density of the different modes. The same ex-
perimental setup was adopted to separate the modes on the basis of Doppler shift using
CW signals. A two-dimensional DFT was implemented over space and time to compute
the azimuth-Doppler power spectral density of the different modes. The principle objec-
tive of the analysis was to examine the discreteness of the received modes in azimuth,
range and Doppler. Particular attention was paid to the spatial dimension as the primary
objective of the analysis was to determine the extent to which ionospheric propagation
and fine structure degrades the azimuthal pattern properties of a very wide aperture array.
While single-hop modes appeared discrete in azimuth, range and Doppler to the resolu-
tion of the array, it was noticed that double-hop modes exhibited considerable spread in
all three dimensions. Based on these results, the author concluded that for single-hop
modes the presence of mode fine structure did not significantly degrade the beampattern

properties and hence the “performance” of a very wide aperture antenna array. The au-
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thor postulated that the observed spreading on double-hop modes was being caused by
intermediate ground reflection from very rough (mountainous) terrain at the mid-point
of the path.

The performance of a very wide aperture antenna array has a different meaning when
the received signal represents interference rather than the signal of interest and is to be
removed by means of adaptive processing rather than conventional processing. When the
signal represents interference the effect of fine structure is observed close to the relatively
steep “nulls” of the beampattern rather than across the flatter main lobe. In this case,
the performance is related to the interference power at the beamformer output which is
expected to be very sensitive to variations in the spatial structure of each propagation
mode.

The effect of mode fine structure on the interference cancellation performance of adap-
tive beamformers in a very aperture antenna array was reported in (3). The experimental
facility and data collected for this investigation was previously summarised in the sec-
tion on gross structure. The interference cancellation performance of the sample matrix
inverse adaptive beamforming technique (Reed, Mallet and Brennan 1974) was found to
depend significantly upon the rate at which the spatial filtering weights were updated.
When the weights were updated very quickly the cancellation performance was degraded
by about 4 dB relative to its optimum level due to the limited number of samples avail-
able for estimating the beamformer. On the other hand, if the weights were updated too
slowly (at a rate slower than once per second) the cancellation performance was degraded
by up to 5 dB relative to the optimum level for one source due to the presence of mode
fine structure. The authors concluded that temporal variations in the spatial structure of
ionospherically-propagated signal modes has the potential to severely degrade the inter-
ference cancellation performance of adaptive beamformers in very wide aperture antenna
arrays.

Another experimental study of fine structure using a very wide aperture antenna array
was carried out by (Rice 1973). In this investigation, a 32 element uniform linear array
with an aperture of approximately 1.2 km was used to measure the phase-only spatial
structure of ionospheric modes propagated over a 911 km mid-latitude path. Different
modes were resolved on the basis of time-of-arrival using an FMCW waveform and mea-
surements from an oblique sounder were analysed to identify the propagation modes for
the circuit.

The unwrapped phase-fronts received from six propagation modes were plotted side
by side and exhibited varying degrees of phase non-linearity across the aperture. In
particular, the phase-front of a mode reflected from the F2-layer was much more linear
than those observed for modes reflected by lower ionospheric layers during the same time
interval. The author concluded that the mechanism leading to distorted phase-fronts is
associated with phenomena near the height of reflection, rather than diffraction effects

arising from the passage of rays through lower height regions where the other modes
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are reflected. The author attributed the non-linear mode phase-fronts to within mode
wave interference effects. This interpretation considers each mode as being composed of a
number of sub-modes which have nearly the same transit time (unresolved in range) and
slightly different angles of arrival. Changes in the mode phase-fronts with respect to time
were observed at one minute intervals in (Rice 1976), these temporal variations indicate
that the sub-modes have different Doppler characteristics.

The wave interference interpretation of fine structure is supported by measurements
made at vertical incidence by (Felgate and Golley 1971). The authors used an array of
89 elements to fill a circular area with a diameter of approximately 1 km. A waveform
with a 70 microsecond pulse duration and a repetition frequency of 50 Hz was used to
separate and identify the propagation modes according to their different times of arrival.
The amplitude pattern produced by each mode over the ground was sampled at regular
time intervals and presented as an intensity modulated photographic display. Periodic
fringe patterns consisting of alternate bright and dark bands were frequently observed
for individual modes. The authors suggested that the regularity of these fringe patterns
was produced by the interference between a small number of discrete rays returned from
different specular reflection points within the ionospheric layer. The motion of fringes
over the ground with respect to time was attributed to changes in either the horizontal or
vertical position of these specular reflection points which changes the phase relationship
between the different rays.

The assumption that a mode consists of a small number of specularly reflected rays
with similar Doppler shifts and closely spaced angles of arrival was also assumed by (Clark
and Tibble 1978). An 8 element vertical antenna array 74 m high was used to measure
the elevation angles of arrival of CW ionospheric modes separated on the basis of Doppler
shift. It was found that the elevation angles of certain modes fluctuated in a sinusoidal
fashion by more than 5 degrees during a 90 second interval. The authors commented that
such results seemed unrealistic and that the most probable explanation for the large
excursions in elevation angle was their inability to resolve the rays comprising the fine

structure of these modes.

2.1.4 Significance of research relative to previous work

The wave interference model of mode fine structure suggested in the literature is de-
rived from idealised physical principles and is supported by a number of above-mentioned
experimental investigations. Such a model has the advantage of being mathematically
tractable and it allows the data to be interpreted from a physical perspective which is
more readily understood when the number of rays is small.

From the literature review it is evident that an analysis is yet to be carried out which
attempts to estimate the spatial and temporal parameters of these rays and then compares

the simulated wavefield with measurements of the actual wavefield recorded by an antenna
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array. A quantitative measure of the match between the simulated and experimental array
data can be used to assess the accuracy of the model in a manner that is general and
not dependent on any particular signal processing application. The current research aims
to quantify the accuracy with which the wave interference model can represent mode
wavefield samples received in the spatial and temporal domain by a very wide aperture

antenna array operated with typical OTH radar parameters.

2.2 Experimental facility and data collection

The experimental facility used to collect data for this study includes a very wide aperture
antenna array equipped with a multi-channel digital receiver, an oblique sounder and a
test transmitter located in the far-field of the array. The relevant characteristics of these

three systems and the procedure used for data collection are described below.

2.2.1 Experimental facility

The very wide aperture receiver array of the Jindalee OTH radar is located at 23.523(S)
and 133.678(E), near Alice Springs in Central Australia. The Jindalee receiver is a uniform
linear array (ULA) which spans an aperture of approximately 2.8 km and is oriented with
boresight at an azimuth of 324.20 degrees clockwise from true North. Figure 1.5 shows a
picture of the Jindalee receiving array which is often referred to more simply as the main
array.

The main array is composed of 462 dual-fan antenna elements, each dual-fan element
consists of a pair of vertical monopole antennas that are 6 m high and positioned 3 m apart
in a line perpendicular to that of the main array. A 2.4 m fixed length cable is inserted
into the rear monopole to introduce a time delay designed such that the summation of
the monopole outputs (with the rear monopole output inverted by 180 degrees) yields
a front-to-back directivity ratio which is traded off over the HF band. The schematic
diagram in Figure 2.1 illustrates this fixed length cable along with other components in
the signal path extending from the dual-fan antennas to one of the digital receivers.

The 462 dual-fan antenna elements are grouped into 32 uniformly spaced subarrays,
each subarray is composed of 28 consecutive dual-fan elements which are shared with
neighboring subarrays (i.e., a 50 % overlap with each adjacent subarray). All of the sub-
arrays are connected to an analog beamforming network and can be steered to look in a
prescribed azimuthal direction. As indicated in Figure 2.1, analog beamforming is per-
formed by switching the outputs of the 28 dual-fan elements through a (Dolph-Chebychev)
tapering weight and a suitably adjusted delay-line before summing the resultant signals
in a combiner to form the subarray output.

The 32 subarray outputs are then passed through a low noise amplifier and a length

of cable which connects the amplified subarray output to its respective digital receiver.
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The low noise amplifier controls the signal level entering the receivers to ensure that the
received data is limited by external noise rather than internal noise and that the signal
level is appropriate for the dynamic range of the A/D converter. The run of cable which
connects each amplifier output to a digital receiver is of known nominal length and depends
upon the distance between the subarray and the multi-channel digital receiver. The radio
frequency (RF) signal entering the receivers is first mixed or deramped with a linearly
swept frequency modulated continuous waveform (FMCW) of selectable carrier frequency
and bandwidth. The deramped signal is translated to an intermediate frequency (IF) and
bandpass filtered before being translated to baseband by a 50 MHz local oscillator and
digitised at approximately the Nyquist rate by an analog-to-digital (A/D) converter.

Each reception channel of the array is matched across the receiver passband by in-
jecting a calibration signal at the port located immediately behind each subarray. The
frequency response of each reception channel is measured at the required resolution over
the passband of interest and digital corrections are applied to compensate for any differ-
ences in the channel transfer functions. Obviously, the radiation patterns of the subarrays
cannot be measured and calibrated with this scheme. It is noted that great care has been
taken in the design of the main array to minimise the influence of mutual coupling and
sensor position errors, a ground screen has also been laid over a significant area below the
array to stabilize the impedance of the antenna elements.

The test transmitter or beacon is a vertical whip antenna located at 12.436(S) and
130.907(E), near Darwin in the Northern Territory. The test transmitter and the main
array are separated by a ground distance of approximately 1265 km. The great circle
azimuth of the test transmitter is approximately 21.97 degrees when measured clockwise
relative to the boresight of the main array. A communications link between the two sites
makes it possible to control the beacon remotely from the receiver site, an important
aspect of this connection is that the timing and characteristics of the FMCW signal
emitted by the beacon can be synchronized with those of the waveform generator in the
main array. Such a capability allows the absolute time delay and hence group range of
the ionospherically-propagated signal modes to be estimated.

The oblique sounder makes use of the co-operative beacon near Darwin and a separate
subarray located at the Jindalee receiver site to provide information regarding the mode
content of this mid-latitude path. The data recorded by the oblique sounder can be used
to estimate the time-delay associated with different propagation modes and to identify the
ionospheric layers which reflected them. The oblique sounder is independently operated
by the Jindalee Frequency Management System (FMS) which routinely records oblique
incidence ionograms for this particular ionospheric circuit. The FMS subarray used for
oblique sounding is nominally the same as those used in the main array and is located
about 100 m behind the main array with the same boresight direction. Although not
shown in Figure 2.1, digital recordings made by the main array and the FMS subarray

were stored on magnetic tape in the field to allow off-line data processing.
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Figure 2.1: Hardware architecture of a reception channel in the Jindalee array

2.2.2 Data collection

The standard technique for observing the mode structure of an ionospheric propagation
circuit as a function of operating frequency is that of oblique sounding (Davies 1990). The
method used to record oblique incidence ionograms for the current study is quantitatively
described by (Earl and Ward 1986) but some essential features are repeated here for
convenience.

On the present system, the remote beacon transmits a linear FMCW signal which
sweeps over a selectable portion of the HF band at a rate of 100 kHz per second. The
signal transmitted by the beacon is received in the main beam of the FMS subarray and is
mixed or deramped with a synchronized version of the transmitted signal. After filtering
and down-conversion, the instantaneous frequency of the baseband signal corresponding
to a particular mode is linearly dependent upon the time-delay or group range associated
with the ionospheric path it has taken.

Signal modes which arrive after sufficiently different time-delays are separated into
different frequency bins by performing digital spectral analysis (FFT) or range processing
on blocks of data acquired during a specified time interval. In the oblique sounder, range
processing estimates the power-delay profile of the signals received over successive data
segments where each segment is acquired over a time interval of approximately 0.6 seconds.
As the emitted signal sweeps at a rate of 100 kHz per second to interrogate different
portions of the HF band, the effective bandwidth of digital samples received during a
particular data segment is close to 60 kHz which translates to a group range resolution of
approximately 5 km for a one way path.

After spectral analysis, a clean-up algorithm is used to remove interference originating
from other users in the HF band. The peaks in the resulting range spectra which are
above a pre-set threshold are detected for each data segment and displayed as an oblique
incidence ionogram with frequency on the horizontal axis and group range or time-delay
on the vertical axis. The oblique incidence ionogram pertaining to this study was collected
on 1 April 1998 at 06:23 UT. This ionogram is displayed in Figure 2.2 and is discussed in
section 2.3.

The experiment involving the main antenna array was conducted immediately prior to
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Figure 2.2: Oblique incidence ionogram indicating the mode content for the Darwin to
Alice Springs ionospheric circuit as a function of carrier frequency in the HF band on

1 April 1998 at 06:23 UT.

recording the ionogram. In this experiment, the main array was synchronised to receive
a narrowband FMCW signal emitted by the beacon in the main lobe of each subarray
pattern. The narrowband FMCW signal was linearly swept over a 20 kHz bandwidth at a
rate of 60 sweeps per second with a fixed carrier frequency of 16.110 MHz. Clear channel
advice from the Jindalee FMS system was used to check that the 20 kHz channel with a

centre frequency of 16.110 MHz was free of co-channel interference from other users.

Digital data were recorded by the main array as a sequence of coherent processing
intervals (CPI) or “dwells”. Each dwell of data is recorded in approximately 4.2 seconds
during which a total of 256 phase coherent FMCW sweeps are emitted and received by
the system. Adjacent dwells are separated by an inter-dwell gap of about 0.5 seconds
to allow tape recording of the acquired digital data. A total of 47 dwells were recorded
during the experiment between 06:17 and 06:21 UT on 1 April 1998.

The A/D samples recorded within each FMCW sweep are often referred to as fast-time
samples (Griffiths 1996). A total of 320 fast-time samples were collected for each sweep
in each receiver, these samples were range processed to form frequency domain samples
or range samples. The 20 kHz signal bandwidth yields a group range resolution of 15 km
for a one way path, this resolution was traded off to about 20 km in order to control
range sidelobes with the Hanning window. The propagation modes of interest appear
over a finite coverage in group range so only a portion of the range spectrum needs to be
retained for further processing. In this case, a total of 42 range samples covering a range

depth of 615 km between 1055 and 1670 km were retained for further processing.
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A propagation mode normally appears discrete in group range when the resolution
is in the order of 20 km, and quite often, this resolution is sufficiently high to resolve
different propagation modes into separate range bins. The ability of the array to isolate
signals received from the different propagation modes into different range bins enables
the space-time characteristics of these modes to be studied individually. The space-time
characteristics of a particular propagation mode can be studied by analysing the data
recorded across different receivers and from one sweep to another in the range bin that
contains the mode of interest. The temporal sequence of a range sample from one sweep
to another are collectively known as slow-time samples (Griffiths 1996), these samples
provide information regarding the Doppler characteristics of propagation modes. The
slow-time samples recorded by the different receivers within a particular FMCW sweep
are collectively referred to as an array snapshot which provides information regarding the
spatial characteristics of propagation modes.

The above-mentioned data were collected by exploiting some unique features of the
Jindalee receiver array and the oblique sounder system. It is evident from the literature
review that the very wide aperture arrays used in previous work on mode fine structure
did not have the same characteristics as the Jindalee array. One of these arrays (Rice
1973) was only able to sample the phase of the signal-field while the other (Sweeney 1970)
had comparatively fewer antenna elements and receivers to sample the spatial properties
of these fields. The data collected by the current system is arguably of the highest quality

for the purpose of analysing mode fine structure.

2.3 Preliminary data analysis

A preliminary analysis of the experimental data collected by the oblique sounder and the
main antenna array is performed in this section to quantify some important gross and
fine structure features of the ionospheric circuit under study. More specifically, data from
the oblique sounder is interpreted to determine the number of propagation modes and to
identify the ionospheric layers which reflected them. Once the mode content of the HF
link has been determined, the power, time-delay, direction of arrival and Doppler shift
of each resolved propagation mode are estimated as mean values over the period of data
collection.

Variations in the spatial structure of individual signal modes over short time intervals
are detected by means of coherence measures to show the existence of mode fine structure.
The chosen coherence measures also indicate the degree of departure exhibited by the
received mode wavefronts relative to the plane wave model of best fit. Care is taken
to distinguish between observations which are potentially caused only by measurement

errors and noise with those that are at least partly attributable to physical phenomena

occurring in the ionosphere.



26 CHAPTER 2. WAVE INTERFERENCE MODEL
2.3.1 Mode content of the HF link

The oblique incidence ionogram shown in Figure 2.2 was recorded by the FMS oblique
sounder to determine the mode content of the Darwin-to-Alice Springs ionospheric circuit
at 06:23 UT on 1 April 1998. This type of ionogram measures the time delay taken by
different ionospheric modes to propagate between the test transmitter and the receiver site
as function of operating frequency. The estimate of a mode time-delay is often converted
to a distance known as the group path or group range by assuming that the mode travels
at the speed of light in free space. Comprehensive information on the measurement and

interpretation of oblique incidence ionograms can-be found in the texts by (McNamara
1991) and (Davies 1990).

Perhaps the most obvious aspect of the ionogram in Figure 2.2 is that the mode content
changes as a function of operating frequency. The gradual variation in the number and
group range of the propagation modes with respect to frequency clearly illustrates the
dispersive nature of the ionosphere within the HF band. For a narrowband signal, the
mode content is estimated as the point(s) of intersection between the ionogram trace and
a line drawn vertically at the operating frequency. The ionogram in Figure 2.2 resolves
five distinct propagation modes at group ranges of 1290, 1300, 1430, 1475 and 1540 km
when the operating frequency is 16.110 MHz. This frequency coincides with that used in

the main antenna array experiment.

To identify the ionospheric layers responsible for propagation it is required to calculate
the virtual ionospheric height of reflection for each resolved mode. By assuming a spherical
earth and specular reflection from a concentric ionospheric layer it is possible to show that

the virtual ionospheric height of reflection &, is given by,

_ & sin[d/2r. + arcsin(2r sin(d/2r.)/gr)] r (2.1)

o 2sin(d/2r.) °

where r. = 6270 km is the Earth’s radius, d = 1265 km is the ground distance of the
path and g, (km) is the group range of the mode estimated by the ionogram. Using this
relationship the virtual heights corresponding to the five resolved propagation modes are
calculated as 99, 122, 303, 349 and 408 km respectively.

The lowest reflecting layer with a virtual height of 99 km is identified as mid-latitude
sporadic-E. This relatively thin layer which typically has a thickness of approximately
5 km normally forms at altitudes between 90-110 km and is often characterised by a
flat trace with respect to frequency in the ionogram. The occurrence of this layer is
irregular or sporadic in time and is thought to originate from the concentration of metallic
ions produced by burnt out meteors. Amongst other features, the sporadic-E layer is
characterised by a relatively high ionisation density that forms into clouds so it often has
a patchy nature horizontally (Barnes 1990). Further information regarding the physical

makeup and characteristics of sporadic-E as well as other ionospheric layers can be found
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in the text by (Davies 1990).
The ionospheric layer with a virtual height of 122 km also exhibits a flat trace with

respect to frequency in the ionogram and is therefore identified as a second reflection from
possibly the same mid-latitude sporadic-E layer. It is reasonable to ask how two reflections
from the same ionospheric layer can arrive with different time-delays or group ranges. A
possible explanation is that a signal can be reflected from a point in the ionosphere which
is not on the great circle plane defined by the two sites and therefore travels a further
distance compared to the signal resolved at a lower group range. This situation may arise
in the sporadic-E layer due to a reflection from a different cloud of ionisation which is off
the great circle plane.

The remaining modes are propagated by the F-region where reflection may occur from
the Fl-layer at altitudes between 140-210 km or the F2-layer at heights above 210 km.
The layers in the F-region are produced largely by ultra-violet (UV) ionising radiation
from the sun with wavelengths ranging very roughly between 17-80 nm (Budden 1985).
One aspect of ionospheric propagation that occurs in all regions but is most noticeable
in the F-region is the magneto-ionic splitting of a signal into an ordinary (o) ray and
an extraordinary (x) ray. In addition, each of these rays can propagate via two different
paths known as the high (H) angle and low (L) angle paths. A detailed mathematical
treatment of magneto-ionic splitting in the ionosphere is covered in the text by (Budden
1985) while a concise description of the origin of the high and low angle paths can be
found in (Davies 1990).

The propagation mode with a group range of 1430 km and a virtual height of 303 km
is made up of the ordinary and extraordinary magneto-ionic components in low angle
path of the F2-layer. These two magneto-ionic components cannot be resolved by the
oblique sounder and their superposition generally produces a resultant wave with elliptical
polarisation. The plane of polarisation of the resultant wave rotates when the relatjve
phase path between the two magneto-ionic components changes as a result of motions in
the jonosphere. This rotation is known as Faraday rotation and typically manifests itself
as deep and quasi-periodic fading of the resultant signal in both the spatial and temporal
domain.

The propagation mode with a group range of 1475 km and virtual height of 349 km
corresponds to the ordinary magneto-ionic component in the high angle path of the F2-
layer. The mode with the largest group range of 1540 km and virtual height of 408 km is
the extraordinary magneto-ionic component in the high angle path of the same layer. The
ordinary and extraordinary components have counter-rotating polarisations, the polarisa-
tion of the ordinary wave rotates clockwise at the operating frequency when viewed in the
direction of wave propagation while the extraordinary component rotates anti-clockwise
at the same rate. It is noted that the original linearly polarised signal is represented
by the superposition of equal amplitude ordinary and extraordinary components with

circular polarisations and zero initial phase difference. In the high angle path of the F2-
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layer it is evident that the two magneto-ionic components experience markedly different
retardations or penetration depths into the ionosphere, this phenomenon which allows
the oblique sounder to resolve the components is due to the anisotropic nature of the
ionosphere caused by the Earth’s magnetic field.

Double-hop modes which involve an intermediate ground reflection or mixed modes
which consist of reflections from two or more ionospheric layers have also been observed
on this link but were not present at the time of recording at a frequency of 16.110 MHz.
Ionospheric modes may be represented in standard notation, as recommended by (Davies
1990), with the one-hop sporadic-E reflection denoted by 1E, and a double-hop reflection
written as 2E,. The one-hop F2-layer reflection in the low angle path is represented by
1 F, while the resolved ordinary and extraordinary magneto-ionic components in the high

angle path are referred to by 1F5(0) and 1F3(x) respectively.

2.3.2 Power, angle-of-arrival and Doppler shift

The mean signal-to-noise ratio of each resolved mode over the period of data collection
is estimated from the power-delay profile shown in Figure 2.3. This power-delay profile
was calculated by averaging the range power spectra recorded in 30 receivers and 256 PRI
of each dwell over the entire data set consisting of 47 dwells. In other words, the range
power spectrum shown in Figure 2.3 represents an average of 256 x 30 x 47 different
realisations. It is noted that 30 of the 32 available reception channels were analysed for
this data as two adjacent reception channels at one end of the array were not properly
calibrated.

The locations of the peaks in the power-delay profile are consistent with the group
ranges of the modes resolved by the oblique sounder. The four peaks in Figure 2.3 appear
at group ranges of 1290, 1435, 1480 and 1540 km, as compared to the five modes resolved
at group ranges of 1290, 1300, 1430, 1475 and 1540 km by the ionogram. The group range
resolution of the power-delay profile measured by the main array is in the order of 20 km
which is not high enough to resolve the two sporadic-E reflections at group ranges of 1290
and 1300 km. The remaining modes which are propagated via the F-region have been
resolved by the main array and appear discrete in group range. The discrete character
of this power-delay profile indicates that the group ranges of all modes do not change
by more than the group range resolution of the main array (20 km) throughout the data
collection period (4 minutes). The mean SNR corresponding to mode(s) represented by
each peak of the power-delay profile is estimated as the ratio between the magnitude of
the peak and the background noise level which is estimated from the flat portion of the
spectrum in the vicinity of range cell number seven. In ascending order of group-range,
the propagation modes have SNR’s of approximately 34.5, 40.5, 34.0 and 20.0 dB.

The gross structure of the mode wavefields sampled by the main array is illustrated

for a particular dwell by two dimensional (space-time) intensity modulated displays in
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Figure 2.3: Average power-delay profile (range power spectrum) recorded for the Darwin-
to-Alice Springs ionospheric link by the main array at f.=16.110 MHz on 1 April 1998

between 06:17 and 06:21 UT

Figures 2.4 to 2.7. These displays illustrate the real component of the complex-valued
mode wavefield received in the range cells corresponding to a peak in the power-delay
profile. Each display consists of 256 consecutive array snapshots recorded by 30 receivers

during a coherent processing interval of approximately 4.2 seconds.

The highly non-planar wavefronts observed in Figure 2.4 are expected because the
wavefield in this range cell results from a superposition of unresolved sporadic-E modes
which most likely have different directions-of-arrival. In addition, each sporadic-E mode
may be contaminated by ionospherically-induced distortions over this time interval such as
the phase fluctuations observed by Abramovich, Anderson, Frazer and Solomon (1995).
Wavefronts which are much more planar are observed for the 1F; mode in Figure 2.5
where the real component of the wavefield resembles a two-dimensional sinusoid. The
spatial frequency of the sinusoid is related to the cone angle-of-arrival of the mode with
respect to the sub-array steer direction whereas the temporal frequency is related to the
Doppler shift imparted by the ionosphere. Figures 2.6 and 2.7 display the real wavefields
of the 1F,(0) and 1F,(z) magneto-ionic components respectively. While the 1F,(0) mode
exhibits relatively planar wavefronts it is apparent that the ionospheric reflection process
has distorted the wavefronts of the 1F3(z) mode. Moreover, such distortions can be
attributed to the presence of irregularities in the ionosphere because a single magneto-
ionic component (i.e., the extraordinary ray of the Fy-layer high angle path) has been
isolated for study and is not contaminated by other components which are theoretically

expected for a smooth ionospheric layer.
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Figure 2.4: Real component of the 1E, mode signal-field sampled in space and time by
the main array (range cell k = 16)
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Figure 2.5: Real component of the 1F; mode signal-field samples in space and time by
the main array (range cell k = 26)
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Figure 2.6: Real component of the 1 F;(0) mode signal-field sampled in space and time by
the main array (range cell k = 29)
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Figure 2.7: Real component of the 1F;(x) mode signal-field samples in space and time by
the main array (range cell k = 33)
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The mean cone angle-of-arrival and Doppler shift of the propagation modes can be
estimated from the array data by using conventional beamforming and Doppler processing
methods. For a given range cell (k), the angular power spectrum p,(k,8) and Doppler
power spectrum py(k, Af) are derived from the spatial and temporal sample covariance
matrices of the data respectively. It should be noted that the angular spectrum is in terms
of the cone angle-of-arrival while the Doppler spectrum relates to temporal variations in
the phase path of a particular mode caused by movements of the effective ionospheric

reflection point.

The unbiased sample spatial covariance matrix estimated for the k** range cell in a

particular dwell or coherent processing interval (CPI) is denoted by R,(k) and is given

by,
Ro() = 5 D xu(t)xf/ (1) (2.2

where P = 256 is the number of PRI averaged over a CPI of 4.2 seconds, H denotes
the Hermitian operator (conjugate transpose) and xi(t) is the N = 30 dimensional array
snapshot vector recorded at the k** range cell and #** PRI. The sample spatial covariance
matrices computed in different dwells are then averaged together to form a sample spatial
covariance matrix R;(k) which contains the mean spatial second order statistics of the
data in the k** range cell over the data collection interval (~ 4 minutes). The mean
angular power spectrum p,(k, ) is then computed as,

px(k, 0) = SH(G)R]\:;EIC)S(O) : s(0) — [1 ej27rAdsin0/A .. ej27r(N—-1)Adsin0/)\]T (23)

where s(8) is the N-dimensional array steering vector for a cone angle 6. To determine
the mean Doppler spectrum let the D-dimensional complex vector Yi(n,t, At) contain
the slow-time samples recorded in the n™ receiver and the k*h range cell starting at the

tth PRI with consecutive samples being spaced by A¢ PRI. This vector can be written as,
ye(n,t, A) = (X0 (¢ + A1) -3+ (D - AT (2.4)

where x{"l(t) is the output of the n'* receiver at the k™ range cell and t** PRI. The
temporal sample covariance matrix estimated for the k** range cell in a particular dwell

is denoted by R, (k) and is given by,

P-DAt+1

N
- 1 H
- > D t, At Jt, At 2.5
Ry(k) N(P _ DAt + 1) - — yk(n? ) )yk (n ) ( )

where the temporal snapshots have been averaged in sliding window fashion within a

receiver over slow time (¢) and then across the different receivers (n). Note that the
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sliding window average makes use of all samples in the dwell whereas the non-overlapped
average results in the samples spaced by less than At PRI being missed. As before, these
matrices are averaged over different dwells to form the mean sample temporal covariance

matrix Ry(k) which is used to evaluate the mean Doppler power spectrum py(k, Af) as,

py(k, Af) — vH(Af)%Ek)V(Af) , V(Af) — [1 eI2mAffy . ej21r(D—1)Af/_f”>]T (2.6)

where the D-dimensional vector v(Af) is the complex frequency phasor corresponding
to a Doppler shift of Af Hz observed with an effective pulse repetition frequency of
fo = fo/ At Hz (f, = 60 Hz).

Figures 2.8 to 2.11 show the angular and Doppler power spectra resulting in the
range cells containing the signal modes (k = 16, 26,29, 33) when the parameters N = 30,
P =256, D = 30, At = 6 were used and 47 dwells of data were averaged. The mean cone
angle-of-arrival and Doppler shift of the signal received in each range cell are estimated

as the location of the maxima in the corresponding angular and Doppler power spectra

respectively, these estimates and are listed in Table 2.1.

Mode | gr, km | by, km | SNR,dB | Af, Hz | 0, deg

1E, 1290 | 99 34.5 042 | 21.9
1F, 1430 | 122 40.5 0.44 | 20.8
1Fy(0) | 1475 | 304 34.0 0.46 | 20.5
1Fy(z) | 1540 | 409 20.0 0.53 | 19.9

Table 2.1: Parameters describing the gross structure of the Darwin-to Alice Springs HF
link on 1 April 1998 between 06:17-06:21 UT :

If the signal received in each range cell containing a signal mode were a monochromatijc
plane wave, as would be the case for specular ionospheric reflection, the global maxima of
the angular and Doppler power spectra are expected to be the same when the contribution
due to additive noise can be neglected. Under such conditions, the value of the maximum
coincides with that of the corresponding peak in the power-delay profile and the sidelobe
structure of both spectra would appear undisturbed. To some extent, this description
seems to fit the characteristics of the spectra plotted for the 1F; and 1F3(0) modes in
Figures 2.9 and 2.10 respectively.

However, this description does not accurately portray the characteristics of the spectra
plotted in Figures 2.8 and 2.11 which correspond to the 1E; and 1F5(z) modes respectively.
In the case of Figure 2.8 the observed discrepancy is thought to arise mainly due to
the superposition of two sporadic-E modes which have very similar Doppler shifts but
different angles-of-arrival. It is worth noting that the two sporadic-E modes are almost
but not completely resolved in angle-of-arrival by the classical beamformer. In the case
of Figure 2.11, the irregular sidelobes and lower maximum of the angular power spectrum

is attributable to the significant non-planarity and temporal variability of the received
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wavefronts caused by the movement of ionospheric irregularities in the vicinity of the

1 F2(z) mode reflection region during the period of data collection.

2.3.3 Fine structure of ionospheric modes

Experimental measurements made by (Rice 1976) and (Sweeney 1970) on a very wide
aperture array indicate that a mode wavefront can often be regarded as having a more
or less planar large-scale structure with some degree of amplitude and phase corrugations
superimposed. These corrugations may be viewed as the spatial modulation imparted by
the ionosphere on the underlying planar wavefront which would have resulted in the case
of specular reflection.

Neither of the two above-mentioned analyses explicitly studied the time-evolution of
the complex-valued mode wavefronts over time intervals comparable with the coherent
integration time of OTH radar. Moreover, the signal bandwidths and PRI used in both
analyses (approximately 100 kHz and 1 second respectively) are quite different to those
typically used in OTH radar applications (less than 20 kHz and approximately 0.02 sec-
onds respectively).

A very wide aperture array analysis of the complex-valued mode wavefronts measured
with a PRI of less than 0.02 seconds over CPI in the order of a few seconds has not been
carried out previously and is the subject of the current investigation on fine structure. The
principle objective is to detect and quantify variations in the spatial structure of a mode
wavefront where the term “spatial structure” refers to the gain and phase relationship
between the receiver outputs rather than their absolute value. A measure of the variation
in spatial structure with respect to time should ideally be independent of time-invariant
gain and phase mismatches between the receivers as well as temporal modulations which
give rise to the mean Doppler shift and Doppler spread.

A quantitative measure of the similarity between the spatial structure of two complex
array snapshots recorded in the k™ range cell at PRI ¢ and t + At can be defined as the

following magnitude squared coherence (MSC) function.

_ IxE (it + AD)[”
&(At) = xi{(t)xk(tl)c xH(t + At)xi(t + At) ’

0 <&(At) <1 (2.7)

The MSC is unity when the snapshots x(t) and xx(t+At) are related by a complex scalar
(i.e., have the same spatial structure) and is zero when the two snapshots are orthogonal.
A value between these two extremes indicates the degree to which the spatial structure
of the complex snapshot has changed over At PRI which translates to a time interval of
r = At/ f, seconds (f, = 60 Hz). Unlike the RMS phase deviation measure used by (Rice
1976), the MSC takes both the amplitude and phase of the mode wavefronts into account
and the condition of unit MSC is not influenced by time-invariant array manifold errors

or the temporal phase rotation introduced by the Doppler shift.
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Figure 2.8: Conventional Doppler and Angle-of-Arrival spectrum for the 1E, mode
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Figure 2.10: Conventional Doppler and Angle-of-Arrival spectrum for the 1F3(0) mode
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Figures 2.12 to 2.15 show the cumulative distributions of the MSC values evaluated
for different modes and time intervals 7. These distributions were obtained by evaluating
MSC for all pairs of array snapshots separated by 7 = At/f, seconds in 47 dwells of
data with each dwell containing P = 256 snapshots. The minimum temporal separation
of 7 = 1/60 seconds is represented by curve 1 in these figures and may be regarded as
a quasi-instantaneous measure of the MSC, the MSC distributions at longer temporal
separations of 1, 2 and 3 seconds are represented by curves 2, 3 and 4 respectively.

A comparison of the different curves in each figure clearly demonstrates that the MSC
is highly dependent on temporal separation. If the spatial structure of each mode were
time-invariant over such intervals the MSC distributions would not depend on the tempo-
ral separation. The significantly lower MSC values observed as the temporal separation
increases suggests that the spatial structure of the received snapshots changes appreciably
over time intervals as short as one second.

For example, 99 percent of the MSC values evaluated for the 1F3(0) mode lie above
0.95 at the minimum temporal separation (curve 1 in Figure 2.14). For the same mode and
data set, approximately 70 percent of the MSC values lie below 0.95 when the temporal
separation is increased to 3 seconds (curve 4 in Figure 2.14). On the basis of this result,
one may be 99 percent confident that 70 percent of the array snapshots separated by a
time interval of 7 = 3 seconds do not exhibit the same similarity in spatial structure as
those separated by a quasi-instantaneous interval of 7 = 1/60 seconds.

These results demonstrate that for very short temporal separations the mode wave-
fronts remain essentially the same but as the temporal separation increases from a fraction
of a second to a few seconds the dissimilarity between the mode wavefronts gradually in-
creases. Although these figures quantitatively measure changes in the spatial structure of
the received wavefronts with respect to temporal separation they provide no information
regarding the nature of these changes. It is useful to understand whether such changes are
caused by shifts in the mean angle-of-arrival of the wavefront or whether they primarily
arise due to variations in the amplitude and phase corrugations.

An alternative MSC function, formulated in Eqn.(2.8), investigates the temporal be-

haviour of the plane wave which best fits the received signal wavefronts and the degree of

planarity exhibited by these wavefronts.

|sH (0)xk(2)|?
ult0) = Srarsa) < (ometD

0< pu(t,0) < 1 (2.8)

The value of 8 which maximises pi(t,8) at time ¢ is denoted by 0., and represents the
angle-of-arrival of the plane wave which best fits the array snapshot xx(t) in a least squares
sense. The maximum value pi(t,0maz) is a measure of the goodness of fit between the
array snapshot x,(t) and the best fitting plane wave, in simple terms this measure indicates
the size of the amplitude and phase crinkle on the wavefront. Note that px(t,0ms) is the

same as the peak output of the normalised conventional beamformer at time . A value
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Figure 2.14: Cumulative distribution of the MSC for the 1F,(0) mode
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near unity indicates an almost planar wavefront while lower values indicate the degree of
departure from a planar wavefront.

The quantities 8ns; and pi(t,0maz) are evaluated for each mode and plotted in Fig-
ures 2.16 to 2.19 as a function of slow time t. A sequence of four dwells (recorded with
an inter-dwell gap of approximately 0.5 seconds) is shown to illustrate the temporal be-
haviour of these quantities over times scales beyond typical OTH radar CPI. The scales
are different on these figures in order to clearly show the variation of the above-mentioned
quantities for each mode.

With the exception of Figure 2.16, which corresponds to the unresolved sporadic-E
modes, the value of pg(t,0q.) is reasonably close to unity which supports the view of
essentially planar wavefronts. It is noted that the plane waves which best fit the mode
wavefronts remain relatively constant in angle-of-arrival over intervals in the order of a
few seconds. It is also apparent that the degree of fit between these plane waves and
the received snapshots fluctuates smoothly over time. This indicates that the amplitude
and phase modulations imparted on the plane wave of best fit change gradually or in a
correlated manner when observed at a temporal resolution of 1/60 seconds (i.e., from one
PRI to another).

The value of pi(t,0mqz) is expected to be less than unity even if the external signal
is a perfect plane wave as a result of additive noise and the potential presence of array
manifold errors. Variations due to additive noise are random in nature and superimpose
on the smoother variations caused by the physical processes evolving in the ionosphere,
this superposition is most evident in the Figure 2.19 which corresponds to the mode
with lowest signal-to-noise ratio and is hardly noticeable in the other figures. Array
manifold errors are assumed to be fixed over such time intervals so the smooth variations
in pk(t,0maz) are attributable to spatial distortions induced by the ionospheric reflection
process on each mode. The precise form of the variations in pi(t, Omaz) differ substantially
from one mode to another, this qualitatively indicates that the spatial distortions induced
on a signal mode reflected from a particular ionospheric region is not so dependent on
those induced by other regions.

The collection of results on fine structure presented in this section confirm the view
that a mode wavefront can be pictured as having an essentially planar spatial structure
with some degree of amplitude and phase corrugations superimposed. More importantly,
the analysis undertaken in this section has yielded additional information regarding the
time-evolution of these wavefronts recorded over time intervals commensurate with the
typical OTH radar CPI. The experimental results suggest that the underlying planar
wavefront of a mode does not vary significantly over time intervals in the order of a few
seconds whereas the size and shape of the wavefront corrugations evolve in a smooth or
correlated manner. This leads to the interpretation that the ionospheric reflection process
induces changing amplitude and phase distortions about a mean plane wavefront which

become progressively de-correlated from each other over time.
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2.4 Multi-sensor HF signal model

The purpose of this section is to derive a wave interference signal model which, under
standard assumptions and approximations, mathematically describes the complex enve-
lope of the digital signal-field samples recorded by the main array in the experiment.
A mathematical model which represents the gross structure of the signal-field received
over typical OTH radar CPI is developed first. This space-time model assumes specular
reflection from each ionospheric layer and represents the complex envelope of the raw
(unprocessed) digital signal-field samples acquired by the main array. The range formed
version of this signal processing model is then derived and extended to incorporate mode

fine structure.

2.4.1 Raw data model

The model in this section is derived by assuming that the ionospheric reflection process
which gives rise to each propagation mode is specular. In addition, the effects of instru-
mental and site errors are neglected in order to derive a space-time model which represents
the digital signal-field samples acquired by an ideal antenna array. Imperfections such as
mutual coupling, sensor position errors, non-identical sensor radiation patterns and im-
properly calibrated receivers can subsequently be incorporated into the model if required.

The complex envelope of the digital space-time samples received due to the m** prop-

agation mode is modeled as,
m(l,t,n) = Ap exp (J2r{AunlT; + Afmt/ o} + iH{knrn +v(Tn)}) (2.9)

where g,,(l,t,n) for m = 1,2,.., M represents the ionospherically-reflected FMCW mode
wavefield digitised at the [** fast-time sample and t"* PRI in the n'® receiver of the main
array after the deramping and filtering stages described in section 2.2.1. The physical
significance associated with each term in Eqn.(2.9) is explained below and justification is
provided for any approximation made in the derivation of this model.

The fast-time digital samples acquired during a pulse repetition interval (PRI) are
indexed by the integer [ = 0,2,..,L — 1 (L = 320) and correspond to the raw A/D
samples prior to range processing. To distinguish between fast-time samples recorded in
different PRI the integer t = 0,2,.., P — 1 (P = 256) is used to index the particular PRI
within the coherent processing interval (CPI). The indices /[ and ¢ are used to reference
the digital samples collected in the temporal domain whereas the index n = 0,2,..,N — 1
(N = 32) relates to the spatial domain and is used to identify the particular receiver
within the array.

The terms T,, f, and 7, respectively denote the fast-time sampling period in seconds,
the pulse repetition frequency (PRF) in Hertz and the time-delay taken by the m** signal

mode to travel from the transmitter to the reference receiver in the array at the beginning
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of the CPI (I = 0,z = 0). A convenient choice for the reference receiver is the first one
(n = 0) which is taken to be the leftmost receiver of the main array when observed in the
boresight direction. The parameters for the experiment were T, = 52 microseconds and
fp = 60 Hz, the time-delay 7,, taken by a single-hop mode to propagate over the ground
distance of 1265 km typically ranges between 4 — 6 milliseconds.

Within the PRI, the frequency of a deramped and filtered FMCW signal mode is
proportional to the time delay associated with the ionospheric path traveled by the mode.

This frequency is denoted by Au,, and is given by,

Aty = ’2;’" (2.10)

where f, = 20 kHz is the FMCW sweep bandwidth and LT, = 1/f, is the duration of the
PRI in seconds. This group-range dependent frequency manifests itself as a regular phase
progression on the complex envelope of the fast-time samples recorded for a particular
mode within each sweep. In Eqn.(2.9), this regular phase progression is represented by
the term e/?mAumiTs,

A smooth ionospheric layer may exhibit regular motion with respect to time which
imposes a Doppler shift on the reflected mode. The Doppler shift imposed by the regular

motion of the ionosphere on the m** mode is denoted by A f,, and is given by,

_ 2umfe

c

Afm (2.11)

where f. = 16.110 MHz is the carrier frequency, ¢ = 3.0 x 10® m/s is the speed of light in
free space and v,, is the effective component of velocity of the reflection point. A positive
Doppler shift indicates that the effective reflection point is moving “downwards” (i.e.,
shortening the phase path of the mode with respect to time) while the reverse applies
when the Doppler shift is negative.

In practice, the effective velocity vy, of the reflection point is typically less than 10 m/s
for quiet mid-latitude paths which corresponds to a Doppler shift of 1 Hz at a carrier
frequency of 15 MHz. Over a 4.2 second CPI the effective displacement of the reflection
point due to such motion is 42 m which results in a differential time-delay of §7,, = 1.4 ns
between the beginning and end of the CPI. The time-bandwidth product 7., f, < 1 is
much less than unity so the Doppler effect is accurately described by a phase shift for each
FMCW signal mode over the CPI. The ionospherically imparted Doppler shift manifests
itself as a regular phase progression from one sweep to another over the CPI, in Eqn.(2.9)
this regular phase progression is represented by the term e/274/ mt/fp,

The change in group range of a signal mode due to ionospheric movements over the
CPI is in the order of tens of metres and is extremely small compared with the 20 km
range resolution of the main array. Consequently, the term Au,, is assumed to be fixed

over a 4.2 second dwell interval. In the above example, it would take over 15 minutes
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before the change in ionospheric “height” caused by a regular movement of the layer can

be resolved in group range by the main array.

The phase of the m** mode at the beginning of the CPI relative to that of the trans-
mitted waveform is denoted by (7). This initial phase depends on the mode time-delay
and determines the starting phase relationship between the modes. The value of v(7,,)
is determined by the phase path of the ionospheric circuit which links the transmitter to

the reference receiver in the array at the beginning of the CPI.
~ 75
A(Tm) = eIt ferm+ 470} (2.12)

The scalar A,, is a attenuation factor which accounts for all losses in the mode am-
plitude occurring between the transmitter and receiver. This term includes propagation
distance loss described by the inverse square law, absorption of mode energy by the iono-
sphere and changes imposed on the incident mode amplitude by the reception channels
of the array. For the moment it is assumed that the reception channels are identical so
that A,, is independent of receiver number (n).

The relationship between digital samples acquired simultaneously in different receivers
may be described using the three-dimensional coordinate system in Figure 2.20. The
uniform linear array is aligned along the z-axis with the reference antenna sensor at
the origin and the remaining identical antenna sensors equally spaced by a distance of
Ad metres. A plane wave signal originating from a far-field source is incident upon the
ULA from an azimuth angle a and an elevation angle 3 after specular reflection from the
ionosphere.

In the main array the spacing between adjacent subarray centres is Ad = 84 m while
the great circle azimuth of the transmitting source utilised in this experiment is o =
22 degrees relative to boresight. The elevation angle of incidence 8 depends on the height
of reflection in the ionosphere and typically varies between 5 — 35 degrees for single-hop
modes on the 1265 km mid-latitude path being investigated.

Let k., = %\’iu(am, Br.) be defined as the three-dimensional wavenumber vector corre-
sponding to the m* propagation mode where u(am, Brm) is a three-dimensional unit vector
in the propagation direction of the incident wave and A = ¢/ f. is the carrier wavelength.

The relative phase of the carrier component of the signal between the reference receiver
and other receivers is calculated as the inner product k,, 7, where r,, is the position vector

of the n'* receiver, as defined in Eqn.(2.13).

5 cos By, sin oy, nAd
kn = _;r_ cos B cOSQm | , Ta= 10 (2.13)
sin B, 0

The differential time-delay observed for the m?*» signal mode when received at the two ends
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Figure 2.20: Three dimensional co-ordinate system showing a plane wave incident from
azimuth o and elevation 3 on a ULA aligned along the x-axis.

of the array is given by w(am,Bm) - *n-1/c = (N — 1)Ad cos Bm sin o, /c which is in the
order of 2—3 microseconds for o, = 22 degrees, § = 5—35 degrees and N = 32 subarrays.
The time-bandwidth product corresponding to the differential delay across the array is
much less than unity for a bandwidth of f, = 20 kHz so the narrowband assumption is
justified for the FMCW signal used in this experiment. For the m'* propagation mode,

the phase relationship between the digital samples recorded at different receivers of the

uniform linear array is given by,

k., r,= ?nAdcos B sin iy, = 2Tﬂ-nAdSin - (2.14)

and is included as the term e’*» 7 in Eqn.(2.9). As indicated by Eqn.(2.14), the measured
phase difference can be interpreted in terms of a single cone angle-of-arrival 6,, which is
subtended by the mode wave-vector and the z-axis. If the cone angle is used as an
estimate of the source azimuth, then for off-boresight sources, this interpretation results
in the apparent azimuth angle of the source shifting towards the array boresight as the
elevation angle increases. This effect is referred to as coning and often allows different
propagation modes originating from a single source to be resolved in cone angle 6,, with
a ULA.

The derivation of the mathematical model used to represent the digital samples re-
ceived by the main array due to a single specularly reflected propagation mode has been
described. In a multipath environment the received signal results from a superposition
of M modes. Let x;(t) be a complex N-dimensional vector which represents the array
snapshot recorded at the {** fast-time sample in the ¢** PRI, and denote xE"](t) as the nth

element of this vector (i.e. the n'* receiver output). In general, the digital signal-field



2.4, MULTI-SENSOR HF SIGNAL MODEL 47

samples received under the above-mentioned gross structure assumptions and approxima-

tions can be written as the superposition of M modes and uncorrelated additive noise
[n]
n;"(t).

M
x(t) = Y gm(lt,m) + 0"(0) (2.15)

The additive noise is often modelled as temporally and spatially white with the following

second order statistics,
E{n{")(t)nl"(t2)} = o2 8(h — b) 8(t1 ~ t2) §(n1 = na) (2.16)

where E{-} is the statistical expectation operator and é(-) is the Kronecker delta function.

2.4.2 Range processed data model

Range processing is performed by taking the Fast Fourier Transform of the shaded fast-
time samples collected in each PRI of each receiver. The contiguous set of FFT outputs or
range samples retained for further processing are denoted by x;c"](t) and indexed according
to the range bin number k = 0,2,.., K — 1 (K = 42). Although [ and k are indices it is
possible to adhere to this notation without ambiguity as the exclusive use of either k or !
for this index in the following treatment implicitly declares whether raw A /D samples or

range samples are considered. Taking the (range processing) FFT of Eqn.(2.15) yields,

M
A1) = 3 gmlty) W = Buim) + 01 (2.17)

m=1

where g, (t,n) is a space-time cisoid given by Eqn.(2.18), nEc"](t) is the FFT output arising
from the additive noise sequence n;n](t) and the frequency domain function W(-) is the

normalised Fourier Transform of the Hanning window used to taper the fast-time samples
such that W(0) = 1.

gm(t,n) = cm exp (j20{A fimt/ fp + nAdsin 0m/2}) (2.18)

When the group ranges of the modes are sufficiently different the various space-time
waveforms g,,(t,n) can be effectively separated into different range cells. This separation
is effective providing the range sidelobes corresponding to the neighboring modes do not
cause significant interference (e.g., are below the noise level) at the range cell most closely
matched to the group range of the mode to be analysed.

In practice, the actual wavefield sampled at such a range cell will deviate to some degree
from the idealised model of a two-dimensional (space-time) complex sinusoid. Reasons

for such departures include mode fine structure, incompletely resolved propagation modes
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as well as instrumental and site errors. The main array has been carefully designed to
minimise instrumental and site errors so when signals reflected from different ionospheric
layers are effectively resolved in range the dominant factor responsible for the observed
departures between the idealised model and the recorded data is expected to be mode

fine structure.

The ionosphere can also exhibit large-scale latitudinal and longitudinal gradients or
tilts which shift the mode direction-of-arrival (azimuth and elevation) relative to that
which is expected for a smooth and horizontally level reflecting layer. The influence
of ionospheric tilts on the mode bearings has been mathematically treated by (Gething
1991) and may be used to interpret mismatches between the expected and estimated cone

angle-of-arrival.

2.4.3 Fine structure model

It is known that a smooth ionospheric layer can theoretically propagate four rays over a
one-way oblique circuit. As discussed in section 2.3.1, these rays consist of two pairs of
magneto-ionic components known as the high angle and low angle rays (Davies 1990). The
four theoretically expected rays are not usually resolvable in time-delay using a group-
range resolution of 5 km (except near the maximum useable frequency) but in some cases
a single magneto-ionic component can be isolated for study. When a single magneto-ionic
component can be isolated, the presence of fine structure can only arise from the presence
and movement of electron density irregularities in the ionosphere near the region of signal
reflection. When two or more of the theoretically expected rays remain unresolved, the
appearance of fine structure in the resultant signal arises partially due to the superposition

of different rays and potentially the influence of ionospheric irregularities on each ray.

Experimental results from several different analysis described in the literature review
indicate that individual propagation modes are frequently composed of a small number
of (presumably specular) components or “sub-modes” with different Doppler frequency
shifts and closely spaced directions-of-arrival. It has been conjectured that each sub-
mode originates from a different specular reflection point within the ionospheric layer.
In a smooth layer these sub-modes may correspond to the four theoretically expected
reflections or a subset of them, whereas for a single magneto-ionic component, these sub-
modes may originate from physically separated reflection points caused by the roughness

of a perturbed ionospheric layer.

Both interpretations of the sub-modes leads to a specularly reflected wave interference
model of fine structure, the interference between different waves causing within mode
fading in both the spatial and temporal domain. In the wave interference model of mode

fine structure, the space-time samples received from the m' mode are represented by a
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superposition of R,, rays,

R

gm(t,n) = crexp (52r{Afet/ f, + nAdsin6,/)}) (2.19)

r=1

where the various terms for each ray r = 1,2, .., R,, in Eqn.(2.19) are defined in analogous
fashion to those in Eqn.(2.18). Now if k,, is the range cell most closely matched to the m*"
mode and the different modes are well resolved in range the digital space-time samples

received in this range cell by the array can be approximated as,
Xj () & gm(t,m) + 0o (2) (2.20)

where g,,(¢,n) is given by Eqn.(2.19) with R,, > 1 for fine structure and R,, = 1 for gross
structure. From a mathematical point of view the distinction between the gross and fine
structure of an individual propagation mode resolved in range is that the latter contains
more than one term in the wave interference model. The physical origin of the extra terms
which model fine structure may tentatively be interpreted from the theory of ionospheric
propagation and measurements made by oblique sounders.

The wave interference model in Eqn.(2.20) is deterministic while it is known that the
Doppler shift, direction-of-arrival and other parameters of a real ionospheric mode change
as a function of time. It is noted that the scope of such a model is to represent the
space-time characteristics of the propagation mode(s) received by an array over typical
OTH radar coherent integration times in the order of a few seconds. The ray parameters
are required to be updated in order for such a model to track temporal variations in the

ionospheric circuit being probed.

2.5 Parameter estimation

The purpose of this section is to describe the procedure used for estimating the wave
interference model parameters and to propose criteria for quantitatively assessing the
capability of such a model to represent the fine structure of real ionospheric modes.
More specifically, the objective is to estimate the cone angle-of-arrival, Doppler frequency,
and complex amplitude of the constituent rays and to evaluate the degree to which the
superposition of these rays fits the mode wavefields sampled in space and time by the
main array.

Section 2.5.1 briefly overviews some commonly used methods for estimating the ray
parameters while section 2.5.2 describes the parameter estimation technique selected for
this analysis'in more detail. Criteria for assessing the accuracy with which the estimated
wave interference model represents the experimentally recorded wavefields are also pro-

posed in section 2.5.2.
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2.5.1 Selection of parameter estimation technique

The problem of resolving a wavefield received for a particular propagation mode into a
number of constituent rays is a challenging one in the HF environment because the rays are
likely to have almost the same Doppler shifts and be very closely spaced in angle-of-arrival.
Two rays with the same Doppler shift but different angles-of-arrival will produce a non-
planar wavefront at the receivers which does not change over time. On the other hand, two
rays with the same angle-of-arrival but different Doppler shifts will produce a plane wave
which exhibits temporal fading. In general, the rays can have slightly different angles-
of-arrival and Doppler shifts which results in time-vafying and non-planar wavefronts.
This qualitative interpretation is consistent with the quantitative analysis made on the
wavefronts corresponding to different propagation modes in section 2.3.3.

Classical spectral estimation techniques based on the FFT algorithm are generally
considered the most robust and computationally efficient spectral estimation techniques.
The term spectral estimation is used here rather than frequency estimation because unlike
many high resolution methods the classical estimator also indicates the power of the sinu-
soids present in the data. One disadvantage of these estimators is that the structure of the
sidelobes is data-independent and the leakage of strong signals through these sidelobes has
the potential to mask a relatively weaker signal in the main lobe. Another disadvantage is
the main lobe width which prevents the resolution of two or more frequency components
that are mutually spaced closer than the reciprocal of the data record duration.

The distorting impact of sidelobe leakage is evident in all classical spectra plotted
in Figures 2.8 to 2.11, while the resolution limitations caused by the main lobe width
is perhaps most apparent in the angular spectrum of Figure 2.8 where two modes were
known to be present but are not completely resolved in angle-of-arrival. The main lobe
width and sidelobe leakage of the classical spectral estimator are the major shortcomings
which makes this technique unsuitable for estimating the fine structure parameters of the
experimentally recorded wavefields.

The minimum variance distortionless response (MVDR) spectral estimator was devel-
oped by (Capon 1969) to improve the resolution of closely spaced components, particularly
in the spatial domain where the amount of data is often limited due to the small number
of available receivers. In the spatial domain the SMI estimate of the MVDR spectrum
Pmy(k, 0) is computed as,

Pra(k, 6) = 87 (O)RZ (R)s(0)]" (2.21)

where ﬁx(k) is the sample spatial covariance matrix. The MVDR spectral estimator can
also be applied in the temporal domain by replacing Rz(k) with ﬂy(k) and s(6) with
v(Af) in Eqn.(2.21). The location of significant peaks in the MVDR spectrum represent
the estimates of angle-of-arrival or Doppler frequency while their magnitude is linearly

proportional to the power of the corresponding sinusoidal component.
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Other methods based on linear prediction are described by (Marple 1987) but the best
frequency resolution and frequency estimation characteristics have in the literature been
attributed to a class of techniques based on the eigen-structure of the sample covariance
matrix. The basis for improved performance, especially at lower signal-to-noise ratios, is
the division of the information in the sample covariance matrix into two vector subspaces,
one a signal subspace and the other a noise subspace. The tremendous interest in subspace
approaches has arisen mainly from the introduction of the MUltiple SIgnal Classification
(MUSIC) algorithm by (Schmidt 1981).

Since the introduction of MUSIC, a variety of other superresolution algorithms have
been proposed and are reported as having certain advantages with respect to one another.
A summary of these algorithms and an exhaustive list of references to their original source
can be found in (Krim and Viberg 1996). The maximum likelihood (ML) algorithm
and the method of direction estimation (MODE) for uniform linear arrays are two high
performance parametric methods which can outperform MUSIC when two or more rays
are coherent or highly correlated over the observation interval (Krim and Viberg 1996).

However, the ML method i1s computationally intensive relative to MUSIC, and per-
haps more importantly, its convergence to the globally optimum estimates of the signal
frequencies cannot be guaranteed. The MODE algorithm has comparable computational
effort to MUSIC, and like MUSIC, this approach has been extended to address the joint
two dimensional (space-time) frequency estimation problem (Li, Stoica and Zheng 1997).
Although there is no definitive way of deciding on the best estimator for the application
at hand, it was decided that MUSIC would be used as it provides an overall compromise
between resolution power, computational complexity and the ability to perform joint
space-time analysis. In addition, so-called spatial smoothing techniques (Pillai 1989) can
be applied to improve the performance of the MUSIC estimator in the presence of corre-

lated multipath signals.

2.5.2 Space-Time MUSIC

There are a number of reasons for attempting to estimate the spatial and temporal fre-
quencies of the rays in the wave interference model jointly rather than separately. Perhaps
the most significant reason is that space-time processing allows the various rays to be dis-
criminated simultaneously in two dimensions rather than only in one at a time. For
example, two rays with almost identical Doppler shifts may not be resolved in the tempo-
ral domain but if their angles-of-arrival are sufficiently different it is theoretically possible
to resolve the two rays as different peaks in the space-time domain.

When the rays can be resolved separately in the temporal and spatial domain the
problem of correctly pairing the angle-of-arrival and Doppler frequency estimates for each
ray still remains. Another advantage of joint space-time processing is that pairing occurs

automatically since each ray is resolved and localised in a two-dimensional (space-time)
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co-ordinate system. The disadvantage of joint space-time processing is the extra compu-
tational effort arising from the use of covariance matrices with higher dimensionality and
the larger amount of data required to estimate such matrices accurately. Another disad-
vantage is that a two-dimensional space must be searched instead of two one-dimensional
spaces. To describe the space-time MUSIC technique let xx(s,t) be an N,-dimensional
array snapshot vector recorded by N, receivers of the main array starting at receiver num-
ber s where s = 0,1,..,N — N, and N > N,. Unlike the N-dimensional array snapshot
vector X;(t) which contains all the receiver outputs at the k' range cell and ¢** PRI, the
N,-dimensional vector X(s,t) contains the outputs of a subset of adjacent receivers in
the array with the first element corresponding to the output of receiver number s. The
(N, N;)-dimensional space-time data vector zx(s,t, At) is then formed by stacking the N,-
dimensional array snapshots xi(s,t) recorded at N; slow-time samples that are equally
spaced by a interval of At PRI It is assumed that the values of N, and N, are chosen to

ensure identifiability.
zk(s,t, At) = [xf(s, t) xf(s,t + At)--- xf(s,t + (N — 1)At)]T (2.22)

The space-time data vector zx(s,t, At) can be expressed in the following compact form

according to the wave interference model of fine structure presented in section 2.4.3.
zi(s,t, At) = A(p)si(t) + ni(s,t, At) (2.23)

Before defining the terms A(y) and si(t) in Eqn.(2.23), it is noted that in Eqn.(2.19)
the number of rays used to model the fine structure of a particular mode was denoted
by R, where the subscript m indicated the dependence between the number of rays and
the particular mode being modeled. As this analysis deals with the wavefields recorded
in different range cells k, rather than the those produced by different modes (which may
not be resolved in range) another notation is used. To make this notation as simple
as possible, it is assumed that the wave interference model for range cell k£ contains
M rays even though strictly speaking the value of M changes as function of k. Using the
simplified notation, the N,N; x M space-time steering matrix A(g) is parameterised by
the angles-of-arrival and Doppler frequencies of the M rays contained in the parameter
vector o = [01 02O Afi Afy--- Afum]F.

A(p) = [a(61,Af1) a(b2,Afa) - - a(bm, Afu) (2.24)

This matrix is composed of the (N,N;)-dimensional space-time signal steering vectors
a(f, Af) defined as the Kronecker product (®) between the N,-dimensional spatial steer-

ing vector s(#) and the N,-dimensional temporal frequency vector v(Af).

a(0,Af) =s(8) @ v(Af) (2.25)
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The M-dimensional signal vector si(t) contains the complex waveforms g,,(k, ¢, s) recorded

for each ray at the starting receiver (s).
u(t) = [0k, 1,5) galks 1) -~ gua (ks 1) (2.26)

The space-time vector of uncorrelated white noise ng(s,t, At) is constructed in analogous
fashion to Eqn.(2.22) and represents the additive noise component of the space-time vector
zi(s,t, At).

Traditionally, the space-time covariance matrix used to compute the MUSIC spectrum
is estimated by using the full array aperture (i.e., all receivers) and averaging the outer
products of the resulting space-time data vectors recorded over the coherent processing
interval. When two or more rays are coherent or have the same Doppler shift (i.e., rays
with the same Doppler frequency have a fixed gain and phase relationship over time at
each point in space and are therefore coherent) the use of this matrix in the MUSIC
algorithm fails to yield consistent estimates of the angles-of-arrival and Doppler shifts
of the rays. This occurs as a result of a rank deficiency in the dimension of the signal
subspace, the mathematical reasons for the failure of MUSIC under these circumstances
is discussed in detail by (Pillai 1989). To rectify this situation, which may well occur in
the current practical application, the idea of spatial smoothing described by (Shan, Wax
and Kailath 1985) can be employed to “de-correlate” the rays while preserving both the

angular and Doppler information.

A so called forward-backward spatial smoothing scheme is used to form an.alternative

N, Ni-dimensional sample space-time matrix ﬁz(k)

Pl N’
R.(k) = D z(s,t, Atz (5,8, At) + Jzi (s, £, At)z{ (s, 1, At)) (2.27)

t=0 s=0
where P = P — N;At, N' = N — N, and J is the square N,N; x N,N;-dimensional
exchange matrix with ones on the anti-diagonal and zeros elsewhere. The exact space-time
covariance matrix R, (k) for the fine structure model is derived by substituting Eqn.(2.23)

into Eqn.(2.27) and taking the statistical expectation E{-} of the resulting expression.
R.(k) = A(¢)SiA%(p) + o7 (2.28)

The M by M matrix Sy is referred to as the spatially smoothed source covariance matrix;
the true source covariance matrix being defined as E{si(t)s(¢)}. While the true source
covariance matrix is not full rank when two or more signals are coherent it can be shown
that the rank of the spatially smoothed source covariance matrix increases by one with
probability one for each spatial average (Pillai 1989). It is this property which is exploited
by the spatial smoothing scheme that allows MUSIC to yield consistent estimates of the

ray parameters when two or more rays are coherent or highly correlated. The cost of
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spatial smoothing is that the effective aperture of the array is reduced which leads to
a decrease in azimuthal resolution and a reduction in the maximum number of signals

which can be resolved.

Assuming A(p)S,A" (p) is of full rank (i.e., of rank M), the eigen-decomposition of

the exact space-time covariance matrix R,(k) can be expressed as
R.(k) = Q,AQY + +2Q, Q7 (2.29)

where the M columns of Q, and the N,N; — M columns of Q,, are the eigenvectors
spanning the signal and noise subspaces respectively while the diagonal matrix A =
diag[Ay Ag--- Ay) contains the M largest eigenvalues corresponding to the principal or
signal subspace eigenvectors. As the eigenvectors spanning the noise subspace are orthog-
onal to those in the signal subspace, the signal vectors are also mutually orthogonal to the
noise subspace eigenvectors. In other words, Q7a(9,Af) = 0if § = 0,, and Af = Af,,
for a particular ray m = 1,2,.., M. The parameter pairs (0,Afn) corresponding to
the M rays are the only possible parameter pairs which can satisfy this condition of or-
thogonality because any collection of different space-time signal vectors a(8, A f) forms a

linearly independent set (i.e., the manifold has a Vandermonde structure).

The spatially smoothed MUSIC “spectrum” Pmu(6, Af) is computed from the noise

subspace Q, derived from the sample space-time covariance matrix R, (k).

a”(6,Af)a(6, Af)
at(6, Af)Q.Qfa(6, Af)

Pmu(0,Af) = (2.30)
Although p,,, (0, Af) is not a true spectrum it typically exhibits sharp peaks in the vicinity
of the true angles-of-arrival and Doppler shifts of the complex sinusoids (cisoids) present in
the data. The locations of the peaks in the two-dimensional MUSIC spectrum correspond
to the estimates of the ray angles-of-arrival and Doppler shifts. These angles-of-arrival
and Doppler shifts are represented by the estimated parameter vector .

The magnitude of the peaks in the MUSIC spectrum should not be interpreted as the
power of the rays, but the angles-of-arrival and Doppler frequencies estimated by MUSIC
can be used to estimate the amplitude and initial phase of each ray by a least squares
procedure. Let the N P-dimensional vector zx contain all the space-time data recorded
within the CPI,

2 = [x4 (0) x5 (1) - x; (P)]” (2.31)

and the NP x M matrix A(¢) contain the estimated space-time signal vectors. The

M-dimensional vector of ray complex amplitudes ¢ is estimated so as to minimise the
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residual error power according to the following least squares criterion,
¢, = argminl||zx — A(P)c]? (2.32)

where || - ||? represents the squared Euclidean norm also known as the Frobenius norm
| - ||7. Note that the M complex-valued elements of ¢, represents both the amplitude and
initial phase of the M rays in the wave interference model of the wavefield received in the

k' range cell. The solution to Eqn.(2.32) can be expressed in closed form and is given

by,
& = A*(@)z = [AT(B)A(P)] 7 AF (P)zk (2.33)

where At (&) denotes the Moore-Penrose pseudo-inverse of A(¢3).

After the model order is selected and the ray parameters are estimated by applying
the procedure described above to experimental data it is then necessary to quantify the
accuracy with which the model fits the experimental data. It may also be of interest
to quantify the ability of the model to represent experimental data recorded outside the
spatial and temporal intervals used for the estimation of the various ray parameters. In
any case, a quantitative measure of the match between the simulated signal-field and the
received space-time data is required to evaluate the performance of the wave interference

model as well as to establish criteria for accepting or rejecting its validity.

A measure of modelling performance that is relatively simple to calculate and of in-
tuitive appeal is the ratio of the energy in the residual modelling error to that of the
experimental data. This measure is referred to as the model fitting accuracy (MFA)
and is calculated in the manner described by Eqn.(2.34) where the k subscript has been

dropped for notational convenience.

Iz — A(@)e|l®
|12

The space-time signal model Z = A(@)c is considered a satisfactory representation of the

MFA =1 — (2.34)

received data z when the MFA is sufficiently close to its upper limit of 100 percent. The
meaning of the term “sufficiently close” should be defined with respect to the signal-to-
noise ratio since the MFA will be less than 100 percent even if the signal model exactly
replicates the signal component of the received data due to the presence of additive noise.
From Eqn.(2.34) it is relatively simple to show that the expected value of the MFA for
perfect signal modelling and uncorrelated additive noise is given by SNR/(SNR+1) where
SNR is the signal-to-noise ratio. For the high SNR data used in this analysis, the MFA
will most likely be limited by signal modeling errors rather than additive noise. The
purpose of the following section is to experimentally quantify the MFA in the range cells

corresponding to the peaks of the power-delay profile in Figure 2.3.
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2.6 Experimental results

The purpose of this section is to decompose mode fine structure into relatively few spec-
ularly reflected rays and to determine the accuracy with which the superposition of these
rays can represent the space-time signal-field samples recorded from ionospherically prop-
agated modes by a very wide aperture antenna array over a typical OTH radar coherent
integration time (CIT).

This section begins with a description of the space-time MUSIC analysis procedure
and presents experimental results which demonstrate the ability of this algorithm to
resolve the fine structure of individual propagation modes. The accuracy with which the
superposition of rays estimated by the space-time MUSIC algorithm can represent the
complex-valued mode wavefield samples is then quantified as a function of the number of

assumed rays and the particular CIT of data analysed.

2.6.1 MUSIC analysis procedure

The parameter estimation technique described in section 2.5 requires the model order, or
the number of rays, to be specified along with the spatial and temporal dimensions of
the data vector used for covariance matrix estimation. A method based on information
theory was developed by (Wax and Kailath 1985) and uses the eigenvalues of the sample
covariance matrix to estimate the number of rays. Although such a method is applicable
in this analysis it should be kept in mind that the objective is to determine how well
a small number of rays can represent the data rather than to use the potentially high
number rays indicated by these methods to model the data very accurately.

A model involving a very large number of rays can be constructed to portray mode
fine structure very accurately but such a complex model 1s perhaps of limited utility for
two reasons. One reason is that the physical significance of the various factors which
contribute to the observed data characteristics is more readily understood when the data
can be satisfactorily represented with a small number of rays. Secondly, and perhaps
more importantly, a model with lower order is mathematically more tractable for the
design and theoretical analysis of signal processing algorithms. At the other extreme, a
one-ray model is mathematically very simple but results obtained with such models must
be interpreted with caution as they may not be representative of the HF environment.
Ideally, models of intermediate complexity are of most practical benefit because they are
challenging enough to allow the performance of different algorithms to be meaningfully
ranked but not so challenging as to defeat all algorithms.

The question then arises as to what constitutes the specific meaning of the term
“relatively few rays” or “a small number of rays” which has been used up until now.
Two and three ray wavefields were synthesised by (Gething 1991) in order to compare
the performance of different WFA methods. The same model orders were adopted by
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(Rice 1982) to analytically derive probability density functions for a defined measure of
wavefront planarity. In this section the ability of the wave interference model to represent
real wavefields using up to four rays is analysed. The major justification for going to
four rays is that it coincides with the number of rays that are theoretically expected after
reflection from a single smooth ionospheric layer.

The space-time MUSIC algorithm with spatial averaging was described in section 2.5.2
using arbitrary parameters for the number of receivers (V,), the number of temporal taps
(N:) and the spacing between adjacent taps (At). Along with the model order M, these
parameters need to be specified in order to form either one-dimensional or two-dimensional
(space-time) MUSIC spectra from a particular coherent integration time of data.

Although larger values of N,, N; and At improve resolution they also increase the
dimensionality of the covariance matrix which must be estimated from a finite set of
space-time samples. A covariance matrix of larger dimension is not estimated as well
and contains a higher level of statistical noise which increases the variance of the MUSIC
spectrum estimates. Using data from multiple dwells to stabilise these estimates is not a
preferred option in practice because there is a greater chance of the ray parameters chang-
ing over a longer observation interval. Other drawbacks associated with the use of very
large covariance matrices include the much higher computational complexity, which is pro-
portional to the cube of the data vector dimension, and the greater potential to encounter
problems with numerical stability of the routines used to perform eigen-decomposition.

There are no definite guidelines for the selection of data vector dimensions, especially
when the signal environment is not known apriori. In this analysis, the space-time MUSIC
spectra were estimated using N, = 16 receivers, N; = 16 temporal taps and At =12 PRI
(i.e., a 0.2 second tap spacing). For a dwell of data, these parameters were considered
to represent a tradeoff between the resolution and variance of the space-time MUSIC
estimator. The spatial-only MUSIC spectrum is obtained by setting N; = 1 and keeping
N, = 16 while the temporal-only version is computed by setting N, = 1 and keeping
Ny =16, At = 12.

2.6.2 Resolving mode fine structure

To demonstrate the experimental application of one and two dimensional MUSIC the
problem of resolving the fine structure of the 1E, mode received during a particular dwell
is considered, the real component of the space-time wavefield analysed in this example
was previously illustrated in Figure 2.4.

Curves 2 and 3 in Figure 2.21 illustrate the spatial-only MUSIC spectra evaluated
with N, = 16 assuming a model order of four and five rays respectively. It is observed
that the four peaks resolved for M = 4 become broader when M = 5 is assumed but
a fifth peak is not generated, this suggests the presence of four dominant rays in the

wavefield which can be resolved in angle-of-arrival by MUSIC. Curve 1 in Figure 2.21
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shows the unsmoothed MUSIC spectrum corresponding to the same experimental data,
this spectrum is derived by selecting the dimension of the spatial covariance matrix as
the total number of receivers in the array. In this case N, = N = 30 so the spatial
covariance matrix is estimated by averaging the array snapshots received over time (i.e.,
spatial averaging is not performed). Curve 4 in Figure 2.21 relates to the right vertical
axis and represents the MVDR spectrum evaluated according to Eqn.(2.21), this spectrum
was evaluated by using the same spatially smoothed sample spatial covariance matrix as
that used to compute the two MUSIC spectra represented by Curves 2 and 3.

A comparison of Curve 2 and Curve 4 in Figure 2.21 illustrates that the spatial-only
MUSIC algorithm can resolve four closely spaced rays while the MVDR only resolves three.
Note that the presence of the fourth ray is indicated (but not resolved) by a slight bulge
in the MVDR spectrum which would not be expected if this fourth ray were not present.
A comparison of Curve 1 and Curve 2 in Figure 2.21 illustrates the benefit of spatial
averaging, the dramatic improvement in the MUSIC spectrum after spatial smoothing
allows four rays to be resolved. The poor performance of the standard (unsmoothed)
MUSIC algorithm in this example suggests the presence of highly correlated arrivals over
the observation interval. This observation points to the presence of rays with very similar
Doppler shifts.

For the same wavefield, curves 1, 2 and 3 in Figure 2.22 illustrate the temporal-
only MUSIC spectra which results when a model order of one, two and three rays is
assumed respectively. All three MUSIC spectra relate to the left vertical axis and were
evaluated using the sample temporal covariance matrix parameters Ny = 16 and At = 12.
Curve 4 relates to the right vertical axis and represents the MVDR spectrum evaluated
from the same sample temporal covariance matrix. Despite four rays being resolved in
spatial domain only two rays are resolved in the Doppler domain by MUSIC. The inability
of temporal-only MUSIC to resolve more than two rays is consistent with the previous
suggestion that some of the rays have very similar Doppler shifts.

The MVDR spectrum is sometimes called a high-resolution estimator but it cannot
resolve the two rays resolved by MUSIC in Figure 2.22, this is another illustration of
the relatively superior frequency estimation performance of the MUSIC super-resolution
algorithm. Nevertheless, the MVDR spectrum is useful because it indicates that most of
the received power lies in the range of Doppler frequencies between 0.4-0.6 Hz. If four
dominant rays were present then the Doppler frequencies of these rays are expected to
be within this range, this statement will be qualified later when the space-time MUSIC
algorithm is applied.

The discrepancy between the number of rays resolved in angle-of-arrival and Doppler
frequency creates a problem when it comes to interpreting the wavefield by means of
assigning a spatial and temporal frequency for each ray. This real data example serves to
illustrate the principal motivation for using space-time MUSIC rather than estimating the

parameters by calculating two separate one-dimensional MUSIC spectra. The space-time
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Figure 2.21: Spatial MUSIC spectra for the 1E, mode (k = 16). The angles-of-arrival
corresponding to the four peaks in Curve 2 are 21.2, 21.7, 22.3 and 22.8 degrees.
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Figure 2.22: Temporal MUSIC spectra for the 1E, mode (k = 16). The Doppler frequen-
cies corresppnding to the two peaks in Curve 2 are 0.40 and 0.46 Hertz.
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MUSIC spectrum derived from the same 1F; mode wavefield using N, = 16, N, = 16,
At = 12 and assuming four rays is shown as a three dimensional surface plot in Figure 2.23.

The parameters of the four rays resolved by the space-time MUSIC spectrum in Fig-
ure 2.23 are listed in Table 2.2, this includes the amplitudes and initial phase of each
ray which were estimated by the least squares procedure described in section 2.5. Note
that the location of each peak resolved by the temporal-only and spatial-only MUSIC
spectra is consistent with one of the four peaks resolved in the space-time MUSIC spec-
trum. The space-time MUSIC spectrum also confirms that three of the four rays have
almost identical Doppler shifts, these rays were not resolved by temporal-only MUSIC
but were resolved by the smoothed spatial-only and space-time MUSIC algorithm due to
their different angles-of-arrival.

Figure 2.31 shows the real component of a wavefield generated with the ray parameters
estimated for the 1E, mode in Table 2.2. On visual inspection, this wavefield is very
similar to the experimentally recorded one shown in Figure 2.4. A quantitative comparison
between the real and simulated complex wavefields is made in terms of the fitting accuracy
measure defined in section 2.5. In this example, the estimated four ray interference model
yields a fitting accuracy of 96 percent.

From a physical perspective, the two rays with cone angles-of-arrival less than the
great circle azimuth of the test transmitter (22 degrees) may correspond to the ordinary
and extraordinary magneto-ionic components reflected by a particular cloud of enhanced
sporadic-E ionisation. The pair of rays with cone angles-of-arrival larger than 22 degrees
are assumed to be reflected from a different cloud of enhanced sporadic-E ionisation.
Although it cannot be proven by this analysis, these two rays may correspond to the
ordinary and extraordinary magneto-ionic components reflected at points in the 1E, layer
located at great circle azimuths larger than 22 degrees with respect to the array boresight
since the coning effect only serves to shift the apparent azimuth of a received signal closer
to boresight.

Examples of the space-time MUSIC spectra resulting for the 153, 1F3(0) and 1F;(z)
modes are shown in Figures 2.24 to 2.26. For each mode, the model order was chosen to
represeht the number of rays which were frequently yrequired to yield a fitting accuracy
greater than 90 percent over the entire data set consisting of 47 dwells (each dwell being
4.2 seconds in duration). The ray parameters estimated from these space-time MUSIC
spectra, to be discussed below, are also listed in Table 2.2. Figures 2.27 to 2.30 summarise
the results of this experimental analysis by showing the fitting accuracy achieved for each
mode as a function of the number of rays and the particular dwell of data analysed.

Some dwell numbers in Figures 2.27 to 2.30 do not contain a measurement for each
model order because the number of peaks resolved by the space-time MUSIC spectrum
does not always coincide with the assumed number of rays. This situation may arise
when the model order is overestimated or if the ray parameters change slightly during

the coherent integration time. The fitting accuracy is not displayed when the number of
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Figure 2.23: Space-time MUSIC spectrum for the 1E, mode assuming four rays
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Figure 2.24: Space-time MUSIC spectrum for the 1F; mode assuming three rays
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Figure 2.25: Space-time MUSIC spectrum for the 1F;(0) mode assuming one ray

25

Figure 2.26: Space-time MUSIC spectrum for the 1F;(z) mode assuming two rays
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Mode Angle-of-arrival, deg | Doppler, Hz | Magnitude, linear | Phase, deg
1E; ray 1 21.2 0.43 1.10 77.3
1E, ray 2 21.7 0.44 2.57 —174.8
1E, ray 3 22.4 0.40 2.16 —8.78
1E, ray 4 22.8 0.43 0.65 —-127.4
1F; ray 1 20.1 0.50 0.54 141.4
1F; ray 2 20.7 0.48 2.76 54.5
1F; ray 3 21.3 0.37 0.64 104.7
1F5(o0) ray 1 20.4 0.48 3.93 -50.0
1F(z) ray 1 19.7 0.51 0.67 61.4
1F,(z) ray 2 20.1 0.52 0.88 160.8

Table 2.2: Ray parameters estimated from the space-time MUSIC spectra of the 1FE;,
1F,, 1F3(0) and 1F,(z) modes.

peaks does not agree with the assumed model order but it is important to note that the
failure of MUSIC to resolve the expected number of peaks does not imply that a wave
interference model having the assumed number of rays cannot adequately represent the
data. For example, the assumption of two and three rays for the 1F, mode in dwell 22
gives rise to one and two peaks respectively so the symbols corresponding to these model
orders do not appear at dwell number 22 in Figure 2.28. However, the fitting accuracy

achieved by the two resolved rays when three rays were assumed was 93 percent.

At least two rays are expected for the 1F, mode since this mode is theoretically com-
posed of both the ordinary and extraordinary rays in the low angle path.. Inspection of
Figure 2.28 reveals that three rays are resolved more often than two rays for this mode,
and at times, a three ray model yields a significantly better fitting accuracy compared
with the two ray model. For example, the three ray model depicted by the space-time
MUSIC spectrum of Figure 2.24 led to a fitting accuracy of 95 percent as compared to
87 percent for a two ray model. When a third ray is resolved it is thought to account
for ionospheric irregularities in F-region possibly caused by the passage of travelling iono-

spheric disturbances.

In the absence of ionospheric irregularities a one-ray model is expected to provide a
very accurate description of the wavefield produced by a single magneto-ionic component.
As shown in Figure 2.29, this was found to be the case for the 1F3(0) mode in most of the
data dwells analysed. A high fitting accuracy using a single ray also indicates that the
ULA has an array manifold which is accurately matched at the carrier frequency to the
one theoretically expected in the absence of instrumental and site errors. In the example

of Figure 2.25, a single ray provided a fitting accuracy of 95 percent for the 1F;(0) mode.

Figure 2.30 shows that a single ray is not able to represent the 1F3(z) mode wavefields
as well as those of the 1F;(0) mode. The extraordinary magneto-ionic component is
reflected from a different region in the Fy-layer which on this occasion appears to be

comparatively more disturbed than the region which reflects the ordinary magneto-ionic
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Figure 2.28: Fitting accuracy for the 1F; mode
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Figure 2.30: Fitting accuracy for the 1F3(z) mode
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Figure 2.31: Real component of the space-time wavefield simulated for the 1E, mode
using the estimated four ray model
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Figure 2.32: Dwell to dwell variation of the estimated angles-of-arrival and Doppler shifts
of a two ray model for the 1E, mode
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component. For the 1F3(x) mode it was found that two or more rays were often needed
to yield fitting a accuracy above 90 percent. Two rays were resolved more often than
three or four rays for this particular mode and the fitting accuracy achieved by two rays
was usually considerably higher than that for one ray. For example, the two ray model
corresponding to the spectrum in Figure 2.26 resulted in a fitting accuracy of 94 percent
whereas a one ray model only fitted the data to an accuracy of 82 percent.

To illustrate the time-variation of ray parameters from one dwell to another consider
the two ray representation of the 1E, mode. Figure 2.32 shows the variation in the
estimated cone angles-of-arrival and Doppler shifts of the two rays for dwells in which
the fitting accuracy was greater than 85 percent. The time-variation of the ray angles-of-
arrival is in the order of 0.5 degrees over the 47 dwells analysed while the Doppler shifts
vary by approximately 0.1 Hz. The observed variation in ray parameters from dwell to
dwell is expected due to the movement of the effective reflection points in the ionosphere

over time intervals in the order of a few minutes.

2.7 Chapter summary

The fine structure of signal modes reflected from different layers in the ionosphere is
considered by some investigators to result from a superposition of relatively few specularly
reflected rays having similar Doppler shifts (to account for the observed temporal fading)
and closely spaced angles-of-arrival (to account for the observed spatial fading). However,
the resolution of a complex valued space-time mode wavefield into a number of component
rays with a very wide aperture antenna array has not previously been carried out and
reported in the open literature. As a result, quantitative information regarding the ability
of such a model to represent the mode wavefields received by a very wide aperture array
over typical OTH radar CPI was not previously available.

After some preliminary investigations which were used to illustrate the characteristics
of the received wavefront distortions and their time-evolution, the MUSIC space-time su-
perresolution algorithm was used in this chapter to resolve the fine structure of ionospheric
modes recorded by the Jindalee receiving array on a controlled mid-latitude propagation
path. Quantitative measures were developed to assess the accuracy with which the model
was able to represent the experimentally recorded wavefields, the physical significance of
the various resolved rays was also tentatively interpreted on the basis of oblique incidence
ionograms recorded for the path.

The experimental results indicate that over time intervals in the order of a few seconds
the ionospheric modes recorded by the Jindalee array could be represented to fitting
accuracies above 90 percent using four rays or less over a large percentage of the data set
analysed. However, time-variation of the ray parameters were observed from one dwell to
another as a result of motions in the ionosphere. These variations imply that as the CPI

increases the number of rays required to maintain a certain modelling accuracy will also
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increase. As a consequence, the deterministic ray interference model is not suitable for
representing the characteristics of a complete data set received over an interval of a few

minutes.



CHAPTER 3

Stationary statistical model

In applications such as OTH radar it is useful to have an accurate model for the space-
time complex (amplitude and phase) fading of HF signals reflected by a single ionospheric
layer over time intervals which exceed a few seconds. For reasons mentioned in the pre-
vious chapter, a deterministic wave interference characterisation of such fading processes
becomes inconvenient and difficult to interpret intuitively when the time interval is length-
ened to a few minutes. If the complex fading process can be treated as a stationary random
process over such time periods it is then possible to conveniently model the space-time
characteristics of the received data in a statistical sense. This chapter is devoted to the
development and experimental validation of space-time statistical models for HF signals
which are received over a period of a few minutes by a very wide aperture antenna array
after a single-hop oblique ionospheric reflection. The principle motivation is to develop
models which accurately portray the second order statistics of the received signals with
relatively few parameters that can be easily interpreted intuitively and extrapolated if

required to estimate system performance.

Section 3.1 contains background information and a literature review on the use of
statistical models for characterising HF signals returned to the ground by the ionosphere.
Both empirical and physical models of HF signals reflected from a random ionosphere are
considered and special attention is paid to statistical models which have been validated
by experimental data analysis. In section 3.2, space-time statistical models of the fading
process are derived from physical principles to describe the reflection of HF signals from
a “random” ionosphere. This physical interpretation of the fading process may also be
used to explain the connection between the deterministic wave interference model and the
stationary statistical models. It is emphasised that the verification of the physics itself
is beyond the scope of this research which is primarily concerned with comparing the
statistical properties of the model against those of the received signals. The hypothesis
tests used to accept or reject the proposed statistical models from realisations of the data
are described in section 3.3 while the model validation criteria associated with these tests

are applied to experimental data in section 3.4.
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3.1 Literature Review

The background information in section 3.1.1 explains the relative advantages and short-
comings of using statistical models to represent the characteristics of ionospherically prop-
agated HF signals rather than deterministic wave interference models. Section 3.1.2 con-
tains a review of the statistical HF signal models reported in the literature, the physical
and empirical models considered are those which can be used to describe the statistical
properties of the reflected wavefields measured by either a single antenna over time or
by a collection of spatially separated antenna sensors over space and time. Section 3.1.3
provides motivation for conducting further research regarding the space-time statistical
properties of HF signals reflected by a single ionospheric layer and explains its significance

in terms of the construction of realistic multi-sensor HF signal processing models.

3.1.1 Background

A HF signal returned to the ground by a single ionospheric layer has an amplitude and
phase which is found to fluctuate over space and time with respect to the ideal case of
specular reflection (i.e., a plane wave with a constant direction-of-arrival and Doppler
shift). This observation leads to the conclusion that an individual layer in the ionosphere
must have properties which are time varying and cannot be considered uniform on the
horizontal plane. In other words, what is usually thought of as a single plane wave must
in reality be a collection of waves scattered by the presence and movement of irregularities
in the ionosphere.

In the previous chapter, a superposition of relatively few plane waves with different
angles-of-arrival and Doppler shifts was used to model the complex fading of HF signals
reflected by individual ionospheric layers over time intervals in the order of a few seconds.
Although the wave interference model was often able to accurately represent the exper-
imentally observed space-time fading processes with less than four components, it was
found that the parameters of this model changed or “aged” significantly as the observa-
tion interval was increased beyond a few seconds. Consequently, over time intervals of a
few minutes an accurate representation of these fading processes can only be obtained by
regularly updating the model parameters or by increasing the model order. Both of these
alternatives lead to a specification of the fading process which becomes quite complex and
difficult to understand intuitively when the time intervals of interest extend well beyond
a few seconds. For this reason, the wave interference model may be inappropriate in
applications which require a complete data set received over several minutes to be char-
acterised in a concise manner (i.e., with relatively few parameters) that can be readily
interpreted intuitively.

From both physical interpretation and experimental data analysis it is evident that the

fading produced on the ground by the ionospheric reflection process is better treated as
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a random process rather than a deterministic process when the length of the observation
interval exceeds a few seconds. Unlike the wave interference model, the fading produced
by a random process is not completely predictable so it cannot be described in exact
terms. Such processes are usually specified in terms of their statistical properties and one
of the most important features of a random fading process from this point of view is its
auto-correlation function in the dimensions of space, time or space-time.

If the statistical properties, which are governed by the joint probability density func-
tion of the fading process, are time-invariant within the observation interval then the
processes is said to be temporally stationary, and if these properties are the same when
measured at different positions in space within a particular region then the process is said
to be spatially homogeneous. A random process is referred to as spatially stationary if the
joint density of the observations made at two locations separated by a fixed distance and
direction is independent of absolute location within a particular region of space. When
this density function depends only on the distance between two points and not the relative
orientation of one from the other the process is referred to as isotropic.

The HF signal fading processes produced by reflection from a single ionospheric layer
are known to be nonstationary in frequency, time and space but if attention is restricted
to narrowband signals of bandwidths less then 20 kHz, time intervals in the order of a
few minutes and apertures not larger than a few kilometres, then it is more likely that
the wavefield samples collected by an antenna array can be adequately described by a
stationary complex-valued space-time random process. The statistical characterisation
of signals with such bandwidths, over these time intervals and spatial extents is of great
relevance and potential importance to the operation of OTH radar systems. Such models
are useful not only for the purpose of frequency management (i.e., the task of optimising
the selection of operating frequency and bandwidth from a number of available frequency
channels) but also for guiding the design and optimisation of adaptive array signal pro-
cessing algorithms which can enhance target detection in the presence of both coherent
and incoherent interference.

Statistical models of random signals can be broadly categorised as either empirical
models, which are formulated solely on the basis of experimental data analysis, or physical
models which are derived from consideration of the physical phenomena assumed to give
rise to the observed data characteristics. Experimentally validated empirical models have
already been developed to describe the temporal-only characteristics of HF signals reflected
by individual ionospheric layers. These stationary statistical models describe the fading
in amplitude and phase as a complex Gaussian process which is fully characterised by
its second order statistics (i.e., the temporal auto-correlation function or power spectral
density). In these models, which will be described in the next section, the fading process
is described by an even power spectral density function which is parameterised by two
numbers; the mean Doppler shift and the Doppler spread.

The advantage of such a representation is that it concisely provides a user with a
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direct indication of the expected system performance as in most cases target detection
and spectrum estimation are intimately linked. As far as the HF reflection channel is
concerned, an analogous space-time statistical model of HF signals reflected by individual
ionospheric layers is yet to be experimentally validated. Such a model is of paramount
importance in guiding the design and optimisation of spatial-only and space-time adaptive
processing algorithms. For this reason, this chapter is devoted to the development and
experimental validation of space-time statistical models for HF signals propagated by a

single-hop mid-latitude oblique ionospheric path.

3.1.2 Statistical models of HF signals

A vast quantity of measurements have been published on the propagation of HF signals
by ionospheric reflection. It is therefore necessary to establish a crude sorting scheme
which can be used to classify such measurements. For example, have the measurements
been made at one antenna or at multiple spaced antennas and has the amplitude and/or
phase of the wavefield been recorded. Other important factors which influence the data
characteristics is the rate and spatial separation at which measurements are taken and
whether they arise from a single magneto-ionic component, a single mode or two or more
superimposed modes. In general, the characteristics of the measurements will also depend
on whether observations are made on a one-hop or multi-hop ionospheric path, whether
the E, Es or F layer is involved in signal reflection and if the geographic location of the
path is in the mid-latitude, auroral or equatorial region.

The CCIR report (CCIR 1970) contains a comprehensive list of references to experi-
mental and theoretical results on the subject of amplitude fading at a single antenna. In
many studies, the amplitude of the received signal at different times is treated as a random
variable and assigned a probability density function. Experimental evidence suggests that
amplitude fading records obtained over intervals in the order of a few minutes have sam-
ples whose distribution can be approximated fairly closely by the Rayleigh distribution or
the Nakagami-Rice distribution, see (Barnes 1992) for example. The Rayleigh distribu-
tion is actually a special case of the Nakagami-Rice distribution when there is no steady
or deterministic amplitude component in the received signal. Both of these parametric
distributions have generally been accepted as being representative of amplitude fading
under a wide variety of conditions.

A model of the probability density function for the received signal amplitude is neces-
sary but not sufficient to construct a satisfactory representation of the received signal. As
far as the amplitude is concerned, some specification of the correlation between different
samples is often required to model the fading rate of the signal. In the CCIR report
(CCIR 1970) the auto-correlation function of the amplitude fluctuations is assumed to
have a Gaussian form and the fading period is defined as the standard deviation of the

Gaussian auto-correlation function which best fits the observed measurements. Under
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multimode conditions, values in the range of 0.5 to 2.5 seconds are typical (CCIR 1970),
whereas for a single magneto-ionic component, fading periods in the order of minutes can
be found (Balser and Smith 1962).

Measurements of the spatial correlation between amplitude fluctuations received si-
multaneously at spaced antennas were made by (Balser and Smith 1962) over a 1600 km
mid-latitude path. A pulsed waveform was used to separate the different propagation
modes and the amplitude of the wavefield were sampled by a uniform linear array com-
posed of 6 whip antennas spaced 610 m apart. For single modes it was found that the
diversity distance, defined as the spatial separation at which the correlation coefficient
falls to 0.5, was in the order of 40 wavelengths for one-hop paths and 10 wavelengths
for multi-hop paths. As pointed out by (Sweeney 1970), these values correspond to an
angular spread of about 0.2 degrees and 1 degree respectively.

These measurements, and earlier ones referenced in (Booker, Ratcliffe and Shinn 1950),
have led researchers to picture a single ionospheric mode as a single ray specularly reflected
by a smooth ionosphere surrounded by a cone of rays produced by the roughness of the
ionosphere. The former is often referred to as the specular or coherent component by
analogy with specular reflection from a mirror while the latter is known as the diffracted
or incoherent component which is scattered by irregular reflection from a rough surface.
The coherence ratio of a particular mode is defined as the ratio of the power in the
specular component to that in the diffracted components and is a measure of the size of
the amplitude and phase “crinkles” in the downcoming wavefronts.

Several investigators have estimated the coherence ratio of ionospheric modes using
either amplitude measurements at one antenna or phase difference measurements between
two spaced antennas. When a specular component is present the amplitude is assumed to
be distributed according to the Nakagami-Rice density function which is parameterised
by the power of the steady component relative to that of the random components (i.e.,
the coherence ratio). A more sensitive technique for estimating the coherence ratio is
based on the theory of phase measurements at spaced receivers (Whale and Gardiner
1966). Starting from the Nakagami-Rice distribution, the authors derived curves for the
standard deviation of the phase difference measured at two spaced receivers in terms of
the coherence ratio and the generalised spatial auto-correlation function of the diffracted
components.

A summary of the experimental measurements of coherence ratio can be found in
(Gething 1991) with references to the original papers. For example, (Bramley 1951)
quoted the square root of the coherence ratio b = 2.5 as being fairly typical while (Hughes
and Morris 1963) calculated values ranging from b = 0.4 to b = 1.9, although in the latter
case CW signals were used and the data may have contained more than one propagation
mode. A more recent analysis by (Warrington et al. 1990) concluded that the coherence
ratio B = b? was between 0 and 7 under “approximately single moded propagation” but

values greater than 40 were estimated when the same data was interpreted as specular
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component with a variable direction-of-arrival plus a cone of diffracted components. It
is noted that the estimates of coherence ratio vary quite markedly from one analysis to
another. This observation prompted (Gething 1991) to comment that “even allowing for
the expected variability of the ionosphere from day to day, results obtained by various
investigators do not seem entirely consistent”.

In the investigation by (Boys 1968) it was inferred that there is, strictly speaking, no
specular component but only a group of rays coming from very similar directions with no
common phase history. In other words, (Boys 1968) regarded the true coherence ratio as
zero which implies that the reflected signal is considered as a completely scattered wave
whose spatial correlation function depends on the angular power spectrum of the diffracted
components scattered by the roughness of the ionosphere. This view was supported
by experimental measurements of a Radio Australia broadcast at 17.870 MHz which
was propagated by a one-hop reflection from the F2-layer over a 2700 km mid-latitude
path. Phase measurements were made at 10 vertical whip antennas spaced approximately
50 metres apart with a central antenna providing the phase reference. Over a five minute
interval (Boys 1968) noted that the plane wave of best fit to the data did not wander in
direction-of-arrival. The author concluded that over such time intervals the characteristics
of the received wavefield are best expressed in terms of the angular power spectrum of the
wavefront distortions. This power spectrum was assumed to have a Gaussian form and
the standard deviation was found to be between 0.1 to 0.3 degrees.

A purely statistical representation of the reflected wave is consistent with the theory
developed by (Booker et al. 1950). The authors thought of the ionosphere as an irregular
screen or diffraction grating which randomly varies the re-radiated electric field distribu-
tion just beyond the horizontal surface of the screen. It was mathematically deduced that
the generalised spatial auto-correlation function of the electric field received on a parallel
plane a finite distance away from the screen (say on the ground) is the same as that of the
electric field distribution which gives rise to it (i.e., that just beyond the horizontal surface
of the screen). In other words, the angular power spectrum of the wavefield received on
the ground is given by the Fourier transform of the spatial auto-correlation function of
the electric field irregularities just beyond the rough diffracting screen.

A phase changing screen is the usual condition as far as the ionosphere is concerned
(Whale and Gardiner 1966). As explained by (Boys 1968), a variation in the electron
density causes a change in the real part of the refractive index only and this causes
a change in phase. Since the number of irregularities is large, the emergent wave is
considered to have a randomly varying phase with a constant amplitude at all points
which is, of course, the description of an idealised phase screen. From a physical view
point, a phase changing screen seems realistic as most of the irregularities occur in the
E and F regions where the collision frequency and hence the attenuation are small (Boys
1968). Alternatively, the presence of irregularities is viewed by (Bowhill 1961) as forming

a “buckled” specular reflector which acts as a phase screen for normally (and obliquely)



3.1. LITERATURE REVIEW 75

incident waves. At oblique incidence the phase change it causes on the wave is reduced by
a factor of cos 6; where 0; is the angle relative to normal incidence. This is related to the
phenomenon that an optical surface becomes more nearly a specular reflector at grazing
incidence (; — 90 degrees), the author notes that the same effect is observed for radio
waves.

Most authors have concentrated on ionospheric models which are phase changing
screens, but it should be noted that the theory of diffraction from an irregular ionosphere
in (Booker et al. 1950) is based on a single ionospheric pass or reflection. Signals from very
distant sources usually involve multiple ionospheric reflections and intermediate scattering
from terrain or sea-surface. Such signals do not satisfy the requirements of this theory and
are therefore not expected to obey models derived from it. It is commonly assumed that
the two-dimensional spatial auto-correlation function of the phase screen irregularities has
a two-dimensional Gaussian form, as in (Bramley 1955) and (Bowhill 1961) for example.
In the special case of an isotropic screen, this function is only dependent on distance and
not direction along the screen. It is noted that in these theoretical studies little if any
consideration is given to the type of ionosphere which would produce such irregularities
and the proposed spatial models were not validated against experimental measurements.

Using the theory developed by (Booker et al. 1950) it is possible to define a charac-
teristic size or length of irregularities as the distance between two points on the ground
for which the generalised auto-correlation of the wavefield falls to a value of 0.5 (Briggs
and Phillips 1950). In the study by (Briggs and Phillips 1950), three receivers placed
at the corners of an isoceles right angled triangle with side 130 m were used to observe
the amplitude fading of “single echoes” of a pulse transmitter reflected by the ionosphere
at vertical incidence. By assuming that fading was predominantly due to a diffraction
pattern of constant form which drifts over the ground at a constant velocity, the temporal
auto-correlation function at the receivers was translated into a spatial auto-correlation
function from which irregularity scale sizes in the order of 100-200 m were estimated for
the F-region.

The first rigorous experimental confirmation of a stationary statistical model for the
temporal amplitude and phase characteristics of narrowband signals propagated over a
period of a few minutes across a mid-latitude ionospheric path was published by (Watter-
son, Juroshek and Bensema 1970). The authors used formal hypothesis tests to show that
the baseband signal received in a single channel may be described by a zero mean complex
Gaussian process that produces Rayleigh amplitude fading. This is in accordance with
a completely scattered wave since the Nakagami-Rice distribution tends to the Rayleigh
density when there is no steady or specular component. The temporal modulation pro-
cesses impoged by the ionosphere on different ionospheric modes (i.e., reflections from
different ionospheric layers or regions) were found to be statistically independent. The
observed amplitude and phase fluctuations induced by the HF channels were characterised

by their Doppler spectrum which was shown to be, in general, the sum of two Gaussian
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functions of frequency, one for each magneto-ionic component.

3.1.3 Significance of research relative to previous work

It is evident from the literature review that much attention has been focussed in either
the temporal domain or the spatial domain and that the only experimentally validated
statistical model of ionospherically propagated HF signals is for single receiver systems
(Watterson et al. 1970). A space-time statistical model of the amplitude and phase of
narrowband signals reflected by different layers in the ionosphere has, as yet, not been
experimentally confirmed. Such a model would be of particular value in the design and
analysis of spatial-only or space-time adaptive processing algorithms which are becoming
increasingly popular in practical HF antenna array systems. Hence, the purpose of this
chapter is to develop and experimentally validate a space-time statistical model of the
ionospheric reflection channel. Such a model is required to express the space-time statis-
tical characteristics of the HF channel in a concise manner which can be interpreted from
both signal processing and physical perspectives.

The question then arises as to the connection between the wave interference model
used to characterise short data sets (in the order of a few seconds) and the stationary
statistical models used to characterise longer data sets lasting a few minutes. To provide
a possible answer it is instructive to compare the physical interpretation of both models.
A common interpretation for the different specular components in the wave interference
model is that they originate from spatially separated reflection points in a particular
jonospheric layer that are effectively smooth over at least one Fresnel zone. Whereas the
common physical interpretation of the statistical model is that signal reflection occurs
over a single localised region of an ionospheric layer, rather than at a number spatially
separated points, and that over this region the layer exhibits a degree of roughness rather
than being effectively smooth over at least one Fresnel zone.

At a particular time instant the phase screen which is equivalent to the irregular
structure of the ionosphere in the latter interpretation may be resolved into its spatial
Fourier components. Each (two-dimensional) spatial frequency component in the spectral
decomposition of the surface gives rise to its own specular component which is reflected in
a direction determined by the spatial frequency of the field disturbance at the screen. If the
so-called “buckles” of the irregular ionospheric surface do not vary rapidly with distance
in any direction then only a few spatial frequency components are required to accurately
approximate the character of the buckles and hence the equivalent phase screen of the
surface. The dominant spatial frequency components which approximate this structure
at a particular time will each radiate a specular component; these superimpose with one
another to produce a wave interference fading pattern on the ground.

As the surface changes with time its character will be represented by different spatial

frequency components. However, the structure of such a surface evolves slowly with time
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over a few seconds as signals received from isolated modes over such intervals are almost
coherent for quiet mid-latitude conditions. It is therefore plausible that over a period of
a few seconds the spatial frequency components which dominate the form of the surface
at a particular time instant remain approximately constant and the time-evolution of the
surface is described by a combination of these components with different relative phases.
The relative phases are determined by the differential Doppler shifts associated with
these components which may also be considered more or less regular over these relatively
short time intervals. This explanation is a possible interpretation of the space-time wave
interference model in terms of reflection from a slowly evolving spatially irregular surface.

Over longer periods of time, in the order of a few minutes, the surface will be described
by a large number of different spatial frequency components which radiate energy over
a distribution of directions. If such a signal can be treated as a statistically stationary
signal over the observation interval then the probability density function of the radiated
components in direction-of-arrival and Doppler shift forms the space-time power density
of the signal. Apart from this qualitative explanation of the connection between the wave
interference and statistical wavefield models, it is noted that the available data cannot
be used to make definite conclusions about the different physical interpretations of the
wave interference model. Consequently, the verification of the physical origin of the wave
interference model and its hypothesised connection to the statistical models is beyond the

scope of this research.

3.2 Ionospheric reflection of radio waves

The aim of this section is to propose a physical model for the space-time statistical prop-
erties of HF signals which are propagated over long distance oblique paths by reflection
from the ionosphere. Such a model allows the space-time statistical properties of the
reflected wavefield received by an array of antennas on the ground to be related to the
physical characteristics of the ionospheric reflection process. The physical model is based
on the theory which governs the reflection and transmission of transverse electromagnetic
waves from an interface between two media; one free space and the other ionospheric
plasma.

HF signals reflected by the ionosphere are known to fluctuate in amplitude and phase
with respect to time and space. The fading observed on the ground is produced by the
time-evolution of irregular ionospheric structures which give rise to signal reflection. Sec-
tion 3.2.1 proposes a physical model of the ionospheric reflection process which can be
used to determine the spatial structure of the wavefield received on the ground after re-
flection from an irregular ionosphere of constant form. The time evolution of the irregular
ionospheric structure which produces fading on the ground is considered in Section 3.2.2
to derive the generalised space-time auto-correlation function of the received signal-field

in terms of the statistical parameters which describe the ionospheric reflection process.
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3.2.1 Reflection from an irregular ionosphere

In the experimental situation of interest, a “point source” transmitter illuminates a volume
of ionosphere and after a single-hop reflection the signal is returned to the ground where
an array of antennas samples the amplitude and phase of the reflected wavefield. The
aim of this section is to derive a mathematical expression which describes the wavefield
produced on a plane which contains the receiving antenna array by an irregular ionospheric
structure of constant form. In practice this constant structure represents a snapshot of
the ionosphere at a particular instant in time. i

It is worth mentioning that the mathematical expressions describing the received
signal-fields in this section are not derived from a strictly physical perspective. The
physical concepts introduced to derive these expressions may be regarded as analogous
replacements of the true physics occurring in the ionosphere, this more simplistic ap-
proach is frequently used for the purpose of deriving mathematical models of the received
signal-fields. In other words, this section does not attempt to describe the physics which
is actually occurring to produce the received signal-fields but rather to use some well-

known analogous physical concepts to derive models for the received signal-fields and

their space-time second order statistics.

3.2.1.1 Qualitative description of the reflection process

In the absence of large-scale horizontal gradients in the electron concentration profile the
received signal will be reflected from a region of ionosphere near the mid-point of the
path between the transmitter and receiver. Even if the ionosphere in this region were
horizontally uniform the variation in plasma density with altitude may give rise to more
than one solution for the elevation angle of incidence of the transmitted signal which is
totally internally reflected towards the receiver. Stated another way, the condition of
total internal reflection may be satisfied at the path mid-point at a number of more or
less discrete ionospheric heights within the continuum of heights which are illuminated
by the intersection of the transmit and receive antenna elevation radiation patterns.

For a horizontally smooth ionospheric layer it is shown by (Davies 1990) that two
solutions exist over a single-hop oblique path when a model of the plasma density height
profile is assumed and the effect of the earth’s magnetic field is neglected. These two
solutions are known as the high and low angle rays, these rays have different angles of
incidence and are reflected from different virtual heights in the ionosphere. For fixed
transmitter and receiver locations, the difference in the virtual reflection heights depends
on the plasma density profile and the frequency of operation. In very thin layers,' such as
sporadic-E for example, the high and low angle rays travel nearly identical paths as the
two solutions for the elevation angle of incidence converge to a single ray solution, while
in thicker layers, such as the F-layer, this is not always the case so the virtual reflection

heights of the high and low angle rays may be quite different. This section considers
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these solutions separately and for each ray it aims to represent the wavefield reflected by
a horizontally irregular ionosphere of constant form rather than a smooth ionosphere.

In the vicinity of the path mid-point, where signal reflection towards the receiver
effectively occurs, the iso-ionic contours of the ionosphere may not be horizontally uniform
so the plasma particles which reflect a particular ray will be distributed at different heights
over a region of space. If this reflection region were regarded as an iso-ionic plasma surface
it 1s reasonable to imagine that at a particular time instant the height of different points
on such a surface varies in some manner about a mean horizontal plane of finite extent.
This horizontal plane is imagined to be at some mean height above the ground with
its “centre” at the path mid-point, experimental results suggest that the dimensions of
its sides are typically in the order of a few kilometers for relatively stable ionospheric
conditions (Gething 1991). Regular vertical movement of the mean horizontal plane with
respect to time may be interpreted as imposing a mean Doppler shift on the signal while
changes in the spatial structure of the irregular reflection surface about this horizontal
plane causes the signal received on the ground to fluctuate or fade.

For oblique paths spanning a long ground distance (greater than 1000 km), the sepa-
ration between the transmitter and the reflection region is much greater than the spatial
extent of this region so the signal incident upon the reflecting surface may be regarded
as a plane wave. This surface may be uneven in height close to the path mid-point due
to wave-like disturbances and the presence of electron density irregularities in the iono-
sphere. Moreover, the shape of the surface may change in an unpredictable or random
manner with time due to the motion of these wave-like disturbances and irregularities.

When the surface changes in a random way it will cause random fluctuations in the
signal received on the ground. In order to relate the statistical properties of the received
signal to those of the reflecting surface it is first necessary to develop an equation which
expresses the wavefield on the ground for a given realisation of the surface (i.e., for the
spatial structure of the surface “frozen” at an instant in time). In this problem, the
interface at which the incident wave is reflected may be described by a position vector
rs = [z,y,2,(z,y)] where the roughness of the reflecting iso-ionic surface is described
by the plasma displacement function z,(z,y). Specular reflection will occur from a flat
surface zy-plane (i.e., z,(z,y) = 0). The interaction between the incident wave and the
plasma in regions of ionosphere below the reflecting surface z < z,(z,y) is neglected while
the region above the surface z > z,(z,y) does not influence the wave which is assumed
to be totally internally reflected by a thin layer of plasma of constant electron density at
heights z,(z,y) — n < z < z,(z,y) + 1.

Experimental evidence suggests that the plasma displacements z,(x,y) in the surface
are highly correlated on a spatial scale greater than one wavelength for quiet mid-latitude
ionospheric conditions since the wavefronts received from individual modes on such circuits
generally exhibit a high degree of planarity, as demonstrated by the analysis in chapter 2.

Furthermore, significant changes in the structure of this surface only occur over time-scales
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greater than about 0.1 second since over smaller intervals the signal returned at a point
on the ground is observed to be almost coherent. In simple terms, previous data analysis
suggests that the reflecting surface does not have much structure over distances less than
one wavelength and that over time periods commensurate with the radar pulse repetition
interval the structure of the surface may be considered to be of constant form. These
characteristics may not be accurate in ionospheric regions near the equator or auroral
zones as measurements made on such paths indicate that the ionosphere is significantly

more disturbed than it is in quiet mid-latitude areas.

3.2.1.2 Mathematical representation of the reflected field

Consider a linearly polarised transverse electromagnetic wave with wave vector k; prop-
agating in a direction that is incident at an angle 6; with respect to the normal of the
zy-plane. The electric field E;(F,) which is incident on the reflecting surface at position

7s is then given by,
Ei(7,) = E exp (—jki - ) (3.1)

where £ represents the electric field intensity phasor in the vicinity of the surface after
the path loss from the transmitter (inverse square law) has been taken into account.
Boundary conditions apply at the surface and assuming there is no transmitted wave it
follows that the reflection factor of the tangential component of electric field is I' = —1.
In other words, the plasma surface behaves like an irregular metal sheet and the reflected

field distribution E,(F,) at the surface is then given by,
Er(Fs) = Eexp (JEr : 7-"s) (32)

where Er is the wave-vector of the reflected wave such that the angle-of-incidence equals
the angle-of-reflection §; = 6,. The angular spectrum of the reflected signal is given by
the spatial Fourier transform of the re-radiated electric field distribution over the surface.
Using this result, the electric field resulting at some point 7 on the ground can be expressed
as a superposition of plane waves combined with amplitudes and phases determined by
the Fourier coeflicients.

Evaluation of the spatial Fourier transform over an irregular time-varying surface is
not mathematically tractable for the purpose of determining the statistical properties of
the reflected wavefield. An alternative approach is to translate the plasma displacements
z,(z,y) occurring at a given time into equivalent phase shifts on a field which is re-radiated
from the mean horizontal plane. In other words, the idea is to replace the time-varying
irregular plasma surface by flat “phase screen” fixed in the zy-plane which imposes a
space and time varying phase modulation on the re-radiated field at each point on the

screen that is determined by the prevailing plasma displacement at that point.
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As the separation between the reflecting surface and the receiver array is much larger
than the spatial extent of the surface, the field contribution received on the ground from
each radiating current element on the surface is that which propagates over a very narrow
spread of directions centred about k. (i.e., the direction of the specular reflection corre-
sponding to the transmitter and receiver locations). Moreover, the surface is assumed to
have a relatively flat character so most of the energy scattered near the path mid-point
will be in the direction of specular reflection. For propagation in the direction of E,,
a radiating plasma element with a displacement z,(z,y) normal to the zy-plane can be
replaced by an identical element which is on the zy-plane at position 7, = [z,y,0]7 and
phase shifted by exp (— j%\ﬂzs(x, y) cos ;). This transformation is only strictly valid for a
point which is far from the radiating surface and in the direction of specular reflection
since z4(z,y)cosd; is the difference in path length between the actual and substituted
plasma elements to such a point. After this transformation, the wavefield received by an
array on the ground can be thought of as arising from a radiating phase screen in the

zy-plane with a re-radiated electric field distribution given by,
B (7o) = B 1K1 0o08) exp (jk, - ) (3.3)

where the position vector 7z, spans the phase screen which is of finite spatial extent in
zy-plane and f(7yy,8;) = z5(z,y) cosb;. As described by (Booker et al. 1950), the angular
spectrum of the reflected signal P(E) is given by the spatial Fourier transform of the
electric field distribution E,(ny) which is re-radiated by the phase screen. As the original
plasma surface is assumed to have ro structure of size less than one wavelength it follows
that the re-radiated field distribution has no spatial frequency component greater than
the reciprocal of one wavelength. If these components were to exist they would radiate
evanescent waves {Booker et al. 1950) which propagate only a short distance away from
the screen and may be neglected as far as their contribution to the field measured on
the ground is concerned. When evanescent waves are neglected, the angular spectrum
of waves P(E) which propagate with wave-vector k can be calculated according to the

spatial Fourier transform in Eqn.(3.4).

P(k) = / E. (7o) e * v diy, = E / e=i S (e 00) gmi(R—Fr)Fay gt (3.4)
In the case of a perfectly flat reflecting surface of constant dielectric susceptibility the func-
tion f(7zy,0;) = 0. As the dimensions of the screen are much larger than the wavelength
), the angular spectrum of the re-radiated wave tends to the delta function P(k) - (k)
when f(7%,, ;) = 0 which corresponds to a specular reflection of the incident wave. It is
also eviderit that the effect of the plasma displacements on the angular spectrum depends
on the angle of incidence ; because for a given plasma displacement the amount of phase

modulation is determined by 8; through the relationship f(7zy, 8;) = z,(x,y) cos ;. As the
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ray tends towards grazing incidence (6; — 90 degrees) the phase modulation imparted by
plasma displacements is reduced by a factor of cos §; which makes the reflecting plasma
surface appear relatively less rough to the wave which becomes more nearly specularly
reflected.

Once the angular spectrum of the reflected signal is known for a certain plasma distur-
bance, it is possible to represent the signal-field received by an array in the plane z = 2,

on the ground by a superposition of plane waves.
B = [ B | 7 =T0,3 35)

For over-the-horizon propagation the only field measured by the array is the reflected field
E,(,) as there is no line of sight between the transmitter and receiver. For a wave-vector
with components k = [k, k, k.7 it is possible to substitute k-7, = k- oy + k.z, into
Eqn.(3.5) to yield,

ﬂm=/Q@%W“WE,%=Wwﬂ (3.6)

where Q(k, z,) = P(E)e*=%s. 1t is evident from Eqn.(3.6) that Q(k, z,) represents the
spatial Fourier transform of the of field existing in the plane z = z, which contains the
antenna array. As z, — oo the electricfield intensity observed on such a plane is referred to
as the Fraunhoffer pattern in diffraction studies. The Fresnel pattern, which corresponds
more nearly to that formed by an ionospherically reflected radio wave on the ground, is
that which is produced on a parallel plane at a finite distance z; away from the screen.
The relationship between the spatial Fourier transform of the field at the phase screen
and that on a parallel plane a finite distance away from this screen will be exploited in
the next section to derive models for the generalised space-time auto-correlation function

of the field received by the array.

3.2.2 Reflection from a time-varying irregular ionosphere

The aim of this section is to extend the previous analysis to deal with a time-varying
irregular ionospheric structure and to determine the statistical properties of the wavefield
received on the ground in terms of the statistical properties of this structure. It is shown
in this section that the generalised space-time auto-correlation of the Fresnel diffraction
pattern is, under certain conditions, the same as that of the field distribution at the screen
which gives rise to it. The analysis proceeds similarly to that which was undertaken in
(Booker et al. 1950) for the spatial-only auto-correlation function of the electric field

produced on a plane a finite distance away from a two dimensional random diffracting

screen.
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3.2.2.1 Space-time second order statistics of received signal

To take temporal changes of the irregular surface into account the quantity P(E,t) is
introduced and defined as the angular spectrum of the wave-field which results from the
time-varying surface z,(x,y,t) and phase screen function f(7zy,0:,t) = 2,(z,y,t)cos¥;.
This angular spectrum is calculated according to Eqn.(3.4) by substituting P(E,t) for
P(l_s:) and f(7zy,0i,t) for f(Fzy,0;). The relationship Q(E,t) = P(E,t)ejk‘zg follows by
a similar argument to that described in the previous section, the implicit dependence
of Q(E,t) on z, has been dropped for notational convenience. Although the ionosphere
changes in a continuous manner it does so very slowly compared with the propagation
time between the surface and the ground (typically a few microseconds), or over the
PRI for that matter (typically less than 0.1 second), so the reflected field generated at
a particular instant ¢ will propagate to the plane containing the array and remain more
or less constant for a finite period of time. This allows the array to measure the field
produced by a more or less frozen ionospheric structure before the field changes by an

amount that is sufficiently large for the measuring instrument to detect.

The space-time Fourier transform P(E, fv) which describes the spatial and temporal

variations of the field disturbance at the phase screen is given by,

P(E, f,) = / " (R, t)e-i et gy (3.7)
where f, represents the different frequency components in the temporal fluctuations of
the electric field disturbance at the screen. Similarly, the space-time Fourier transform of
the field in the plane z = z, is given by Q(l_s;, fo) = P(l_é, fv)e?*+#*s. The Weiner-Khintchine
theorem states that the auto-correlation of a function is given by the inverse Fourier
transform of its power spectrum. In this case we have a space-time power spectrum
|P(K, f)|? for the field at the screen so the generalised auto-correlation function of the
field at the screen r(&d, At) is given by,

- L 2 _jk-Ad j2rfolt JT.
r(Ad, At) = fflP(kafv)I f € _ dkdf,
I [\P(k, f.)|*dkdf,

(3.8)

where At is the time interval and Ad = [Az,Ay,0]7 is the vector displacement over the

screen. At the plane z = z,, the auto-correlation function is given by the same theorem,

S J1Q(F, £,)[PemRdei?mseA dkdf,
J J1Q(k, £.)dkdf,

r.(Ad, At) = (3.9)
but |P(k, £.)|* = |Q(k, f,))|* which implies that r,(Ad, At) = ~(Ad, At). In words, the
generalised space-time auto-correlation of the field distribution measured on a plane z = z,
(i.e., that of the Fresnel diffraction pattern) is the same as that of the field distribution
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at the screen which gives rise to it. This important result is a space-time generalisation
of the one-dimensional spatial-only result reported by (Booker et al. 1950). Strictly,
the equivalence is only for the generalised (normalised) auto-correlation function as the
amplitude of the field diminishes according to the inverse square law as it propagates from

the screen to the plane containing the array.

To calculate the generalised space-time auto-correlation function of the field received
by the antenna array the time-varying field at the screen Er(Fzy, t) is introduced. This field
is given by Eqn.(3.3) after replacing the “frozen” plasma-displacement function f(7,,6;)
by the time-varying function f(7yy,0;,t). Once this substitution is made, the space-time

auto-correlation function of the field distribution at the screen is given by,

o E (7o, ) EX(Fry + Ad, t + At)d7,,dt
T(Ad,At)=ff (T'y ) _r‘(r_‘y+ _‘+ )’I'y
J J1E(Tay, t)|2dTzydt

(3.10)

and from the equivalence stated above it follows that r(&d, At) = r.(Ad, At). By ex-
panding Eqn.(3.10), the space-time auto-correlation function of the field measured by the

array can be derived as,
’I"z(&d, At) = exp (—jii;r . Ad) / / ej2Tﬂ[f(ny+5d,t+At)—f('?zyvt)]d,f-‘rydt (311)

where the carrier frequency dependent term e™#2? is neglected and the dependence of the
function f(7,,t) on the angle of incidence 6; has been dropped for notational convenience.
The statistical properties of the ionosphere are known to be frequency dispersive, spatially
inhomogeneous and nonstationary. However, if attention is restricted to narrowband
signals (with bandwidths less than 20 kHz) and time intervals in the order of a few minutes
the statistical properties of the reflecting surface in a localised region of ionosphere are
more likely to be homogeneous and stationary. Homogeneity implies that the spatial
variation of the plasma displacements have statistical properties which are independent
of the spatial reference point over the surface, while stationarity implies that the ensemble
statistics of these variations is independent of the time origin considered. It is then possible
to associate a probability density function (PDF) p[&(&d, At)] for the differential plasma
displacement function §(Ad, At) = f(Fuy+ Ad,t + At) — f(uy,t) which is independent of
the position 7, and time ¢ but is dependent on spatial separation Ad and time interval
At. Once this description of the plasma is accepted, the ensemble statistics which are
governed by the PDF are the same as those evaluated in for a particular space-time

realisation of the plasma turbulence process in Eqn.(3.10).
r.(Ad, At) = exp (—jk. - Ad) / & FHBLA(5(Ad, At)|dS(Ad, At) (3.12)

It can be seen from Eqn.(3.12) that for a statistically stationarity and spatially homoge-
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neous plasma surface the generalised space-time auto-correlation function measured by
an array on the ground is the characteristic function of the probability density which
describes the space-time statistical properties of the relative plasma displacements at the
radiating ionospheric surface. To derive models for the auto-correlation functions it is
necessary to assume a model for the plasma turbulence process in terms of the joint
(space-time) probability density function p[(S(Ad, At)).

3.2.2.2 Models for the space-time auto-correlation function

There are many models which could be proposed for p[5(5d, At)]. For example, if there is
a steady drift of “field-aligned” irregularities moving at a velocity v, across the reflection
region then the surface may be modelled as one of constant form but shifting in horizontal
position over time. Such a model would result in an unchanging diffraction pattern which
moves at a velocity ¥, over the ground. In this case the temporal auto-correlation function
for a time interval At is the same as the spatial auto-correlation function for a separation
Ad = Up,At. Although such models have been considered by many researchers, there will
in general be a random component which changes the structure of the surface over time
in addition to the steady drift component. If no steady drift is present and there are only
random fluctuations then such fluctuations may be more correlated in one direction than
in another which implies that the spatial auto-correlation measured by the array depends

on its orientation within the z = z; plane.

The simplest models occur when the spatial correlation of the surface fluctuations
only depends on distance |Ad| (i.e., an isotropic surface) and the space-time PDF is
separable which implies that p[§(Ad, At)] = p,[5(|Ad|)]p:[6(At)] where p,[5(|Ad])] is the
spatial PDF and p;[6(At)] is the temporal PDF. This type of model may be appropri-
ate in the absence of large scale structures such as travelling ionospheric disturbances
(TID’s) which are expected to impose a dependence between the spatial and temporal
PDF’s. Hence, a separable model may not be appropriate in certain practical situations
of interest but the evaluation of the one-dimensional correlation functions r,(|5d|) and
r:(At) from the corresponding PDF’s serves as a useful starting point. In accordance
with Eqn.(3.12), a separable PDF model implies that the space-time auto-correlation
function is given by the product of the spatial and temporal auto-correlation functions

ro(Ad, At) = r,(|Ad|)r(Ab).

Let us consider two limiting cases for which these correlation functions can be related
analytically to the PDF of the plasma displacements. The first case corresponds to sit-
uations where the temporal interval At is greater than the time interval over which the
velocity of the points in the surface remain constant. In this case it is assumed that the
surface displacement probability p;[§(At)] is that of a random walk possibly around a
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regular mean fluid motion v, which is normal to the zy-plane.

1 { (8(At) — v, At cos 0,-)2}

po(An)] = oi(At)V21 P 202(At)

(3.13)

The variance of the distribution o2(At) = D,|At|cosd; is assumed to vary linearly with
temporal separation where the positive constant D; is a measure of how quickly the surface
changes. The dependence on cos§; comes from the definition of §(At) = f(7y,,0;,t +
At) — f(7%y,0:,t) and the definition of f(7yy,0:,t) = z,(x,y,t) cosb;. The temporal auto-

correlation function resulting from this probability density is given by,

ri(At) = / I 8B, [§(A)]dS(At) = e/ 8 abtgIFsl Decostila (3.14)
where Af; = v, cosd;/) is the regular component of Doppler shift and |2 = ()% It
can be seen from Eqn.(3.14) that the magnitude of r,(At) is a decaying exponential with
a time constant that depends on D; and cos ;. The phase of r,(At) is linear and depends
on the mean component of Doppler shift A f,.

In the other limit, it is assumed the time interval At is shorter than the time interval
over which the velocity of particles in the surface normal to the zy-plane is effectively
constant. The fluid velocity probability distribution p(v) is assumed to be Gaussian with

mean velocity v, and root mean square velocity o..

1 (v —v,)?

p(v) = o P {—7(;,—} (3.15)

In this case, the plasma displacement probability distribution is related to the plasma
velocity probability distribution through the relation p;[6(At)] = p(vAtcos6;) and sub-
stitution of this relation into the integral in Eqn.(3.16) yields the following temporal

auto-correlation function.

ri(At) = / 5 58, [§(AL)]dE(AL) = ef2m A alte - |Es[?02 cos 8,2 At (3.16)
It can be seen from Eqn.(3.16) that the magnitude of r;(At) is a Gaussian envelope with
a variance depending on o2 and cos 6;® while the phase is linear and depends on the mean

component of Doppler shift Afy.

The spatial auto-correlation function rs(IA‘d|) can be determined in a similar manner
by defining the spatial probability distribution p,(|Ad]) as that of a random walk about

the mean horizontal plane at time ¢.

Rl = - ex (Ad)?
p"[&(lAdl)]—a,(lﬁdl)\/ﬁ p- {af(l dl)} (3.17)
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The variance of the plasma displacements is assumed to be a linear function of distance
af(|&d|) = D,|Ad| where the constant D, is a measure of the roughness of the surface.

In this case the spatial auto-correlation function is given by,

ri(1Bd) = e3h 84 [ S (5 RdDjas(Ba) = e A4EIPIS (3.18)
and has an amplitude which is an exponentially decaying function of distance Iﬁdl while
its phase is linear for a uniform linear array with adjacent sensors displaced by Ad. If the
variance af(IAdD = D;|Ad|2 varies quadratically with separation then the amplitude of

the spatial auto-correlation function will take on a Gaussian form.

ry(|Ad]) = e~ A / " G, (5(1Ad])]d6(|Ad]) = eI Bde-EPPUSE (3 19)
The power spectrum corresponding to a decaying exponential has a Lorentzian profile
while a Gaussian shaped amplitude envelope in the auto-correlation function gives rise to
a Gaussian shaped power spectrum (Kreyszig 1988). Correlation functions with amplitude
envelopes that fall off rapidly with time or distance give rise to broad power spectrums
and vice-versa. The linear phase shift in these functions simply shifts the centre of the
power spectrum (whose shape is determined solely by the amplitude envelope of the
auto-correlation function) to a position which corresponds to the mean Doppler shift or

angle-of-arrival of the wave.

3.3 Validation method

Using a single reception channel (Watterson et al. 1970) experimentally verified a number
of assumptions regarding the statistical properties of complex-valued random processes
arising from narrowband HF signals reflected by a single layer in the ionosphere over a
period of a few minutes. The data received from each propagation mode was described by
a stationary complex Gaussian distributed random process that produces Rayleigh fading.
The complex random processes received from different ionospheric modes were shown to
be statistically independent and the parameters of the power spectrum which completely

defines each process were confirmed to be those of a Gaussian function of frequency.

It is presently unclear how to extrapolate this model to describe the statistical prop-
erties of narrowband HF signals received by antenna arrays and this is partly due to
the lack of measurements made on the spatial and spatio-temporal characteristics of the
ionospheric. HF reflection channel with a very wide aperture array over periods of a few
minutes. The aim of this section is to develop methods which can be used to validate or re-
ject a number of hypothesised extrapolations of this model which are proposed to describe

the statistical properties of narrowband ionospherically-propagated HF signals received
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by antenna arrays. The Gaussian scattering assumption validated for the narrowband HF
reflection channel by Watterson et al. (1970) is used as a foundation to construct hypoth-
esis tests for the second order statistics (auto-correlation functions) which are assumed to
statistically describe the spatial and spatio-temporal characteristics of quiet mid-latitude
HF channels.

Section 3.3.1 develops a hypothesis test to determine whether the parameters of the
model used to describe the second order statistics of the complex fading processes recorded
by the antenna array for a particular propagation mode are spatially homogeneous (i.e.,
whether there is good reason to believe that the model parameters of the temporal auto-
correlation function are invariant across receivers). Section 3.3.2 develops a hypothesis test
which can be used to accept or reject a parametric model for the spatial auto-correlation
function of the mode complex fading process. A method to determine whether the space-
time auto-correlation function of such processes can be estimated with reasonable accuracy
from a separate knowledge of the temporal and spatial auto-correlation function model

parameters is proposed in section 3.3.2.

3.3.1 Temporal stationarity and spatial homogeneity

The temporal complex Gaussian distributed processes validated by (Watterson et al.
1970) are statistically characterised by a parametric model of the temporal second order
statistics or auto-correlation function. In practice, these parameters are not known apri-
ori and must be estimated from the available data. The estimated parameters define a
hypothesised model for the “true” or expected auto-correlation function which is to be
experimentally validated.

To validate the proposed model it is necessary to analyse the significance of any de-
viations between the assumed auto-correlation function and that estimated from the ex-
perimental data. If the probability distribution of these differences is known under the
assumption that the model is correct, it is possible to determine whether the observed
differences can be reasonably attributed to estimation errors arising due to finite sample
effects or if there is good reason to reject the hypothesised model for the true auto-
correlation function.

The first part of this section is concerned with estimating the parameters of the hy-
pothesised temporal auto-correlation function model which best fits the sample auto-
correlation sequence (ACS) obtained from the data. The second part of this section
derives the probability density function for the magnitude and phase of the sample ACS
under the assumption that the model is correct so as to develop a hypothesis test which
can be used to accept or reject the validity of the temporal ACS model as well as to
determine whether the parameters of this model are invariant across different receivers.

For digital or sampled random processes the auto-correlation function can only be

evaluated at a number of discrete points which are temporally separated by a minimum
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interval equal to the sampling interval. The term auto-correlation sequence (ACS) is
adopted to describe the samples of the auto-correlation function (ACF) resulting at dif-
ferent temporal lags. The temporal ACS of the complex random process z; ](t) recorded
over the PRI t = 1,2,.., P in range cell k and receiver n is estimated as the unbiased

sample ACS #,(7) given by,

P-

R — 1.--- —-1<P
LWty =0 1T 0,1,---,@—-1< (3.20)
n = 01, ,N—-1

where the k-dependence of 7,(7) has been dropped as the processes in different range cells
will be considered separately. The mathematical model of the statistically expected ACS

r.(7) may be written in the following form,
Tn(‘T') — GP"(T) — ea.‘r2+b‘r+cn — eafzeb'recn (321)

where the scalar parameters a, b and ¢, of the model are the coefficients of a quadratic
polynomial P,(7) in lag index 7. As described later, the choice of a quadratic polynomial
is consistent with the Gaussian and Lorentzian shaped auto-correlation functions derived
from physical principles in section 3.2.2.2. The power of the signal r,,(0) in the n** receiver
is modelled by the term e where ¢, is a real scalar, the reason for the n-dependence of
this term will be explained later. If the Doppler power spectrum model is a Gaussian
function of frequency centred about a mean Doppler shift then the ACS model has a
magnitude that is a Gaussian function of 7 and a phase which is linear with a slope
determined by the mean Doppler shift. In Eqn.(3.21), this corresponds to a purely real
value of a and a purely imaginary value of b. If the Doppler power spectrum model is a
Lorentzian function of frequency centred about a mean Doppler shift then the ACS model
has a magnitude that is a decaying exponential function of 7 and a linear phase with a
slope determined by the mean Doppler shift. In Eqn.(3.21), this corresponds to a = 0
and a complex value of b.

The order of the polynomial P,(7) may be extended past two and the constraints on the
parameters a and b can be relaxed to some extent when it is required to generate a wider
variety of ACS models which may differ from the Gaussian or decaying exponential models.
Despite this potential flexibility, only the above-mentioned two models are considered in
this study for representing the second order statistics of the received signals. Models of
higher complexity which would be able to fit the sample ACS more accurately could easily
be proposed but the amount of statistical uncertainty often associated with estimating the
ACS from experimental data will generally not warrant the search for extremely accurate
models. Even if a large amount of temporally stationary data were available, one must
bear in mind that a more complex model is more difficult to understand intuitively and
such models usually lead to more complex signal processing implementations when it is

required to simulate different realisations of the process.
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It is noted that the two above-mentioned models have previously been used to repre-
sent the temporal ACS of HF signals which were obliquely backscattered by ionospheric
irregularities, see (Villain, Andre, Hanuise and Gresillon 1996) and (Hanuise, Villain, Gre-
sillon, Cabrit, Greenwald and Baker 1993). The authors concluded that it was preferable
to interpret the statistical properties of the data in terms of ACS models rather than
power spectrum models because the different features of the two above-mentioned models
were more easily distinguished visually in the lag domain. As will be appreciated later,
the ACS model interpretation has a further advantage in that it is more mathematically
tractable than the frequency domain equivalent from both a parameter estimation and

statistical validation point of view.

Before proceeding to describe the parameter estimation technique for the two ACS
models in question, the receiver dependent power scaling term e’ in the mathematical
model for the expected temporal ACS is explained. The power has been allowed to
vary from one receiver to another for two reasons. Firstly, the potential existence of
systematic instrumental errors, such as differences between the gain and phase response
of the antenna sensors for example, will be absorbed by the receiver-dependent term e
and not effect the shape of the ACS. Secondly, it is of interest to determine whether the
shape of the ACS or power spectrum complies with some analytical model and whether the
parameters of this model are the same for all receivers. The power or scaling which may be
different from one receiver to another is of secondary importance as far as temporal signal
processing at each receiver is concerned. This aspect may be of importance in spatial and

spatio-temporal signal processing applications and will be covered later in section 3.3.2.

Since the sample ACS is unbiased it seems reasonable to estimate the parameters of
the temporal ACS model according to the least squares principle. The following minimi-
sation problem is formulated to estimate the model parameter vector v = [aber---en]T

according to this principle,

N-1Q-1 X N-1Q-1 . .
v=argmin y_ 3 [leP) — PO = argmin Y Y [l 1 — e O-P O
n=0 7=0 n=0 7=0
(3.22)
where || - || denotes the Frobenius or Euclidean squared norm and the minimisation is

performed subject to the constraints on the elements of v associated with the ACS model
eP»(") being considered. This is a non-linear optimisation problem which can only be
solved by iterative methods. However, if at the minimum the model and sample ACS are
quite similar, the value of P,(7) — P,(7) will be close to zero and ePr(M)=Pnlr) will be in
the vicinity of one. In this case, the term ePr(M=Fa(7) can be accurately approximated
by a first order Taylor series expansion 1 + Pn(7) — f’n('r). Substituting this truncated

expansion into Eqn.(3.22) yields the following modified cost function which corresponds
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to an approximate least squares criterion.

N-1Q-1 N-1Q-1

v =argminy_ 3 [[e™[Pu(r) = Pa()]|r = axgmin Y Y [|e™ Ol Pa(r) = Pa(r)llF

n=0 7=0 n=0 7=0

(3.23)

The solution to this problem can be found analytically and depends on the constraints
which are placed on the elements of the parameter vector v. The unconstrained solution

of the quadratic optimisation problem in Eqn.(3.23) is given by,
v = (MfWM)'MAWp (3.24)

where the NQ-dimensional vector p = In{[#7 ---#+%]7} with £, = [#,(0)---#,(Q — 1)]T
and the matrices M and W are composed of the Q-dimensional column vectors a,b, 1,0

and W, whose elements 7 = 0,1,..,Q — 1 are given by Eqn.(3.25).

4

i 0 -.- 0] all = 77
abo1..0 il = 1

M=|_ |, W=diag[wT---wh], { w1 = |~ (3.25)
Poror oo N
a b 00 --- 1] Lo = ¢

In the present case, it is of interest to constrain the values which certain parameters in
the vector v can take so as to yield a valid model of the ACS in terms of a known function
(i.e., the Gaussian or decaying exponential magnitude with linear phase). When one or
more parameters in v are required to be either purely real or purely imaginary, as they
are for both models of interest, it is better to treat the real and imaginary parts of the
least squares optimisation problem separately. By substituting P,(7) = a2+ b7 + ¢, and
Po(7) = In{#p(7)} = &n(7) + jya(7) into Eqn.(3.23) it is possible to partition the problem

into real and imaginary parts,

Vomenon = argmin SN SO PO rl(ea(r) — a7 — ea)? + (3a(r) — b7)?
Viorentzion = AIgMmin Eﬁ,:_Ol E?;Ol ”eP"(T)”F[(wﬂ(T) — bpeT — cn)z + (yn(T) - bimT)2]
(3.26)

where b,, and b;,, are the real and imaginary parts of the polynomial coeflicient of 7 in
P, (1) for the Lorentzian power spectrum model. It can be seen from Eqn.(3.26) that
for each model there are two real-valued and unconstrained least squares problems which
can be solved by tailoring the general solution for a complex-valued unconstrained case
in Eqn.(3.24) to the specific problem arising for either the real or imaginary part in
Eqn.(3.26). As an aside, it is noted that linearly constrained complex-valued least squares

problems can be dealt with analytically using the theory described in (Kay 1987), but it
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is not possible to constrain the real and imaginary parts of a complex variable separately
using this approach so these standard results cannot be used to estimate the parameters
required in this application.

After the parameters are estimated it is possible to generate a hypothesised model for
the expected ACS and to assess the significance of any departures between the model ACS
and the sample ACS. If these differences are small (i.e., small enough to be reasonably
attributed to ACS estimation errors) then the HF channel which gives rise to the temporal
processes measured in different receivers may be considered spatially homogeneous as no
strong reason exists to reject the hypothesised temporal ACS model. Similarly, if the same
statistical parameters can be used to describe the temporal ACS measured over different
time intervals then there is no strong reason to reject the hypothesis that the compler
Gausstan distributed random process is temporally stationary.

It is therefore important to quantify what is meant by a “significant” difference and to
state the degree of confidence associated with the conclusion drawn about the temporal
stationarity or spatial homogeneity of the measured HF channels. The distribution of the
magnitude and phase of the sample ACS calculated in accordance with Eqn.(3.20) from
the samples of a stationary complex Gaussian distributed random process that produces
Rayleigh fading is derived in appendix A. The statistical properties of the sample ACS
depends on the number of samples P used to form it and the expected ACS of the random
process. Using the large sample distributions derived in appendix A for the magnitude and
phase of the sample ACS, it is possible to derive bounds for the hypothesised ACS model
(magnitude and phase) which are expected to contain (say) 90 percent of the estimates.

If either the magnitude or phase of a particular lag in the sample ACS lies beyond
these bounds then such a departure is deemed to be significant and provides a strong
reason for rejecting the hypothesised ACS model. If the entire ACS lies within these
bounds then there is no strong reason to reject the proposed ACS model which may be
accepted as valid with a significance level of (say) 90 percent. This criteria is used accept
or reject the spatially homogeneous temporal ACS models proposed in this section, the
actual distributions and associated error bars are quantified on a case by case basis in the

experimental results section.

3.3.2 Spatial stationarity and space-time separability

As mentioned in chapter 2, the wavefront of a HF signal reflected by a single ionospheric
region is often assumed to have a mean planar structure with some degree of time-varying
amplitude and phase “crinkles” superimposed. The mean plane wavefront is assumed
to have a direction-of-arrival that does not wander over a period of a few minutes and
the time-varying “crinkles” can be viewed as spatial modulations imposed on the mean
plane wave by the HF channel. These spatial modulations cause the angular spectrum of

the received signal to spread about the mean direction-of-arrival much like the temporal



3.3. VALIDATION METHOD 93

modulation causes the Doppler spectrum to spread about the mean Doppler shift.

The multiplicative complex-valued spatial modulations which the HF channel imposes
on the mean plane wave are assumed to be described by a zero-mean complex Gaussian dis-
tributed process that produces Rayleigh fading in the spatial dimension. This description
follows directly from the Gaussian scattering hypothesis validated by (Watterson et al.
1970). However, in the presence of array manifold errors the mean wavefront may not be
planar and even in the absence of such errors it is conceivable that ionospheric phenomena
may contribute to departures between the mean wavefront and the plane wavefront. For
reasons mentioned below, it is considered important to determine the validity of the mean
plane wavefront assumption as well as the validity of models which describe the second

order statistics of the spatial modulations imposed on the mean wavefront.

The validity of the mean plane wavefront assumption is important in adaptive beam-
forming applications when the signal is considered as a desired signal which is to be de-
tected by the system (i.e., protected from being cancelled by the adaptive beamformer).
An aim of this section is to develop a statistical test which can be used to accept or reject
the mean plane wavefront assumption with a known level of confidence. If the signal rep-
resents interference to the system the mean wavefront shape is of secondary importance
in adaptive beamforming applications. Of primary importance is the magnitude of the
correlation coefficients between different pairs of receiver outputs as the cancellation ratio
achieved when the receiver outputs are weighted (each by a single complex weight) and
combined is dependent on these coefficients which are not effected by the mean wave-
front shape and hence array manifold errors. Another aim of this section is to develop
a statistical test which can be used to accept or reject a model for the magnitude of
the correlation coefficient between different pairs of receivers in the array with a known
level of confidence. To see how the mean wavefront and the magnitude of the correlation
coeflicients are related to the spatial covariance matrix R, of the process x,(t) consider
the following hypothesised model of R; which appears in (Paulraj and Kailath 1988) and
(Ringelstein, Gershman and Bohme 1999).

R, = E{xi(t)xf (t)} = o}[s()s"(6)] © B = [P} (3.27)
In Eqn.(3.27) the symbol © denotes Shur-Hadamard or element-wise product, o2 is the
mean square value or power of the signal (assumed to be the same in all receivers),
s(0) is the steering vector of a ULA for cone angle § and B is an “angular spreading”

matrix with its (7, j)* element equal to the magnitude of the correlation coefficient p; ; =

sy \/ rl1p0] hetween the ith and j** receiver output. In the spatial covariance matrix
model the phase of rid) is determined by the mean plane wave just as the phase of the
temporal ACS was determined by the mean Doppler shift. This is because the mean
wavefront (or mean Doppler shift) is defined such that the real and imaginary parts of

the spatial (or temporal) HF channel modulations are independent and only contribute



94 CHAPTER 3. STATIONARY STATISTICAL MODEL

to the magnitude of the second order statistics. Stated another way, the magnitude of

r[zi’j] is determined by the second order statistics of the spatial HF channel modulations

only, while the phase of ri is determined by the mean wavefront which is assumed to be
planar in this case. The spatial covariance matrix model R, can therefore be expressed in
terms of the phase-only matrix s(8)s” (§) which determines the phase of all elements rltdl
through the mean DOA parameter 6 and the real-valued matrix B which determines the
magnitude of all elements plid] through other model parameters to be described later. Note
that when the spatial HF channel modulations are normalised to have unit variance, the
expected second order statistics or cross-correlation between the modulations on different

receivers is given by the correlation coefficient p; ;.

The plane wavefront s(6) is the hypothesised model for the mean wavefront, but in the
presence of array manifold errors or other ionospheric effects, an arbitrary mean wavefront
model denoted by s may be specified in Eqn.(3.27). Before proceeding to the validation
stage it is first necessary to develop a model for correlation coefficients p;; in the matrix
B. The combination of the mean wavefront and correlation coeflicient models yields a
model of the spatial covariance matrix for the array data, which for stationary Gaussian
distributed processes, completely defines the spatial statistical properties of the process.
As for the temporal ACS, the Gaussian and decaying exponential envelopes are considered
as models for the real-valued correlation coefficients.
a<0, b=0 Gaussian

(3.28)

pi; = ePUi=il) — eali—il*+bli-j|
’ a=0, b<0 Decaying exponential

In this model it is assumed that the second order statistics of the normalised spatial HF
channel modulations only depend on the spacing between the receiver pair and not the
location of the two receivers within the array. In other words, it is hypothesised that
wavefront modulations imposed by the HF channel are spatially stationary and described
by one of the two even functions (i.e., Gaussian or decaying exponential) which are pa-
rameterised by the real quantities a and b respectively. These parameters are usually not
known apriori and must be estimated from the unbiased sample spatial covariance matrix

A

R.

o

. 1 Ali, 1IN =
R. =5 ) x(tx{(t) = S (3.29)
t

Il
=)

This estimator coincides with the maximum likelihood estimator of the expected spa-
tial covariance matrix R, = E{xx(¢)x{(t)} assuming the samples in each receiver are
Gaussian distributed. By the invariance property of the maximum likelihood (ML) esti-
mator, see (Kay 1993), it follows that the ML estimate of the magnitude of the complex
Li,jll/ plilalid]

correlation coefficient is given by p;; = |F . Under the spatial stationarity

assumption it is justifiable to estimate these coefficients by averaging estimates made on
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different receiver pairs spaced by a common distance d = |i — j|.

N-d-1
- 1 i 0] ali+di
pd) =" = gy D Ik YRR (3.30)

1=0

The parameters a or b which provide the best least squares fit between the estimated
function @ and the model function eP@ in Eqn.(3.28) can be calculated using the
general unconstrained minimisation formula in Eqn.(3.24). It is then a matter of assessing
the significance of the departure between the assumed model p; ; = p(d) and the estimates
pi ; in statistical terms so that a decision can be made with known confidence on whether

to accept or reject the hypothesised model for these elements.

For multivariate complex Gaussian distributed processes, the sampling properties of
the maximum likelihood estimate 52, also referred to as the magnitude squared coherence,
have been found by (Goodman 1963). If n statistically independent samples are used
estimate the true value of the magnitude squared coherence (denoted by p?) between two

receiver outputs then the distribution of 2 is given by,

e k
A n ~ n-— A -’L‘ z
p(p*) = (n = 1)(1 = p*)"(1 = §*)"2F(n,n; 1;0%p%) , F(z,y;w;2) = Z @)yl 2
k=0 (w)k k!

(3.31)

where (z)y = z{(z +1)---(z + k—1) and F(, ; ; ) is the classical hypergeometric

function or series which is guaranteed to converge if the argument of the function z has
a modulus less than unity. In this case, z = p?4? < 1 so the function always converges.
The density function p(5*) was used by (Carter 1971) for coherence estimation in the
frequency domain. In any case, this result may be used to derive confidence intervals for
the value of the sample magnitude squared coherence which may then be used to accept

or reject the assumed model for these quantities.

Since the P consecutive samples at the receiver outputs are not statistically inde-
pendent it is necessary to determine the equivalent number of statistically independent
observations or “degrees of freedom” (n) which must be substituted into Eqn.(3.31) to ob-
tain the appropriate density function for hypothesis testing. For large values of P, Priestly
(1981) describes a method for determining the equivalent number of statistically indepen-
dent samples in a correlated Gaussian distributed random process. The first step is to
compute the variance of the sample variance, for a complex process this is conveniently

given by the following expression (Thierren 1992),

P-1
o= B0 O} =5 . (1= Ehirhy (3.3
k=—(P—-l)

where r(k) is the expected correlation between data points spaced k samples apart in time
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and 7(0) is the sample variance of the random process. For n statistically independent
samples the variance of this estimate is given by r2(0)/n as n — oco. Hence, the effective
number of independent observations P.;y < P is given by P.s; = P(r?(0)/02). The
calculated value of P.sf (to the nearest integer) may then be substituted for the number of
independent samples n in Eqn.(3.31) to derive the appropriate (say 90 percent) confidence
intervals. If the samples p; ; fall within these bounds for all receiver pairs (2, 7) then the

model for the spatial correlation coefficients is accepted, otherwise it is rejected.

To verify the mean plane wavefront hypothesis it is first necessary to estimate the
cone angle-of-arrival and power of the wave which best fits the assumed model for the
spatial covariance matrix in Eqn.(3.27). By defining s as the i** element of an arbitrary
mean wavefront vector s in this model and expanding the (i, )" element of the spatial

covariance matrix in Eqn.(3.27) one obtains,

\ s[i]lr[xi,j]ls[j]*
\ /T‘g'ﬂ‘ /L)

since the (z,7)" element of B is p;; by definition. As p;; = 1 for all ¢ = 1,2,.,N it

= o2sllp; ;sl* (3.33)

Gl —
rot =0

follows from Eqn.(3.33) that the amplitude of the i** element in the mean wavefront is

given by |s| = Y, rid, By equating the phases of elements it follows that the phase of
rg‘j], denoted by ; ;, is equal to the phase of sl denoted by ¢;, minus the phase of sl
The phases ¢; for i = 1,2, .., N can therefore be found by solving a set of linear equations

i ; = ¢; — ¢; for the elements of the spatial covariance matrix.

When only data samples are available, the expected lags ridl in Eqn.(3.33) must be
replaced by the sample lags ] estimated from the data. Once the mean wavefront s
is calculated the mean plane wave of best fit may be estimated as that which best fits s
in a least squares sense. The amplitude A and cone angle 8 of this wave are estimated

according to the following optimisation problem,
A, 0 = argmin|js — As(0)||r (3.34)

which may be solved by performing two one-dimensional searches, one for the magnitude
and one for the phase. Once the plane wave of best fit is estimated it is then required to
determine the significance of differences between this wave and the absolute amplitudes
and relative phases of the sample spatial lags. The expected power of the random signal
is reflected by the sample variance of the signal recorded in each receiver. To assess the
significance of the difference between these sample variances and the expected power A?
it is possible to evaluate confidence intervals and construct hypothesis tests using the
distribution derived for the sample variances in appendix A. For the plane wavefront
model to be accepted, all of the sample variances are required to lie within the 90 percent

confidence interval calculated from this distribution.
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Validation of the plane wavefront model also requires the distribution of the phase of
the spatial auto-correlation function to be evaluated under the condition that the plane
wavefront model is valid. The distribution of the phase of the temporal auto-correlation
function derived in appendix A may also be used to evaluate the distribution of the phase
of the spatial auto-correlation function which is expected to be linear and parameterised
by 6 under the mean plane wavefront model. This can be performed by replacing the
statistical properties of correlation between spatial samples separated by a certain distance

with those of temporal samples separated by an “equivalent” time interval.

In the previous statement, the term “equivalent” refers to the time interval or lag at
which the phase distribution of the temporal auto-correlation function about its expected
value is the same as that of the interrogated lag on the spatial auto-correlation function
about its expected value. More specifically, the distribution of the phase of a sample
spatial lag about its expected phase has the same shape as that of a sample temporal lag
about its expected phase when the magnitudes of the expected correlations in the spatial
and temporal domain are the same and the same number of samples are used to form
them. Hence, the confidence intervals for the phase of the sample spatial lags may be
obtained using the same formulas derived in appendix A for temporal lags at which the
magnitude of the correlation falls to the same value as that which is expected for each
spatial lag under the assumed model. For the plane wavefront model to be accepted, all of
the sample spatial lag phases are required to lie within the 90 percent confidence interval

calculated from this distribution.

If models for both the spatial and temporal correlation functions of the array data can
be validated it is of interest to determine whether the space-time second order statistics
can be deduced with reasonable accuracy from a knowledge of the spatial and tempo-
ral correlation functions. As mentioned previously, the space-time process is said to be
separable if the space-time correlation function can be expressed as a product of the
temporal-only and spatial-only correlation functions. Hypothesis tests may then be de-
rived to accept or reject the space-time separability of the model by invoking the same ar-
gument as described in the previous paragraph and using the distributions in appendix A.
A simpler measure of whether a separable model is accurate can be developed by quanti-
fying the degree of fit between the expected separable model of the space-time correlation
function, denoted by r(Ad, At) and the sample space-time correlation function #(Ad, At)
estimated from the data. In this instance, a separable model may be considered appropri-
ate for describing the data if the fitting accuracy, defined by Eqn.(3.35), is greater than
say 95 percent.

Ado Em-o F(Ad, At) — r(Ad, At)]?
Ad_o ZAt-o |*(Ad, At)|?

Fitting Accuracy = 1 — (3.35)
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3.4 Experimental results

After the accuracy of the theoretical distributions derived for the sample ACS in ap-
pendix A are checked by simulation, hypothesis tests based on these distributions are
applied in section 3.4.1 to accept or reject the assumption that the temporal properties
of the HF channel are spatially homogeneous across a very wide aperture antenna array.
Section 3.4.2 analyses the sample spatial covariance matrix of the received signal modes
to determine whether a stationary statistical model is suitable for representing the spatial
properties of the HF channel over a period of a few minates. This section also quantifies
the degree to which the space-time second order statistics of the data can be deduced

from models of the spatial-only and temporal-only auto-correlation functions.

3.4.1 Validation of ACS distributions and spatial homogeneity

The validity of the theoretical sample ACS distributions derived in appendix A can be
ascertained by simulating many realisations of a complex Gaussian distributed random
process with known second order statistics. The sample ACS is evaluated for each reali-
sation so that for each component of the ACS it is possible to observe the statistical dis-
tribution of the sample by means of a histogram. The normalised histogram approaches
the true probability density function of the sample ACS as the number of realisations
tends to infinity, hence, for a large number of realisations the resulting histograms may
be compared directly with the theoretically derived probability density functions.

A first order Gaussian distributed stationary auto-regressive (AR) process was simu-
lated for the purpose of confirming the theoretically derived sample ACS distributions.
The auto-correlation function of the AR(1) random process z(t) coincides with the ex-
ponentially decaying model described in the previous section and realisations of z(t) are

relatively simple to generate by using the following recursive relation.
zt)=az(t-1)++1—|ef*n(t) , t=0,1,.,P -1 (3.36)

In Eqn.(3.36), @ is the AR(1) random process parameter which may be complex-valued
and is such that |a| < 1 to ensure the process is stable (i.e., with the pole inside the unit
circle). The term n(t) is a complex Gaussian distributed innovative white noise process

with the following second order statistics.
E{n(t)n*(t+ 1)} =6(1) , E{n(t)n(t+7)}=0 (3.37)

From Eqn.(3.36) and Eqn.(3.37) it can be shown that the statistically expected auto-
correlation function of the process z(t) is given by r.(7) = E{z(¢)z*(t + 1)} = a” for
r=0,1,..,Q — 1. In the simulation study, a total of 10,000 realisations of this random

process were generated with values of P = 10,000 and a = 0.99. For each realisation the
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Figure 3.1: Cumulative densities for the real part of the sample ACS 7,(7) for an AR(1)
process with a = 0.99, 7 = 20 and P = 10,000

sample ACS, denoted by 7.(7), was evaluated in the manner described by appendix A at
a number of lags 7 = 0,1,..Q — 1 with @ = 30.

A value of 7 = 20 was arbitrarily chosen as an example component of the sample
ACS to show a comparison between the cumulative density functions derived from theory
and those computed from the simulations. At a lag interval of 7 = 20, the statistically
expected value of the ACS is r,(20) = o®® = 0.818, and as the sample ACS #,(r) is
unbiased, this is equal to the mean value of the sample ACS 7,(20) when averaged over
an infinite number of realisations. Due to finite sample effects, the interrogated component
of the sample ACS #,(20) will in general be complex-valued so the cumulative density may
be presented either in terms of the real and imaginary parts or in terms of magnitude
and phase. Figures 3.1 and 3.2 show the cumulative densities obtained for the real and
imaginary parts of this component of the sample ACS. The theoretical curves in each
figure correspond to normal probability density functions with means determined by the
expected value of the ACS component and a variance given by the expressions derived
in appendix A. It is evident that the theoretical curves accurately match those obtained
by direct simulation. Figures 3.3 and 3.4 show analogous results for the magnitude and
phase cumulative distributions.

The Gaussian model of the HF channel temporal auto-correlation function was exper-
imentally confirmed by (Watterson et al. 1970) but it was not possible for the authors
to determine whether the parameters of such a model could be assumed constant for all
the receivers in a very wide aperture HF array. In this experiment the temporal auto-

correlation function of each signal mode was computed in each of N = 30 receivers by
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Figure 3.2: Cumulative densities for the imaginary part of the sample ACS #,(7) for an
AR(1) process with a = 0.99, 7 = 20 and P = 10,000
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Figure 3.3: Cumulative densities for the magnitude of the sample ACS 7,(7) for an AR(1)
process with o = 0.99, 7 = 20 and P = 10,000
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Figure 3.4: Cumulative densities for the phase of the sample ACS #,(r) for an AR(1)
process with a = 0.99, 7 = 20 and P = 10,000

averaging a sum of lagged products in 47 dwells of data collected over a period of about
4 minutes (i.e., the number of time-series samples per receiver was P = 47x256 = 12,032).
A total of @ = 30 consecutive temporal sample lags were evaluated in each receiver at a
lag spacing of 6 PRI (i.e., 0.1 seconds). Using all N = 30 sample ACS’s, the Gaussian
model parameters were estimated using the method described in section 3.3. The param-
eters which define the displacement and width of the Gaussian temporal auto-correlation
functions that provide the best fit to the different modes are listed in Table 3.1. The
power scaling factors associated with each of these models over different receivers will be
considered later when the spatial properties of the HF channel are analysed. Under the
null hypothesis of spatial homogeneity, the Gaussian temporal ACS model estimated for
a particular mode is assumed to have the same form, apart from possibly a power scaling

factor, across all N = 30 receivers.

Mode a b B;,Hz | Af, Hz
1E, —2.09 x 107% | 7 x 0.268 | 0.145 0.43
1F, —2.24 x 107 | 7 x 0.277 | 0.149 0.44
1F,(0) | —9.06 x 1075 | 7 x 0.294 | 0.095 0.47
1Fp(z) | —1.97 x 107* | 7 x 0.332 | 0.140 0.53

Table 3.1: Gaussian temporal ACS model parameters estimated for the different propa-
gation modes of the HF link.

The parameters B; and Af in Table 3.1 represent the Doppler bandwidth (the width of

Gaussian power spectrum) and mean Doppler shift (the displacement of Gaussian power
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spectrum) respectively. The mean Doppler shift is calculated as Af = 3/27 At where the
lag interval At = 0.1 since in the model 3 represents the change in phase per unit a lag
interval. The Doppler bandwidth is calculated as the inverse of the time interval for which
the magnitude of the Gaussian temporal auto-correlation function model drops by a factor
of 1/e, in mathematical terms B; = (At\/v&)‘l. It is noted that the mean Doppler shifts
estimated by this method are practically the same as those estimated for the same modes
by conventional processing methods in chapter 2. The Doppler bandwidths indicated in
Table 3.1 are of the same order as those measured in (Shepherd and Lomax 1967) and
(Watterson et al. 1970) on mid-latitude ionospheric paths.

Assuming that each of the estimated models represents the true temporal ACS of
the signal sampled in each receiver, it is possible to derive confidence bounds for each
point on the sample ACS by using the theoretical results validated earlier in this section.
For each point on the ACS, these confidence bounds specify the range of values which
are expected to contain a certain percentage of the sample ACS values for a random
process that is described by the assumed auto-correlation function model. Hence, if a
particular component of the sample ACS has a value which lies outside (say) the 90 percent
confidence bounds then there is strong reason to believe that the hypothesised model for
the ACS does not coincide with that of the data. If the sample ACS lies within the
confidence bounds then there is no strong reason to reject the hypothesised model which
may then be accepted.

Figure 3.5 shows the real part of temporal ACS model estimated for the 1E, mode
(solid line) as well as the upper and lower deciles (dashed lines) of the sample ACS
distribution associated with real component under this ACS model. A sample temporal
ACS for this mode is estimated from ezperimental data recorded in each of the N = 30
receivers, these ACS’s have been overplotted with a + symbol in Figure 3.5 after being
normalised by the power scaling factor e» estimated for each receiver n = 1,2,.., N.
Figure 3.6, in the same format as Figure 3.5, shows the results obtained for the imaginary
part of the temporal ACS corresponding to the 1E, reflection.

The oscillating behavior of the real and imaginary parts with respect to lag interval
is due to the mean or steady component of Doppler shift, the higher the mean Doppler
shift the higher the frequency of these oscillations. The rate of decay of the amplitude
in both the real and imaginary parts is a consequence of Doppler spread, the higher the
Doppler spread the faster the magnitude of the ACS falls with respect to lag interval.
Figures 3.7 to 3.12 show the results for the other modes in analogous fashion. In all cases,
the Gaussian temporal ACS model estimated for each mode agrees well with the sample
ACS’s derived for the corresponding mode in each of the N = 30 receivers.

On the basis of these results, it is evident that the there is no strong reason to reject
a Gaussian shaped temporal ACS model for HF signals reflected by a quiet mid-latitude
ionosphere. This is in agreement with the findings of (Watterson et al. 1970). Further-

more, the variability observed in the normalised sample ACS from one receiver to another
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Figure 3.5: Temporal auto-correlation function for real component of 1E, mode

is almost always contained within the confidence bounds calculated for the hypothesised
Gaussian model. This observation, which could not be made by (Watterson et al. 1970),
leads to the conclusion that there is no strong reason to reject the assumption of spatial
homogeneity for the mid-latitude HF channel. In other words, for a very wide aperture
antenna array spanning 2.7 km in length it has been demonstrated that the temporal ACS
of a HF signal reflected by a single ionospheric layer and received at different points along
the array can be described by a Gaussian model with the same mean Doppler shift and
Doppler spread parameters. Apart from a possible power scaling factor these results sug-
gest that the temporal second order statistics of the investigated mid-latitude HF channel

are spatially homogeneous.

3.4.2 Spatial stationarity and space-time separability

The spatial properties of the HF channel are analysed by forming the sample spatial
covariance matrix R, of the array data for each of the reflected signal modes. As described
in section 3.3, it is of interest to study the behavior of the correlation coefficient as a
function of both receiver spacing and absolute position over the array as well as the
spatial structure of the mean wavefront arising for each propagation mode. A model
for the correlation coefficients seen by a very wide aperture antenna array has not been
rigorously verified by previous experimental data analysis. Similarly, the plane wave model
often assumed for the mean wavefront of a HF signal reflected by a single ionospheric layer
has not been experimentally confirmed by formal statistical tests.

Under the spatial stationarity assumption, the correlation coefficient between different
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Figure 3.6: Temporal auto-correlation function for imaginary component of 1E, mode
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Figure 3.7: Temporal auto-correlation function for real component of 1 F, mode
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Figure 3.10: Temporal auto-correlation function for imaginary component of 1 F;(0) mode
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Figure 3.11: Temporal auto-correlation function for real component of 1 F;(z) mode
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Figure 3.12: Temporal auto-correlation function for imaginary component of 1F;(z) mode

receiver outputs only depends on receiver separation and not the absolute receiver posi-
tions within the array. If the HF channel is spatially stationary then the function which
describes the behavior of the correlation coeflicient with respect to receiver separation can
be estimated using Eqn.(3.30). In accordance with the mathematical models derived from
consideration of the physics in section 3.2, it is postulated that an exponentially decaying
function of receiver separation describes the behavior of the correlation coefficient. The
single parameter of this function is estimated for each mode as described in section 3.3
such that the analytic function provides a least squares fit to the measured data.

The N x N sample spatial covariance matrix R, used to compute the various correla-
tion coefficients was estimated from the array data using Eqn.(3.29) with N = 30 receivers
and P = 12,032 array snapshots recorded in 47 dwells over a period of approximately
4 minutes. For a separation of d receivers (equivalent to d x 84.0 metres) there are N — d
correlation coefficients which can be formed using the P = 12,032 array snapshots. It
should also be noted that the consecutive array snapshots used to form the sample spatial
covariance matrix are correlated and hence not statistically independent.

Figures 3.13 to 3.16 show the models estimated for the HF signals reflected by dif-
ferent ionospheric layers along with the associated confidence bounds (i.e., upper and
lower deciles ) calculated from the expression in Eqn.(3.31). A method for calculating
the number of independent observations or degrees freedom n in Eqn.(3.31) for a num-
ber of correlated observations was described in section 3.3. The actual estimates of the
correlation coefficients resulting from the data have been overplotted with a 4+ symbol in
each of the figures. It is noted that there are more points marked with a + at smaller

receiver separations because there are more pairs of receivers with such separations in
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Figure 3.13: Spatial correlation coefficients for 1E, mode

the array. This explains why there is only one point for the maximum spatial separation
which occurs between the first and last receiver of the array.

It is evident from Figure 3.13 that correlation coefficients estimated for the 1E, mode
are not well described by the postulated exponentially decaying stationary model of the
spatial ACS. This is not surprising because the array data processed in this case was
shown in chapter 2 to result from two quite distinct sporadic-E reflections which have
significantly different angles-of-arrival. The superposition of two different spatial frequen-
cies is expected to produce regularly spaced nulls in the spatial ACS, the first (imperfect)
null is evident at a receiver separation of approximately 1150 m and it appears that the
correlation coefficient is falling towards a second null slightly past 2500 m. In contrast
to the 1E, mode, the remaining modes are in very good agreement with the postulated
stationary model as the great majority of the measured points lie within the confidence
bounds. Hence, for single modes there is no strong reason to reject the spatially stationary
exponentially decaying model for the correlation coefficient.

The mean plane wavefront model assumes that the mean power of the signal is the
same in all receivers. The estimated power or variance of the signal may vary from
one receiver to another even if the model is valid due to either finite sample effects or
instrumental errors such as mismatches between the gains of different reception channels
in the array. Assuming the reception channels are well matched, the mean power of best fit
to all reception channels can be calculated in accordance with Eqn.(3.34) and is given by
the amplitude squared A? of the plane wave of best fit. The results derived in appendix A
can be used to calculate confidence bounds for the estimated power by using the temporal
ACS model of the particular mode being analysed. The temporal ACS models used in
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Figure 3.14: Spatial correlation coefficients for 1F; mode
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Figure 3.16: Spatial correlation coefficients for 1F;(z) mode

this analysis are those which were previously validated for each mode in section 3.4.1.

Figures 3.17 to 3.20 show the mean power of best fit (solid line), confidence bounds
(dashed lines) and the actual power estimated in different the receivers as “+” symbols
for each HF signal reflection. The 1F, and 1F,(z) reflections have a significant number
of measurements which lie outside the confidence bounds which suggests that the plane
wavefront model is not representative of the mean wavefront for these signals. In the
case of the 1E, reflection this is understandable due to the two modes which are actually
present, but for the 1 F5(z) mode this result is somewhat unexpected and indicates that the
spatial structure of the ionosphere which propagates this single magneto-ionic component
is relatively more disturbed than that which propagates the 1F; and 1F,(0) modes on this
occasion. This is supported by the fact that the correlation coefficient measurements for
this mode (Figure 3.16 ) are comparatively more spread than those of the 1F; and 1F;(0)
modes. The latter two modes satisfy the constant power condition of the mean plane
wavefront model; to validate this model it is also necessary to investigate the linearity of
the phase across the aperture.

The expected linear phase component of the spatial ACS is calculated by estimating
the mean direction of arrival 8 in accordance with Eqn.(3.34). In the spatial covariance
matrix, each column contains a spatial ACS with a different receiver chosen as the spatial
reference point. Since the spatial covariance matrix is Hermitian it follows that all of
the information is contained in the elements of either the upper or lower triangle of the
matrix including the main diagonal. It is therefore required to check whether the phase
progression exhibited by the elements in each column of either the upper or lower triangle

of the sample spatial covariance matrix coincides within a reasonable tolerance with the
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Figure 3.17: Power across aperture for 1E, mode

linear phase front of best fit. A reasonable tolerance is defined by the confidence bounds
chosen as upper and lower deciles of the phase distribution which can be calculated using
the same theory developed for temporal random processes in appendix A, as described in
section 3.3.

Figures 3.21 to 3.24 show the mean linear phase front (solid line), the confidence
bounds (dashed lines) and the phases estimated at different spatial lags and reference
receivers (“+” symbols) for each of the propagation modes. Unlike the power measure-
ments, more than N — 1 symbols appear in Figures 3.21 to 3.24 because each receiver in
the array may be designated as the spatial reference. In all figures the right vertical axis
shows the cone angle-of-arrival which depends on the slope of the linear phase-front, the
cone angle for a particular propagation mode is indicated by the intersection of a straight
line from the origin with the right vertical axis.

As for the power measurements, it should be kept in mind that phase measurements are
also affected by instrumental errors such as phase mismatches in the response of different
reception channels. Despite the potential existence of these mismatches it was assumed
that the receivers were identical and no allowance was made to tolerate the potential
influence of such errors by widening the confidence bounds. If the model is valid and such
errors are present then more than the expected number of measurements will lie outside
the confidence bounds calculated under the assumption of no errors. Hence, the presence
of phase (and/or amplitude) mismatches between the responses of the reception channels
will tend to favour the rejection of plane wavefront model.

It is clear from Figure 3.21 that the 1E, mode is far from having a planar phase-front,

this is expected due to there being two reflections with significantly different angles-of-
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Figure 3.21: Phase measurements across the aperture for 1FE, mode with different receivers
in the array used as the spatial reference
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Figure 3.22: Phase measurements across the aperture for 1/; mode with different receivers
in the array used as the spatial reference
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Figure 3.23: Phase measurements across the aperture for 1F3(0) mode with different
receivers in the array used as the spatial reference
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Figure 3.24: Phase measurements across the aperture for 1F5(z) mode with different
receivers in the array used as the spatial reference
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Mode b B,,deg | 8,deg | FA (%)

1E, | —0.0628 | 158 |22.20| 24.0
1F, |—00126| 032 |20.75 | 97.8
1F,(0) | —0.0141 | 0.36 | 20.48 | 98.9
1Fy(z) | —0.0483 | 1.22 |19.98 | 94.0

Table 3.2: Decaying exponential spatial ACS parameters estimated for the different prop-
agation modes of the HF link along with the fitting accuracy achieved by the associated
separable space-time ACS models

The separable model fitting accuracy measure represented by Eqn.(3.35) has been
computed by synthesising a space-time ACS model of the data using the estimated Gaus-
sian temporal ACS model and exponentially decaying spatial ACS model and assuming
separability of the space-time ACS for each mode. The fitting accuracy (FA) measures re-
sulting for the different propagation modes over 900 space-time lag points (i.e., 30 spatial
lags by 30 temporal lags) are also listed in Table 3.2. As expected, the space-time ACS
of the 1E, mode is not well represented by this separable model since the spatial ACS
model was previously rejected. The 1F; and 1F;(0) modes are very well represented by
the synthesised model indicating that for these modes the space-time ACS can be deduced
with good accuracy from a knowledge of the experimentally validated temporal-only and
spatial-only ACS. The 1F;(z) mode is well represented by the proposed separable model
but not as well as the two latter modes. This may be due to the more disturbed nature
of the 1F3(z) mode on this occasion as well as the mean plane wavefront model being
rejected for this mode.

Figures 3.25 to 3.32 graphically illustrate the matching between the model and sample
space-time ACS in terms of the real and imaginary components for each mode. Although
900 space-time lags were used to compute the fitting accuracy only 100 space-time lags
(10 spatial lags by 10 temporal lags) are shown in these figures to make the comparison
more clearly visible. The 10 lags chosen in each domain correspond to every third lag such
that the illustrated components are given by 7(z, 3) = #(3tAt,3jAd) for 4,5 = 0,1,...,9.
These lags have been stacked into a one-dimensional vector which is indexed by the
space-time lag index | = 7 x 10 + j. The almost exact representation of the sample
space-time ACS derived from experimental data by the separable model space-time ACS
in Figures 3.27 to 3.28 indicates that the second order statistics of single modes reflected
by the mid-latitude ionosphere can be well represented by a separable space-time ACS

model.

3.5 Chapter summary

Experimentally validated models which characterise the space-time statistical properties

of HF signals reflected by the ionosphere are useful for the purpose of optimising the
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Figure 3.25: Real component of space-time ACS for 1E, mode
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choice of operating frequency and signal processing strategy in HF array systems such as
OTH radar. A “good” signal model is one which can accurately represent the space-time
characteristics of the received signal modes in a concise and intuitive manner which is
directly applicable for the prediction of system performance.

Based on the theory which describes the reflection of high frequency radio waves from
an interface between an ionospheric plasma and free space, this chapter has developed a
physical model for the space-time second order statistics of signal modes reflected from
a single localised region of an ionospheric layer. By treating the reflection region as a
time-evolving and irregular diffraction grating for the incident HF signals, and by making
certain assumptions regarding the statistical properties of the irregularities at this rough
reflecting surface, it was possible to derive various analytical expressions for the space-
time auto-correlation function of the scattered signal received by an array of antennas on
the ground. Two auto-correlation function models were considered for experimental data
analysis, the amplitude envelopes of these analytical models were described by Gaussian
and exponentially decaying functions of spatial or temporal lag respectively while the
phase progression for both models was assumed to be linear.

The model parameters corresponding to particular signal modes were then estimated
from experimental temporal-only and spatial-only sample auto-correlation sequences. The
distribution of the sample ACS was also derived and computed on a case by case basis
to determine the significance of any departures between the estimated analytical model
and the experimentally derived sample ACS in both domains. Using formal statistical
tests, it was concluded that there is no strong reason to reject the validity of the Gaussian
temporal auto-correlation function model for individual modes sampled in all receivers
of a very wide aperture array. This suggested that the second order temporal statistics
of the measured mid-latitude HF channel were spatially homogeneous over dimensions
in the order of 2-3 km. It was also concluded that there is no strong reason to reject a
stationary spatial ACS model with an exponentially decaying amplitude envelope and a
linear phase corresponding to the mean plane wavefront angle-of-arrival when the received
signal is reflected from a single localised region within an ionospheric layer. In addition,
the space-time sample ACS corresponding to these propagation modes could be deduced
with a high level of accuracy from the estimated temporal-only and spatial-only ACS
models by assuming separability of the space-time ACS. The space-time statistical models
experimentally validated in this chapter may be used for the purpose of assessing HF
channel conditions as well as for simulating data for the design and evaluation of promising

array signal processing techniques.
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CHAPTER 4

Signal processing model

This chapter describes a signal processing model which represents the space-time charac-
teristics of narrowband HF signals propagated by the ionosphere. The signal processing
model may be used to generate space-time samples of the complex-valued wavefields pro-
duced by a superposition of multiple signal modes reflected by different ionospheric layers.
The fine structure of each signal mode is simulated in accordance with either the wave
interference model or as a realisation of a wide-sense stationary statistical model. The
validity of the above-mentioned deterministic and statistical HF signal models was ex-
perimentally confirmed in chapters 2 and 3 for time intervals which do not exceed a few

seconds and a few minutes respectively.

In practice it may required to estimate the model parameters from data which consists
of a superposition of different propagation modes which cannot be resolved in range.
The space-time MUSIC algorithm can be used to estimate the wave interference model
parameters from the resultant wavefield. In the stationary statistical model each mode
is represented by a “distributed” signal which is described by an angular and Doppler
power density function. The simplest power density functions are analytically defined by
a “mean” parameter which indicates the mean angle-of-arrival (or Doppler shift) of a mode
and a “spread” parameter which reflects the level of angular spread (or Doppler spread)
induced by the ionosphere. The joint space-time estimation of these density function
parameters is not straightforward when the wavefield consists of two or more unresolved
modes. A novel method which jointly estimates the mean and spread density function

parameters from a convoluted mixture of space-time distributed modes is proposed.

The literature review in section 4.1 summarises previous models used to represent
distributed signals in different fields and the parameter estimation techniques proposed
for these models. The multi-sensor signal processing model used for the HF environment
is described in section 4.2 and the space-time parameter estimation technique associated
with this model is presented in section 4.3. The effectiveness of the proposed parameter
estimation technique is demonstrated experimentally in section 4.4 using data which is

known to consist of a superposition of unresolved space-time distributed signal modes.
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4.1 Literature review

The background in section 4.1.1 explains the physical significance of coherently and inco-
herently distributed signal models and describes the conditions under which such models
may be encountered in practice. The literature survey in section 4.1.2 describes previous
work in the area of distributed signal models and parameter estimation, the latter is some-
times referred to as distributed source localisation. The specific research on distributed
source localisation undertaken in this chapter is summarised and related to previous work

in section 4.1.3.

4.1.1 Background

In many practical applications such as radar, sonar and mobile communications a dis-
tributed or diffuse source model may be more appropriate than a point source model
for describing the spatial properties of the received signals. A distributed source can be
thought of as possessing a spatial extent over some continuum of directions, the resultant
signal can be expressed as a superposition of infinitely many plane waves with different
angles-of-arrival spread over a continuous spatial distribution. This distribution is often
modelled by a symmetric spatial density function which is typically defined by a mean
angle-of-arrival parameter that corresponds to the centre of the distribution and a angu-
lar spread parameter which determines the spatial extent of the source about the mean
angle-of-arrival. Once the analytical form of this function is decided upon, the source
localisation problem reduces to one of parameter estimation where the angular spread
parameter must be estimated in addition to the mean angle-of-arrival for each source.

The space-time properties of a distributed signal received by a sensor array are strongly
dependent on the degree of correlation which exists between the complex amplitudes
of the wave components incident from different angles-of-arrival. Depending upon the
nature of the source énd reflection medium, the wave components or rays received over an
angular extent may exhibit varying degrees of correlation that ranges from fully correlated
(coherent waves) to completely uncorrelated (incoherent waves). The former is termed
a coherently distributed (CD) source and arises when there is no variation of the delay,
attenuation and reflection coefficient(s) associated with each ray path. In other words,
the properties of the reflection medium and source are static with respect to time. The
latter is termed an incoherently distributed (ID) source and arises if either the reflective
properties of the medium or the characteristics of the source changes in a random manner
with time.

The parametric localisation of CD sources is simplified by the fact that each source pro-
duces a perfectly coherent (time-invariant) wavefront that contributes a rank one compo-
nent to the spatial covariance matrix of the received array data. The wavefronts produced

by such sources generally have a non-planar structure which do not bare any resemblance
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to an array steering vector. Nevertheless, the shape of a CD source wavefront can be de-
duced from its spatial density function which is assumed to have a known parameterised
form. Ideally, there is a one-to-one mapping between the spatial density function parame-
ters and the corresponding CD source wavefront. The collection of distinct wavefronts or
“spatial signatures” evaluated over the spatial density function parameter domain is anal-
ogous to an array manifold and can be used to uniquely localise CD sources. Providing
the number of independent CD sources is less than the number of sensors, it follows that
the spatial covariance matrix estimated from the received array data can be partitioned
into signal and noise subspaces. By generating the collection of array response vectors in
accordance with the adopted CD model, it is possible to use methods based on MUSIC
to jointly estimate the mean angle-of-arrival and spread parameter for each CD source.

The parametric localisation of ID sources is relatively more difficult because random
changes in the relative amplitude and phase of the different wave components produces
wavefronts with a random spatial structure. An ID signal can alternatively be viewed
as resulting from an infinite number of statistically independent sources incident on the
array from a continuum of directions defined by the spatial density function. Unlike a
CD source, one ID source occupies the full rank of the spatial covariance matrix which
implies that the noise subspace becomes degenerate or equal to the zero vector. When
the point source assumption is violated in this manner the application of MUSIC, and
other direction-of-arrival estimators based on a subspace of an array covariance matrix,
can lead to severe degradations in estimation performance. Moreover, existing subspace
methods for direction-of-arrival estimation cannot be used to infer the angular spreads of
superimposed ID sources.

In most practical applications the random motion of the propagation medium (e.g.,
reflection of radio signals by a changing ionosphere) or the relative motion between the
source(s) and receiver array (e.g., airborne phased array radar) is prevalent so an ID source
model is often more appropriate than a CD source model. Although the estimation of
angular spread for ID sources is of paramount importance in many practical systems, little
attention has been paid to the estimation of ID source parameters in the framework of
subspace methods. Perhaps the major factor which has limited research in this area has
been a pre-disposition to use the data covariance matrix as the starting point when its
structure is not suited to the partitioning of (full rank) ID sources into signal and noise
subspaces.

For the purpose of ID source localisation, this research steers away from the data
covariance matrix and investigates the use of alternative matrix structures which con-
tain all the estimated second order statistics of the array data. This chapter proposes
alternative matrix structures for which the mean and spread parameters of an ID source
collapse into a single subspace dimension. For a moderate number of ID sources the noise
subspace of such matrices is of finite rank, unlike that of the covariance matrix which is

degenerate. The existence of a noise subspace allows MUSIC-like parameter estimation
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methods to be developed and applied to estimate both the mean and spread parameters of
multiple ID sources. The proposed method may be extended to estimate the parameters
of space-time ID sources, the effectiveness of this method is demonstrated by application

to experimental space-time data records of ionospherically-propagated HF signals.

4.1.2 Distributed signal models and parameter estimation

Over the last two decades array signal processing research has strongly focused on the
problem of estimating the direction-of-arrival of plane wave sources incident on an array
of sensors in the presence of additive noise (Krim and Viberg 1996). Maximum likelihood
(ML) estimators are generally considered optimal but the associated criterion function is
non-linear and must be minimised over a multi-dimensional parameter space (Ottersten,
Viberg, Stoica and Nehorai 1993). Although the ML estimator is expected to provide very
accurate direction-of-arrival estimates when the presumed model is obeyed by the data, it
requires the use of iterative search procedures which are computationally intensive. These
iterative searches may not always converge, and even if they do, the parameter estimates
are not guaranteed to reach their global optimum according to the ML criterion function.

The MUSIC algorithm proposed by (Schmidt 1979) is a spectral technique which is
more attractive than the ML method from a computational point of view but solves for the
signal parameters separately rather than jointly. When the sources are uncorrelated and
the number of independent snapshots is large the performance of the MUSIC algorithm
is comparable to that of the ML estimator (Stoica and Nehorai 1989). However, in the
presence of correlated (or coherent) sources the computational advantage of the MUSIC
algorithm is traded off against degradations in estimation performance with respect to
the ML method. Thus, one of the main aims of research in this area has been to retain
as closely as possible the estimation accuracy of the ML method using a procedure which
is not as computationally intensive.

In the case of uniform linear arrays, a computationally attractive method for achieving
similar performance to the ML estimator is known. The Iterative Quadratic Maximum
Likelihood (IQML) method originated by (Besler and Macovski 1986) is based on a re-
parameterisation of the orthogonal projection matrix in the ML criterion function which
allows the minimisation to be performed as a series of quadratic optimisation problems.
An improvement over IQML which exploits the weighted subspace fitting (WSF) algo-
rithm of (Viberg and Ottersten 1991) was introduced by (Stoica and Sharman 1990) and
is known as the Method of Direction Estimation (MODE). The idea is to replace the
sample covariance matrix in the ML criterion function with an optimally weighted signal
subspace and to apply IQML for minimisation. The important advantage of using the
rank-truncated form of the sample covariance matrix is that the MODE (or root-WSF)
algorithm is no longer an iterative procedure as it can be shown that after the second

IQML pass the estimates have the asymptotic accuracy of the true optimum (Krim and
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Viberg 1996). Simulations in (Stoica and Sharman 1990) suggest that MODE performs
better than MUSIC and closely to the ML estimator, but unlike the latter, MODE is
essentially in closed-form and is thus a strong candidate for the “best” method for ULA’s.

All of the above-mentioned methods are based on the data covariance matrix and rely
on the point source assumption which does not hold in many practical applications. As
a result, none of these methods are directly applicable for the localisation of distributed
sources in their strictly presented form. In the special case of CD sources, the MUSIC
estimator was modified by (Valaee, Champagne and Kabal 1995) to estimate the mean
angle-of-arrival and spread parameter of such sources. The main motivation for using
MUSIC as a CD source localiser is that number of search dimensions equals the number
of parameters used to describe the spatial density function of each source irrespective
of the number of sources. For the corresponding ML localiser, the number of search
dimensions is equal to this number of parameters multiplied by the number of sources so
an exhaustive search can quickly become prohibitive. A polynomial rooting approach for
the localisation of CD sources which avoids the calculation of a spectrum was proposed by
(Goldberg and Messer 1998). This method uses a truncated Fourier series to approzimate
the collection of spatial signature vectors on the CD source “manifold” and relates the
estimated parameters of this series to those of the assumed source spatial density function.

A Gaussian shaped spatial density function was assumed by (Trump and Ottersten
1996) to describe the angular spread of ID sources which arise in the field of mobile
communication. The ML estimator for the mean and variance of the Gaussian envelopes
was developed but it was found that the Newton-type search algorithm associated with
this estimator required accurate initialisation and imposed a high computational load.
An alternative estimator which performs an exhaustive search for the parameters of the
model covariance matrix which yields the best least squares fit to the sample covariance
matrix was also proposed but the search dimension for this algorithm grows as twice the
number of sources. Another least squares spatial covariance matrix fitting approach was
studied by (Gersham, Mecklenbrauker and Bohme 1997) where the “coherency loss” or
angular spread in the spatial density function was assumed to be of identical form for all
sources regardless of their mean angle-of-arrival. In the HF environment, and perhaps
in other practical applications, this is an unrealistic assumption since the characteristics
of the ionosphere are known to depend on the particular layer affording propagation as
well as the geographical region of reflection. Another drawback of this approach is that
computationally expensive genetic algorithms were needed to solve the highly non-linear
parameter estimation problem.

More economical MUSIC-like estimators for ID source localisation were investigated by
(Meng; Stoica and Wong 1996) and (Valaee et al. 1995). Both methods are based on the
use of the array covariance matrix which does not strictly contain a noise-only subspace
in the case of ID sources. Consequently, both methods require certain approximations

and assumptions to hold in order to yield satisfactory parameter estimation performance.
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The critical assumption is that the angular spread of all sources is small and that most
of the signal power is concentrated into a small number of eigenvalues of the spatial
covariance matrix. This is referred to as the effective dimension of the signal subspace
and from it can be derived a “quasi-noise only” subspace. The main idea is to form a
set of model spatial covariance matrices over a grid of mean and spread ID source model
parameters, the quasi-noise subspace of the model matrices is then projected against the
quasi-signal subspace of a sample covariance matrix and the result inverted so that the
ID source parameters can be localised at points on the grid which correspond to the most
prominent local peaks. ’

A class of statistical signal models which have received much attention in the field of
time series analysis are so-called rational or pole-zero system models, these models have
traditionally been used to parametrically describe the power spectral density of random
temporal processes. The most general model of this class is known as the auto-regressive
moving-average ARMA(p, q) model which contains p poles and g zeros, as described by
(Marple 1987). Naturally, such a model can be also be used to represent the angular
power spectrum of distributed sources received by antenna arrays. In fact, a first order
auto-regressive (AR) model was proposed by (Abramovich et al. 1996) to represent spatial
density function of ionospherically-propagated HF signals. When two or more independent
sources with first order AR spatial density functions are present the resultant signal is
statistically described by a more general ARMA model. More specifically, it can be
shown that the superposition of M independent AR(1) sources produces a signal which
is statistically described by an ARMA(M, M — 1) model where the M poles are given by
the M complex AR(1) coefficients which parameterise the ID source spatial densities. It
is apparent that in this case ID source localisation can be couched as an ARMA model
identification problem.

Maximum likelihood parameter estimation techniques for ARMA model identification
exist (Kay 1987), but even for one dimensional data these iterative procedures impose
significant computational burdens and their convergence is not guaranteed. A computa-
tionally attractive ML estimator for the family of ARMA(M, M — 1) models is known
(Kumaresan, Scharf and Shaw 1986), but this procedure is designed to operate on the
deterministic impulse response of the process rather than a statistical realisation. The
impulse response of the mechanisms which govern the time-evolution of the transmission
medium (e.g., the ionospheric channel) is not available in practice, only statistical realisa-
tions of the process which cause angular spread can be measured by sensor arrays. Under
these circumstances, it is most common to estimate the model parameters from the data
sample auto-correlation sequence (ACS) (i.e., the estimated second order statistics).

Although a sample ACS vector of finite length is not a sufficient statistic for ARMA
parameter estimation (Arato 1961), the popularity of sub-optimum approaches based on
this form of data reduction stems from the relatively simple linear or quadratic equations

which need to be solved to estimate the model parameters. It was found by (Bruzzone
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and Kaveh 1984) that the statistical information preserved in the sample ACS, relative to
that in the raw data, depends on the lags included and the characteristics of the ARMA
process. The authors concluded that the sample ACS is best suited to the estimation of
narrowband ARMA processes and that to obtain near optimum (maximum likelihood)
performance they recommended the use of many lags as the increased statistical variability
associated with extending the set of estimation equations is outweighed by the information
gain accompanying the inclusion of later lags.

The extended Yule-Walker equations are the backbone of many ARMA parameter
estimation techniques and make use of the recursive relation which the sample ACS is
known to satisfy asymptotically under the assumed model. This recursive relation is com-
pletely defined by the AR parameters only so the over-determined Yule-Walker technique,
examined by (Cadzow 1982) and (Porat and Friedlander 1985), uses the unbiased ACS es-
timates to estimate the AR parameters first. Once the AR parameters are estimated, the
MA parameters can be estimated from a residual time series obtained by filtering the orig-
inal data sequence with a filter whose transfer function is the inverse of the estimated AR
transfer function, see (Marple 1987). This non-iterative least squares procedure adopted
for ARMA model identification estimates the AR and MA parameters separately rather
than jointly and is therefore sub-optimal even with respect to the sample ACS on which
it is based.

To best utilise the statistical information preserved in the sample ACS it is neces-
sary to simultaneously estimate the ARMA model parameters which provide the best
(least-squares) fit to the unbiased sample lags. As found by (Beex and Scharf 1981), this
approach leads to non-linear equations so the authors suggested a modified squared error
criterion which was mathematically more tractable and allowed the parameter estimates to
be derived analytically using a technique similar to Prony’s method (de Prony 1795). How-
ever, a computationally attractive procedure which jointly solves for the ARMA model
parameters that yield the exact least squares fit to the unbiased sample ACS is yet to be
presented for either one or two dimensional data. This gap in current research is addressed
for the special case of ARMA(M, M — 1) models in this chapter.

4.1.3 Significance of research relative to previous work

The distributed source model proposed by (Abramovich et al. 1996) is the preferred
signal model for describing the second order statistics of ionospherically-propagated HF
signals for a number of reasons. The parameters of this model can be chosen to select
between CD and ID sources although in the HF environment ID source models are more
relevant. For ID sources the adopted pole-zero modelling style is able to approximate a
wide variety of power density functions, albeit at the expense of increasing the number
of parameters. Other major advantages of such a model include the ease with which it

can be used to generate realisations of the statistical processes on a digital computer and
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the mathematical tractability associated with linear time-invariant systems. A potential
disadvantage is that such a model does not take into account any information which may
be contained in the higher order statistics of the data

The simplest ID source model involves one mean and spread parameter per source per
dimension, in the spatial dimension this model represents the signal complex envelope
across receivers as a first order auto-regressive process which corresponds to a Lorentzian
shaped spatial density function. If M statistically independent signals with Lorentzian
spatial distributions are present, the superposition of such signals received by a sensor
array can be statistically described by a spatial ARM'A(M, M — 1) model. In the HF
environment these signals may correspond to M statistically independent propagation
modes which originate from a single source. In addition, the generalised model is two-
dimensional and can represent angular spread as well as Doppler spread imposed on
individual propagation modes by the different ionospheric layers. Although such a model
is quite versatile and may be appropriate in other fields of application no parameter
estimation method was supplied in (Abramovich et al. 1996).

In this chapter an explicit connection is made between the problem of jointly estimating
the ARMA(M, M — 1) parameters which yield the best least squares fit to an unbiased
sample ACS and the problem of estimating the parameters of superimposed exponentially
damped complex sinusoidal signals in additive noise. Although the problems are shown
to be mathematically equivalent an important distinction exists between the two. In
the latter, parameter estimation is performed on the raw data which is contaminated
by additive noise, whereas in the former, the estimation is performed on the sample
covariances of the data which do not equal the expected covariances as a result of statistical
noise (i.e., finite sample effects). As an aside, both forms of “noise” can be treated as
zero-mean and Gaussian distributed, this holds asymptotically for the sample lags by the
central limit theorem and is an assumption often made for the raw data.

An exact least squares estimation procedure exists for superimposed exponential sig-
nals in noise, see (Besler and Macovski 1986), but this method has not previously been
exploited for the purpose of jointly estimating the parameters of an ARMA(M, M — 1)
model from one or more statistical realisations of the process. The cross-application of
this mathematical technique leads to a computationally attractive method for optimally
estimating the parameters of the family of ARMA(M, M —1) processes from the unbiased
sample ACS. In addition, the similarity between the two problems is traced further to
arrive at a matrix structure which allows distributed sources arising from this model to be
confined to a single subspace dimension. Providing the number of distributed sources is
less than the number of lags, a noise subspace can be shown to exist for such a matrix and
this in turn strictly permits the application of a generalised MUSIC spectral estimator
which is introduced in this chapter as matched-field (MF)-MUSIC. The term matched-
filed is used here because the manifold is parameterised by the the signal angle-of-arrival

and Doppler shift as well as the statistical properties of the propagation channel(s).
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The computationally attractive method used to solve the one dimensional ARMA (M, M —
1) parameter estimation problem is similar to MODE, the main distinction being that the
the poles of the distributed signals are not constrained to lie on the unit circle as they
are for discrete (plane wave) signals. For the case of two-dimensional (space-time) data,
there is no direct generalisation of the MODE closed-form algorithm due to the lack of a
fundamental theorem of algebra for polynomials in more than one variable. However, the
MF-MUSIC algorithm can be extended to two dimensions to solve the space-time param-
eter estimation problem. Like the traditional MUSIC algorithm, this extension entails an
increase of the search space dimension by a factor of two which for MF-MUSIC involves
two mean and spread parameters per source. This four-dimensional manifold is not desir-
able from a computational standpoint and justifies the search for faster two-dimensional
(2-D) parameter estimation algorithms based on prediction polynomials and the IQML

idea.

The two-dimensional modal analysis problem was studied by (Clark and Scharf 1994);
starting from the ML definition they solved the problem by using two polynomials referred
to as the prediction polynomial and the interpolating polynomial. The modes in the first
dimension were determined by finding the roots of the estimated prediction polynomial
while the corresponding modes in the second dimension were determined by evaluating
the estimated interpolating polynomial at each root estimated in the first dimension.
This technique was motivated because when the 2-D problem is separated into two 1-D
problems the roots have no particular ordering and the authors did “not know how to
pair the modes between dimensions”. Although their procedure avoids the pairing step,
the existence of the interpolating polynomial requires that all of the modes in one of the
dimensions are distinct and that this dimension is known apriori. If the modes become too
closely spaced the magnitude of the derivate of the interpolating function may increase

without bound and this can lead to numerical instability.

Other methods which decompose the inherently 2-D problem into 1-D problems have
been developed, see (Sacchini, Steedly and Moses 1993) and (Hua 1992), but none of
these estimators are minimisers of the 2-D least squares criterion function. This chapter
proposes a novel method which splits the 2-D least squares problem into two 1-D least
squares problems which can be solved using the computationally efficient IQML technique.
In addition, a statistically consistent method for pairing the modes estimated in each
dimension is described. The proposed method can be used to jointly estimate the 2-D
ARMA(M, M — 1) model parameters in optimal (least squares) fashion from the sample
space-time ACS or for the purpose of two-dimensional modal analysis based on maximum

likelihood.
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4.2 Space-time signal processing model

The purpose of this section is to describe the signal processing model for space-time
distributed HF signals reflected by the ionosphere. Once this model has been described in
mathematical detail in section 4.2.1 the second order statistics in the form of a space-time
auto-correlation sequence (ACS) are derived in section 4.2.2 for commonly encountered

cooperative and uncooperative HF signal sources.

4.2.1 Space-time distributed HF signai model

The narrowband HF channel model originally developed by (Watterson et al. 1970)
for single receiver systems was extended in the work of (Abramovich et al. 1996) to
model ionospherically-propagated HF signals received by antenna arrays. This multi-
sensor model represents the composite N-dimensional antenna array snapshot vector x.(t)
recorded at the k** range cell in the ¢** PRI and as a superposition of M signal modes
which propagate from source to receiver along different ionospheric paths and additive
background noise. The contribution made by the m** signal mode to the composite array
snapshot is denoted by sg . (t) for m = 1,2,.., M while the additive noise component is
represented by the term n(¢). The range and PRI indices extend from k = 0,1, .., K — 1
and t = 0,2,.., P — 1 respectively for the data collected during one coherent processing
interval (CPI).

Sk, () + Me(t) = ZA S(0m)cm )kt Tm) > £ () (41)

*

M

m=1

The complex-valued scalar function gi(t, 7m) is the received source waveform which results
after the transmitted signal is delayed by the m** mode transit time 7,,, deramped, filtered,
digitised and range processed at a reference receiver designated as the first receiver (n = 0)
in this case. This waveform is normalised to have unit variance as the root mean square
(RMS) amplitude of the m** mode is denoted by A, and hence the power of the mt* mode
is A2 . Note that A,, includes the attenuation incurred due to path distance loss (i.e., the
inverse square law), ionospheric absorption as well as polarisation mismatch between the
incident wave and receiving antenna.

As the time delay 7,, associated with each propagation mode varies with time due
to ionospheric movements, the value of 7, is defined as the time delay associated with
the path taken by the m*™ signal mode between transmitter and reference receiver at the
beginning of the CPI (¢ = 0). The linear component of time-delay variation of a mode
during the CPI is taken into account by the constant Doppler shift term e/274/mt while
random time-delay variations about this component are modelled by a Doppler spread
term c,,(t) to be described later.

The characteristics of the received source waveform g, (¢, 7,,) depend on the interaction
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between the transmitted waveform and the method of reception which involves FMCW
deramping, filtering, digitisation and range processing. The space-time distortions im-
posed by the ionosphere on a signal mode are taken into account by various other terms
in Eqn.(4.1), hence the form of gi(¢,7,) is independent of any propagation effects. In
essence, gi(t, Tm) is the normalised (unit power) waveform which is received if each iono-
spheric layer were considered as a perfect and time-invariant mirror to the incident HF

signal.

When the transmitted waveform is a synchronised replica of the deramping FMCW
waveform the relationship between the transmitted waveform and the reception process is
identical (excluding propagation effects) from one PRI to another. In this case, gi(t, )
is a deterministic function of range k = 0,1,.., K — 1 which is independent of slow-time

(t) and given by,

9e(tyTm) = W(fplk — T fb]) | (4.2)

where W( f) is the normalised Fourier Transform of the range processing window function,
fo is the FMCW signal bandwidth and f,, is the linear FM pulse repetition frequency. Note
that a time-delay 7, on a synchronised FMCW waveform produces a frequency of f,7, fs

after deramping and that range index k corresponds to an actual frequency of f,k Hertz.

When the transmitted waveform originates from an uncooperative source there is no
fixed or predictable relationship between the emitted interference and the deramping
waveform so gi(t, 7,) is modelled as a statistical process with respect- to both range cell
k and slow-time . If the transmitted waveform is broadband interference of bandwidth
greater than the deramping signal bandwidth f;, the received waveform gi(t,7,,) can be

modelled as white noise with the following correlation properties.

E{gi(t, mm)gi(t's Tmr)} = sinc(fo[rm — Tr])8(k — k')6(t — t') (4.3)

sinz
T

The sinc function (£2£) used to describe the inter-mode correlation coefficient implicitly
assumes that the power spectral density of the interference is flat over the receiver band-
width. The correlation between neighbouring ranges & introduced as a result of the range

processing window function has also been ignored.

The terms Af,, and 6, in Eqn.(4.1) denote the mean Doppler shift and cone angle-
of-arrival of the m?* mode respectively. Note that the mean Doppler shift manifests
itself as a regular phase progression e/>*A/mt across PRI, in accordance with the results
of chapter 3 this progression is assumed to be the same in all receivers for a particular
mode.- The spatial properties of the m* signal mode are partly modelled by the N x N
diagonal matrix S(6n) which represents the mean wavefront. For far-field sources and a
narrowband uniform linear array the mean wavefront is modelled as the plane wavefront

so this matrix contains the steering vector elements corresponding to the mean cone
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angle-of-arrival 6, along its main diagonal.

S(0) = diag[eﬂ"ﬂ“ﬁ—d!Si“""']f:l___'o1 (4.4)
In Eqn.(4.4), Ad is the distance between adjacent antenna sensors (i.e., the separation
between sub-array centres) and A = ¢/ f. is the carrier wavelength. If the mean wavefront
cannot be defined as the plane wavefront, as in the case of a non-linear array or when
array manifold errors are present, it is possible to define a more general mean wavefront as
Sm = I'»S(0),) where 'y, is an N x N diagonal matrix which modifies the ULA steering

vector for the m** mode accordingly.

The statistical characteristics of the ionospheric channel are modelled by the complex
N-dimensional vector ¢, (t) for each mode m = 1,2,.., M. Variation of the individual
elements in ¢, (t) with respect to slow-time (¢) represents the temporal gain and phase
modulation sequence induced on the m** mode by the ionosphere to produce Doppler
spread in the different receivers. Changes in the gain and phase relationship between the
elements of c,,(t) with respect to slow-time (t) represents the time evolution of the spatial

modulations imparted by the ionosphere to produce angular spread on the m* mode.

The two-dimensional (space-time) model proposed by (Abramovich et al. 1996) adopts

a multi-variate scalar type auto-regressive (AR) process to generate the random vector
cm(t).

Cm(t) = D omi(At)em(t — iAL) + fimm(t) (4.5)

=1

The scalar AR coefficients oy, ;(At) for i = 1,2, .., I and the normalising constant u,, de-
fine the Doppler spectrum characteristics of the m** mode for a sampling interval of At/f,
seconds. The slow-time (¢) dependent random vector ¢, (t) is assumed to be invariant over
the PRI which is justifiable in cases when the pulse repetition frequency f, is much greater
than the Doppler bandwidth B;(m) induced by the ionosphere on all the m = 1,2,... M
signal modes. For typical mid-latitude ionospheric propagation channels, the coefficients
am1(At) = 1 and o — 0 Vi=2,3,..] when At/ f, < 0.1 seconds (Abramovich et al.
1996). If the bandwidth parameter Bi(m) is defined as the inverse of the time interval
which it takes for the temporal ACS of the m** mode to drop by a factor of 1/e then for
a first order (I=1) AR model representation it follows that am,i(At) = e=Be(m)At/fp,

Similarly, spatial fluctuations of the channel causing angular spread may be described

by the simplest (first order) AR process;

Erl(t) = Brm(AD)ERTI(E) + VimYm () (4.6)

where ,[,'I](t) denotes the nt* element of the vector ¢,(t) and v, = \/1 — [Bn(Ad)]? is

the scaling term associated with a first order AR process of unit power. The unit power
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assumption is in accordance with the previous definition of A,, which for an AR(1) tem-

poral process also requires that gm = /1 — |a,(At)[? where o, (At) has been replaced

by am(At) for notational convenience.

The spatial correlation coefficient defined as 8,,(Ad) depends on the inter-sensor spac-
ing Ad, the angular bandwidth induced by the ionosphere on the m** mode B,(m) as
well as the mean cone angle-of-arrival 8,,, although only the Ad dependence is explicitly
shown. More specifically, Bm(Ad) = e~ B:(m)1=sinbm|ad where B,(m) is defined in anal-
ogous manner to By(m) for a boresight arrival (6,, = 0). Note that as the mean cone
angle-of-arrival tends to endfire (6,, — 0) the perceived angular spread is reduced by a

factor of |1 —siné,,| — 0 as at endfire only temporal fluctuations of the wavefront can be
observed (Abramovich et al. 1996).

The driving noise process ¥m,.(t) is a zero-mean complex Gaussian process having
independent identically distributed (i.i.d.) real and imaginary parts and the following

correlation properties.

E {’le,nl(tl)'ﬁn,ng (t2)} = §(my — m3)d(n1 — na)d(t — t3) (4.7)

This description of the driving white noise process is in accordance with the assump-
tions of Rayleigh fading and mutually independent modes, as experimentally verified by
(Watterson et al. 1970). The additive noise term n(t) is due to a combination of internal
receiver noise and background noise in the HF environment, this term is in no way related
to the driving white noise vy, »(t) used to generate the complex space-time HF channel
distortions embodied in the vector ¢, (t). The additive noise is assumed to be uncorre-
lated with the received mode waveforms gi(t, 7,,) and complex Gaussian distributed with

the following second order statistics.

E{l(nl" ()} = 026(k - K)5(t — ¢)8(n — n') (4.8)

A difference between the simplest (first order AR) version of this model and the
Watterson model is that in the time domain the amplitude envelope of the auto-correlation
function is a decaying exponential rather than Gaussian shaped. Nevertheless, the order of
temporal AR process used to describe the Doppler power spectrum of different propagation
modes can be extended so as approximate a Gaussian function of frequency, or alternative
spectral density functions, to the desired level of accuracy. The spatial homogeneity,
stationarity and space-time separability of the above-mentioned model (to be derived
later) are in agreement with the previous experimental measurements made in chapter 3.
This includes the amplitude envelope of the spatial auto-correlation function which was

shown to be consistent with exponentially decaying function of distance.



136 CHAPTER 4. SIGNAL PROCESSING MODEL
4.2.2 Space-time second order statistics

The scalar-type multi-dimensional AR process used to model the random HF channel
distortions implies that in each receiver the time series of distortions is generated with
the same time-invariant AR coeflicients. The time-invariance of these coefficients means
that the resulting process is temporally stationary while the same AR coefficients in each
receiver implies that the second order statistics are spatially homogeneous or independent
of receiver location. Similarly, the spatial AR coefficients used to model the angular
spread of each propagation mode are time-invariant which gives rise to a time-sequence of
spatially stationary array snapshots. The space-time separability and hence space-time
stationarity of this model will be derived later.

The space-time auto-correlation sequence (ACS) of the statistically stationary com-
posite snapshots xx(¢) generated by the multi-sensor HF channel model in Eqn.(4.1) is
given by,

. ;= 0,.., L~ 1
re(iAt, jAd) = E{x()xl (¢ - 1)) { ' ! (4.9)

3=0,..,L,—1
where ri(1At, jAd) is the expected correlation between samples of the received signal
taken 1At/ f, seconds apart in the k** frequency bin (range cell) at receivers spaced by
jAd metres. From Eqn.(4.1) the space-time ACS ri(iAt, jAd) can equivalently be written

as,
ru(iAL, jAd) = ZE{S["] (sl (¢ = 1)} + 026(1)8(4) (410)

since the different signal modes s[ "l | (t) are statistically independent and the uncorrelated
additive noise n; ](t) is both spatxally and temporally white. For each signal mode, the
space-time ACS ri .. (1At, jJAd) = E{s["] (t)s [";f]*( 1)} can be expanded further using
Eqn.(4.1),

rem(iAt, jAd) = A2 25 wi, E{ge(t, Tm)gi(t — 4, Tm)} E{c(t)cn=M(t — i)} (4.11)

mTm - m

where z, = e/*™/m and w,, = gi2rXisindm  The separability of the expectation in
Eqn.(4.11) follows from the statistical independence of the random HF channel modu-
lation sequence cm](t) and the transmitted waveform g (¢, 7).

The term E{gi(t,7m)gi(t + ¢,7m)} depends on the type of waveform emitted by
the source. When the transmitted waveform is a synchronised FMCW it follows from
Eqn.(4.2) that E{gk(t, 7m)gx(t — %, Tm)} = W (folk — 7 f3))|%. If the emitted waveform is
broadband interference then E{gx(t, Tm)gi(t—1, Tm)} = (z) can be derived from Eqn.(4.3).

In the FMCW case this term is a constant with respect to temporal lag (i) so the

space-time ACS of the received mode 7k, (1A, jAd) is directly related to the space-
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time ACS of the fluctuations imposed by the ionospheric layer which propagates it (i.e.,
E{cgﬁ](t)c%_ﬂ*(t —1)}). Due to the relatively discrete nature of |W(f,[k — T f3])]? in the
range domain k, the space-time ACS corresponding to different propagation modes can
often be isolated into different range cells and analysed separately.

A non-cooperative broadband interference source only allows the spatial characteristics
of the HF channel to be observed since the space-time ACS has an expected value of zero
for all temporal lags greater than zero. Although non-cooperative broadband interference
waveforms do not allow individual modes to be separated in range and studied individually,
they are often present in large numbers and allow certain statistical properties of many
different ionospheric circuits to be investigated.

When first order AR processes are used to generate the samples of ck:](t) according
to Eqn.(4.5) and Eqn.(4.6), it is shown in appendix B that the space-time ACS of the

random fluctuations is separable and given by the following product,
E{ch(t)cl " (t — i)} = of,(At)BL(Ad) (4.12)

where a,(At) = e~ BmAYf and B,,(Ad) = e~ Bs(mli=sinfmlAd 510 the coefficients of the
temporal and spatial AR(1) processes respectively. In summary, the space-time ACS of
the received data which may consist of multiple modes can be represented by the following

analytical model,

M
ri(iAt, jAd) = > E{gk(t, Tm)g5(t — iy Tm) Yhm2iyw), (4.13)

m=1

where h,, = AZ is the power of the m** mode, 2,, = a(At)e?"2/m is the temporal pole
incorporating the regular component of Doppler shift and w,, = B(Ad)ei?"5 sinbm is the
spatial pole incorporating the mean DOA 4,,.

In the discussion so far it has been assumed that each mode reflected from a certain
ionospheric layer corresponds to a particular value of m = 1,2,.., M. However, there is
no reason why a single mode cannot be modelled by more than one component or value
of m. For example, two or more components may represent different rays in the wave
interference model providing the spatial and temporal poles of the AR(1) processes used
to generate each ray are on the unit circle (i.e., monochromatic plane waves are produced
by the model when |zm| = |wm| = 1 since the AR(1) driving noise normalisation factors
fim = Vm = 0 under this condition and this effectively blocks the introduction of statistical
variations).

Another physical interpretation arises if the spatial and temporal poles of the com-
ponents which model a single ionospheric mode are not on the unit circle. This scenario
might occur when the angular and Doppler power density functions of a distributed mode
differ significantly from the Lorentzian shape. In this case, multiple components may be

required to accurately model the features of the observed power densities such as Gaus-
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sian shaped functions for instance. In signal processing terms, the value of M may be
regarded as the number of terms in the modal decomposition of the observed space-time
ACS without regard to the physical interpretation. When the individual modes cannot
be resolved in range and analysed separately it therefore becomes relatively more difficult

to attribute certain values of m and the associated parameters to particular signal modes.

4.3 Parameter estimation

-

This section introduces spectral and parametric methods for estimating the modal pairs
(2m, wm) with the associated residues h,, from the sample space-time ACS 7, (:At, jAd).
When synchronised FMCW signals are used to probe a particular HF channel, such
estimates provide valuable information regarding the level of Doppler spread and angular
spread imposed by different ionospheric layers on the corresponding signal modes.
Section 4.3.1 mathematically discusses the application of existing methods for estimat-
ing the parameters of distributed signals from the sample space-time ACS. The modal
structure of the statistically expected ACS derived in the previous section is exploited
in section 4.3.2 to derive a novel subspace parameter estimation technique referred to as
matched-field (MF) MUSIC. A computationally attractive closed-form parameter estima-
tion technique which makes use of the MF-MUSIC principle but is based on the least

squares criterion is introduced in section 4.3.3.

4.3.1 Comments on the application of standard techniques

Subspace techniques based on the data covariance matrix, such as the MUSIC algorithm
for example, cannot be used to estimate the poles (2, wn) and the residues h,, for
= 1,2,..,M. To see this, consider the following expression for the N x N spatial

covariance matrix R (k) which results for the assumed data model.
R.(k) = E{x(t)x{ (1)} = Z A2 [8(0,)8™ (8:)) © By + 021 (4.14)

The symbol ® denotes element-wise product and the N-dimensional vector s(,,) is the
array steering vector corresponding to the mean cone angle-of-arrival 8,,. The N x N
matrix B,, may be referred to as an angular “spreading” matrix whose (¢,7)* component

is expressed as,

Bl — ¢~ Ba(mlt-sintmlli=jlad (4.15)

where B,(m) is the spatial bandwidth of the ionospheric channel which propagates the m*"

mode. Note that the spatial covariance matrix in Eqn.(4.14) is Toeplitz and its (s, )

element on the diagonal defined by n = (i —- 7)i J—lo is consistent with the spatial-only
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version of the ACS model r¢(nAd) derived in section 4.2.2 for a sum of M independent
AR(1) processes, as shown in Eqn.(4.16).

nAd Z hmwm , — A72n , Wy = e—B,(m)|1—-sin0m|Adej27rérd sin O, (416)

If the spatial bandwidth B,(m) = 0 for all modes m = 1,2,..,M < N then B = 1
and R, (k) = EM A? 5(0,,)8"(0,,)+021. In this special case, MUSIC and other subspace
DOA estimation methods can be used to estimate the cone angles-of-arrival 8,, since R,(k)
can be partitioned into two vector subspaces, an M-dimensional signal subspace and an
(N — M)-dimensional noise subspace. However, when one or more of the modes exhibits
angular spread (i.e., B,(m) > 0) the spatial covariance matrix corresponding to such
a mode takes the form AZ[s(6,,)s”(0,,)] ® B,, which has full rank so there is, strictly

speaking, no noise-only subspace from which to compute the MUSIC spectra.

In appendix C it is shown that an ARMA(M, M —1) model gives rise to an ACS which
has the same form as r¢(nAd) in Eqn.(4.16). As described by (Marple 1987), the non-
iterative least squares procedure adopted for ARMA model identification estimates the
AR and MA parameters separately, rather than jointly, as required for optimal parameter
estimation. More importantly, the above-mentioned procedure does not exploit the modal
structure of the ACS corresponding to the ARMA (M, M —1) family of random processes.
This structure is exploited in the following section to derive a novel subspace method
which estimates both the mean and spread parameters of all signal modes jointly from

the sample ACS in one or two dimensions.

4.3.2 Subspace method for parameter estimation

To describe the novel two-dimensional (space-time) parameter estimation technique an
(Ly — P, + 1) x P, matrix C(¢) and the related (L, — P, + 1)(L, — P, + 1) x PP, block

matrix D are defined as;

7, Py~ 1) e (i, 1)7(0,0) ] [ C(P.—1) -+ C(1)C(0) ]
o) — :f(z,Ps) oo 7(1,2)7(1,1) D C(Pt) -+ C(2)C(1) (4.17)
| #(i,L,— 1) | | C(Le—1) -

where M < P, < Ly and M < P, < L,. The sample ACS #(iAt, jAd) is computed by
first averaging the sum of lagged products within each dwell to form #(iAt, jAd),

SN (d] [d+J]"‘ . 1=0,.,L,—1
#e(iAL, jAd) = NN ;;x ()xiH (¢ 4 1) { im0 L1 (4.18)
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where Ny = P —1At+ 1, N, = N — jAd + 1 and then averaging these lags over different
dwells or CPI to form the mean ACS 7(:At/f,,jAd) over the period of data collection.
As attention is being confined to a single range cell, the associated subscript k£ has been
dropped for notational convenience in the term 7#(iAt/ f,, 7Ad) as well as in the definitions
of C(7) and D(z).

In the absence of estimation errors and additive noise 7(z, §) = 3%

ey hm2zt w! under
the assumed model, and the matrix D may be factorised as D = FG where the (L, —
Pi+1)(L, — P, + 1) X M matrix F and the M x P,P, matrix G are respectively defined
by Eqn.(4.19) and Eqn.(4.20); )

= [ep gz T

' ' ' ’ Z,Im
F=[hiz, W, - hmZp; @ W] { W (4.19)

B
the symbol ® represents a Kronecker product between the indicated vector pairs for both
matrices.

" " " "aH Z;'n [
G=[z, ®W,; -2y ® Wy] [

W

(4.20)

Since the vectors z,, W, and z,, ®Ww,,, have a Vandermonde structure and the parameter
pairs (zm, wy) for m = 1,2,.., M are assumed to be distinct it follows that both matrices
F and G have full rank M. As a result, the M x M Hermitian matrix FFFGGH is

positive definite with M eigenvalues A, > 0 and eigenvectors denoted by u,,.
(FIFPGGH ), = Apt, , m=0,1,., M (4.21)

Pre-multiplication of the left and right hand side of Eqn.(4.21) by G and noting that
DD = GEFHFG one obtains, ‘

(GHFFFG)GHu,, = (D¥D)G u,, = (D'D)gmn = Anqm (4.22)

where q,, = G u,, is an eigenvector of DHD with corresponding eigenvalue A,,. In other
words, the (P,P,) x (P:P,) Hermitian matrix D¥D is of rank M with the M non-zero
eigenvalues equal to A, for m = 1,2,., M and the remaining (P; x F,) — M eigenvalues
equal to zero. Moreover, the M principle eigenvectors qy, of the matrix DD are formed
as a linear combination of the columns in G which are composed of the M space-time
signal vectors z,, ® w,,. In the presence of lag estimation errors and additive noise,
these properties are not exactly true but they tend to be approximately true. Naturally,
the accuracy of this description is dependent on the number of statistically independent
observations used for estimation and the power of the additive noise relative to that of
the received signal modes.

To estimate the parameter pairs (zm, wn) the sample lags 7(7, j) are used to form the



4.3. PARAMETER ESTIMATION 141

matrix D as in Eqn.(4.17) and the Hermitian matrix D¥D is represented in terms of its

eigen-decomposition into signal and noise subspaces.
DD = Q,A,Qf + Q.A.Q/ (4.23)

In Eqn.(4.23), the P, P, x M matrix Q, contains the M signal subspace eigenvectors as its
coloumns and the M x M diagonal matrix A, contains the M corresponding eigenvalues.
The PP, x (PP, — M) matrix Q, and (PP, — M) x (P,P, — M) diagonal matrix A, are
defined in analogous fashion and contain the noise subspace eigenvectors and eigenvalues
respectively. The existence of non-zero noise subspace eigenvalues indicates the presence

of a combination of estimation errors, additive noise and, potentially, model mismatches.

The approximate orthogonality between the signal vectors v(¢) = z" (a(At),Af) ®
w"(B(Ad),8) and the noise subspace spanned by the columns of Q, is exploited to form
a MUSIC-like cost function p(¢) defined in Eqn.(4.24). '

p(¢) = {v¥(4)Q. Q7 v(¢)} ™ (4.24)

where parameter vector ¢ = [a(At), B(Ad), 8, Af]T. An exhaustive search for the peaks
of the MUSIC-like cost function p(¢) over a four dimensional manifold defined by the
parameter vector ¢ yields estimates of both the complex pole locations (z, w,,) and the
pairing at the same time. Once these parameters have been estimated the corresponding

residues h,, can be estimated by a least squares fit to the sample ACS.

The residues h,, for m = 1,2,.., M are constrained to be real when the ARMA(M, M —
1) process is to be generated as a sum of M independent AR(1) processes. This follows
from the fact that the power of the m* AR(1) process is given by A, = A? . To estimate

the residues a stacked vector ¥ is defined to contain the space-time sample ACS.
i = [r(0,0)---r(0, Ly — 1)ir(1,0) -+ r(1, Ly = 1)i -+ ir(Ly — 1, L, — 1)]7 (4.25)

Similarly, a matrix V is defined in Eqn.(4.26) to contain the space-time signal vectors

estimated for the m** mode.

- Zm = [zo 21 "'Z,(-,{J‘-l)]T
V = [2: @ Wy -2 ® W] Wi = [0 wh BT (4.26)

The vector of residues h = [hy ha - - - har]7 is estimated such that it minimises the difference

between the model and sample ACS in a least squares sense;

b = argmin [r — Vh[jr, r= [ 2}3 ] , V= [ igi ] (4.27)

where the real vector r and matrix V are constructed from the real ®{-} and imaginary
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3{} parts of ¥ and V respectively. The minimising argument h in Eqn.(4.27) is given

by;
h = [VIV]'VHr = V*r (4.28)

where V* = [VHV]~1V# is the Moore-Penrose pseudo inverse of V. Once all the model
parameters have been estimated, it is required to assess the accuracy with which the model
ACS fits the sample ACS calculated from the received data. The modelling performance

may in the first instance be quantified by a fitting accuracy (FA) measure defined in
Eqn.(4.29).

||# — Vh|F

FA= 1R

(4.29)
The ACS model estimated from the data may be extended to an infinite number of space-
time lags and Fourier transformed in order to estimate the power spectral density of the
channel fluctuations in the angle-Doppler domain. The resulting two-dimensional spectra
provides a quantitative measure of the angle-Doppler bandwidth occupied by a particular

ionospheric channel.

Since the manifold is parameterised by the statistical properties of the channel model
[a(At), B(Ad)] as well as the regular (deterministic) components [, Af], this technique
may be regarded as a “matched field” (MF) version of MUSIC. The presented technique
can also be applied to estimate the parameters of two-dimensional exponentially damped
sinusoidal signals in noise. An important distinction between these two applications is that
in the former case the matrix D contains the covariances or lags estimated from the data
of a statistical process while in the latter case it contains the actual data samples in which
the signals are corrupted by additive noise. In both cases, the computational complexity of
evaluating the cost function over four-dimensional manifold may be prohibitive in some
applications. In this situation an alternative closed form procedure based on the least

squares criterion would be desirable, such a procedure is introduced in the next section.

4.3.3 Closed-form least squares method

To introduce the two-dimensional least squares method an L; x L, matrix T is defined

such that its (1, 7)** entry equals r(iAt, jAd).

[ (0,0) r(0,1) --- r(0,L, —1)

j‘(l, 0) T(l, 1) ) r(lv L, - 1) (430)

LT(Lt_lao) T(Lt_l)Ls_l)_
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Using the modal decomposition of r(iAt, jAd) in Eqn.(4.13) it is possible to factorise the

matrix T in the following way;

M
T=) hnznwi = ZHW" (4.31)

m=1

by defining the vectors z, = [2% 2L -+ 2L YT w,, = [w® wl - wk-11 the L, x M
matrix Z = [2; 2+ -2Zpm], the Ly X M matrix W = [w; wps---wp] and the M x M
diagonal matrix H = diag[h; hy - - - hp].

In practice, we have an estimate T containing the sample spatio-temporal lags. Even
in the absence of modelling errors and additive noise, the matrix T will generally be of
full rank despite L; > M and L, > M due to the presence of estimation errors in the
sample lags. In an analogous manner to (Cadzow 1983), we can attempt to reduce the
influence of estimation uncertainty on the parameter estimates by taking the reduced

rank-M approximation of T using a truncated singular value decomposition (SVD).

M
T=) onu.vi=Uz,VH¥ (4.32)

m=1

In Eqn.(4.32), 0,, are the principal singular values of T, u,, are the L,-dimensional left
singular vectors and v,, are the L,-dimensional right singular vectors. The matrices
U, =[uy---up] and V, = [v; - vpy] contain the left and right singular vectors as their
coloumns respectively while the M x M diagonal matrix X, = diag[o;,- - , 0] contains
the singular values.

The proposed parameter estimation method is based on finding the model parameters
By Zm, W Ym = 1,2, .., M which provides the best least-squares fit to T by minimising

the Frobenius norm || - || in the following criterion function.
for(Z,H,W) = ||T — ZHWH || (4.33)

This multidimensional optimisation problem is separable and for a given matrix Z it can

be shown that the arguments H and W which minimise the criterion function satisfy,
HWH = (z9Z2)'27T, = Z+7T (4.34)

where Zt = (ZYZ)~'Z" is the Moore-Penrose pseudo inverse of Z. Substitution of
Eqn.(4.34) into Eqn.(4.33) yields the following criterion function in terms of the matrix
Z.

7 = argmin ||(I — ZZ*)T)|r = argmin ||P,T||# (4.35)

where P, = (I — ZZ") is the orthogonal projector onto the null space of ZH. Using the
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fact that ||Q|lr = Tr{QQ¥}, where Tr{-} denotes the trace operator, it is possible to
re-write Eqn.(4.35) as,

Z = argmin Te{P,TT?P?} = argmin Tr{P7P, T, T/} (4.36)

since a cyclic rotation of the elements in the Tr{-} operator does not effect the value of
the trace. The projection matrix is symmetric (P, = P¥) and idempotent (P? = P,) so

Eqn.(4.36) may be simplified to the following concentrated expression.

7 = argmin Tr{P,TT"} (4.37)

Assuming the number of modes M is known or can be estimated by a suitable method
beforehand, solving for Z is more tractable (Stoica and Sharman 1990) when the projection

matrix is re-parameterised in terms of an L; x (L; — M) Toeplitz matrix A defined by,

H
aM aM—'l . o . ao LI 0

A= (4.38)

0 apM am-1 ' Qo

such that its elements ao, a1, .., apr are the coefficients of the following characteristic poly-

nomial.

M
p(2) = apz™ +aiZ2M 1+ tam = H(z — Zm) (4.39)

m=1
Since the matrix A has full rank (L;— M) and by construction it is apparent that AHZ =0
it follows that the coloumns of A do in fact form a basis for the null space of Z¥. As a
result, the projection matrix can be re-parameterised as P, = A(A¥ A)~1AH which leads

to a criterion function in terms of the polynomial coefficient vector a = [ag, ay,..,a M]T.
a = argmin Tr{A(A¥ A)'AFTTH} (4.40)

As pointed out in (Krim and Viberg 1996), the coefficient vector a = [ao - - - ap]T which
minimises Eqn.(4.40) may be estimated analytically by sequentially solving two quadratic

optimisation problems;

1) & = argmin Tr{AAPTTH} (4.41)
2) & = argmin Tr{A(AHA)-1AHTTH)} '

subject to the linear constraint a”e = 1 where e = [1,0,---,0]7 ensures a non-trivial
solution. Note that the elements of the vector a which solves the first quadratic problem

in Eqn.(4.41) is used to form the matrix A in the second quadratic problem according to
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its definition in Eqn.(4.38). The matrix (AH A)~! is a data-dependent weighting matrix

in the second quadratic problem.

A more complex set of constraints can be applied in certain situations to ensure that
the roots corresponding to the estimated polynomial coefficients a lie on the unit circle.
These constraints are useful for the direction-of-arrival estimation problem treated by
(Stoica and Sharman 1990) where the received signals are assumed to be discrete in
angle-of-arrival (i.e., plane waves). Such constraints should not be applied in this instance
because the received signals are assumed to be distributed over angle and Doppler space,
the width of the distribution for the m!* mode is indicated by the distance between the
root %, (derived from the estimated polynomial p(z)) and the unit circle. In other words,
the modulus of Z,, constitutes an estimate of the mode Doppler spread while the argument

of 2,, constitutes an estimate of the mean Doppler shift.

As shown in (Besler and Macovski 1986), both quadratic problems in Eqn.(4.41) may
be solved using the same technique as that for deriving linear prediction coefficients by

the covariance method. The solution of the first problem in Eqn.(4.41) is given by,

L (M, j) #(1,5)7(0,5) |
SEAYIGYG e | AM L) e #(20)(L9)
a= , Y(§) = .
TV YG e DT | (1.42)
L f'(Lt - laJ) ]

and the estimated coefficients & = [do - - dp]7 are used to form the matrix A according
to Eqn.(4.38). The second quadratic problem in Eqn.(4.41) can then be solved in similar
fashion to the first, as shown in Eqn.(4.43)

[Cieo YH(G)(ATFA) Y (5)] e
eT[Y 125 YH(j)(AHA)-1Y (5)]te

a=

(4.43)

The least squares estimates of the temporal poles 2,, for m = 1,2,.., M are then given by
the roots of the estimated characteristic polynomial p(z). The polynomial roots can be

found using the algorithm in (Aurand 1987) for example which is guaranteed to converge.

In analogous manner, the argument W minimising the criterion function f.(-) is
estimated as, Eqn.(4.44).

W = argmin Te{P, T#T} (4.44)

where P, = (I — WWT) is the orthogonal projector onto the null space of W¥ and
W+ = (WHW)-IWH is the Moore-Penrose pseudo inverse of W. In this case the



146 CHAPTER 4. SIGNAL PROCESSING MODEL

projection matrix is re-parameterised as P,, = B(B#B)~!Bf where the matrix

H
bae by - by e 0

B= (4.45)
0 b bym-y -+ b

1s constructed from the coefficients of the following characteristic polynomial.

M
g(w) = bow™ + bywM ™ + - by = H(w — Wm) (4.46)

m=1

As before, the polynomial coefficients are estimated by sequentially solving two quadratic

optimisation problems,

1) b = argmin Tr{BB#THT} (4.47)
2) b = argmin Tr{B(B#B)"'BHTHT} '
subject to the linear constraint b¥e = 1. The vector b that solves problem 1) in
Eqn.(4.47) is given by,
[ (i, M) #(3,1)7(2,0) |
) Le=1 x H (% (5Y]-1 P, M +1) - #(35,2)7(, 1
po (ZESXTOXQI ey | FGMAD o FGRD
eH[3 00" XH()X(2)] e :
L f(l, Ls - 1) _j

this estimate is used to form the matrix B according to Eqn.(4.45) for problem 2) in

Eqn.(4.47). The polynomial coefficient vector b is then estimated as,

[Tkt XH(G)(BYB) X (5)] e

eH [y 1 XH(i)(BHB)-1X(i)]-le

1=0

b= (4.49)
from which the polynomial §(w) is constructed. The spatial poles w,, are then estimated

by finding the roots of the polynomial §(w).

Note that aside from the initial SVD and final polynomial rooting, this algorithm
estimates the temporal poles z,, and spatial poles wy, of the M modes from the sample
spatio-temporal lags in closed form. Once the poles have been estimated, it is then
necessary to correctly pair the temporal and spatial poles associated with each mode
before estimating the residues hn,. A brute force method for pairing the temporal poles
z, and spatial poles wy, is to try all possible combinations and choose the one which leads
to the smallest modelling error. For M modes the number of combinations to be tried
equals M!/2(M — 2)! which becomes quite large for M greater than five. An alternative

way of pairing the poles exploits the approximate orthogonality noted in section 4.3.2
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between the signal vectors z,, ® w,, and the noise subspace spanned by the columns of
Q... In other words, the spatial pole w,, paired to a reference temporal pole z,,, is the

one which minimises the cost ¢(m).

I

c(m) = (z,,, ® W,,)7 Q. QY (2., ®W,,) (4.50)

4.4 Experimental results

In order to demonstrate the performance of the two-dimensional (space-time) parameter
estimation techniques presented in section 4.3 it is necessary to process a data set which
allows the space-time characteristics of the ionospheric channel to be observed over a
time scale of a few minutes. The experiment described in section 2.2.2 makes use of an
FMCW signal to measure the delay, angle and Doppler characteristics of different signal
modes propagated via a mid-latitude ionospheric path over an interval of approximately
4 minutes. This data allows the two-dimensional spectral and parametric techniques
described in the previous section to estimate the angular and Doppler spread imposed by
different ionospheric layers on the signal modes even when the individual modes cannot
be resolved in time-delay or range.

The estimation of these space-time model parameters when only one propagation mode
is present within a particular range cell is relatively straightforward and does not warrant
the use of the sophisticated parameter estimation techniques presented in section 4.3.
Although most of the propagation modes were resolved in delay, this particular data set
contains a valuable example where two sporadic-E modes were known to propagate by
inspection of the oblique incidence ionogram but could not be resolved in delay or group
range by the main array which has a comparatively lower range resolution. Since the
modes are likely to have closely spaced angular and Doppler power spectral densities, the
estimation of the individual mode parameters from the signal mixture is no longer straight-
forward and requires the use of more sophisticated parameter estimation techniques, such
as those presented in section 4.3.

Section 4.4.1 applies the two-dimensional constrained least squares technique devel-
oped in section 4.3.3 to estimate the mean angle-of-arrival and Doppler frequency of two
sporadic-E modes in a particular range cell as well as the temporal and spatial damp-
ening factors which cause Doppler and angular spread in each mode respectively. The
application of the matched-field MUSIC technique is illustrated for the same two mode
mixture in section 4.4.1, the parameters estimated by both techniques are expected to be
the same in the absence of modelling errors, estimation uncertainty and additive noise.
However, when two different techniques are applied to an experimental data sample ACS
the parameter estimates are not expected to be exactly the same. A comparison between
the parameters estimated by the two methods and a measurement of the accuracy with

which the model ACS represents the sample ACS provides useful information regarding
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Mode | Afn, Hz | a(At) | 0, deg | B(Ad) | h, |m=1,dB | m=2,dB

m, =1 0.46 0.998 22.2 0.920 | 9.46 -56.1 -39.3
m, =2 0.39 0.997 21.7 0.963 | 5.23 -40.3 -62.7

Table 4.1: Distributed signal model parameters estimated from the sample ACS
7r(1At, jAd) derived from data which is known to consist of a superposition of two
sporadic-E modes.

the validity of the assumed distributed signal model and the robustness of the proposed

parameter estimation techniques.

4.4.1 Least squares

The sample ACS 7(iAt, jAd) used for parameter estimation is computed by first aver-
aging the sum of lagged products within each dwell to form #(iAt, jAd),

] N {i=0,..,L,—1

#(iAL, jAd) = (4.51)

W, o 2O 0T
where N, = P —iAt+ 1, N, = N — jAd + 1 and then averaging these lags over different
dwells to form the mean ACS, denoted by 7,(:At, jAd), over the period of data collection.
In this experiment, the interval between adjacent temporal lags was 0.1 seconds (At =
6 PRI with f, = 60 Hz) and the spacing between adjacent spatial lags was 84 metres
which is equivalent to Ad = 1 sub-array spacing. The number of lags calculated was
Ly = L, = 30 using P = 256 PRI per dwell and N = 30 sub-array receivers. The lags
Fe(1At, jAd) were estimated according to Eqn.(4.51) in range cell £ = 16 (containing the
sporadic-E modes) for each dwell and then averaged over a total of 47 dwells to form the
sample ACS 7(iAt, jAd) used in further processing.

Table 4.1 lists the parameters estimated by the closed-form least squares technique
assuming M = 2 modes. The pairing of temporal and spatial poles for each mode was
performed by evaluating the function ¢(m) in Eqn.(4.50) for different combinations of
temporal pole z,, and spatial pole wn, for m,,m = 1,2. This pairing step is necessary
because the roots of the estimated polynomials p(z) and ¢(w) have no ordering. This
pairing was performed by choosing P, = P, = M + 1 to guarantee the existence of a
noise-only subspace in the absence of modelling errors.

For each reference temporal pole m, = 1,2 Table 4.1 shows the value of the function
c(m) for the spatial poles indexed by m=1,2. The poles are paired as the combinations
which yield the lowest values of this function. In other words, the first temporal pole
(m, = 1) is paired to the first spatial pole (m = 1), and as expected, the poles indexed
by (m,, m = 2) gives rise to a minimum to form the other pair.

Note that the mean cone angle-of-arrival 8,, and Doppler shift A f,, estimated for each
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mode in Table 4.1 are very similar to those estimated by the space-time MUSIC algorithm
in Figure 2.32. Unlike space-time MUSIC, the least squares technique additionally esti-
mates the temporal and spatial ACS dampening coefficients denoted by a(At) and 3(Ad)
respectively. These coefficients represent a parametric fit of the angular and Doppler
power density of the channel fluctuations to a class of power density functions known as
Lorentzian functions.

Using Eqn.(C.7) it is possible to plot the spatial and spectral power densities corre-
sponding to the distributed signal model parameters estimated for the two sporadic-E
modes in Table 4.1; these are shown in Figure 4.1. It can be seen from curve 1 that
the Doppler spread on both modes, defined here as the half power bandwidth, is in the
order of 0.1 Hz. Previous results for the Doppler spread of sporadic-E modes on oblique
mid-latitude paths are difficult to find, although it is noted that the above-mentioned
result is similar to the Doppler spread measurements of 0.18, 0.07 and 0.16 Hz published
by Shepherd and Lomax (1967) for clean single-mode signals propagated by the F-region
on a 4100 km mid-latitude path. The angular spread is approximately 0.2 degrees which
agrees well with measurements in the order of 0.4 degrees made for single-hop E and
F-region modes by Balser and Smith (1962) on a 1566 km mid-latitude path with a very
wide aperture array (2000 ft). Larger directional dispersions of 1-2 degrees were observed
for sporadic-E modes by (Sherill and Smith 1977) although these measurements were
made on a much smaller array aperture (350 m).

The estimated model ACS resulted in a fitting accuracy of 97 percent when com-
pared to the experimentally derived sample ACS, this high modelling accuracy was ob-
tained using the two step quadratic minimisation procedure described by Eqn.(4.41) and
Eqn.(4.47). It is possible to repeat this procedure more then twice by using an updated
estimate of the polynomial coefficients to form the weighting matrix at each iteration.
Figure 4.2 shows the value of the criterion function to be minimised at different iterations
for both the spatial and temporal parameter estimation problem. It is evident that only
two iterations (steps one and two in Eqn.(4.41) and Eqn.(4.47)) are required to reach the
minimum value in each case. In fact, the improvement between the first and second itera-
tion corresponds to the extra reduction in the least squares criterion function achieved by
the described method relative to Prony’s method which is traditionally used to estimate
the parameters of damped sinusoidal signals in noise.

Figures 4.3 and 4.4 are examples comparing the real and imaginary parts respec-
tively of the space-time ACS predicted by the model with those of the sample ACS. The
L,L, = 900 space-time ACS samples are stacked as described for the vector ¥ in sec-
tion 4.3.2. As expected for a fitting accuracy of 97 percent, the model ACS closely tracks
the 900 point ACS estimated from real data using only M = 2 modes. This experimental
example serves to illustrate the application of the least-squares parameter estimation tech-
nique to jointly determine the Doppler and angular statistical characteristics of multiple

ionospheric reflected modes.
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4.4.2 MF-MUSIC

In order to generate MF-MUSIC spectra it is necessary to specify the spatial dimension P,
and temporal dimension P, which determine the size of the data matrix D in Eqn.(4.17).
As for the MUSIC algorithm, large values of P, and P, increase (in theory) the ability of
the estimator to resolve closely spaced modes. However, in practice this results in fewer
“snapshots” which in turn leads to increased variance of the parameter estimates. In this
section, the dimensions P, = P, = 6 were chosen to represent a compromise between

resolution and variance of the estimator.

Figures 4.5 and 4.6 show the MF-MUSIC spectra p(¢) plotted in the Angle-Doppler
(6, Af) domain according to Eqn.(4.24) with parameter vectors ¢ = [a(At), B(Ad), 8, Af]T
that have dampening terms [a(At), B(Ad)] set to the values estimated for modes one and
two respectively in Table 4.1. The coordinates of the peaks in both spectra are the same
and closely match the the mean Doppler frequency and angle-of-arrival of the two modes
estimated using the least squares technique. On the other hand, the amplitude of each
peaks is dependent on values of the damping factors [a(At), B(Ad)] set in the parameter

vector ¢ as the manifold is partly determined by these terms.

Note that when the dampening factors take the values corresponding to the first mode
(i.e., by setting [, 8] = [0.998,0.920] in Figure 4.5) the amplitude of the peak occurring
at the angle-Doppler coordinates of this mode is relatively higher (40.5 dB) than that of
the other mode (33.1 dB) which is not as well matched to the resulting “steering” vectors
v($) defined in section 4.3.2. When the manifold is focussed in the second mode (i.e.,
by setting [a, 3] = [0.997,0.963] in Figure 4.5) the amplitude of the peak occurring at
the angle-Doppler coordinates of this mode increases from 33.1 dB to 38.5 dB while that
of the first mode drops from 40.5 dB to 31.3 dB. The substantial changes in the peak
amplitudes with respect to the choice of dampening coeflicients is an additional indication

that these coefficients have been accurately estimated.

An alternative way to evaluate the MF-MUSIC spectrum is to keep the mean Doppler
shift and angle parameters [A f, 8] constant and to evaluate p(¢) over a manifold in that
changes as a function of the Doppler and angular spread parameters [o, 3]. Figures 4.7
and 4.8 illustrate the spectra resulting in the dampening coefficient domain when [Af, 6]
is set to [0.46, 22.2] and [0.39, 21.7] which are the values estimated for modes one and

two respectively in Table 4.1.

The physical interpretation is that such spectra attempts to resolve modes which
have similar mean Doppler shift and cone angle-of-arrival but are reflected from distinct
ionospheric regions that impose different levels of angular and Doppler spread on the
modes. This situation may occur in practice due to the presence of altitude-dependent
ionospheric tilts and the elevation-azimuth ambiguity associated with the use of linear
arrays. In this case the two sporadic-E modes have sufficiently different Doppler shifts

and angles-of-arrival so only a single peak is observed in each of the spectra plotted in
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Figure 4.5: MF-MUSIC spectrum evaluated over the angle-Doppler domain for [a, 3] =
[0.998, 0.920] (i.e., dampening parameters matched to m = 1). The larger peak (40.5 dB)
has coordinates [Af,0] = [0.46,22.2] while the smaller peak (33.1 dB) has coordinates
[Af,6] = [0.39,21.7].
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Figure 4.6: MF-MUSIC spectrum evaluated over the angle-Doppler domain for [a, 8] =
[0.998,0.920] (i.e., dampening parameters matched to m = 2). The coordinates of both
peaks are the same as those quoted for Figure 4.5 but the amplitudes of the peaks have
changed to 31.3 dB and 38.5 dB respectively.
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Figure 4.7: MF-MUSIC spectrum evaluated for different space-time dampening factors
at angle-Doppler coordinates [Af, 8] = [0.46,22.2]. The peak (43.3 dB) occurs at [a, 8] =
[0.996,0.922].

Figures 4.7 and 4.8.

The location of the peak in Figures 4.7 and 4.8 are quoted in the captions and closely
match those estimated by the least squares method for each mode in Table 4.1. This indi-
cates that both methods may be used to estimate the distributed signal model parameters
from the sample ACS, the closeness of the estimates in angle-Doppler and dampening coef-
ficient domains reflects the robustness of these techniques to modelling errors, estimation

uncertainty and additive noise in this experiment.

4.5 Chapter summary

A space-time mathematical model was described in this chapter to parametrically describe
the statistical characteristics of ionospherically propagated HF signals received by antenna
arrays. The rational or pole-zero framework adopted by this model permits distributed
signals to be represent by a wide variety of power density functions in both the angular
and Doppler dimensions. It also enables statistical realisations of the received multi-sensor
random data processes to be generated with relative ease on a digital computer. Although
the model was originally intended for the HF environment, it is envisaged that such a
model may be useful in representing distributed signals which arise in other practical
applications.

When the array data consists of a superposition of M statistically independent modes

with Lorentzian shaped angular and Doppler power densities the composite random pro-
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Figure 4.8: MF-MUSIC spectrum evaluated for different space-time dampening factors
at angle-Doppler coordinates [Af, 8] = [0.39,21.7]. The peak (45.3 dB) occurs at [a, 3] =
[0.998,0.952].

cess can be represented in a spectral sense by an ARMA(M, M — 1) model. This chapter
proposed a novel closed-form parameter estimation technique for such a model which
jointly estimates the parameter pairs (mean and spread parameter of the power density
function) for each mode which provides the best least squares fit to the sample space-time
ACS. This computationally attractive technique enables the Doppler and angular occu-
pancy of different ionospheric channels to be quantified from the received array data and
is valuable for the purpose of real-time frequency management or passive channel evalua-
tion (i.e., optimising the selection of carrier frequency based on the spatial and temporal
bandwidth occupied by the co-channel signals).

Special experiments were conducted to validate the space-time model and the pro-
posed two-dimensional parameter estimation techniques. The array data was collected
using a cooperative transmitter beyond the line-of-sight of the array, the signal emitted
allowed the time-delay, Doppler and angular characteristics of the ionospheric channel to
be observed. After range processing, it was found that two ionospheric modes propagated
by the sporadic-E layer could not be resolved in time-delay by the main array although
their presence was certified by oblique incidence ionogram records. Assuming the pres-
ence of two modes, the proposed 2-D parameter estimation techniques were applied and
yielded estimates which accurately matched the space-time sample ACS of the convo-
luted mode mixture. The parameter estimates were consistent with previous quantitative
measurements of Doppler and angular spread of HF signals propagated over mid-latitude

ionospheric paths.
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CHAPTER 5

Adaptive beamforming

Data-dependent or adaptive beamforming is an alternative to data-independent or con-
ventional beamforming which may be used to improve the signal detection and signal
parameter estimation performance of a sensor array in the presence of co-channel inter-
ference. An adaptive beamformer tailors the directional response of the array to the
prevailing signal and interference environment so that it can, in principle, filter out de-
sired signals masked by strong directional interference more effectively than a conven-
tional beamformer. In practice, the higher computational cost associated with adaptive
beamforming can only be justified when a significant improvement in system performance
results and this improvement is often measured in terms of output signal-to-interference
plus noise ratio (SINR). In the HF environment where interference-free conditions sel-
dom occur, relatively few studies have actually quantified the capabilities and limitations
of adaptive beamformers, especially for very wide aperture antenna érrays used by OTH
radar and for multipath interference reflected by the ionosphere. The purpose of this chap-
ter is to describe adaptive beamforming algorithms suitable for OTH radar systems and
to quantify the performance of these algorithms experimentally on a very wide aperture

HF antenna array.

The literature review in section 5.1 summarises the key developments in the field of
adaptive beamforming and points out the small number of relevant experimental investi-
gations reported for the HF environment. Section 5.2 mathematically describes adaptive
beamforming schemes suitable for OTH radar systems and establishes criteria for assessing
the performance of these schemes against the conventional beamformer. More advanced
adaptive beamforming algorithms designed to enhance performance in certain operational
situations of interest are discussed in section 5.3. Various adaptive beamforming schemes
are applied to cancel ionospherically-propagated HF interference recorded by a very wide
aperture antenna array in section 5.4, the scope of this section is to experimentally eval-
uate the interference cancellation performance achieved in the HF environment and to
assess' the accuracy with which the previously validated HF channel models can predict

the observed improvement over conventional beamforming.
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5.1 Literature review

The background contained in section 5.1.1 qualitatively explains the concept of adaptive
beamforming and describes the motivation for conducting research on the use of adaptive
beamforming in narrowband very wide aperture HF arrays. The literature survey which
follows in section 5.1.2 overviews the advances which have taken place in the area of
adaptive beamforming from both a theoretical and practical perspective. A vast quantity
of documentation exists on this subject and it is beyond the scope of the literature review
to provide a comprehensive list of references, although many of them can be found in the
text books by (Monzingo and Miller 1980), (Hudson 1981) and (Compton 1988a) and the
tutorial papers by (Van Veen and Buckley 1988) and (Steinhardt and Van Veen 1989).
The specific research addressed by this chapter is summarised in section 5.1.3 and related

to previous work in the field.

5.1.1 Background

An adaptive beamformer is a processor of multi-channel data that forms a scalar output
time series by weighting and summing the sensor outputs. The task of the processor
is to isolate and recover a desired signal from a superposition of unwanted signals or
interferers which occupy the same spectral band but originate from sources that are
spatially separate. In essence, the signal processing problem is to find the optimal data-
dependent set of weights, often referred the array weight vector, which maximises the
output SINR. When the noise-field is spatially white and uncorrelated with the desired
signal the optimal weight vector coincides with the conventional beamformer, but in
practice, the high degree of user congestion in the HF band frequently gives rise to highly
directional noise-fields. In such circumstances the conventional beamformer is sub-optimal
and may lead to significant degradations in output SINR with respect to that attained by
the optimum weight vector. For this reason, as well as the growing availability of high-
speed computational resources, the field of adaptive array signal processing is presently
in a state of intense research.

Most of the research in this area has been devoted to the theoretical development of
different adaptive beamforming algorithms and the evaluation of performance by either
analytical methods or by computer simulation. Each invented algorithm is shown to have
certain desirable advantages over previously proposed methods, whether it be increased
resolution, greater robustness to signal and interference model mismatches, lower com-
putational complexity, faster convergence rate or mathematical tractability. In the large
majority of works such improvements have been claimed solely on the basis of theoretical
analysis and/or computer simulation, where to a large extent, the characteristics of the
signal environment and the properties of the hypothesised sensor array are controlled by

making certain assumptions. Although these studies provide valuable information for dis-
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cerning between the potential usefulness of different adaptive beamformers in a particular
practical application, the actual performance improvements should be interpreted with
caution as they may not be typical of those encountered in practice.

In many simulation studies the desired signal and interference(s) received by a nar-
rowband ULA are assumed to have a plane wave spatial structure with a fixed angle of
arrival over the observation interval. In chapters 2 and 3 it was demonstrated that the
spatial structure of HF signals reflected by the ionosphere is generally non-planar and
time-varying over time scales of interest in OTH radar. Apart from the violation of the
fixed plane wave model assumption, it is noted that experimental sensor arrays are subject
to operational constraints which influence adaptive beamformer design and inevitably con-
tain instrumental imperfections which may also contribute to differences between actual
adaptive beamformer performance and that predicted by theory or simulation.

A significant number of non-experimental investigations have analysed the effect of
practical issues, such as multipath propagation, finite sample sizes and receiver mismatch
on adaptive beamformer performance. Typically, such investigations evaluate and com-
pare the advantages of different approaches for a specific practical issue or at best a subset
of the physical, operational and instrumental factors which can limit adaptive beamformer
performance in a real system. Although such investigations provide useful quantitative
information, the results may not reflect the actual improvements in output SINR gained
by adaptive beamforming over conventional beamforming on a very wide aperture HF an-
tenna array. A more direct method of quantifying the output SINR improvement involves
processing experimental data acquired by these systems.

There is currently a paucity of ezxperimental results published in the open literature
to indicate the interference cancellation performance of modern adaptive beamforming
algorithms in very wide aperture HF antenna arrays. Moreover, insufficient attention
has been paid to the effect of time-varying spatial distortions imposed on interference
signals by the ionosphere on the quality of interference cancellation achieved by these
algorithms. This chapter experimentally quantifies the output SINR improvement gained
by various adaptive beamforming schemes relative to the classical beamformer for different
CIT lengths and beam steer directions. In addition, the previously validated space-time
HF channel model is revisited in order to determine the accuracy with which it can predict

the experimentally observed relative improvement in output SINR.

5.1.2 Studies on adaptive beamforming

The reason for expecting the performance of adaptive beamformers to exceed that of
conventional beamformers may be described in terms of the array beampattern which is
defined as the magnitude of the spatial transfer function presented to a far-field source
by a weighted sum of the sensor outputs. A plane wavefront incident on the array from a

far-field source gives rise to a spatial frequency at the sensor outputs which is a function of
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the direction-of-arrival and the sensor spacing in wavelengths. Conventional beamformers
have beampatterns which are independent of data received from the sources, for a narrow-
band ULA the simplest beampattern results when the sensor outputs are weighted by the
coefficients of the discrete Fourier transform (DFT). In this case the array beampattern
is electronically steered by matching the set of DFT coefficients to the spatial frequency
of a plane wave incident from the direction of interest.

The conventional DFT beamformer is optimum in terms of output SNR when the
noise-field is spatially white. In many practical applications including OTH radar, the
noise-field is generally not spatially white as the back'ground noise tends to possess some
degree of anisotropicy and directional interference from other users is often present. The
sub-optimality of the DFT-based beamformer is most noticeable when powerful interfer-
ence leaks through the sidelobes of the conventional beampattern and contaminates the
beam estimate. Spectral leakage of interference through the beampattern sidelobes has
the potential to mask a weak signal incident from the steer direction and hence degrade
target detection performance.

The use of window functions to taper or shade the sensor outputs prior to DFT
beamforming lowers the sidelobes of the beampattern at the expense of increasing the main
lobe width and reducing the main lobe maxima. A wide selection of window functions
may be used, see (Harris 1978), the specific choice depends on the tradeoff between
sidelobe level and main lobe width which is considered to yield the best signal detection
performance under the expected interference and noise conditions. The shaded DFT
beamformer is generally preferred over the unshaded version because it is more immune
to interference in the sidelobe region and the wider main lobe is more robust to slight
errors between the steer direction and the DOA of the desired signal. The price often
paid for the computational advantages of conventional beamforming is the sub-optimality
in output SINR, when powerful and persistent interference is present the sub-optimality
in output SINR can reach intolerable levels and cause system outage.

In such situations, adaptive beamforming can be used to remove interference more
effectively than conventional beamforming while simultaneously allowing for the trans-
parent reception of desired signals. In simple terms, adaptive beamformers improve the
output SINR by steering beampattern nulls in the direction(s) of strong interference while
maintaining the unity gain response of the beampattern in the look direction. The weight
vector producing the beampattern which optimises the output SINR is usually synthesised
from the information contained in the interference-plus-noise spatial covariance matrix.
Before proceeding to describe some commonly used methods for calculating the optimal
weight vector, it is noted that use of the spatial covariance matrix for representing the
second order statistics of the interference-plus-noise data carries with it the assumption
of wide-sense spatial stationarity. Some of the references to be discussed also assume that
the array data is Gaussian distributed and hence fully characterised by the second order

statistics contained in the spatial covariance matrix.
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The multiple sidelobe canceller (MSC) described by (Applebaum 1976) was one of
the earliest adaptive array systems. In this system, the array is usually composed of one
highly directional sensor, referred to as the main channel, and a set of omni-directional
sensors referred to as the auziliary channels. The main channel is pointed in the direction
of the desired signal and receives the signal as well as uncorrelated interference through
the sensor sidelobes. The auxiliary channels are assumed to receive the interference only.
The aim of the MSC is to cancel the interference in the main channel by weighting the
auxiliary channel outputs and adding them to the main channel. The weight vector which
maximises the SINR at the MSC output is a function of the inverse of the interference-
plus-noise spatial covariance matrix (Applebaum 1976). In practice it is often not possible
to completely isolate the desired signal from the auxiliary channels and if the desired
signal is present in these channels it may be partially cancelled from the MSC output
causing serious performance degradations. The assumption of no signal in the auxiliary
channels correlated with the desired signal in the main channel may be violated in OTH
radar applications, and moreover, the interference may fade or be absent (i.e., switched
off) from time to time which potentially leaves the MSC with spare adaptive degrees of
freedom that may inadvertently be used to cancel the signal of interest.

A popular adaptive beamforming algorithm which avoids this limitation of the MSC
is known as the minimum variance distortionless response (MVDR) technique (Capon
1969) in which all of the array channels are adaptively weighted. The MVDR beam-
former calculates the optimal weight vector which minimises the output power subject
to a linear constraint which ensures that signals incident from the direction of interest
are passed with unity gain. A generalisation of the MVDR beamformer which incorpo-
rates additional linear constraints is known as the linearly constrained minimum variance
(LCMV) beamformer (Frost 1972). Additional linear constraints can, for example, be
applied to steer nulls in directions where interferences are known to be present apriori,
or to flatten the shape of the main lobe which increases robustness to slight mismatches
between the theoretically expected steering vector and the received spatial structure of
the desired signal. An analytic solution for the weight vector which optimises the output
SINR exists for both the MVDR and LCMYV approaches in terms of the inverse of the
interference-plus-noise spatial covariance matrix and the imposed linear constraints. The
LCMV approach is versatile in the sense that it offers a designer extensive control over
the adapted beampattern, from this point of view this generalised approach represents an
attractive foundation for the development of operational OTH radar routines.

The LCMV approach may be generalised further to the case of space-time adaptive
processing (STAP) which may be used in both broadband and narrowband arrays. In
narrowband arrays, a tap delay line may be inserted at the output of every channel
to mitigate correlated multipath interference as well as to perform joint angle-Doppler
processing of the data. STAP processors are expected to provide exceptional performance

in theory, but in practice the increased dimensionality of STAP processors brings with it
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two significant limitations. Firstly, the computational complexity increases with the cube
of the weight vector dimension (in the worst case) which can quickly become prohibitive for
STAP in real-time applications. Secondly, and perhaps more importantly, the space-time
covariance matrix of the data required for calculating the optimum STAP weight vector is
not usually known apriori and must be estimated from the available data. If the number
of data samples with homogeneous space-time second order statistics is limited by either
instrumental or physical factors then the optimum weight vector cannot be estimated
accurately and processor performance may become very poor. For the above-mentioned
reasons, the number of adaptive degrees of freedom in the processor should be minimised
and limited to the amount which is required to effectively cancel the interference.

Once it is decided to use the LCMV adaptive beamforming algorithm, two fundamental
issues must be addressed in order to fully realise the benefits of either spatial or space-
time adaptive processing in a practical system. The first issue is the allocation of adaptive
degrees of freedom. If the dimensionality of the adaptive weight vector is too small the
interference cannot be rejected to the thermal noise-floor even with perfect knowledge
of the data second order statistics. On the other hand, if it is too high the amount of
available data may not be sufficient to estimate the weight vector accurately and this
also leads to poor performance. Methods of optimal allocation of adaptive degrees of
freedom have been suggested by (Steinhardt and Van Veen 1989). An alternative way
to proceed is to select the adaptive weight vector dimensionality such that the losses
arising due to finite sample effects are maintained at some reasonable level irrespective
of the interference-plus-noise environment. A simple rule of thumb to ensure less than
3 dB average losses in output SINR was derived for complex Gaussian distributed data
by (Reed et al. 1974), it states that the weight vector dimension needs to be less than
half the number of independent interference-plus-noise snapshots available for estimating
the covariance matrix.

The second issue is the choice of adaptive algorithm to calculate the optimum weight
vector in cases when the statistically expected covariance matrix is unknown. The least
mean square (LMS) algorithm developed by (Widrow, Mantey, Griffiths and Goode 1967)
is a well-known iterative technique which does not require matrix inversion but may re-
quire a relatively long time or large amount of data to converge when powerful interference
is present. Slow convergence can be a major disadvantage when the characteristics of the
interference-plus-noise field change rapidly enough to preclude the LMS algorithm from
reaching the optimal weight vector solution for any segment of data. The sample matrix
inverse (SMI) technique proposed by (Reed et al. 1974) is based on the direct substitution
of the data sample spatial covariance matrix for the true covariance matrix in the ana-
lytical MVDR or LCMV expressions for the optimum weight vector. This technique has
a rapid convergence rate compared with the LMS algorithm and this advantage is often
significant enough to outweigh the relatively higher computational cost incurred due to

the matrix inversion.
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It can be shown that the LCMV weight vector estimated by the SMI technique coin-
cides with the maximum likelihood (ML) estimate providing the interference-plus-noise
snapshots used to form the sample covariance matrix over a particular data segment are
from a stationary multi-variate Gaussian distributed random process. When the desired
signal is present in the training data the weight vector estimated according to the SMI
technique no longer coincides with the (ML) estimate which then becomes rather complex
to evaluate (Steinhardt and Van Veen 1989). Consequently, it is often sought to estimate
the adaptive beamforming weight vector using data snapshots which are free of the de-
sired signal, if the desired signal is present more data is generally required to yield the
the same output SINR performance.

The effect of HF signal spatial distortions on the performance of a very wide aperture
array was quantified by (Sweeney 1970) for applications where the signal is considered
a signal of interest. However, there is an important distinction between the effect of
spatial distortions on the reception performance and the rejection performance of a HF
array. In the former case, the effect of spatial distortions imposed by the ionosphere on
desired signals is observed in the main lobe of the beampattern whereas in the latter case
the spatial distortions imposed on interference signals are observed close to the relatively
steep nulls of an adaptive beampattern where the directional response of the array is much
more sensitive to variations in spatial structure.

Another aspect worth noting is that in OTH radar applications the desired signal
and interference typically propagate via different ionospheric paths which may have quite
different characteristics. While the operating frequency is usually chosen to ensure a stable
ionospheric environment for the desired signal, the RFI sources are arbitrarily located with
respect to the surveillance region and may be propagated by highly perturbed ionospheric
layers. In these circumstances, the temporal variability in the spatial characteristics of
interference signals may be substantially more pronounced than those exhibited by HF
signals propagated over a relatively quiet mid-latitude path. Hence, analysis of adaptive
beamformer performance based on a fixed plane wavefront interference model are likely
to be unreliable indicators of practical performance, and due to the unique peculiarities
of the HF environment, the remaining portion of this review focuses on the application
of adaptive beamformers in HF arrays.

An on-line adaptive beamforming capability for HF backscatter radar was developed
by (Washburn and Sweeney 1976) using a 2.5 km long ULA composed of eight 32-element
sub-arrays each connected to a digital receiver. In this experiment, the desired signals
were aircraft target’s and a fixed ground-based repeater simulating a moving target. The
unwanted signals were interferences from other users in the HF band as well as a signals
from a separate ground based radar repeater. The performance of a recursive time-
domain adaptive beamforming technique which converges towards the optimum MVDR
solution was compared against a conventional beamformer with a -25 dB Dolph taper.

The authors stated that the rejection of unwanted signals with the adaptive beamformer
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was variable but side-by-side comparisons showed that adaptive beamforming can reject
off-azimuth signals up to 20 dB better than the conventional beamformer. However,
important quantities such as the mean improvement in output SINR and the distribution
of its variability over different data sets, CIT lengths and beam steer directions were not
reported in (Washburn and Sweeney 1976).

Separate training samples containing interference only could not be obtained in this
study so the adaptive beamformer was applied to data which additionally contained
backscattered clutter and the desired signals. It was found that slight mismatches be-
tween the target’s spatial structure and the plane wavefront expected from the beam steer
direction caused the adaptive beamformer to try and cancel the signal of interest. Al-
though losses in desired signal gain were also observed for the conventional beamformer
and partly attributed to beam pointing errors, the losses were more significant in the
adaptive case (especially for high SNR targets) as slight mismatches cause the adaptive
beamformer to view the desired signal as an interferer. One possible solution offered by
(Washburn and Sweeney 1976) to reduce the effect of this problem is to steer a higher
number of more closely spaced beams in order to increase the chances of the target signal
being well matched to one of them.

The adaptive beamformer was found to reject substantial amounts of clutter, but per-
haps of greater importance, was the observation that the adaptive beamformer cancelled
off-azimuth interference more effectively when a temporal filter was applied to remove the
clutter prior to adaptation. This is not surprising since the rejection of clutter consumes
spatial degrees of freedom which are are better spent on the interference as in most cases
standard Doppler processing is sufficient to separate the clutter from the target echoes.
After filtering out the clutter, the weight adaptations were performed in the time domain
in order to track temporal variations in the interference spatial characteristics. The re-
sulting time-sequence of adaptive weight vectors was stored and then used to re-process
the original (i.e., unfiltered) data containing clutter and target signals. It was found that
. the subsequent application of the time-varying beamforming weights to the original data
resulted in significant Doppler broadening of the clutter and targets on some occasions.
This broadening is a potentially serious consequence of time-domain adaptation as it can
impair the detection of targets located near the clutter ridge or prevent the resolution of
targets closely spaced in Doppler frequency.

To prevent this broadening, Washburn and Sweeney (1976) decided to form the adap-
tive beam using a fixed weight vector which resulted at the end of the 2.1 second coherent
integration time. Although this eliminated the spreading of clutter and target signals
after Doppler processing, it was noted that disallowing the weights to vary over the CIT
lead to poorer level of interference suppression. This problem was also cited by (Games,
Townes and Williams 1991) where it was concluded that variations in the HF signal en-
vironment over time intervals in the order of seconds can significantly impact on the

rejection performance of adaptive beamforming algorithms.
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Another investigation, conducted with the same experimental facility at nearly the
same time by (Griffiths 1976), actually plotted the time variation of weight values adapted
over the radar CIT. The author found that the time scale of the variation was in the
order of 1 second or less in the HF environment, and that the ability of the adaptive
algorithm to track such variations led to interference and noise levels as much as 20 dB
lower than that of conventional beamforming methods. However, the time domain weight
fluctuations required to achieve this level of interference suppression is associated with
a time-varying beampattern that induces a temporal modulation on any signal which
is passed by any unconstrained point on the beampattern. The backscattered clutter
is spatially broadband and is received over the entire beampattern. Hence, one of the
main problems in the HF environment is to solve the paradox of allowing the weights to
fluctuate over the CIT in order to effectively reject HF interference but to prevent these
fluctuations from broadening the Doppler spectrum of clutter and other signals which are
passed through the unconstrained portions of the time-varying a,da,ptive‘ beampatterns.

The first studies which directly addressed this problem were the ones carried out by
(Abramovich 1993) and (Abramovich, Gorokhov, Mikhaylyuvov and Malyavin 1994). The
authors adopted a scalar-type auto-regressive model for the clutter process and incorpo-
rated so-called stochastic constraints on the time-varying adaptive weight vectors in order
to preserve the Doppler spectrum properties of the clutter and other backscattered sig-
nals at the beamformer output. This approach, to be described in mathematical detail
later, is based on the SMI/LCMV adaptive beamformer and has been extended to the
case of space-time adaptive processing in (Anderson, Abramovich and Fabrizio 1997) and
(Abramovich, Spencer and Anderson 1998). Alternative methods based on the use of soft
constraints (or penalty functions) have been proposed by (Van Veen 1991) and (Hughes
and McWhirter 1996) to control the departure of the adaptive beampattern from a qui-
escent tapered array or conventional beampattern that has proven advantages in the ab-
sence of strong interference. The coefficient which controls the cost or penalty associated
with a given departure is selected depending on the stringency required for quasi-fixed
beampatterns that do not greatly distort the clutter Doppler spectrum and the leniency
required for time-varying beampatterns that effectively reject interferers with changing
spatial characteristics. A technique for the data-dependent selection of this coefficient was
proposed by (Turley 1999) and makes use of the eigen-values of the interference-plus-noise
spatial covariance matrix.

To determine when time-varying weight solutions are necessary for interference rejec-
tion in the HF environment, (Fabrizio, Abramovich, Gray, Anderson and Turley 1998)
quantified the improvement in output SINR achieved by the SMI/MVDR adaptive beam-
forming algorithm as a function of time-interval for which the adaptive beamformer was
held fixed. Experimental results were derived on a 1.4 km ULA containing 16 digital
receivers for two different ionospherically-propagated interference sources, one source was

known to propagate over a one-hop mid-latitude path while the other involved multi-hop
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propagation via the typically disturbed equatorial ionosphere. At small integration times
(less than 0.1 seconds) the performance of the adaptive beamformer was being limited by
finite sample effects (i.e., estimation errors) to roughly 3-4 dB below the highest mean
relative SINR improvement (of approximately 22-24 dB) achieved for both sources at a
CIT of about 0.2 seconds. Increasing the CIT for the source propagated via a single-hop
quiet mid-latitude ionosphere hardly effected rejection performance. On the other hand,
when identical processing was applied to the second source which propagated via the
equatorial ionosphere, it was found that degradations in the order of 4-5 dB relative to

the highest SINR improvement occurred within a matter of 3-4 seconds.

5.1.3 Significance of research relative to previous work

Existing theoretical analysis and computer simulation studies of adaptive beamformer
performance provide valuable information and are useful in guiding the user to the most
promising adaptive beamforming methodology for the application at hand. The unique
spatial and temporal characteristics of multipath HF signals reflected by the ionosphere
requires that the performance of promising algorithms be evaluated experimentally so as
to quantify the actual improvements in output SNR which can be obtained in practice
over conventional processing. From the literature review, it is evident that there is very
limited information available which quantifies the relative improvement in output SINR
which can be realised on a very wide aperture HF antenna array. This information would
be valuable for the purpose of justifying the use of adaptive beamformers in operational
HF systems such as OTH radar.

The first aim of this chapter is to describe suitable adaptive beamforming schemes
for OTH radar to quantify the benefits in interference rejection which these schemes offer
relative to conventional spatial processing. The second aim is to determine the accuracy
with which the previously validated models of the HF channel can predict the exper-
imental performance of these adaptive beamformers. In severe interference conditions,
intra-CIT variations of the adaptive beampattern may be necessary to yield satisfactory
output SINR levels and the previously mentioned side-effects of such processing (i.e.,
backscattered clutter smearing) must be addressed. The final aim of this chapter is to
illustrate the performance of the stochastic constraints approach using real interference

data superimposed with simulated clutter and target signals.

5.2 Interference rejection analysis

The purpose of this section is to describe the procedure used to quantify the signal-to-
interference and noise ratio (SINR) improvement which is gained by adaptive beamforming
relative to conventional beamforming in the HF environment. In this analysis the SINR

improvement in the beam estimates is determined by comparing the level of interference



5.2. INTERFERENCE REJECTION ANALYSIS 167

rejection achieved by the adaptive and conventional beamformers with both beamformers
having the same (unity) gain response to ideal target signals. The interference cancella-
tion performance is studied by operating the radar system in passive mode (i.e., with the
transmitter switched off) so that the antenna array samples co-channel HF interference
and noise only. This passive mode analysis indicates the maximum potential for SINR
improvement in OTH radar systems as the presence of clutter and non-ideal target sig-
nals is likely to reduce the performance of an adaptive beamformer more than that of
a conventional beamformer. Section 5.2.1 describes the basic theoretical aspects of the
adaptive beamforming algorithm used for HF interference rejection in this analysis and
the reasons for its selection. The practical application of this adaptive beamforming al-
gorithm to the recorded ionospherically-propagated HF interference data is discussed in
section 5.2.2 which also defines the output SINR improvement factor used to quantify the
potential benefits of adaptive beamforming.

5.2.1 Adaptive beamforming algorithms

The criteria most often used to determine the optimal adaptive beamforming weight vector
W,pt is that of maximising the SINR at the output of the beamformer. Let x(t) be the
array snapshot vector received at the k™ fast-time sample in the t** PRI and assume that
this vector contains a desired signal component si(¢) superimposed with uncorrelated

interference and noise lumped into the term ng(t).

k() = sk(t) + ne(t) = gi(t)s(8) + na(t) (5.1)

In Eqn.(5.2), gk(t) is the desired signal waveform to be estimated at the output of the
beamformer and s() is the narrowband ULA response vector associated with an ideal
(plane wave) signal incident from the cone angle of interest §. The scalar beamformed
output yx(?) is given by the inner product of the beamforming weight vector w,,; and the

array data snapshot vector x(t).
y(t) = whxi(t) = gr(t)wl,s(6) + wh ny(t) (5.2)

Based on the assumption that the interference and noise processes are uncorrelated with
the desired signal and that all signals are wide-sense spatially stationary, the optimum
weight vector W,y is derived by minimising the output power E{|yx(t)|?} subject to a
linear constraint which ensures that the desired signal is passed with unity gain (i.e.,
wil s(0) = 1). Since the desired signal is uncorrelated with the interference and noise
it follows from Eqn.(5.2) that an arbitrary weight vector w which satisfies this linear

constraint will produce an output power given by,

E{lye()'} = o5 + wH E{ni()n} ()}w = o] + wR,w (5.3)
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where 02 = E{|gi(t)|*} is the desired signal power at the beamformer output and R,
represents the interference-plus-noise spatial covariance matrix. The term w7R,w is
the residual interference and noise power which must be minimised in order to maximise
the output SINR. In mathematical terms, the minimum variance distortionless response
(MVDR) criterion finds the optimum weight vector w,,; as the solution to the following

multi-dimensional quadratic minimisation problem.

Wopt = argmin wWR,w subject to: w's(f) =1 (5.4)
Using the method of Lagrangian multipliers it can be shown that the solution which max-
imises the output SINR under the above-mentioned assumptions is given by the analytical

expression in Eqn.(5.5) which is sometimes referred to as the Wiener-Hopf solution.

R-1s(9)

Yo = SR 5(0) (5:9)

More than a single linear constraint (i.e., the unity gain constraint) may be required in
certain applications. For example, apriori information may be available regarding the
direction of intermittent interference sources which may not always be present at the
time of spatial covariance matrix estimation, it is then desirable to force “anticipatory”
nulls in the adaptive beampattern explicitly in these directions (Griffiths and Buckley
1987). If such an interference source is expected to have a plane wave structure and
be incident from direction §; then the linear constraint ws(8;) = 0 can be added to
the optimisation problem in Eqn.(5.4) to ensure that such a source is always cancelled.
The derivative constraint w¥ds(0)/00 = 0 is sometimes used to flatten the shape of the
main lobe near the array look direction so as to increase the robustness of the adaptive
beamformer to differences between the expected and received desired signal wavefronts.
Such mismatches can arise due to propagation effects as well as instrumental errors which

H

produce uncertainties in the array manifold. For M arbitrary linear constraints w”c,, =
fm where m = 1,2,..,M < N, the linearly constrained minimum variance (LCMV)

adaptive beamforming algorithm can be mathematically formulated as,
Wopt = argmin w7 R,w subject to : Clw=f (5.6)

where the N x M matrix C contains the M vectors ¢, as its columns and the M-variate
column vector f contains the fr. The solution w,, to this more general optimisation

problem is expressed in closed form by Eqn.(5.7).
wopt = R;'C(CPR;'C)~!f (5.7)

In practice, the spatial covariance matrix of the interference and noise is unknown and

must be estimated from the array data. A well known algorithm for estimating the
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optimum weight vector W,,; is known as the sample matrix inverse (SMI) technique where
the sample covariance matrix R, is directly substituted for the statistically expected
covariance matrix R, in either Eqn.(5.5) or Eqn.(5.7). Although this may appear to
be a somewhat ad-hoc approach, it has a number of very important advantages over
the less computationally expensive estimation methods, such as the LMS algorithm for
example, which iteratively converges towards the estimate W,,; without performing matrix
inversion.

The first major advantage of the SMI technique is that for a finite number of avail-
able array snapshots ni(t) the SMI method converges much more rapidly to the optimum
weight vector (i.e., Wopt — Wopt) than the LMS technique, especially when the spatial co-
variance matrix R, is ill-conditioned or has a high eigenvalue spread due to the presence of
powerful interference. Moreover, for stationary zero-mean complex Gaussian distributed
interference and noise processes (i.e., ni(t) distributed as N(0, R,)) the sample covariance
matrix is the maximum likelihood (ML) estimate of the true covariance matrix and by
the invariance principle W,y is the ML estimate of w,,;. For the MVDR beamformer, it is
known that 2N statistically independent snapshots n,(t) are required to limit the average
loss in output SINR to about 3 dB relative to the true optimum as a result of estimation
errors. These losses are maintained irrespective of the form of the interference-plus-noise
spatial covariance matrix. Perhaps less known are the results of (Cheremisin 1982) which
show that by appropriate diagonal loading of the sample covariance matrix the number
of independent snapshots required for 3 dB average losses in output SINR can be reduced
to 2P where P is the number of interference sources. Another point worth noting is that
the addition of linear constraints effectively removes adaptive degrees of freedom from
the processor but it also reduces the number of snapshots required to achieve the same

average SINR loss with respect to the optimum SINR under the given constraints.

5.2.2 Adaptive beamforming schemes

To quantify the HF interference cancellation performance for the class of adaptive beam-
formers described above in a meaningful way it is necessary to consider the operational
constraints imposed by a real system and how they affect the manner in which the adap-
tive beamforming theory is applied in practice. The main point to consider for OTH radar
systems is that during normal operation such systems cannot receive desired signals with-
out simultaneously receiving clutter. The presence of desired signals and clutter in the
array snapshots significantly complicates the estimation of the optimum weight vector ac-
cording to the MVDR or LCMYV criterion which ideally requires the best possible estimate
of the interference-plus-noise spatial covariance matrix R,. A well known approach to
circumvent this problem in active radar systems is to turn the transmitters off for a brief
period prior to each coherent integration time (CIT) and to estimate the matrix R, from

interference-plus-noise snapshots received over this interval. The “optimal” weight vector
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Figure 5.1: Diagrammatic illustration of the four adaptive beamforming schemes. Each
diagram shows the dwell regions in which the recorded array snapshots are used for
estimation of the adaptive weight vector and those where this weight vector is applied to

beamform the data.

may then be formed using the SMI technique and frozen to process the entire CIT of data
which immediately follows the interference-plus-noise sample train. The same procedure
is invoked once again to process the next CIT and so on. Updating the weight vector
from one CIT to another is advisable, especially in the HF environment, to compensate

for temporal fluctuations in the spatial properties of the external interference-plus-noise

field.

The above-mentioned methodology is referred to as adaptive beamforming scheme 1,
this scheme is illustrated in the upper left diagram of Figure 5.1 and the MVDR im-
plementation is now described in mathematical detail. Since the interference-plus-noise
snapshot ni(t) is uncorrelated with the deramping FMCW waveform at each receiver,
the interference-plus-noise energy is spread over all range samples (k). Assuming the
statistical properties of ni(t) are invariant over the waveform PRI the snapshots received
at different range cells k = 1,2,.., K may be considered as different realisations of the

multi-channel interference-plus-noise process. These realisations will be statistically in-
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dependent when the interference is broadband (of bandwidth larger than or equal to the
radar bandwidth) and sampled at the Nyquist rate at the receiver outputs. The degree of
independence between these realisations is in general dependent on the interference-plus-
noise waveform characteristics and the use of range processing window functions which
tend to correlate neighboring FFT outputs. In any case, the sample spatial covariance
matrix R, is usually formed using all available realisations (i.e., range cells k = 1,2, .., K)
which are recorded during a passive mode time interval of A, PRI between the end of
one CIT and the commencement of another. Note that A, is an integer which represents
the number of PRI of passive mode data used to estimate the interference-plus-noise only
sample spatial covariance matrix R, in the manner described by Eqn.(5.8). The remain-
ing PRI in the dwell (indexed by t = A, +1,A,+2,.., P) additionally contain clutter and
desired signals under normal operating conditions but for this study only passive mode

data were recorded.

R:'s(8) . 1 &
V= ————"— , R,=—— Hnf(t 5.8
= Rs(0) KA. k§=1 t§=1 n(t)ny (2) (5.8)

When the number of available snapshots K'A,, is limited, the performance of this method
may be improved by diagonal loading of the covariance matrix R, = R, + 0% and
substituting R,, for R,, in Eqn.(5.8). The optimal choice of o2 is non-trivial and data-
dependent, typically low levels of loading (in the vicinity of the additive noise power) are
used to improve performance when the number of samples is limited {Carlson 1988). An-
other modification which may improve performance is to average the covariance matrices
resulting at both ends of a particular CIT since any variation in the interference-plus-
noise field over the CIT will be better captured. This method is referred to as adaptive
scheme 2 in Figure 5.1 and denoted by the weight vector w;. The scalar beamformed
outputs yx(t), yi(t) and y?(t) corresponding to the conventional beamformer and adap-

tive weight vectors w; and W, respectively can be derived by processing the data xi(t)
recorded during the CIT;

s(0)7Txx(t)

yk(t) = W ) yllc(t) = v‘vka(t) ) yﬁ(t) = "Avka(t) (5.9)

where k = 1,2, ..K, t = 1,2,..,P for yk(t), t = A, +1,A, +2,.., P for yi(t) and ¢ =
A2+ 1,A, +2,..,P — Ap/2 for y2(t). The conventional beamformer may include a
taper represented by the diagonal matrix T to reduce sidelobes, the normalisation term
s(6)7Ts(0) ensures that the response to a desired signal is the same (unity) as that of the
adaptive beamformers W, and W;. Using the passive mode data x,(t), the improvement
in output SINR gained by adaptive beamforming relative to conventional beamforming

can be estimated (for an ideal desired signal) as the interference cancellation ratio ¢; or
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gz given by Eqn.(5.10).

K P K P-A,/2
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An alternative approach is based on the observation that while HF interference and noise

: (5.10)

appear in all range cells, the clutter and desired signals often appear over a range ex-
tent beyond the so-called skip zone. At distances between the receiver and the skip-zone
boundary the propagation of HF signals is not well supported by the ionosphere so the
signal received in the skip-zone range cells (say £ = 1,2,..,Ax < K) is dominated by
the interference component. This natural phenomenon can be exploited to estimate the
interference-plus-noise spatial covariance matrix within the CIT rather than at its ex-
tremities. This alternative scheme is referred to as adaptive beamforming scheme 3 in
Figure 5.1 and the MVDR implementation is described by Eqn.(5.11).

o __RisO) s _ 1 S5\ o
wa—SH(B)ﬁ;IS(G), R, = 30 ni(t)nf(t) (5.11)

As described by Eqn.(5.12), the adaptive and conventional beamformed outputs y3(t)
and y(t) are calculated by processing the CIT data xi(Z) recorded in the range cells
beyond the skip-zone since these cells potentially contain desired signals. The estimate of
SINR improvement factor for this scheme is denoted by ¢s and given by Eqn.(5.12). The
advantage of this scheme is that the adaptive beamformer is tuned with an estimate of the
spatial properties of the interference-plus-noise integrated within the CIT of data to be
processed. However, the range coverage is reduced due to the need for skip-zone cells and
it is noted that at low frequencies where the ionosphere is more likely to permit vertical
incidence propagation these cells may not be available at all. The adaptive beamformer
output y3(¢) for this scheme is given by Eqn.(5.12) along with the associated improvement

factor gs.

(5.12)

y2(t) = Wi xy(t) q_EkK=Ak+1 St lyk(t)l"’{ ko= Av+1,00+2,.K
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The interference rejection analysis is concerned with experimentally evaluating the quan-
tities §; 2.3 to gain a numerical appreciation for the potential SINR improvement offered
by the different adaptive beamforming schemes. Of particular interest is to quantify the
distribution describing the variation of these quantities with respect to the CIT length in
seconds, the mean and deciles of these distributions will be illustrated in the experimental

results section.
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5.3 Advanced adaptive weight control

It was shown in chapter 2 that the spatial structure of HF signals reflected by the iono-
sphere varies significantly over time scales much smaller than the duration of typical OTH
radar CIT. Moreover, these variations in wavefront shape are highly correlated from one
PRI to another and the wavefronts are seen to evolve in a smooth fashion when observed
at a temporal resolution of less than one tenth of a second. Due to this high correla-
tion, a HF signal reflected by a particular ionospheric region (i.e., a single mode) has
almost unit spatial rank or is characterised by a fixed spatial structure when view over the
quasi-instantaneous PRI employed in OTH radar applications. Note that even though the
quasi-instantaneous spatial covariance matrix is of unit rank in this case, for a stationary
angularly spread signal mode, the statistically expected spatial covariance matrix has full
rank. It is then evident that forming the interference-plus-noise sample covariance matrix
over short time segments (equal to the PRI for example) is an effective means for reducing
the dimension of the interference subspace. A reduction in the subspace dimension occu-
pied by such sources increases the capacity of adaptive beamformers with a finite number

of degrees of freedom to cancel interference.

This observation leads to the conclusion that re-adapting the beampattern over short
time segments within the CIT allows the beamformer greater scope to reject the HF
interference completely. The most difficult practical situation arises when the number of
interference sources is high, the spatial properties of these sources are changing quickly,
the CIT is long and the number of adaptive degrees of freedom is limited. In such
situations, re-adaptation of the beampattern within the CIT reduces the consumption of
adaptive degrees of freedom and may be essential for the effective removal of interference.
An apparently reasonable way of re-adapting the beampattern within the CIT is to form
the slow-time varying interference-plus-noise sample covariance matrix f{n(t) from the
skip-zone range cells in successive data frames of A, PRI duration within the CIT and to

calculate the fluctuating weight vector Wy(¢) in accordance with the well known rule.

, R'(0s(0) 4 L SNSE L i
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As depicted by Figure 5.1, the slow-time varying weight vector W4(t) corresponding to
adaptive scheme 4 is then used to beamform the data x4(t) recorded in the range cells
beyond the skip-zone k = Ag+1, Ag+2,.., K over the current set of PRI ¢, t+1,..,t+A,—1.
Once the entire CIT of data has been beamformed by the sequence of different adaptive
weight vectors the scalar output must then be Doppler processed to separate the desired
signal from the strong clutter returns.

While the interference is expected to be rejected effectively by this approach a po-

tentially serious problem can arise from the interaction between the intra-CIT varying
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adaptive beampatterns and the unrejected clutter returns. The clutter is spatially broad-
band and enters the beamformed output through the main lobe and sidelobes of the
adaptive beampatterns which fluctuate throughout the CIT. Fluctuations in the direc-
tional response of the array impose a temporal modulation on the beamformed clutter
signal that causes it to spread across the velocity search space after Doppler processing.
While (N — 1) additional linear constraints can be applied to fix the response of the
beampattern at certain points, such a method cannot protect the clutter from spreading
as it is received over a continuum of points along the beampattern. Hence, the problem
faced is to allow beampattern re-adaptations in order to increase interference rejection
but to simultaneously control these re-adaptations in a way that preserves the temporal
correlation properties of the spatially broadband clutter. An approach which addresses

this problem is described in the following section.

5.3.1 Stochastic constraints algorithm

The stochastic constraints (SC) algorithm was originally developed by (Abramovich et al.
1994) for spatial-only adaptive filtering and has more recently been generalised for the
case of space-time adaptive processing (STAP) in (Anderson et al. 1997) and (Abramovich
et al. 1998). Only the underlying principles and essential mathematical features of the
stochastic constraints algorithm are described here, the reader is referred to the above-
mentioned citations for a more in-depth description of the algorithm and its operational
implementation.

The SC algorithm relies on a p** order scalar-type auto-regressive (AR) modelisation
of the random multi-channel clutter process where the AR order p « N and the AR
parameters determine the Doppler characteristics of the received clutter process. These
temporal second order statistics of the clutter process are preserved at the beamformed
output by imposing p data-dependent or stochastic linear constraints on the re-adapted
weight vector. These constraints are designed to control the beampattern fluctuations
such that the output clutter process is statistically described by a uni-variate AR process
with the same scalar parameters. To demonstrate the essential features of this algorithm,
let cx(t) be the clutter snapshot having temporal properties described by the following

AR recursive relation.
P
cl(t) + ) ouck(t — i) = mi(t) (5.14)
=1

In Eqn.(5.14), the ¢; for ¢ = 1,2,.., p are the scalar AR process parameters and n,(t) is a
zero mean complex innovative white noise vector such that E{nx(t)nf(t —1)} = R.(k)d(?)
where R.(k) is the spatial covariance matrix of the clutter at range cell k. The SC
algorithm estimates a range-dependent beamforming weight vector w'*(t) according to

Eqn.(5.7) after substitution of R, with f{n(t) by incorporating a linear deterministic
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constraint (i.e., the unity gain constraint) along with the following additional set of p

range-dependent stochastic constraints;
Cu(t) = [(0) cal(t — 1)+~ calt = p)] , £ult) = [1 when(t = 1) wle(t—p)]¥ (5.15)

where Cy(t) and fi(¢) are substituted for C and f respectively in Eqn.(5.7). As explained
in (Abramovich et al. 1994), the first weight vector in the sequence wy is the reference
weight vector which is derived using the first segment of data comprising the PRI ¢ =

1,2,..,A, = p without the use of stochastic constraints.

From the AR relation in Eqn.(5.14), the current clutter snapshot ci(t) to be processed

A

by wisc)(t) is a linear function of the past p clutter snapshots so the imposed constraints
ensure that the current beamformed clutter output w'*¥ (t)c,(t) is also a linear function
of the past p beamformed clutter outputs. Moreover, it can be shown that the coeffi-
cients of this linear function coincides with the scalar AR coefficients ¢; of the original
multi-channel clutter process in Eqn.(5.14). As the scalar output process is statistically
described by the same AR coefficients it follows that such constraints do in fact preserve
the spectral characteristics of the beamformed clutter process whilst allowing the adaptive
weight vector to change during the CIT. Note that it is not necessary to estimate the AR

clutter process parameters a; in Eqn.(5.14) to ensure this.

Naturally, the clutter-only snapshots are not available in practice to form the stochastic
constraints in Eqn.(5.15). An operational procedure for obtaining close approximations
to these constraints is described in (Abramovich et al. 1998) when clutter free array
snapshots are available (supervised training) and in (Abramovich, Anderson and Spencer
2000) when clutter free array snapshots are not available (unsupervised training). The
performance of an operational stochastic constraints procedure with supervised training

will be illustrated in the following section.

A potential disadvantage of the stochastic constraints approach is that it cannot be
used to preserve the clutter Doppler spectrum when the clutter spatial snapshots do
not accurately obey the AR model in Eqn.(5.14). Even if such a model were accurate
the order of the model needs to be estimated and if p approaches N then a significant
amount of adaptive degrees of freedom are consumed only to protect the clutter, leaving
relatively little scope for the beamformer to cancel the interference effectively. Another
disadvantage of the SC algorithm, and many other adaptive beamformers in their strictly
presented form, is that the sidelobes of the adapted beampatterns do not necessarily have
the desirable characteristic of falling off in magnitude with increasing separation from the
main lobe. This aspect has the potential to cause false alarms because target signals are
not present in the training data and may therefore be received on large sidelobes of the

beampattern well away from the main lobe.
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5.4 Experimental results

The experimental data used for this study involves the passive reception of a co-operative
HF interference source transmitting a “white noise” signal from a known location. The
procedure for data collection is described in section 5.4.1 while the results of the interfer-
ence rejection analysis are presented in sections 5.4.2 and 5.6. The benefits of applying
more sophisticated adaptive weight control algorithms is illustrated in section 5.4.5 to

motivate further research.

5.4.1 Data collection

In this experiment a vertically polarised omni-directional (whip) antenna was utilised
to transmit a strong radio frequency interference (RFI) signal over a single-hop mid-
latitude ionospheric path. The cooperative RFI source was positioned in the far-field of
the Jindalee array, near Darwin, which is approximately 1265 km from the receiver site
and offset 422 degrees from the array boresight. A clear frequency channel of 3 kHz
bandwidth at a carrier frequency of 16.050 MHz was exclusively alloted for the purposes
of this experiment which was conducted on 1 April 1998 between 06:22 UT and 06:32 UT.
Note that the HF propagation data analysed in the previous chapters were recorded for
the same mid-latitude ionospheric circuit immediately prior to this experiment (06:17-
06:21 UT) on a nearby frequency channel (16.110 MHz).

The JFAS frequency management system (FMS) described in (Earl and Ward 1986)
simultaneously monitored the prevailing ionospheric conditions on this mid-latitude path.
In particular, ionograms from an oblique sounder also situated in the Darwin region were
collected to determine the ionospheric mode content of the RFI signal. As predicted
by the FMS system, the source frequency of 16.050 MHz coincided with near optimum
single-hop ionospheric propagation conditions over the mid-latitude path which linked the
interference source to the receiving antenna array at the time of recording.

All 32 subarrays of the Jindalee uniform linear array were steered towards the Darwin
region and tuned to the designated frequency channel to passively receive the ionospherically-
reflected RFI signal after FMCW deramping. The received “white noise” interference
signal was seen to spread across the entire range-Doppler search space in a significant
number of beams after conventional (FFT-based) processing was performed on the data
received during each coherent integration time (CIT).

Each CIT of data contains 256 PRI’s with 42 range cells retained for every PRI in
all of the 32 receivers. The actual CIT lengths in seconds were therefore set by choice
of the FMCW waveform repetition frequency (PRF) in Hertz. A low PRF of say 1 Hz
permits the study of interference rejection over long CIT lengths (up to 256 seconds) but
limits the minimum time interval over which the interference properties can be integrated
to the PRI which equals 1 second in this case. Using a high PRF (of say 50 Hz) allows
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one to observe interference rejection over very small time intervals but leads to short CIT
lengths. In the experiment a PRF of 5 Hz was used to record interference data over
CIT lengths of approximately 50 seconds,' this value was chosen because the ionospheric
channel propagating the interference is not expected to vary significantly over PRI shorter
than 0.2 seconds.

The RFI source was switched off momentarily during the recording period in order
to collect background noise only on the same clear frequency channel. The background
noise-field was also sampled at a 5 Hz PRF and the same receiver configuration was
maintained for all data recording. This data serves a reference point or benchmark which
can be used to determine whether the adaptive beamformer has been able to completely
mitigate the interference. If complete mitigation is not achieved, a comparison between
the residual interference-plus-noise power and the noise-only power levels allows one to

establish limits on the interference cancellation performance of the adaptive beamformer.

5.4.2 Intra-CIT analysis of adaptive beamformer performance

The purpose of this section is to experimentally demonstrate the improvement in HF inter-
ference cancellation gained by the adaptive beamforming schemes described in section 5.2
relative to the conventional beamformer as a function of sweep number throughout the
CIT. As the spatial structure of the interference modes is not expected to change signif-
icantly over the “quasi-instantaneous” PRI, the relative improvement observed from one
PRI to another within the CIT serves to quantify the effect of intra-CIT spatial structure
variations on adaptive beamformer performance.

To illustrate the impact of interference spatial structure variations during the CIT
on the performance of adaptive beamforming scheme 1 the quasi-instantaneous SINR

improvement estimate (jf,ilt(t) was calculated as,

H(9)TR,(t)Ts(0) . ] AutK
A(I) t) = s,\ ( i Rn t) = — t H
qmst( Wfan(t)WI SH(a)TS(o) ’ ( ) K, k=§k:+l nk( )nk (t) (5.16)

where Ay = 16, K’ = 16, t = Ay + 1,4, +2,..., P = 256. Note that the adaptive
spatial filter W, was formed according to Eqn.(5.8) using K = 32 and A, = 6, the reason
for calculating the rejection over K’ instead of all range cells will become apparent later
when the performance of the different adaptive schemes are compared. The cone angle 8
corresponds to the steer direction of the adaptive and conventional beams, both of which
have a unity gain response to ideal target signals incident from this direction. A Hamming
window function was used in the diagonal taper matrix T to reduce the sidelobes of the
conventional beampattern.

Curve 1 in Figure 5.2 shows the relative improvement (}f,tzt(t) as a function of slow-time

¢ over a 50 second CIT of data. The average interference-to-noise ratio (INR) measured
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at the receiver output was 54.3 dB for this CIT. To calculate the average INR, a CIT
of background noise data (recorded on the same frequency channel immediately after
switching off the interferer) was compared to the interference-plus-noise CIT to evaluate
the INR at each receiver and these values were averaged across different receivers to
yield the average INR. In OTH radar applications a set of mutually orthogonal beams is
usually formed such that s¥(6;)s(6;) = 0 for 7 # j where the integers 1,5 = 1,2,..N are
the referred to as the beam numbers. In this example, a cone angle of § = 21.6° (beam
number 12) was chosen and corresponds to the beam steer direction in which the classical

beamformer received the most interference-plus-noise power.

It is evident from Curve 1 in Figure 5.2 that the adaptive beamformer W, trained on
a sample of K x A, = 192 spatial interference-plus-noise snapshots has an initial effec-
tiveness which is superior to the conventional beamformer by 30 dB. However, this initial
improvement in interference suppression fades quickly to almost 0 dB (i.e., equivalent
cancellation performance with the conventional beamformer) in a matter of 2 seconds.
After about 20 seconds the adaptive beamformer w; “ages” to the point that conven-
tional beamforming provides superior interference cancellation performance. Another
point worth noting is that the small amplitude noise-like variations in the relative im-
provement (possibly caused by finite sample effects) are superimposed on an underlying
larger-scale variation which varies relatively smoothly and exhibits a wave-like nature be-
tween 20-50 seconds. These fluctuations of over 30 dB can only be attributed to temporal
changes in the spatial structure of the interference modes induced by the ionospheric reflec-
tion process during the CIT. Based on this result, it appears that in the HF environment
adaptive scheme 1 is quite inappropriate for the purpose of ionospherically-propagated
HF interference cancellation when CIT lengths greater than one second are required.

Curve 2 in Figure 5.2 shows the relative improvement A,(:lt(t) calculated for adaptive
scheme 2. In this case the spatial filter W, is calculated using the interference-plus-noise

snapshots received in A,/2 = 3 PRI immediately before and after the CIT of data to be

processed.

o _ R0 T 2 mOnf () + Yio Elpoayan 2O
T sH(ORs(6) KA,

(5.17)

As for scheme 1, the quasi-instantaneous relative improvement (jf:lt(t) is computed by
substituting W, for W in Eqn.(5.16) for t = A,/2+1,A,/2+2,..., P — A, /2. Note that
the same number of training samples are used to estimate W; and W, while the range
cells processed within the CIT by these two spatial filters are also the same so tj,(,lllt(t) and
cj,(:zt(t) can be meaningfully compared.

It can be seen from Curves 1 and 2 in Figure 5.2 that the relative improvement of

scheme 2 is superior to that of scheme 1 over practically all of the CIT. In particular, the
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Figure 5.2: Quasi-instantaneous relative improvement in interference rejection perfor-
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relative improvement of scheme 2 is 20-30 dB better than that of scheme 1 in the final
second of the CIT. This is expected because adaptive scheme 2 operates on an estimate
of the interference spatial properties which exist near the beginning and end of the CIT
whereas adaptive scheme 1 operates only on an estimate at the beginning of the CIT. The
relative improvement of scheme 2 in the middle stages of CIT is degraded by about 20 dB
relative to that near the extremities of the CIT. This is also expected because adaptive
scheme 2 has no “knowledge” of the intermediate variations in the interference spatial
structure. In general, this information cannot be deduced from the interference spatial
properties at the beginning and end of the CIT.

Nevertheless, averaging the spatial properties estimated at the extremities of the CIT
seems to give a better estimate of those occurring within the CIT, as evidenced by the
10 dB performance improvement of adaptive scheme 2 relative to scheme 1 in the mid-
dle stages of the CIT. However, it is apparent from this analysis that scheme 2 is also
unsuitable for ionospherically-propagated HF interference rejection in applications where
the CIT exceeds one or two seconds. This motivates the need for adaptive schemes which
operate on estimates of the interference spatial covariance matrix within the CIT, such as

adaptive scheme 3 for instance.
(3)

Curve 3 in Figure 5.2 shows the relative improvement §;,,;,(t) calculated for the adap-
tive weight vector w3. This weight vector is estimated according to Eqn.(5.11) using
Ay = 16 ranges and then held fixed to process the range cells k = Ay +1,.., Ay + K’
in each PRI (K’ = 16 as before). Unlike the previous schemes, adaptive scheme 3 uses
an estimate of the interference spatial structure which is averaged over the whole CIT
of data to be processed. The relative improvement gained by adopting this approach is
15-20 dB better than that observed for scheme 2 over the great majority of the CIT. If
more enhanced cancellation is required the only remaining alternative is to re-adapt the
weight vector within the CIT in order to track temporal variations in the interference
spatial structure.

(4)

Curve 4 in Figure 5.2 shows the relative improvement ¢;,,(¢) corresponding to the
slow-time varying adaptive weight vector w4(¢). This weight vector has been calculated
by forming the slow-time varying covariance matrix ﬁn(t) in Eqn.(5.13) with A, = 4,
Ay = 16 and deriving the associated MVDR solution using Eqn.(5.5). As described in
section 5.3, the resulting weight vector is applied to range cells k = Ay +1,..,Ar+ K’ in
(4)

the same A, PRI to obtain the estimate of the relative improvement ¢;,:,(¢) as a function
of slow time ¢.

A relative improvement in the order of 40 dB is evident in Curve 4 of Figure 5.2 and
this indicates that re-adaptations of the beampattern within the CIT leads to substantial
gains in interference cancellation performance. More specifically, a comparison between
the fixed weight vector (Curve 3) and the re-adapted weight vector (Curve 4) demonstrates
that allowing the weight vector to change during the CIT provides an extra 15— 20 dB in

interference cancellation. Later in this section it will be seen that such dramatic increase



5.4. EXPERIMENTAL RESULTS 181

could potentially have been even greater if it were not limited by the underlying noisefloor.

The reason for the enhanced performance of the time-varying beamformer wy(#) rel-
ative to the fixed beamformer W3 may be explained in terms of the dimensionality of
the interference subspace in the spatial covariance matrix relative to the available number
adaptive degrees of freedom. Both processors have the same number of adaptive degrees of
freedom available for interference cancellation but the amount consumed by the dimension
of the interference subspace grows as the time-interval over which the spatial covariance
matrix is integrated increases. This growth with integration time is primarily caused by
the time-varying spatial distortions induced by the ionospheric reflection process on the
interference signals. Since these distortions evolve in a correlated manner with respect to
time it follows that limiting the integration time reduces the effective dimension of the
interference subspace and this in turn allows an MVDR beamformer with finite degrees
of freedom to cancel more of the interference.

Figure 5.3, in the same format as Figure 5.2, shows the results for the subsequent CIT
of interference-plus-noise data in which the average INR was computed as 57.9 dB. In
this example, the cone angle § = 20.8° (beam number 10) was chosen. This beam steer
direction is slightly further away from the direction in which the maximum interference
power was received by the classical beamformer (beam number 12). Although the basic
characteristics of the four curves in Figure 5.3 are similar to those of Figure 5.2, the
absolute values are seen to be different from one CIT to another and will depend on the
beam steer direction. This illustrates the need for further data processing to quantify
the variability in the performance of the various adaptive schemes over both beam steer
direction and the particular CIT of data. In this way a more reliable estimate of the
average or expected performance of the different schemes can be obtained as a function

of the CIT length for a given interference scenario.

5.4.3 Statistical analysis of adaptive beamformer performance

For CIT’s of a given duration the relative improvement in interference cancellation varies
as a function of beam steer direction and the particular CIT of data processed. It is
therefore of interest to quantify the distribution of the relative improvements observed for
each of the adaptive beamforming schemes in the same interference scenario.

Figure 5.4 shows the mean and deciles of the distribution for the relative improvement
gained by adaptive scheme 1 over different CIT lengths. For a given CIT length, a total
of 10 mutually orthogonal beams were processed in each of 40 different CIT so that the
distribution obtained for each CIT length comprises 400 samples. Fach sample in the
distribution is calculated as the relative interference cancellation improvement averaged
over the CIT for a particular beam steer direction.

It is noted from Figure 5.4 that the mean relative improvement drops markedly from

above 30 dB to below 0 dB as the CIT is increased from a fraction of a second to 40 seconds.
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Figure 5.4: Mean and deciles of the improvement in interference rejection performance
achieved by adaptive scheme 1 (¢;) over the conventional beamformer as a function of

CIT length.

Moreover, this degradation is very rapid in the sense that over 20 dB of interference
cancellation gain is lost in less than 2 seconds which is typically the lower limit of typical
OTH radar CIT. The extra computational (and operational) complexity associated with
adaptive scheme 1 relative to conventional beamforming is therefore not warranted for

such CIT lengths according to these experimental results.

Figure 5.5, in the same format as Figure 5.4, shows the results derived for adaptive
scheme 2. The mean relative improvement of this scheme is above 40 dB for very small
CIT lengths but decays to 25 dB after two seconds and to approximately 0 dB by the
time the CIT reaches 30 seconds. Although the interference cancellation gain decays less
rapidly for this scheme than it does for scheme 1 the significant drop in performance
for CIT lengths exceeding 2 seconds may not be tolerable when a powerful interferer is
present. Based on these experimental results, it is evident that this scheme may not
perform well enough compared to the conventional beamformer to justify its operational
implementation.

Figure 5.6 illustrates the mean and deciles of the relative improvement distributions
resulting for adaptive scheme 3. The maximum mean relative improvement gained by this
scheme is about 43 dB and occurs for a CIT length slightly over 1 second. A degradation
of up to 8 dB is observed for smaller CIT lengths and this is caused by the finite number of
samples available for spatial covariance matrix estimation in this scheme when the CIT is
reduced. For CIT lengths longer than 1 second the degradation is caused by the increased

consumption of adaptive degrees of freedom due to temporal variations in the interference
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Figure 5.5: Mean and deciles of the improvement in interference rejection performance
achieved by adaptive scheme 2 (§;) over the conventional beamformer as a function of

CIT length.

spatial structure.

Using this scheme leads to an interference cancellation gain of over 30 dB for CIT
lengths smaller than 5 seconds and this may be sufficient is some applications to maintain
satisfactory target detection performance. Diagonal loading can be employed to improve
the performance at very small CIT lengths if required, as illustrated by Figure 5.7 where a
loading factor of -20 dB is applied (i.e., 0.01 x I is added to the sample spatial covariance
matrix used to form the MVDR weight vector). This relatively simple operation improves
the relative cancellation performance from 35 dB to 45 dB at very small CIT lengths, a
remarkable 10 dB increase.

The performance degradation of over 25 dB experienced as the CIT is increased to-
wards 50 seconds may pose a problem in certain OTH radar applications and the 10 dB
drop as the CIT increases from 1 second to 8 seconds can make a significant difference
to the performance of systems requiring intermediate CIT lengths. For this reason it is
of interest to determine the potential effectiveness of re-adapting the beampattern within
the CIT (scheme 4). The effectiveness of adaptive scheme 4 is also quantified by Fig-
ure 5.6 since every segment of data over which the beampattern is re-adapted may be
considered as a sub-CIT of the total CIT. In other words, if the adaptive weight vector
were re-computed every second, which coincides with a mean relative improvement of
about 43 dB in Figure 5.6, then such an improvement can be realised for any CIT length
by the re-adapting the MVDR weight vector every second.

Before investigating the use of adaptive scheme 4, it is of interest to compare the
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Figure 5.6: Mean and deciles of the improvement in interference rejection performance
achieved by adaptive scheme 3 (g3) over the conventional beamformer as a function of
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Figure 5.7: Mean and deciles of the improvement in interference rejection performance
achieved by adaptive scheme 3 after diagonal loading relative to the conventional beam-
former as a function of CIT length.
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statistical interference cancellation performance predicted by the HF channel model with
the experimentally observed distributions. Such a comparison allows one to determine
the fidelity with which the previously validated HF channel model can predict the relative

SINR gain under ideal target signal conditions.

5.4.4 Statistical analysis with simulated interference

As mentioned in chapter 4, the space-time signal processing model of the HF channel can
be used to simulate the statistical characteristics of the complex-valued digital samples
received by an array of sensors due to an interference source propagated by the ionosphere.
The space-time parameters of the HF channel model described in the previous chapter
cannot be estimated directly from the received interference because the incoherent nature
of this signal with respect to the FMCW mixing waveform does not allow the temporal or
Doppler properties of the channel to be observed. Nevertheless, the interference has been
received at a similar time and frequency to the channel scattering function (CSF) data
analysed and modelled in the previous chapters. The CSF data was received between
06:17 —06:21 UT on 1 April 1998 at a frequency of 16.110 MHz while the interference
was received between 06 : 22 —06 : 32 UT on the same day at a frequency of 16.050 MHz.

Although the channel parameters may vary over this time and frequency interval it is of
interest to compute the interference cancellation distributions using the model parameters
estimated from the CSF data. The model parameters used for the simulation are listed
in Table 5.1. The relative power ratio of the different interference modes are assumed
to be the same as those measured for the CSF data, but the absolute power of each
interference mode has been scaled such that the total power of the modelled signal equals
the estimated power of the received interference. The power of the received interference
was estimated by evaluating the variance of the data recorded in each receiver throughout
the data collection period and then averaging these variances across receivers. The average
variance of the received interference was 30.2 dB.

Note that the mode powers given in Table 5.1 are not the mode INR’s, for this data
set the noise level is at approximately -27 dB when measured in receiver space prior
to Doppler processing. The INR’s can be calculated by adding 27 dB to the powers
listed in Table 5.1 and it is noted that the average INR over the data collection period is
approximately 30.2 dB + 27 dB = 57.2 dB. The noise added to the simulated interference
is real background noise recorded on the same frequency band in the absence of the RFI
signal.

Another point which needs to be considered in the simulation is the nature of the
interference waveform gi(t — 7m) and the effect of the relative mode time-delays 7., for
each mode m = 1,2,..,M = 5. The interference signal is of f, = 3 kHz bandwidth

and its spectral density is expected to be approximately flat over this passband because
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Mode | power, dB | temporal pole, o spatial pole, 8

1E,(a) | 205 0.998 k1046 [ (.020 iz sm(22:2-0,)
1E,(b) 17.9 0.997 e3F1039 | ( 963 ik2sin(21.7-6,)
1F 28.6 0.994 eik10.44 0.988 eik2sin (20.7-6,)
1F3(0) 21.8 0.997 ik1047 | (.98 eik2sin(20.5~6,)
1Fy(z) 7.9 0.994 k1053 | () 953 ik sin(19.9-6,)

Table 5.1: Interference simulation parameters assuming five propagation modes and the
HF channel model estimated from the channel scattering function data. The constants

are ky = 2w/ f, where f, =5 Hz and k; = 2nAd/) where Ad =84 m, A =¢/f. =187 m
and the subarray steer direction 8, = 22.0 degrees. ~

the emitted signal is derived by filtering a broadband (greater than 3 kHz) source of
“white noise”. Assuming the spectral density is constant over the band, the temporal
autocorrelation function of the transmitted interference signal is given by the sinc function
with the first null at a time delay 7 = 1/ f;, (i.e., 0.33 ms in this case).

The differential time delay between modes can be estimated from the oblique incidence
ionogram recorded for the CSF data analysis in chapter 2. For each pair of modes, the
differential time-of-arrival can be calculated from the ionogram and expressed in terms of
an inter-mode correlation coefficient by evaluating the sinc auto-correlation function of
the interference waveform at this differential time delay. Once the correlation coefficients
pi.; are calculated in this manner for all pairs of modes 7,5 = 1,2,.., M = 5 they can be

entered into the so-called source covariance matrix R,.
R, = E{ggl'} = [piilifes » 8 = [ge(t —71) - gu(t — ma)]" (5.18)

Note that the diagonal elements of R, are unity by definition as the mode waveforms
gr(t — Tar) are normalised to have unit variance in the model. Once the source covariance

matrix has been evaluated the interference mode waveforms can be generated as,
gx(t) = RYn,(t) E{nkl(tl)nfz(tz)} = 8(k1 — k2)é(t1 — t2)1 (5.19)

where R:/ 2 is the Hermitian square root of the source covariance matrix R,. The inde-
pendence of the zero-mean complex-Gaussian vectors ni(t) over range k and slow-time ¢
implies that the interference samples are white and hence independent over both these
data dimensions.

Figure 5.8 shows the relative interference cancellation improvement distribution which
results when the interference modes are simulated with no spatial distortions and pro-
cessed by adaptive scheme 3 in identical manner to that of Figure 5.7. No spatial dis-
tortions refers to spatial poles on the unit circle, this has been simulated by setting the
magnitude of the spatial pole estimated for each mode in Table 5.1 to unity. In other
words, the interference modes are modelled as plane waves with Doppler shifted and

Doppler spread waveforms. Since the spatial structure of the interference is invariant over
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Figure 5.8: Relative improvement achieved by adaptive scheme 3 (after diagonal loading)
for simulated HF interference with temporal distortions but in the absence of spatial
distortions.
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Figure 5.9: Relative improvement achieved by adaptive scheme 3 (after diagonal loading)
for simulated HF interference with the inclusion of space-time distortions.
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the CIT the dimension of the interference subspace does not increase past M = 5 as the
CIT is increased. This explains the uniformity of the relative interference cancellation
improvement distributions with respect to CIT length. Obviously, the traditional plane
wave interference model does not provide an accurate representation of the distributions
derived by experimental data processing in Figure 5.7. The substantial difference between
Figure 5.7 and Figure 5.8 illustrates the need to interpret results obtained from such a
model with caution.

Figure 5.9 shows the relative interference cancellation improvement distribution which
results when the spatial distortions described by the first order AR model parameters in
Table 5.1 are introduced. The mean relative improvement ranges from 46 dB at small CIT
lengths (less than one second) to 18 dB at CIT lengths of about 50 seconds. This compares
favourably with the experimentally observed reduction from 45 dB to 17 dB over the same
CIT range. The precise shapes of the curves in Figure 5.7 are not identical to those in
Figure 5.9 but the estimated model parameters provide a fairly accurate representation
of adaptive beamformer performance in the HF environment. A similar experiment that
favourably compares the simulated and experimental performance of another adaptive
beamforming scheme (scheme 1) with a different set of CSF and interference data can be

found in (Fabrizio, Abramovich, Gray, Anderson and Turley 1998).

5.4.5 Constrained intra-CIT beampattern re-adaptations

It was stated earlier that re-adapting the beampattern over small time intervals within
the CIT can be used to enhance interference cancellation performance. The problem en-
countered in practice is that such re-adaptations destroy the temporal correlation prop-
erties of the clutter which spreads over the search space after Doppler processing and
potentially obscures the presence of useful signals. The stochastic constraints approach
proposed by (Abramovich et al. 1994) attempts to prevent this Doppler smearing and
has been tested on real clutter returns for beampatterns which re-adapted to simulated
interference (Abramovich et al. 1998). In this section the performance of this algorithm is
demonstrated for experimentally recorded HF interference and simulated clutter signals,
the latter being described by a second order AR model. The main purpose is to illustrate
the advantages and shortcomings of this approach as well as to motivate further research
in this area.

The temporal poles of the scalar-type AR(2) model have been placed at pgl) =
0.99¢/7/90 and p§2) = 0.98¢/™/180 to generate a clutter process that is narrowband in
Doppler. The spatial pole was placed at p, = 0.5 to produce a spatially broadband clut-
ter process that is received through the main lobe and sidelobes of the beampattern. A
synthetic target signal which is discrete in the angle-Doppler domains was simulated to
illustrate the SINR gain achieved by the intra-CIT adaptive beamforming re-adaptations.

This synthetic target has a normalised Doppler frequency of 0.5 and is incident from the
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Figure 5.10: Conventional Doppler spectra for simulated clutter and target signals with
and without the presence of experimentally recorded HF interference

same steer direction as beam number 10 which is the beam to be processed.

Figure 5.10 shows the Doppler spectrum resulting after conventional beamforming for
the range-azimuth cell containing the desired signal at 0.5 normalised Doppler frequency.
The solid curve shows the case when clutter, signal and additive background noise are
present. The additive background noise was experimentally recorded on the same fre-
quency channel in the absence of the interference and has been superimposed on the
simulated clutter and desired signal. The dashed curve shows the case where interfer-
ence is also present. In this beam the residual interference power at the conventional
beamformer output is powerful enough to completely mask the desired signal.

The first question to be addressed is whether adaptive beamforming with intra-CIT
beampattern re-adaptations can be used to reject the interference to the background
noise level. To answer this question the simulated clutter is momentarily removed from
the data to observe the effect of adaptive beamforming on the interference-plus-noise
only. Curves 1 and 3 in Figure 5.11 show the Doppler spectra resulting for the conven-
tional beamformer when the interference is present and absent respectively. By comparing
Curve 2 in Figure 5.10 with Curve 3 in Figure 5.11 it is evident that in Doppler regions
away from the clutter (i.e., 0.1-0.9 normalised Doppler frequency) the signal in Figure 5.10
is being detected against additive noise and not against the clutter sidelobes in Doppler.

Carve 2 in Figure 5.11 shows the Doppler spectrum resulting at the output of the
adaptive beamformer when the interference is present. In this case the adaptive weight
vector was updated from one PRI to another throughout the CIT; the sample spatial

covariance matrix was formed in each PRI using 32 interference-plus-noise snapshots and
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Figure 5.11: Conventional Doppler spectra for a simulated target signal in real HF in-
terference (Curve 1) and real background noise (Curve 3). Curve 2 shows the Doppler
spectra resulting for the simulated target signal in real HF interference when the MVDR
adaptive beamformer is re-adapted in every PRI of the CIT

-20 dB diagonal loading. The slow-time dependent MVDR weight vectors calculated from
these matrices were then applied to beamform the test range cell which was not included
in the training data. A comparison of Curve 2 and Curve 3 in Figure 5.11 demonstrates
that re-adaptations of the beampatterns from one PRI to another can be used to remove
an additional 45 dB of interference relative to the conventional beamformer and restore
the SINR practically to the same level obtained by the conventional beamformer in the
absence of interference. Hence from an interference rejection point of view the performance
of this scheme could not be much better since the residual non-signal power coincides more

or less with the noisefloor.

The second question which arises relates to the application of these slow-time varying
adaptive beamforming weights to a CIT of data which also contains clutter. Curve 1 in
Figure 5.12 illustrates the answer to this question. Although the interference is almost
perfectly rejected by the time-sequence of MVDR weight solutions, it is quite evident
that re-adapting the beampattern in an uncontrolled manner (i.e., with no regard to the
clutter) within the CIT can grossly distort the clutter spectrum properties. The spreading
of the clutter signal across Doppler space is so drastic that the 45 dB gain in interference

rejection is completely negated by the loss in sub-clutter visibility.

Curve 2 and Curve 3 in Figure 5.12 illustrates the Doppler spectrum which results
when the beampattern re-adaptation is controlled by means of one and two stochastic

constraints respectively. Note that clutter, signal and interference are present in all of
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Figure 5.12: Doppler spectra resulting for the simulated clutter and target signal in real
HF interference when the MVDR adaptive beamformer is re-adapted at every PRI in the
CIT with no (Curve 1), one (Curve 2) and two (Curve 3) stochastic constraints

the spectra in Figure 5.12. The use of a single stochastic constraint leads to a 25 dB
clutter power reduction over most of the Doppler search space but this improvement is
insufficient to detect the relatively weak signal at 0.5 normalised Doppler frequency. The
use of two stochastic constraints (equal to the order of the clutter model) reduces the
output clutter power over the search space by a further 20 dB which subsequently allows
desired signal detection. A comparison between Curve 2 in Figure 5.10 and Curve 3 in
Figure 5.12 highlights the benefits of slow-time dependent adaptive beamforming with

stochastic constraints over conventional beamforming.

However, the SINR in Curve 3 of Figure 5.12 is not quite as good as that obtained by
conventional beamforming in the absence of interference (Curve 1 in Figure 5.10). These
losses arise partly due to the inclusion of further constraints which consume adaptive
degrees of freedom otherwise used for interference cancellation as well as the unavailability
of clutter-only snapshots which implies that the stochastic constraints must be estimated
using-the method described in (Abramovich et al. 1994). In this example, these factors
cause a 10 dB loss in the potentially achievable output SINR. Further losses are to be
expected if the real clutter obeys a much higher order AR model. These remaining issues

provide motivation for further research in this area.
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5.5 Chapter summary

This chapter has experimentally quantified the gains in interference cancellation perfor-
mance which can be realised by various adaptive beamforming schemes on a very wide
aperture antenna array in the HF environment. It was found that the space-time dis-
tortions imposed on HF interference modes by the ionospheric reflection process has the
potential to cause dramatic degradations in adaptive beamformer performance. For some
adaptive schemes, ionospherically-induced variations in the spatial structure of interfer-
ence modes with respect to time resulted in cancellation performances inferior to that of
the conventional beamformer.

These results illustrate that while spatial distortions over a mid-latitude one-hop iono-
spheric path may not impact greatly on systems which receive the signal in the main beam
(i.e., a desired signal), they can seriously effect performance of systems in which the sig-
nal is considered as interference and cancelled by means of adaptive beamforming. The
reason for this is that interfering signals are received close to the relatively steep nulls of
an adaptive beampattern where the array response is significantly more sensitive to the
time-varying spatial distortions.

It was also demonstrated that the previously validated HF channel model could be
used to simulate ionospherically-propagated interference signals to accurately predict the
statistical performance of the MVDR adaptive beamformer as a function of CIT length.
By freezing the spatial structure of the interference modes in the simulation it was ex-
plicitly shown that degradations in the adaptive beamformer performance are essentially
caused by the time-varying spatial distortions induced by the ionosphere rather than fi-
nite sample effects or the temporal distortions only. The statistical distributions obtained
by experiment and by simulation indicate that for long CIT lengths (e.g., 50 seconds) a
performance enhancement of over 20 dB can be realised with respect to the fixed MVDR
weight solution by diagonal loading of the sample spatial covariance and re-adapting
the MVDR weight vector at every PRI within the CIT. In operational systems, these
intra-CIT beampattern re-adaptations unfortunately smear the clutter signals across the
Doppler search space and can prevent target detection.

The stochastic constraints method for controlling these re-adaptations was described
and relies on a scalar-type AR modelisation of the backscattered clutter returns. The
performance of the method was illustrated using real HF interference and simulated clutter
and target signals. Although this method enabled the detection of a relatively weak
target in a powerful interference and clutter background, the output SINR was below

that potentially achievable and this observation serves to motivate further research in

this area.



CHAPTER 6

Recelver mismatch

The performance of an adaptive array is not always limited by the capabilities of the adap-
tive processor or the complexity of the interference scenario; in many practical applications
significant performance degradations may be encountered as a result of instrumental un-
certainties. A hardware imperfection which can severely limit the interference nulling
capability of an adaptive array is the non-identical transfer functions of the different re-
ceivers. In narrowband arrays, mismatches between the receiver transfer functions cause
the signals received on various antenna sensors to differ from one another by some man-
ner other than a complex multiplicative constant and this prevents an adaptive spatial

processor from nulling the interfering signal perfectly.

This chapter is concerned with estimating digital compensation for non-identical re-
ceiver transfer functions in HF antenna arrays using interference sources of opportunity.
Background information and a literature review on this topic is contained in Section 6.1
to introduce and motivate this research as well as to explain its significance relative to
previous work. Suitable interference sources of opportunity are identified for the HF band
in section 6.2 and a mathematical model is developed to represent such sources as sampled
by an antenna array with non-identical reception channels. This mathematical model is
used in section 6.3 to derive a signal processing algorithm which estimates digital compen-
sation for non-identical receiver transfer functions. Section 6.4 describes the experimental
procedure used to collect data for this study and includes a description of the Jindalee
array calibration system which is used to provide “ground truth” measurements of the

receiver transfer functions.

The proposed compensation algorithm is tested using an interference source of op-
portunity in section 6.5 where digital corrections are estimated for actual imperfections
in the Jindalee receivers. The performance of the algorithm is compared against a com-
monly used adaptive receiver equalisation method and measurements made by the Jin-
dalee calibration system. Section 6.5 also demonstrates the improvement in interference
cancellation which results at the output of an adaptive sidelobe canceller after receiver

frequency response correction.

193
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6.1 Literature Review

The meaning of the terms “receiver mismatch” and “array manifold errors” is explained
in section 6.1.1 in order to underline the distinction between these two forms of hard-
ware imperfection. Section 6.1.1 also discusses the instrumental origin of both forms of
hardware imperfection as well as their potential influence on adaptive spatial processing
performance. Existing methods for receiver mismatch compensation are reviewed in sec-
tion 6.1.2 while section 6.1.3 describes the research undertaken in this chapter relative to

previous work in the field.

6.1.1 Background

Instrumental imperfections can be classified into two categories; those which occur at the
antenna sensor level and in the signal paths up to but not including the receivers (i.e.,
in the “front end” of each reception channel), and those which occur within the receivers
themselves. The antenna sensors, cables and amplifiers in the front end are so-called
“broadband” components as they are designed for operation over the HF band, while the
various filters in the receivers are “narrowband” components designed only to pass signals
within a relatively narrow bandwidth of interest.

At the antenna sensor level, imperfections which can limit adaptive spatial processing
performance mainly arise due to uncertainties in the relative sensor positions, radiation
patterns and the effects of mutual coupling. Differences in the characteristics of the
amplifiers and cables from one reception channel to another can also limit performance and
superimpose on the above-mentioned antenna sensor imperfections. In narrowband arrays,
the influence of these uncertainties on the received signals is expected to be a function
of carrier frequency due to variations in the response of the broadband components, but
may be regarded as fixed over the relatively narrow passband of interest.

These fixed or passband-independent errors are often referred to as array manifold
errors (Ng, Er and Kot 1994) or array steering vector errors (Compton 1982) and cause
the perceived signal wavefronts to differ from the incident ones by a multiplicative com-
plex scalar at each reception channel. Array manifold errors may depend on the signal
direction-of-arrival and are corrected by applying a single complex digital correction per
reception channel. The field of signal processing concerned with estimating this compen-
sation is commonly known as the field of “array calibration”.

Uncertainties in the array manifold can degrade the reception of desired signals in
adaptive beamforming applications because they represent errors in the mathematically
defined array steering vector (Kelly 1989). However, array manifold errors do not effect
the interference cancellation performance of adaptive beamformers or sidelobe cancellers
because the adaptive algorithm automatically compensates for fixed amplitude and phase

distortions to the interference wavefront (Farina 1992). In sidelobe cancellation applica-
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tions the desired signal is assumed to be absent from the auxiliary channels and in this
case array manifold errors are not expected to degrade signal reception or interference
cancellation.

Now let us turn our attention to imperfections arising in the narrowband receivers
of the array. The transfer functions of the analog filters in each receiver can deviate
or mistune from their nominal frequency response due to the non-ideal nature of the
hardware components. Unlike array manifold errors, the deviations in gain and phase
from the nominal receiver frequency response are independent of carrier frequency but
usually vary over the passband of interest. Importantly, the variation of these errors
across the passband is generally not identical from one receiver to another and the resulting
differences in frequency response is often referred to as receiver mismatch.

Receiver mismatch can severely limit the interference nulling capability of adaptive
spatial processors used for either beamforming or sidelobe cancellation, note that in such
processors a single complex weight per channel is used to spatially combine the signals.
The effect of receiver mismatch is to reduce the correlation coefficient between the sig-
nals received on different array channels and hence to degrade the maximum achievable
cancellation ratio after a single complex weight per channel is used to spatially combine
the signals. Typically, receiver mismatch is compensated by inserting an adaptively tuned
digital transversal filter (tap delay-line), or its frequency domain equivalent, at the output
of each reception channel (Monzingo and Miller 1980).

Ideally, compensation is required for array manifold errors as well as receiver mis-
match in order to equalise the global transfer function of the reception channels. In the
context of HF antenna arrays, there is currently great interest in using external sources
of opportunity to estimate digital compensation for array manifold errors and receiver
mismatch. The use of such sources for HF array calibration allows modern OTH surface
wave radars to be more cost effective and rapidly deployable with a reduced need for site
preparation (Solomon, Gray, Abramovich and Anderson 1998). Another motivation for
using sources of opportunity is to provide measurements which are independent of those
made by other array calibration methods, these measurements become particularly valu-
able at times when standard calibration procedures malfunction (Bourdillon and Delloue
1994). So far, it has only been possible to calibrate the manifold of HF arrays using ex-
ternal sources of opportunity (Solomon 1998). The complimentary problem of correcting
for receiver mismatch using HF sources of opportunity has, to the authors knowledge, not

yet been addressed and is the subject of the current chapter.

6.1.2 " Studies on receiver mismatch

A two channel model of a tap-delay line compensated adaptive processor is shown in
Figure 6.1, the reference and auxiliary channel transfer functions are denoted by Hg(f)

and Ha(f) respectively. Traditionally, a powerful source of wideband noise is injected at
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Figure 6.1: A two channel compensated adaptive processor in self-cancellation mode

the channel inputs and the complex valued transversal filter coefficients are adjusted so

that the power of the output difference signal (i.e., the residue signal) is minimised.

Closed form solutions for the optimal filter coefficients are traditionally derived in
accordance with the unconstrained least squares criterion, as in (Monzingo and Miller
1980), (Lewis, Kretschmer and Shelton 1986) and (Farina 1992). The effectiveness of the
compensation is measured in terms of the cancellation ratio, which is the ratio of the
input wideband noise power to the output residue power. A good compensator yields
a high cancellation ratio while a poor compensator yields a low cancellation ratio. The
achievable cancellation ratio depends on the characteristics of the frequency mismatch,
the dimensionality of the compensator (the number of taps K) and the product between
the tap delay (A) and the analog filter bandwidth.

Based on filters of the Butterworth type, a pole-zero error model of the channel trans-
fer functions was used by (Lewis et al. 1986) to derive analytical expressions for the
maximum achievable cancellation ratio as a function of the adaptive canceller system
parameters. The author used these results to propose a procedure for “optimising” the
design of an adaptive canceller with respect to both system parameters and constraints.
The relationship between cancellation ratio and adaptive canceller system parameters was
also analysed for sinusoidal amplitude and phase mismatches by (Monzingo and Miller
1980) and for triangular amplitude and linear phase mismatch by (Farina 1992). In all

cases, the transversal filter coefficients were adjusted using the least squares principle.

The practical importance of digital channel equalisation was experimentally demon-
strated by (Johnson, Fenn, Aumann and Willwerth 1991). A four channel L-band adaptive
nulling system with a frequency range of 1.25 to 1.35 GHz was used in conjunction with a
16 tap equaliser to cancel a powerful wideband jammer injected into the receiver inputs.
A cancellation ratio of approximately 50 dB was achieved by the four channel system
after equalisation. Moreover, the inclusion of digital equalisers in the auxiliary channels
was found to improve the cancellation ratio by approximately 20 dB and 10 dB when
one and three auxiliary channels were used respectively. These results demonstrate that

the degradation in cancellation ratio caused by receiver mismatch can be reduced by in-
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creasing the number of such receivers in the array. Naturally, it is preferable to avoid
degradations in cancellation ratio by adaptively correcting the existing receivers.

An experimental adaptive array radar system was used by (Teitelbaum 1991) to in-
vestigate the effectiveness of 31 tap transversal digital filters for channel equalisation. For
a two channel system, measurements of the transfer functions over a 600 kHz bandwidth
revealed amplitude and phase mismatches within plus or minus 2 dB and 30 degrees re-
spectively. Such mismatches were found to limit the cancellation ratio to approximately
20 dB, this ratio was restored to approximately 65 dB after equalisation. These results
demonstrate that the receiver mismatch does not need to be very large for the cancellation
ratio to drop by as much as 45 dB, such a large degradation due to instrumental errors
can impact greatly on system performance when powerful interference is present.

Compensation for receiver mismatch can also be applied in the frequency domain by
performing an FFT on segments of data taken at the output of the reference and auxiliary
reception channels (Abramovich, Kachur and Struchev 1984). In this case, compensation
is applied via a direct weighting of the FFT outputs in the auxiliary channel(s) over the
frequency range of interest. The complex valued weights are also estimated according to
the least squares principle, the optimum weighting at a particular point in the passband
is determined by the ratio of the reference to auxiliary channel response at the particular
frequency. The statistical variability of the estimated corrections due to finite sample
effects was quantified for the frequency domain in (Abramovich and Kachur 1987). It
has been shown by (Compton 1988b) that identical compensation can be provided by
an equivalent tap-delay line which has the same number of taps as the number of time
samples in the FFT with a tap spacing equal to the delay between samples in the FFT. The
equivalent tap-delay line filter coefficients are given by the inverse FFT of the frequency

domain compensation weights.

6.1.3 Significance of research relative to previous work

HF sources of opportunity are normally received via the ionosphere, and in this medium,
propagation is most often by multipath components or signal modes whose temporal and
spatial characteristics are affected by the random and dynamic nature of the ionospheric
reflection process. As a result of uncertain propagation effects, the precise temporal and
spatial structure of the signal mode(s) received by an antenna array are generally unknown
and time-varying, such effects were quantitatively demonstrated in chapters 2 and 3.
Standard least squares techniques commonly used to equalise multi-channel digital re-
ceivers, such as thoge described in (Farina 1992, Monzingo and Miller 1980, Johnson et al.
1991, Abramovich et al. 1984, Lewis et al. 1986), rely on specific assumptions regard-
ing signal structure, particularly the spatial structure, and as a consequence they fail to
provide effective corrections in the multipath HF environment.

An alternative approach is to use space-time adaptive processing (STAP) which can,
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in principle, mitigate co-channel interference and compensate for the effects of channel
mismatch at the same time. However, in practice the interference environment typically
changes much faster than do the passband characteristics of the reception channels. Un-
der these conditions, compensation for receiver mismatch can be applied separately and
updated at a much slower rate than the adaptive processor used to cancel interference.
This approach is justifiable because compensation for receiver mismatch relates only to
the properties of the receiving system and hence remains effective regardless of changes

-

in the interference environment.

The degradation in cancellation ratio caused by receiver mismatch in a STAP processor
of fixed dimensions was simulated by (Fante and Vacarro 1998), while the application of
digital channel equalisers to pre-process the output of each auxiliary channel before STAP
was investigated by (Shunjun and Yingjun 1995). The main advantage of providing sep-
arate and prior compensation for receiver mismatch is that it reduces the dimensionality
or number of degrees of freedom needed by the adaptive processor to effectively cancel
the external interference(s). A reduction in processor dimensionality has two significant
advantages in real-time applications. Firstly, adaptive algorithms converge more rapidly
when the weight vector estimated from a finite sample size has a lower dimensionality
(Reed et al. 1974), and secondly, the computational load which is typically proportional

to the cube of the weight vector dimension is drastically reduced.

This chapter is concerned with the problem of estimating separate compensation for
receiver mismatch in HF antenna arrays using passive sources of opportunity (interfer-
ence). This complements the work of (Solomon 1998) which addressed the problem of
correcting for array manifold errors using active sources of opportunity (meteor echoes).
Complete equalisation of the reception channels in a HF antenna array can, in theory, be
achieved through the sequential application of receiver mismatch compensation and array

manifold corrections.

6.2 Interference Model

The most suitable HF sources of opportunity for receiver mismatch compensation have
been identified as amplitude modulated (AM) radio broadcasts. These sources are present
in large numbers and are widely dispersed in both geography and frequency over the HF
band. Particular sources can be readily identified and selected by consulting broadcasting
schedules (Sennitt and Kuperus 1997). A space-time model for AM sources of oppor-
tunity received by narrowband antenna arrays is first developed for the case of perfectly
calibrated receivers, a frequency domain version of this model is then developed to include

the effects of receiver mismatch.
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6.2.1 Space-time model for perfectly calibrated receivers

Let x;(t) denote the complex N-dimensional snapshot vector received by a narrowband
antenna array with perfectly calibrated receivers at [** fast-time sample in the #** pulse
repetition interval (PRI). The parameters of the Jindalee receiving system used to perform
the experiment (to be described in section 6.4) were N = 32 digital receivers, L = 2500
fast-time samples and P = 256 PRI in each coherent processing interval (CPI). The

output of the n* receiving element is expressed as
p P ;

n = 1,2,..,N =32 digital receivers
x() =it +0lP(@t){ t = 1,2,..,P =256 linear FM PRI (6.1)
[ 1,2,..,L = 2500 fast-time samples

where iE"](t) is the interference signal and nE"](t) is uncorrelated receiver noise. For M

ionospherically-propagated interference modes we adopt the following space-time model

for the received interference signal.

M
iEn](t) e Z \Ifn(fc, am7,Bm)q)n(fc)Am,n(t)g(t/fp + lTs _ Tm)ej21réf€,m-tej21méf sin oy €08 B
m=1
(6.2)

Before describing the various terms in Eqn.(6.2) it is worthwhile to explain how this model
relates to the wave interference and stationary statistical models previously considered in
chapters 2 and 3 respectively. The main point to note is that these models are special
cases of the current model in Eqn.(6.2). The current model is more general than the
previously considered models in the sense that it makes no assumptions regarding the
statistical properties of the propagation channel. For this reason, such a model may be
relevant for the purpose of receiver mismatch compensation using sources of opportunity
which are propagated by channels different from the HF channel.

The terms A fm, am and B for m = 1,2,.., M are the mode Doppler shifts, azimuth
angles of arrival and elevation angles of arrival respectively, 7, is the time delay taken
by the m** mode to travel from the emitter to the first receiver of the array, Ad is the
distance between adjacent antenna sensors, A is the carrier wavelength and T, = 1/(Lf,)

is the fast-time sampling period.

The complex scalar ¥,(fe, @m,Bm) represents the directional gain and phase response
of the nt* antenna sensor to the m*™ interference mode, while the complex scalar ®,(f,)
represents the gain and phase response of the amplifiers and cables which connect the nth
antenna sensor to the n'* receiving module. The terms ¥, (f., ¢m,Bn) and ®,(f.) vary
with carrier frequency f. but are assumed constant over the passband of narrowband HF
arrays which typically is in the order of a few kilohertz. These two terms represent the

passband-independent array manifold errors.
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The complex scalar A, ,(t) represents the random temporal and spatial distortions
imposed by the movement of irregularities in the ionosphere on the m' mode, these
ionospherically induced amplitude and phase modulations give rise to Doppler spread
and angular spread on each mode (Fabrizio, Gray, Turley and Anderson 1998). This term
also accounts for attenuations in signal amplitude due to path loss (inverse square law)
and polarisation mismatch between the incident wave and the receiving antennas. With
reference to the previous statistical model, the term A,, ,(t) plays an analogous role to the
n'* element of the vector c,,(t). However, unlike the vector ¢,,(¢) which was described by
a two-dimensional (space-time) stationary auto-regressive model, the term Apn(t) is not
required to conform to a specific model and may even be a non-stationary process with
respect to slow-time (t) and receiver (n). Note that A,, ,(t) is independent of fast-time
(1), this assumes that the pulse repetition interval is relatively short compared with the
time scale of ionospheric fluctuations. The assumption of a “frozen” ionosphere over the
PRI is later shown to be quite reasonable for PRI’s with a duration of less than one tenth
of a second. The passband-independence of A,, ,(t) implicitly assumes a dispersionless
ionospheric propagation channel, this assumption is justifiable for receiver passbands in
the order of a few kilohertz (Watterson et al. 1970).

The scalar function g(t/f, + (T, — Tm) represents the complex envelope of the trans-
mitted signal waveform, after it is mixed with the local oscillator, filtered by the perfectly
calibrated receivers and evaluated at the differential time delay 7,,. Most of the power in
AM radio broadcasts is transmitted over a small effective bandwidth B.;; which is cen-
tered around the strong carrier frequency component. The mode waveforms are highly
correlated with one another if the condition Bessén, < 1 is satisfied Vm = 1,2,.., M,
where 6, = T — Tm,., is the time-of-arrival of mode m relative to a reference mode
myes. As this is typically the case for AM signals, each mode waveform can be related to
the reference mode waveform by the corresponding phase shift e/27/<®m By substituting
gt/ fo + 1T, — 1) = e¥fedmg(t/f, + IT, — Tp,,,) into Eqn.(6.2) the interference signal

can be written more compactly as,
ii"(t) = Ta(®)g(t/ fy +1Ts = m,.,) (63)

where the complex scalar T'"(t) is given by Eqn.(6.4). Note that this expression may
not be valid if the received signal comes from a broadband source and the relative time-
delays existing between different propagation modes are sufficiently high to effectively

de-correlate the modes.
M . o dm - d . . [
Fﬂ(t) = E \I’n(fc; 0m, d)m)q)'n(fc)Am,n(t)eﬂw'fcs'neJ27r fr te]21rnxsm Bim cos $m (64)
m=1

Although T',(¢) is a random process causing some uncertainty in the signal structure,

we note that this term is independent of fast-time (/). In other words, the interference
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snapshots iE"](t) recorded during a particular PRI are expected to have the same (but

unknown) spatial structure in the absence of receiver mismatch.

6.2.2 Frequency domain model with receiver mismatch

Range processing is performed by taking a windowed Fast Fourier Transform (FFT) of
the fast-time samples xE"](t) recorded in each PRI. The FFT outputs denoted by xgc"](t)
are often termed range samples; the frequency domain samples retained are indexed ac-
cording to the frequency bin k = 1,2,.., K over the receiver passband (K=42). Mixing
the continuous waveform (CW) carrier component of the AM signal with a linear FM
waveform yields an output that is also linear FM. Obviously, the instantaneous frequency
of the down converted AM signal is not linearly dependent on the group range of the emit-
ter. In general, the output linear FM signal corresponding to the received CW component
has a frequency content that spreads across receiver passband so that all frequency bins

k=1,2,.., K are “interrogated” by the signal of opportunity.

By defining k., as the complex frequency response of the nt* (non-ideal) receiver at
the k™ frequency bin, we can introduce receiver mismatch by writing the range processed

outputs igc"](t) in the following way,
% (8) = hapx (1) = hosTu(t)g(t) + 2(2) (6.5)

since, as discussed above, I',(t) is independent of fast-time. In Eqn.(6.5), the complex
scalar gi(t) is the k** FFT output calculated from the I fast-time samples of the reference
mode waveform g(t/f, + ITs — Tp,,,) and ﬁi"](t) is the k** FFT output arising due to

additive noise.

The model described by Eqn.(6.5) has quite general statistical properties and may
therefore be relevant in other adaptive array applications where multipath signals with
time-varying spatial and Doppler signatures arise due to other physical phenomena. For
example, a mathematically equivalent slow-time model was used in (Hayward 1997) to
represent line-of-sight interference received by adaptive sensor arrays mounted on rapidly
moving platforms. Another operational situation of interest in the area of airborne an-
tenna arrays results when a stand-off jammer (SOJ) deliberately directs the jamming beam
towards the ground to produce a reflected jammer that is highly correlated with the direct
path jammer (Farina 1992). In this case, the relative motion between the transmitting
source and the receiving platform can lead to significant variation in spatial and temporal
structure of the incident signal modes over the coherent processing interval(CPI). If the
signal scenario can be assumed “frozen” over a short pulse repetition interval (PRI) and

the narrowband assumption is valid then such a model seems appropriate for representing
the received interference.
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6.3 Compensation algorithm

Existing techniques used for receiver frequency response equalisation are overviewed in this
section and reasons are given for the inapplicability of such techniques to the multipath
HF environment. Based on the interference model developed in the previous section, a
different estimator is proposed for receiver mismatch compensation and its significance is

explained in relation to existing techniques.

6.3.1 Existing techniques

Let ¢ = [cico- - - ck]|T be the complex digital frequency response corrections required to
match the transfer function of an auxiliary channel “a” with respect to a reference channel
“r? at K discrete and equally spaced frequencies within the passband. The reference
channel is usually chosen arbitrarily when all the reception channels in the array have
the same nominal characteristics, in some applications the array contains one more highly
directional sensor which forms a natural choice for the reference channel.

In the frequency domain, weighting the k* FFT output of the auxiliary channel by
the k' element of the correction vector ¢ achieves the equalisation objective. In the time
domain, the inverse FFT of the elements in ¢ yields the transversal filter coefficients of an
equivalent equaliser based on a K-tap delay line. As the receivers only operate on down
converted signals the compensation for receiver mismatch remains effective at different
carrier frequencies, this point is illustrated in the results section.

To estimate the equaliser c, a signal source must be used to “probe” the passbands of
the reference and auxiliary receivers and a noise source with a bandwidth greater than the
receiver passbands is often used for this purpose. Indirect equalisation techniques (Farina
1992) estimate the compensation by injecting a wideband noise source at the reference and
auxiliary receiver inputs (after the antennas), in (Lewis et al. 1986) this mode of operation
is referred to as the self-cancellation mode. The disadvantage of indirect methods is that
they cannot account for array manifold errors in the antenna sensors and they generally
require an extra calibration of the distribution network which is used to carry the signals
from the noise source to each receiver input.

Direct equalisation techniques estimate the compensation by using an antenna to
transmit a wideband signal which is received directly (line-of-sight) by the antennas of
the receiving array. The signal source is most conveniently placed at broadside for linear
arrays so that planar or perfectly coherent wavefronts are incident at the antenna sensors.
Although direct methods can additionally compensate for array manifold errors and there
is no distribution network to speak of, there may be unwanted multipath and for very
large HF arrays such sources cannot be placed in the far-field and in the line-of-sight at
the same time.

For both direct and indirect equalisation techniques, the least squares criterion is the
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mathematical foundation for estimating the frequency response corrections c¢. In our

application, the estimate of c is optimised according to this criterion by finding,

P
¢ =arg min »_ |lz(t) - Y(t)e||F (6.6)

where the column vector z(t) = [x[r]( t)x [r](t) x[I:,](t)]T, the K x K diagonal matrix
Y(t) = diag[x!(t)x Llg).. -x[;]( t)]T and ||-|| r denotes the Frobenius or squared Euclidean

norm. It can be shown that the vector ¢ is given by,

~

P

Z OY@) ™Y YA (1)) (6.7)

t=1 t=1

where H denotes the conjugate transpose or Hermitian operator.

The unconstrained least squares estimator described above is not suitable for appli-
cation to HF interference signals of opportunity described by the multipath model in
the previous section. To see this, consider a time-varying complex correction vector c(t)
which perfectly cancels the interference component of the partial error ||z(¢) — Y (¢)c(t)||F
at time t. Using Eqn.(6.5), it can be shown that the vector providing perfect cancellation
of the interference component is given by c(t) = I',(¢)/Ts(t)c, where ¢ represents the true

or required equalisation vector.

Since ionospherically-propagated multipath interference generally does not satisfy the
condition I',(t) = Ta(t), the vector c(t) may not be equal to the required equalisation
vector ¢ at any time t = 1,2, .., P during the averaging interval. As a result, the vector ¢
estimated by Eqn.(6.6) is additionally (and perhaps mostly) determined by the interfer-
ence characteristics rather than those of the receiver passbands. It is for this reason that
corrections which effectively compensate for receiver mismatch cannot be derived in the

multipath HF environment using the standard (unconstrained) least squares criterion.

The same interference model can be used to interpret the self-cancellation mode de-
scribed earlier. In the self-cancellation mode the same signal, denoted by gk(t), enters
both receivers and. this is equivalent to setting I'-(!) = T'a(t) = 1 in Eqn.(6.5). Under
this condition, the vector c(t) = I',(t)/T4(t)c becomes time (t)-invariant and equals the
true or required equalisation vector ¢ over the whole averaging interval. Minimising the
sum of partial errors over t = 1,2,.., P is performed to improve the estimate of ¢ in the

presence of uncorrelated receiver noise.
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6.3.2 Proposed algorithm

The following linearly constrained and weighted least squares estimator is proposed for

HF sources of opportunity,
= arg mlnz z" (8)z(t) ||a(t)z(t) — Y(t)c,||r subject to: cfe=1 (6.8)

where a(t) is a complex scalar, c, is an alternative frequency domain compensation vector
ande=1[0---010--- O]T is a K-dimensional constraint vector with a one in position
k.e; and zeros elsewhere. This estimator differs from that in Eqn.(6.6) due to the inclusion
of a linear constraint and the two data-dependent weighting terms z(¢)z(t) and of(t).

Let us first consider the effect of including the complex scalar a(t) and the linear
constraint c7e = 1. The complex scalar a(t) is unconstrained and its value is found as
part of the optimisation problem, in appendix D the value of a(t) is calculated so that it
minimises the partial error term |la(t)z(t) — Y(t)c.||F at time ¢ for any arbitrary (non-
zero) vector ¢,. The linear constraint is incorporated to ensure that a fized vector c,, to
be discussed below, perfectly cancels the interference component of all the partial error
terms being averaged t = 1,2, .., P. To explain the relationship between the corrections
¢, and c, consider the time-varying vector c,(t) which perfectly cancels the interference
component of the partial error ||a(t)z(t)—Y(t)c.(t)||F at timet. Using Eqn.(6.5), it can be
shown that the vector providing perfect cancellation is given by c,(t) = a(¢)I',(¢)/T.(t)c,
where c represents the equalisation vector as before. If the k,.s element of c,(t) is fixed
to unity by the constraint then perfect (interference) cancellation occurs when a(t) =
T.(t)/T,(t)ctr) and c,(t) = c/cléresl,

In other words, the time (t)-invariant vector ¢, = c/clfr<s] estimated as &, in Eqn.(6.8)
is the equalising vector ¢ normalised by the k,.; element of this vector. The aim of
the estimated corrections ¢, is not to strictly equalise the channels but rather to relate
the auxiliary and reference channel transfer functions by a compler scalar clkres]. This
passband-independent difference between the channel transfer functions constitutes an
array manifold error which can be compensated (if necessary) with other sources of op-
portunity using the calibration techniques developed and tested in (Solomon 1998). When
no prior information is available regarding the channel passbands, the reference frequency
bin k,e; can be chosen arbitrarily. Some systems make use of a CW signal to equalise the
channel frequency responses at a discrete frequency within the passband (Farina 1992),
k.e; should then be selected as the equalised frequency bin so that ¢/l = 1 and the
corrections &, aim to strictly equalise the channels.

The effect of additive noise on the estimate ¢, is reduced by the weighting term
zf(t)z(t) and the statistical average over ¢ = 1,2,.., P. The influence of additive noise
is most pronounced when the source of opportunity exhibits a deep fade at the reference

antenna sensor at the same time as a comparatively high signal level at the auxiliary
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antenna sensor. This situation corresponds to a low value of I'.(t) and a comparatively
high value of I';(¢). The scalar a(t) has a large magnitude at such instants which effectively
amplifies the noisy reference signal z(t) in Eqn.(6.8). The weighting term z¥ (¢)z(¢) reduces
the effect of this unwanted amplification on the estimate of ¢, by weighting down the
contribution of the partial error ||a(t)z(t) — Y(¢)c,||r arising at such instants.

In appendix D it is shown that the solution of Eqn.(6.8) can be expressed in closed
form and is given by,

) Qe

Cq =

— eTQ-le (6.9)

where Q = Y1 {2 (1)2() YH ()Y (t) — YH (t)2(t)2" (£) Y (1)}.

6.4 Data collection and array calibration

Three experiments were conducted to collect data for this study. Section 6.4.1 describes
these experiments which involve the recording of a source of opportunity, a broadband
interference and the receiver frequency response measurements from the Jindalee array
calibration system. The essential features of the Jindalee array calibration system are

qualitatively described in section 6.4.2, further information is available in (Solomon 1998).

6.4.1 Data collection

In experiment A, the Jindalee OTH radar receiving array described in section 2.2 was
tuned to receive an AM radio broadcast of opportunity at a carrier frequency of 13.830 MHz.
This data was received on 4 April 1998 at 05:59 UT using an FMCW pulse repetition
frequency of 10 Hz, a sweep bandwidth of 8 kHz and a CPI of 25.6 seconds. The AM
source of opportunity is used to estimate digital frequency response corrections for real
mismatches in the 32 receivers of the Jindalee array.

In experiment B, the Jindalee OTH radar receiving array was tuned to a carrier fre-
quency of 12.877 MHz to receive broadband interference, this experiment was conducted
on 4 April 1998 at 05:47 UT (12 minutes prior to experiment A). The broadband inter-
ference was received using identical system parameters as experiment A (only the carrier
frequency was changed), this signal is particularly severe because it masks the entire
range-Doppler search space and is incident from a number of directions. Hence, from the
point of view of Doppler processing, the mitigation of this broadband interference is a
spatial filtering problem.

The Jindalee array calibration system described below was used to measure the receiver
transfer functions immediately prior to the collection of the two data sets. The gain and
phase measurements made by this system are normally used to calibrate the Jindalee

array and may be considered as “ground truth” measurements of the receiver transfer
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functions when it comes to evaluating compensation estimated by alternative methods

which use sources of opportunity.

6.4.2 Array calibration

Jindalee performs calibration by injecting a CW signal at a calibration port located im-
mediately behind the hardware beamformer corresponding to each subarray, as indicated
in Figure 2.1. The linear FM signal which results at the output of the mixer probes the
passbands of the IF and baseband filters in each reception channel before being digitised
by the A/D converter.

The FFT of the digital samples resulting at the output of each reception channel is
then compared with that theoretically expected for receivers with a constant amplitude
and linear phase response expected over the frequency range of interest. Calibration
weights are then computed so that multiplication of the FFT outputs by these weights
reconciles the measured frequency domain samples with those expected for ideal receivers.
The inverse of these weights represents a normalised measurement of the receiver transfer
function in each reception channel. Under normal operating conditions, the calibration
weight estimates are very accurate due to the high SNR of the calibration signal and the
stability of the oscillators and waveform generator.

All hardware components upstream from the calibration port are unobservable so
the calibration system does not attempt to measure the directional characteristics of the
antenna sensors. However, it does measure the carrier frequency dependent responses
of cables and amplifiers, and importantly, the frequency responses of all the receiver
passbands. Calibration is performed regularly under normal operational conditions since
gain and phase errors in the reception channels also depend on environmental factors such
as external temperature which changes over time.

The array manifold errors contributed by the non-identical amplifier and cables are
dependent on carrier frequency so the calibration weights need to be updated when the
carrier frequency is changed. On the other hand, the gain and phase errors due to receiver
filter mistuning do not depend on carrier frequency but need to be updated when the
pulse repetition frequency or bandwidth of the mixing waveform changes because the

FFT outputs sample different points of the analog receiver passbands.

6.5 Experimental results

The experimental results which demonstrate the performance of the proposed receiver
mismatch compensation algorithm are presented in three sections. Section 6.5.1 plots
measurements of two Jindalee receiver transfer functions to show the real receiver mis-
match to be compensated. This section also shows the receiver transfer functions which

result after applying the compensation estimated from the source of opportunity . The
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impact of receiver mismatch on the spatial dynamic range of the Jindalee array is demon-
strated for all 32 receivers using the source of opportunity in section 6.5.2. This section
also compares the effectiveness of the compensation estimated by the Jindalee calibration
system, the proposed algorithm and the standard least squares estimator. In section 6.5.3,
the compensation estimated by these three methods is applied to a situation where adap-
tive spatial processing was required to cancel strong broadband interference and Doppler

processing was required to detect a weak target-like signal.

6.5.1 Estimating compensation for receiver mismatch

Curves 1 and 2 in Figure 6.2 show the amplitude response of a reference and auxiliary
channel transfer function respectively as measured by the Jindalee array calibration sys-
tem. Curve 3 in Figure 6.2 shows the ratio of the reference amplitude to the auxiliary
amplitude, the variation exhibited by Curve 3 over the passband is a consequence of
receiver mismatch. The vertical axis on the left hand side of Figure 6.3 relates only to
Curves 1 and 2 which show the phase response of the reference and auxiliary channels
respectively. The absolute difference in phase of approximately 170 degrees is due to the
unequal length cables which carry the signals from the antenna sensors to the receivers
in these two channels. A longer cable is associated with a greater time delay and hence a
larger phase shift. Curve 3 in Figure 6.3 relates to the right vertical axis and shows the
difference in phase between the reference and auxiliary channel over the receiver passband
of interest. The variation exhibited by Curve 3 in Figure 6.3 over the passband is a result

of receiver mismatch.

Figures 6.4 and 6.5, in the same format as Figures 6.2 and 6.3, demonstrate the effect
of applying the digital corrections estimated by Eqn.(6.8) to the auxiliary receiver transfer
function. The flatness of Curve 3 in both these figures indicates that the amplitude and
phase relationship between the two receiver transfer functions is approximately constant
over the passband. A fixed relationship between the receiver transfer functions over the
passband indicates that receiver mismatch has been compensated for and is no longer
present. This example demonstrates that HF sources of opportunity can be used to

estimate effective compensation for receiver mismatch.

The constant offset between the receiver transfer functions arises from the linear con-
straint used in Eqn.(6.8), but as noted in (Farina 1992), such offsets are compensated
by adaptive sidelobe cancellation algorithms and do not affect interference cancellation
performance. The offset between the receiver transfer functions constitutes an array man-
ifold error which can degrade the output signal-to-interference and noise ratio (SINR) in
adaptive beamforming applications. These degradations can be avoided by calibrating
the array manifold errors with other HF sources of opportunity using the calibration
techniques developed and tested by (Solomon 1998).



208 CHAPTER 6. RECEIVER MISMATCH

1.6 T T T T T T T T L I T T T T T T T T T l T T T T T T T ’1]!! T T T T T T T I T
o ——— 1 reference channel -
. — — — 2 auxillary channel J
14 3 amplitude mismatch -
L] I~ m
E] N
8 i
]
~ 1-2_ —
o
®
£
o
°
2 1.0
a
E
o
0.8
o E
0.6 vy e b e b b
0 10 20 30 40

frequency bin, k

Figure 6.2: Amplitude of reference channel transfer function (curve 1) and auxiliary
channel transfer function (curve 2). Curve 3 shows the amplitude mismatch as the ratio
of the reference to the auxiliary channel amplitude over the passband of interest.
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Figure 6.3: The left hand vertical axis shows the phase of the reference (curve 1) and
auxiliary (curve 2) channel transfer functions. Curve 3 relates to the right hand vertical
axis and shows the difference between the reference and auxiliary channel phases over the
passband of interest.
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Figure 6.4: Curve 1 shows the amplitude of the reference channel transfer function.
Curve 2 shows the amplitude of the auxiliary channel transfer function after the estimated
compensation for channel mismatch is applied. Curve 3 shows the amplitude mismatch
between the reference and auxiliary channels over the passband of interest.

soo LA R S S R S B S LN S LN B BN M R TYyryrrrrroevgptvtvrvooe oy LI LA B 176
i 1 reference channel ’
— — — 2 auxillary channel j
400': ------------ 3 phase mismatch 174
P ISR e RE S e s T Jia 2
i ] o
o = 4 f;
< - 1 5
¢ 0 —170 §
" L a -
2 i E
% T ®
- ] 8
-200 1168 §
—400 |- T~ —{166
- \\
-600 ll"‘lllllnnnn-....l...‘.....l..-..‘...l.-‘s4
0 10 20 30 40

frequency bin, k

Figure 6.5: The left hand vertical axis shows the phase of the reference (curve 1) and com-
pensated auxiliary (curve 2) channel transfer functions. Curve 3 relates to the right hand
vertical axis an shows the phase difference between the two channels after compensation
is applied to the auxiliary channel.
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6.5.2 Effect of receiver mismatch on spatial dynamic range

The deleterious effects of receiver mismatch over all N = 32 reception channels can be
appreciated by observing the eigenvalues of the sample spatial covariance matrices R(¢)

averaged over K = 42 retained range cells.

K N

R(t) = - > xe(xf (1) = 3 Mai(t)al (1) (6.10)
K

k=1 i=1 .

In Eqn.(6.10), x.(¢) represents the range processed array snapshots recorded from the
AM source of opportunity after calibration with the Jindalee system, A;(¢) > Aq(t) >
... > An(t) are the eigenvalues of R(t) and q;(t),qa(t),... ,qn(t) are the corresponding
eigenvectors. According to the model developed in Eqn.(6.5), the interference component
of xx(t) is expected to have the same (but unknown) spatial structure for k = 1,2, .., K in
the absence of receiver mismatch. As a consequence, the rank of the interference subspace
of R(t) is expected to be unity for all ¢, a rank one interference subspace results in a
large ratio between the two principle eigenvalues §(t) = %;J(% when the interference-to-
noise ratio is high. The presence of receiver mismatch destroys the uniformity in spatial
structure with respect to frequency bin k = 1,2, .., K over the PRI, its presence therefore
manifests itself as a reduction in the eigenvalue ratio which can also be interpreted as a
reduction in the spatial dynamic range of the array.

To illustrate this, Curves 1 and 2 in Figure 6.6 show the eigenvalue ratios §(t) and 4(¢)
respectively as a function of slow-time (¢). The ratio 4(t) has been derived in identical
manner to §(t) by using the “raw” or uncalibrated array data X;(t) instead of x;(t). Note
that on average &(t) is approximately 25 dB smaller than 4(t), this significant loss in
spatial dynamic range illustrates the impact of real receiver mismatch.

Curve 3 in Figure 6.6 shows the eigenvalue ratio when the compensation estimated ac-
cording to Eqn.(6.8) was applied to all 32 receiver passbands of the “raw” or uncalibrated
array. A comparison of Curves 1 and 3 in Figure 6.6 clearly shows that the eigenvalue
ratio has been restored to the level seen by the array after calibration with the Jindalee
system. The value of receiver mismatch compensation is later quantified in terms of the
improvement in interference cancellation performance.

Figure 6.7 compares the results achieved by different estimators, Curves 1 and 2 are
obtained using the estimator proposed in Eqn.(6.8) and the unconstrained least squares
estimator in Eqn.(6.6) respectively. (Curve 1 in Figure 6.7 is a replica of Curve 3 in
Figure 6.6 and is included here for comparison) It is clear that the proposed estimator
greatly outperforms the unconstrained least squares method which does not improve on
the uncalibrated array (Curve 2 in Figure 6.7). Curve 3 in Figure 6.7 is calculated by
omitting the weighting term z*(¢)z(t) in Eqn.(6.8), the 5 to 10 dB loss in performance
relative to Curve 1 in Figure 6.7 demonstrates the need for including this weighting term

to decrease estimation errors.
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Figure 6.6: Curve 1 and Curve 2 show the ratios &(t) (calibrated array) and 4(t) (uncal-
ibrated array) respectively. Curve 3 shows the ratio when compensation estimated from
the source of opportunity is applied to the uncalibrated array
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Figure 6.7: Curve 1 is a replica of Curve 3 in Figure 6.6. Curve 2 shows the ratio
achieved by the applying compensation estimated according to the unconstrained least
squares criterion on Eqn.(6.6). Curve 3 shows the ratio when the weighting term z(#)z(t)
is omitted from the proposed estimator in Eqn.(6.8).
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As an aside, the interference model assumed that the fluctuations of the ionospheric
propagation channel were “frozen” over the PRI with a duration of less than one tenth
of a second. If this assumption is inaccurate the eigenvalue ratio of the array would be
low even after the application of receiver mismatch compensation. However, the eigen-
value ratio increases by more than 25 dB over most of the coherent processing interval
after compensation is applied, this very large increase indicates that the assumption of a
“frozen” ionosphere is justifiable in our application for PRI shorter than one tenth of a

-

second.

6.5.3 Application to adaptive spatial processing

To quantify the effect of compensation on subsequent radar processing, data from exper-
iment B was used where the Jindalee array was tuned to receive broadband interference
at a carrier frequency of 12.877 MHz 12 minutes prior to recording the AM source of
opportunity. The spatial processing weight vector w for an adaptive sidelobe canceller
(SLC) was calculated according to the sample matrix inverse technique (Reed et al. 1974)

by using snapshots known to contain interference and noise only.

K
R's . 2 el

W=——,R=—- xi(t)xH (¢ 6.11

s R = xp 2 L) (6.11)

where the N-dimensional vector s = [1 0 --- 0]7 implies that the first receiver is chosen

as the reference receiver.

Before applying the SLC to the broadband interference, it is first shown that receiver
mismatch is independent of carrier frequency and remains approximately constant over
time intervals in the order of ten minutes. Curves 1 and 2 in Figure 6.8 show the am-
plitude responses of the reference channel measured by the Jindalee calibration system
immediately prior to receiving the AM source of opportunity (05:59 UT) and the broad-
band interference (05:47 UT) respectively. Curve 3 in Figure 6.8 shows that variations in
the ratio between the two amplitude responses is hardly noticeable over the passband of
interest. Note that this example, which is representative of the other reception channels
in the array, suggests that compensation for receiver mismatch estimated at one carrier
frequency will remain effective at another.

Curve 3 in Figure 6.9 shows an analogous result for the phase variation of the reference
channel. The absolute phase difference of approximately -23 degrees occurs because the
time delay associated with the signal path in the reference channel translates to a phase
shift which is proportional to the difference in carrier frequency. This carrier frequency
dependence is represented by the term ®,(f.) and is an array manifold error which can
be corrected if necessary using the calibration methods proposed by (Solomon 1998).

To illustrate the directional characteristics of the broadband interference, MUSIC
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Figure 6.8: Curve 1 and Curve 2 show the amplitude of the reference channel transfer
function prior to collecting the source of opportunity and broadband interference respec-
tively. Curve 3 shows the amplitude variation over the passband of interest
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Figure 6.9: Curve 1 and Curve 2 show the phase of the reference channel transfer function
prior to collecting the source of opportunity and broadband interference respectively.
Curve 3 shows the phase variation observed over the passband of interest
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spectra (Schmidt 1979) were computed for the matrix R = Zf:l R(t) assuming different
numbers of signals. Curves 1 and 2 in Figure 6.10 show the MUSIC spectrum resulting
when five and six interference signals were assumed respectively. The existing peaks in
Curve 1 become broader when six signals are assumed (Curve 2), but a sixth peak is not
observed. A possible cause for this broadening is the angular spread imposed on the five
dominant signals by the motion of irregularities in the ionospheric propagation medium
during the coherent processing interval.

The scalar SLC output yi(t) corresponding to the broadband interference data after

calibration with the Jindalee system is given by;

t = 1,2,.,P
K (6.12)
2

k= E+1,842 K

where the weight vector w is calculated using Eqn.(6.11). Curve 1 in Figure 6.11 shows
the Doppler spectra of the scalar SLC output yi(t) for a frequency or range bin known
to contain a hardware (analog) generated desired signal at a Doppler frequency of 5 Hz.
This signal was injected at the same time as receiving the broadband interference and
has the range-Doppler characteristics of a target echo propagated via a stable ionosphere.
Curve 2 in this figure shows the spectrum resulting when the data %.(t) corresponding to
the “raw” (uncalibrated) array is processed in identical manner. It is observed that the
desired signal is no longer clearly distinguishable from the broadband interference and
noise when receiver mismatch is present (Curve 2).

Curve 3 in Figure 6.11 shows the SLC output derived from the same data after apply-
ing the receiver passband corrections estimated from the AM source of opportunity. A
comparison of curves 2 and 3 demonstrates that applying the frequency response correc-
tions estimated by Eqn.(6.8) improves the output signal-to-noise ratio (SNR) of the SLC
by approximately 10 dB. This improvement in output SNR allows the desired signal to
be easily detected against the interference and noise. After applying compensation, both
the signal and interference-plus-noise levels are similar to those seen by the array after
calibration with the Jindalee system (Curve 1). This comparison also demonstrates that
compensation estimated from an AM source of opportunity can be applied to effectively
cancel broadband interference signals with different directions of arrival recorded at a

different time and carrier frequency.

6.6 Chapter summary

To improve the interference cancellation performance of adaptive spatial processing in
narrowband antenna arrays it is often necessary to compensate for degradations caused
by reception channels with different frequency responses. In the context of high frequency

(HF) antenna arrays, it is of great interest and potential importance to estimate this
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Figure 6.10: MUSIC spectra corresponding to the broadband interference. Curve 1 and
Curve 2 show the MUSIC spectra when five and six signals respectively are assumed to
be present.
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Figure 6.11: Curve 1 and Curve 2 show the Doppler spectra corresponding to the cali-
brated and uncalibrated array respectively. Curve 3 shows the Doppler spectrum resulting
when the estimated compensation for channel mismatch is applied to the uncalibrated ar-
ray.
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compensation from external sources of opportunity. This chapter has proposed a space-
time model for suitable interference sources of opportunity, and a data-dependent least
squares (LS) algorithm based on this model, to estimate digital compensation for receiver
mismatch. The introduced algorithm may be used in combination with the techniques
described in (Solomon 1998) to calibrate for both array manifold errors and receiver
mismatch in HF antenna arrays.

The performance of the proposed frequency response correction algorithm has been
demonstrated and compared with other methods using experimenfal data. In the first
experiment, an ionospherically-propagated AM signal of opportunity was used to estimate
digital compensation for 32 reception channels of the Jindalee antenna array. Application
of this digital compensation to the “raw” (uncalibrated) receiver passbands resulted in a
significant improvement in the spatial dynamic range of the array. Due to the presence
of multipath components and uncertain propagation effects, the compensation estimated
from the source of opportunity by the commonly used (unconstrained) least squares tech-
nique was not able to improve on the spatial dynamic range observed for the uncalibrated
array.

In the second experiment, an adaptive sidelobe canceller was used to mitigate broad-
band interference signals with different directions of arrival. The output signal-to-noise
ratio of the adaptive sidelobe canceller improved by approximately 10 dB after applying
the receiver mismatch compensation estimated from the AM source of opportunity. This
improvement was comparable with that achieved by sophisticated software and hardware
sub-systems normally used for calibrating the Jindalee array. In addition, this experiment
demonstrated that digital compensation estimated from a source of opportunity can be
applied to effectively cancel other interference signals recorded at a different time and
carrier frequency.

The application of the proposed technique was successfully demonstrated for HF ar-
rays. It should be noted that the multipath signal model upon which the proposed tech-
nique is based has quite general statistical properties, and for this reason, such a technique
may be suitable in other adaptive sensor array applications which stand to benefit from

receiver mismatch compensation prior to adaptive spatial processing.



CHAPTER 7

Conclusion

This thesis has presented the results of theoretical and experimental research concerned
with the space-time characterisation and adaptive processing of ionospherically-propagated
HF signals received by a very wide aperture antenna array. The first component of this
research focussed on the theoretical derivation and experimental validation of mathemat-
ical models to describe the space-time characteristics of the HF channel over time-scales
ranging from a few seconds to several minutes. The second component of this research
exploited the information contained in the experimentally validated models to enhance
the performance of adaptive beamformers in HF arrays. The central theme in both
components of research was the application of modern and novel array signal processing
techniques to experimental data for the purpose of quantifying the fine structure of iono-
spheric propagation as well as the limitations it imposes on the performance of adaptive
beamformers in the HF environment. A summary of the experimental data which has
been processed and the key contributions resulting in each of the two above-mentioned

components of research follows to conclude the thesis.

7.1 Experimental data processed

The experimental HF propagation data for this study were collected on a 1265 km mid-
latitude ionospheric path using several transmit and receive facilities. An oblique sounder
system was utilised to monitor the mode content of the HF link so that the number of
propagation modes and the ionospheric layers which reflected them could be identified.
The 2.8 km long aperture of the Jindalee OTH radar receiving ULA was utilised to record
coherent narrowband HF signals propagated over the same ionospheric link. This data,
sometimes referred to as the channel scattering function (CSF) data, enabled the space-
time characteristics of the narrowband HF channel to be analysed and modelled on a
mode separated ba.s:is. The above-mentioned data was processed in chapters 2, 3, and 4
to address the requirements of the first research component.

The Jindalee OTH radar receiver array was also utilised to record a cooperative source
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of radio frequency interference (RFI) propagated over the same HF link shortly after and
in a nearby frequency channel to the CSF experiment. The data recorded from this RFI
source permitted the cancellation performance of various adaptive beamforming schemes
to quantified and compared with predictions made by a statistical HF channel model esti-
mated from the CSF data. A non-cooperative amplitude modulated (AM) radio broadcast
of opportunity and broadband interferer were recorded a few minutes apart on different
frequency channels by the Jindalee receiver array. These non-cooperative signals were
used to quantify the limitations imposed by real receiver frequency response mismatches
on the interference cancellation performance of an adaptive sidelobe canceller as well as to
test the effectiveness of a novel technique designed to compensate for such instrumental
errors using AM sources of opportunity. The cooperative and non-cooperative interfer-
ence data was processed in chapters 5 and 6 to address the requirements of the second

research component.

7.2 Space-time characterisation of HF signals

A preliminary analysis of the space-time CSF data revealed that the spatial structure of
individual HF signal modes reflected by the ionosphere exhibited a planar gross structure
with some degree of time-varying amplitude and phase distortions superimposed. Mode
wavefront crinkles have been observed with other HF arrays and are thought by some
investigators to arise from the interference between relatively few specularly reflected
rays. However, the resolution of ray parameters from a complex-valued mode wavefield is
not readily achieved and generally requires the use superresolution methods in conjunction
with a well calibrated very wide aperture antenna array that can receive ionospherically-
propagated HF signals on a mode separated basis. Perhaps as a result of these difficulties,
quantitative information regarding the ability of the wave-interference model to represent
such wavefields at a high temporal resolution (less than 0.02 seconds) over typical OTH
radar CIT (in the order of a few seconds) was not previously available. The accuracy and
domain of validity of this model is of practical interest as it influences the selection of
signal processing strategy for use within the CIT.

The MUSIC space-time superresolution algorithm was described and applied in chap-
ter 2 to resolve the fine structure of signal modes recorded by the Jindalee array on a
controlled mid-latitude ionospheric circuit. Comparisons between the real wavefields and
those generated from the estimated wave interference model parameters showed that fit-
ting accuracies greater than 90 percent could be obtained for CIT of about 4 seconds
duration with four rays or less over a large percentage of the data analysed. Note that
the wave interference model involves four parameters per ray which were fixed to model
a CIT of data containing 30 x 256 = 7680 complex space-time samples of the wavefield
produced by a single mode.

The time-variation of the ray parameters observed for a particular mode from one
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CIT to another implies that as the time interval increases the number of rays required to
maintain a certain modeling accuracy will also increase. Consequently, it was concluded
that a deterministic ray interference model incorporating relatively few rays is best suited
for representing mode fine structure over time scales which do not exceed a few seconds.
Such a model is not considered appropriate for the characterisation of a complete data
set received over an interval of a few minutes. The characterisation of longer data sets
is useful for the purpose of optimising the selection of carrier frequency which to a large
extent determines the effectiveness of a particular signal processing strategy.

To deal with data sets of several minutes, the space-time modulations imposed by the
HF reflection channel on individual propagation modes were treated as a two-dimensional
random process. A wide-sense stationary statistical model of this random process may be
justified if attention is restricted to narrowband HF channels (less than 10-20 kHz band-
width) over relatively small time intervals (less than 5-10 minutes). A one-dimensional
Gaussian distributed stationary random process model for the temporal (i.e., Doppler)
characteristics of narrowband HF channels reflected by the ionosphere has already been
developed and experimentally validated using a single receiver system. A multi-sensor
generalisation of this type of model is required to aid frequency management as well as
the design and analysis of spatial and space-time adaptive signal processing algorithms in
HF antenna arrays.

The broad physical principles which govern the reflection of radio waves from a dy-
namic and spatially irregular ionospheric plasma surface were described in chapter 3 in
order to model the space-time second order statistics of HF signals reflected by a statisti-
cally rough ionospheric layer. Two analytical auto-correlation functions for the received
signals (i.e., Gaussian and decaying exponential envelopes with linear phase) were derived
from the physical model and compared against the sample auto-correlation functions mea-
sured for individual propagation modes in the spatial-only, temporal-only and space-time
dimensions. Under the Gaussian scattering assumption, the sampling distributions for
these measurements were also derived and evaluated in order to construct hypothesis
tests which could be used to validate or reject the postulated statistical models.

It was found that there was no good reason to reject the assumption of a Gaussian
shaped temporal auto-correlation function for a signal mode at the output of each receiver
in the array. These results also indicated that the temporal second order statistics of
the HF channel may be considered spatially homogeneous over apertures in the order
of 2-3 km. The assumption of spatial stationarity across the very wide aperture was
experimentally confirmed for the fully resolved modes along with a plane wave model
for the mean wavefront of these modes. An exponentially decaying envelope was also
accepted for the spatial auto-correlation function of all the resolved modes. It was shown
that the space-time auto-correlation functions estimated for the resolved modes could be
accurately predicted from the estimated models of the temporal-only and spatial-only

auto-correlation functions. This result indicated a high level of space-time separability in
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the signal second order statistics arising from the ionospheric reflection process.

Although the space-time wave interference model and wide sense stationary statistical
models are based on physical principles, such principles may be transformed into signal
processing models which can simulate ionospherically propagated HF signals received at
multiple antenna sensors. A suitable signal processing framework for generating synthetic
samples in accordance with the deterministic or statistical space-time HF channel models
has been proposed in the literature and was adopted in chapter 4. However, a joint space-
time parameter estimation technique for this model was not supplied and may be valuable
for systems which are incapable of separating the individual propagation modes. While
algorithms such as MUSIC can be used to estimate the parameters of the wave interference
model the problem becomes significantly more complicated when it is required to estimate
the parameters of distributed signals which exhibit Doppler and angular spread. The
problem of parametrically localising space-time distributed sources from convolved signal
mixtures was addressed in chapter 4.

If the modulations imposed by the ionosphere on different signal modes are mutually
uncorrelated and accurately described by a first order auto-regressive process then the
superposition of such modes gives rise to a signal which is statistically described by a
special auto-regressive moving-average process. An explicit connection was made between
estimating the parameters of such a process and estimating the frequencies and decay rates
of superimposed exponentially damped cisoids in noise. A novel closed-form technique
based on the least squares criterion was proposed for jointly estimating the mean and
spread parameters of all modes in a computationally attractive manner from the space-
time sample auto-correlation function of the signal mixture received by a uniform linear
array.

It was necessary to use this technique to estimate the model parameters of two
sporadic-E modes which could not be resolved in time-delay by the array but whose
presence was certified by ionogram records from the oblique sounder. Assuming the pres-
ence of two space-time distributed signal modes, the model parameters were estimated
using the proposed technique in order to regenerate the space-time auto-correlation func-
tion of the signal mixture. The remarkable similarity between the modelled and sample
auto-correlation functions across 900 space-time lag points experimentally demonstrated
the validity of the auto-regressive moving-average representation and the effectiveness

with which the parameters of this process were estimated by the proposed technique.

7.3 Adaptive processing of HF signals

Previous analysis of the spatial properties of ionospheric modes have shown that signal
distortions caused by ionospheric reflection do not greatly affect the reception of desired
signals in the main lobe of the beampattern of a very wide aperture array. However,

the influence of such distortions when the signal is received through the relatively steep
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nulls of the beampattern (i.e., when the signal is considered interference) has received
insufficient attention in the literature. The first aim of chapter 5 was to redress this bal-
ance by quantifying the effect of ionospheric propagation on the interference cancellation
performance of various adaptive beamforming schemes operating on a very wide aperture
antenna array. The second aim was to determine the accuracy with which the previously
validated multi-sensor HF channel model could predict the performance improvement
gained by adaptive beamforming over conventional beamforming as a function of the CIT
length in a statistical sense.

It was found that the relative improvement in interference cancellation gained through
the use of the sample matrix inverse adaptive beamforming technique over a tapered con-
ventional beamformer was highly dependent on the time interval over which the adap-
tive beamforming weight vector was held constant. As the CIT length increased from a
fraction of a second to approximately one minute the relative improvement dropped sig-
nificantly for all schemes tried. For some schemes the degradation was so severe at long
CIT lengths (50 seconds) that conventional beamforming actually outperformed adaptive
beamforming. Such experimental results demonstrate that space-time distortions imposed
on interference modes by the ionospheric reflection process can have a very pronounced
influence on the effectiveness of adaptive cancellation algorithms and hence cannot be
ignored in the design and evaluation of adaptive beamformers intended for operational
use.

The previously estimated statistical HF channel model for the HF link was used to
simulate the received interference signal assuming temporal-only distortions first and then
space-time distortions. As expected, adaptive beamformer performance was not depen-
dent on the CIT length when no spatial distortions were imposed on the simulated signals.
After the introduction of spatial distortions the performance of the adaptive beamformer
relative to the conventional beamformer dropped by over 25 dB as the CIT was increased
from a fraction of a second to 50 seconds. Moreover, it was noted that the falloff in both
the mean and deciles of the relative SINR improvement distribution with respect to CIT
length was very similar to the curves derived from experimental interference data. An
existing adaptive beamforming algorithm which is designed to reduce degradations in in-
terference cancellation with respect to CIT length without effecting signal detection was
described and its performance was illustrated to motivate further research in this area.

The performance of an adaptive array is not always limited by the capabilities of
the adaptive processor or the complexity of the interference scenario; in many practical
applications significant limitations may be encountered as a result of instrumental uncer-
tainties such as receiver mismatch. While the problem of calibrating for array manifold
errors using ionospherically-propagated HF sources of opportunity has been addressed
the complimentary problem of correcting for receiver mismatch with HF sources of op-
portunity has received little if any attention. A mathematical model with quite general

statistical properties was developed in chapter 6 for the special case of amplitude modu-
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lated (AM) radio signals propagated by the ionosphere, this model was then exploited to
estimate corrections for receiver mismatch from ionospherically-propagated AM broad-
casts of opportunity.

The proposed algorithm was tested for the case of real receiver mismatch using an
actual AM source of opportunity. The Jindalee calibration system provided independent
calibration corrections, these corrections represented ground-truth data used to assess the
performance of the proposed algorithm. It was found that the adaptive cancellation of a
broadband interference was improved by 10 dB after applying the compensation estimated
by the proposed algorithm from the AM source of opportunity. This improvement restored
the performance of the uncalibrated array to the level observed after the application of
the Jindalee system calibration weights. Commonly used unconstrained least squares
techniques are not designed for the HF environment and were shown to be incapable of

estimating effective corrections from the AM source of opportunity.

7.4 Recommendations for future research

Recommendations for future research in this area include a full generalisation of the
multi-sensor HF channel model which could additionally incorporate wave polarisation,
wave propagation in the azimuth-elevation domain and the frequency dispersive effects of
ionospheric propagation encountered in broadband HF applications. The Jindalee array
is narrowband and consists of uniformly spaced vertically polarised antenna elements
arranged in a line. Consequently, it was only possible to measure the vertical component
of polarisation of narrowband HF signals while the azimuth and elevation could not be
measured independently as a one-dimensional array allows only variations in cone angle to
be detected. Hence, the full generalisation of the HF channel model requires measurements
made on wideband two-dimensional (or three-dimensional) arrays that have complete
polarisation diversity.

It would be of interest to determine whether the stationary HF channel model pro-
posed for single-hop mid-latitude ionospheric paths is valid for multi-hop propagation
and if such a model is suitable (over perhaps shorter time scales) for propagation involv-
ing reflections from the equatorial and auroral ionosphere. The latter point is especially
relevant for the design and development of adaptive beamforming routines which are some-
times required to cancel interference signals propagated via these regions. The concept
of intra-CIT adaptive beampattern re-adjustments was introduced but requires further
research especially for situations when the backscattered clutter model is unknown or if

the interference-only array snapshots are not available.
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Complex sample ACS distribution

Consider a continuous one-dimensional complex random process which is sampled every
A seconds and let z(t) be a complex random variable which takes on the value of the

process at different sampling instants tA for t = 0,1,.., P — 1.
2(t) = 2(t) + jy(t) = m(t)e’*®) (A.1)

In equation Eqn.(A.1), the scalars z(t) and y(t) are the real and imaginary parts of z(t)
respectively while m(t) and 6(t) are the associated magnitude and phase. It is assumed
that z(t) and y(t) are zero mean Gaussian distributed random variables with the same
2. It is further assumed that z(t) and y(t) are independent and stationary

random processes with the same second order statistics (i.e., auto-correlation function).

variance o

re(7) = E{z()z(t + 1)} , ry(r) = E{y()y(t+ 1)} , ro(r) =ry(r) = (1) (A2)

For such a process it can be shown that the magnitude m(t) is Rayleigh distributed and
the phase 8(¢) is uniformly distributed over the interval [—r, ), see (Papoulis 1984). This
general statistical model of a complex random process is suitable for the description of
HF signals received at a single antenna sensor after reflection from the ionosphere, as
experimentally verified by (Watterson et al. 1970).

The maximum likelihood estimator of the second order statistics or auto-correlation
function is often referred to as the unbiased sample auto-correlation function #,(7) and is

calculated as the average of a sum of lagged products,

P-r-1
1

7'2(7') = —PTT hzo Z(t)z (t + T) (A.3)
where P is the number of available samples of the process z(t). The various samples
7 =0,1,...,@—1(Q < P) of this discrete auto-correlation function are collectively referred
to as an auto-correlation sequence (ACS) (Marple 1987). The estimator in Eqn.(A.3) is
statistically consistent in the sense that the sample ACS #,(7) tends to the statistically

223



224 APPENDIX A. COMPLEX SAMPLE ACS DISTRIBUTION

expected ACS r,(7) = E{z(t)2*(t + 7)} as the number of samples P tends to infinity.
By substituting Eqn.(A.1) into Eqn.(A.3) the sample ACS can be decomposed into

the following real and imaginary parts,
72(7) = [Fo(7) + Fy(T)] 4 J[Fya(T) — Foy(7)] (A.4)

where 7z(7) = M{z(t)z(t + 1)}, 7y(7) = M{y(t)y(t + 7)}, foy(7) = M{z(t)y(t + 7)},
e () = M{y(t)z(t + 7)} and M{-} = 51~ 3,7 '{-}. Since the sample ACS estimates

are unbiased it is possible to define the following zero mean random variables.

ex(1) = fo(r) — ro(7)

ey(r) = Fy(r) — ry(7)

nlr) = Fulr) = raylr) (49
eye(T) = TyulT) — 7ya(T)

It is noted rzy(7) = E{z(¢)y(t + 7)} and ry;(7) = E{y(t)z(t + 7)} are both equal to zero
as the real and imaginary parts of 2(t) are independent. The asymptotic (large sample)

variance of these random variables is given by (Muirhead 1982),

E{ez(r)}
E{ez, (1)}

Il

E{ey(r)} [o* + r*(7)I/N
E{eg,(r)} = o*/N

Il

(A.6)

il

where N is defined as the number of independent samples of z(t) used to form the sample
ACS according to Eqn.(A.3). In many practical situations the samples recorded from a
random process will be correlated in which case the substitution of P for N in Eqn.(A.6)
will not yield the asymptotic (large sample) variance of the error terms in Eqn.(A.5). One
notable exception for which this substitution is valid occurs when the random processes
z(t) and y(t) are Gaussian distributed white noise process as in this case the consecutive
samples are uncorrelated and hence statistically independent. The effect of correlation
in the samples of a random process is to reduce the number of independent observations
which in turn increases the variance of the ACS estimates.

Fortunately, an ezact result for the variances of the ACS estimation error terms in
Eqn.(A.5) exists due to (Bartlett 1946). As explained in (Priestly 1981), the joint fourth
order cumulant in the expression derived by (Bartlett 1946) vanishes for a Gaussian

processes so the exact sample ACS error variance is given by the following expression.

P P-r—v-1
Bfea(r)es(r +0)} =
(P=7)(P—1—v) mz_(ZP;T)H
{1- BT et +0) 1 b+ r(m =) (A1)

Note that E{e,(7)e,(7 + v)} = E{es(T)ez(T + v)} as the two processes are statistically
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identical, the term u(m) is given by Eqn.(A.8).
p(m) =< 0, —-v<m<0 (A.8)

The cross-terms e,,(7) and e,.(7) of the sample ACS in Eqn.(A.4) are derived as the
average of a sum of lagged products between the samples of two independent processes.
Whereas the expression in Eqn.(A.7) has been derived for the average of a sum of lagged
products between the samples of a single and potentially correlated random process.

Consequently, the expression in Eqn.(A.7) cannot be used in strictly presented form to

obtain the variances of these cross-terms.

If the processes z(t) and y(t) are of finite bandwidth then r(s) — 0 as s — oo.
In other words, the samples of either process are uncorrelated and hence statistically
independent when the separation between them is sufficiently large. Since z(t) and y(t)
are independent identically distributed (i.i.d) Gaussian processes, it follows that z(t + s)
for s = oo can be considered a valid realisation of y(¢) for the purpose of evaluating the
variances of the cross terms. Stated another way, the statistical properties of a sum of
P — 7 lagged products between the samples of z(t) and y(t + 7) are equivalent to the
statistical properties of the sum of P — 7 lagged products between the samples of z(t)
and z(t + s + 7). Hence, by substituting P + s for P and 7 4 s for 7 in Eqn.(A.7) yields

the following expression for the variance of the cross-terms as s — oo.

E{ecy(T)eny(T + v)} = E{eye(T)eye(T + )}

P Pr=z-t m)+71+v
=(P—T)(P—7'—v) Z {I—E%L}r(m)r(m+v) (A.9)

m=-(P-7)+1

Note that if the processes z(t) and y(t) are white so that r(7) = é(r)o? and N = P
then as P — oo the variances which are predicted by Eqn.(A.7) and Eqn.(A.9) for v =0
coincide with the asymptotic variances reported by (Muirhead 1982) which appear in
Eqn.(A.6). It may also be observed from Eqn.(A.7) and Eqn.(A.9) that for non-white
Gaussian processes the correlation between samples serves to increase the variance of the
ACS estimates. This increase in variance is interpreted in terms of a decrease in the
effective number of statistically independent samples used to estimate the ACS (Priestly
1981).

Before proceeding to determine the sampling distributions for the magnitude and
phase of the ACS estimation error, a few points are worthy of mention. A more compact
expression for the variance of the complez ACS estimation error exists, see (Thierren 1992),
but this expression has not be used as nothing can be deduced about the variances of the

real and imaginary parts of the ACS estimation error and this information is required to
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evaluate the statistics of the sample ACS magnitude and phase. For Gaussian process
which are stationary up to order four, the variances given by Eqn.(A.7) and Eqn.(A.9) are
exact for any number of samples P but the distributions of the error terms in Eqn.(A.5)
tends to the normal density as the number of samples P tends to infinity. As typically
more than P = 10,000 samples are used to estimate the ACS in the experimental analysis,
a normal distribution for these random variables is assumed in the analysis which follows.
Although the theoretical expression for the variances will not be exact for non-Gaussian

distributed processes they are known to provide a good approximation providing that

|7| € P (Thierren 1992).

The complex ACS estimation error e,(7) corresponding to Eqn.(A.4) can be written

in the following form,
e.(1) = F,(7) — r.(7) = a(7) + 5b(7) (A.10)

where a(7) = e,(7) + €,(7) and b(7) = €y.(7) — €z(7). The zero-mean random variables
e-(7) and e,(7) have the same variance o?(7) given by Eqn.(A.7) and are normally dis-
tributed in the asymptotic case. Similarly, the zero-mean normally distributed random

variables e.,(7) and ey;(7) have a common variance 3(7) given by Eqn.(A.9).

It is shown by (Muirhead 1982) that the random variables e;(7) and e (7) are uncor-
related E{e,(7)e,(7)} = 0 so the random variable a(7) is normally distributed with zero
mean and a variance of 02(7) = 20?(7). The cross terms ey;(7) and e;,(7) are correlated
so the variance of the zero-mean and normally distributed random variable b(7) is equal
to 0y(7) = 2[02(7) — E{esy(T)eyz(7)}]. The random processes z(t) and y(t) are identically
distributed so the random variables e,,(7) and e,,(—7) have the same statistical proper-
ties. The interchangeability of these two variables, as far as their statistical properties

are concerned, is exploited to derive an expression for E{ey(7)ey(7)}
E{esy(T)eys(1)} = E{esy(T)esy(—7)} = E{esy(T)esy(r +v)}, v=-2r (A.11)

From Eqn.(A.11) the term E{e;y(7)ey(7)} is calculated by substituting v = —27 in
Eqn.(A.9). Note that for 7 = 0 the variance of b(7) falls to zero which implies that e,(0)
does not have an imaginary component or equivalently there is no phase error in the

sample ACS. This is expected because both #,(7) and r,(7) are real when 7 = 0.
It is shown by (Papoulis 1984) that the joint probability density function p(a,b) of
the random variables a and b (the dependence on 7 has been dropped for notational

convenience) is given by,

1 -1 a’  2pab b2]}
,b) = exp ———— | — - — 4+ — A.12
pla;b) 20,04\/1 — p? P {2(1 - %) [02 0.0 O} ( )

where p = E{ab}/(0,05) is defined as the correlation coefficient. The normal random
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variables a and b are uncorrelated (p = 0) in this case because the error terms in the
real part (e, e,) are mutually uncorrelated with those in the imaginary part (egy,€ys)
(Muirhead 1982). The Cartesian random variables a and b may be related to the polar
random variables r (magnitude) and ¢ (phase) by the transformations a = rcos ¢ and

b = rsin ¢. The joint probability density function of the variables r and ¢ is given by,
f(r, @) = J(a,b)p(r cos ¢, sin ¢) = rp(r cos ¢, T sin ¢) (A.13)

where J(a,b) = r is the Jacobian of the transformation between Cartesian and polar
coordinates (Papoulis 1984). By setting p = 0 in Eqn.(A.12) and substituting the result
into Eqn.(A.13) the polar joint density function f(r,#) can be derived as,

f(ry¢) = =— 1 [T2 cos’ ¢ | r?sin” "5} (A.14)

exp —
2no,00 2 ol of

where r and ¢ are the magnitude and phase of the complex ACS estimation error. The

marginal densities fi(¢) and fa(r) can then be derived from Eqn.(A.14).

o o]

Ry = [ firdydr =

r=0 r=0

A2
Crexp [ z;r ]dr (A.15)

The constants C and A in Eqn.(A.15) are given by C = (270,05)"! and A = cos ¢?/0? +
sin ¢?/o}. This integral is readily evaluated to give the marginal density for the phase

€rror.

(A.16)

he = | e (255 =6 %

2 o AT 2m(cos ¢p?0? + sin $?02)

Note that in the special case where 0, = o}, the phase becomes uniformly distributed,

f1(¢) = 1/2m, as expected. The marginal density for the magnitude f,(r) is given by,

fa(r) = /: f(r,¢) dp = ) Fexp (G cos 2¢) d¢ (A.17)

=—1 ¢=-r

where after some manipulation the constants F and G can be written in the following

way.

' 202 2 2( 2 A2
Fo T exp{;@a_Jrfz.b_)}, o oy —al) (A.18)

242 2.2
2mo,0p 400} 4o0l0}

The integral in Eqn.(A.17) can be evaluated by first forming a Taylor series expansion of

the integrand,

f(r)=F / :_, f: Mw (A.19)

n=0
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and then deriving an expression for the following generic term of this expansion.

/ cos™ 2¢ dp = i[eﬂ'f’ — e dg = / 2in > Cret*hen R dg
=T k=0

=—7 p=-m 2n
—lemon=t Moo ) A.20
= gaCnp2m =5 /2 (n/2) 7 (for n even (A.20)

The odd terms in the Taylor series expansion do not contribute to the marginal density
in Eqn.(A.19) which may be simplified to the form shown in Eqn.(A.21)

n

Fr) = FY 2 Clpsner for n=0,2,4,... (A.21)

Note that if o, = 0} then F = ;L5 exp —r?/20? while G = 0. Substituting these values
in Eqn.(A.21) yields the density,

folr) = e 2% (A.22)

2
T,

which is, of course, the Rayleigh density. The marginal densities derived above allow us to
construct statistical tests for validating or rejecting a hypothesised ACS model in terms
of real and imaginary components or magnitude and phase from a sample ACS with a

known level of confidence.
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Space-time separability of ACS

For a general ARMA(p, q) model the current output c(t) can be written as a linear

combination of the current and past inputs c[,::](t) which drive the process;

o0

() =) am(k)ell(t — k) (B.1)

k=0
where a,,(k) denote the complex coefficients of the linear combination. Note that these
coefficients are independent of receiver number (n) since in the model the temporal second
order statistics of the processes which describe Doppler spread are assumed to be the

same in all receivers. In accordance with the presented model, the inputs elr::](t) have the

following correlation properties,

E{eld(t)eli=(t — i)} = p,(5) 6(3) (B.2)

where p,(j) is the spatial ACS of the driving noise process normalised such that p(0) = 1.
Using Eqn.(B.1) and Eqn.(B.2) it can be shown that the temporal ACS of the modulations
cg,‘](t) is given by,

E{cBI(t)cl*(t - i)} = B{ ()} Y am(k +i)an, (k) = (i) (B.3)

k=0

where p:i(3) = 2 reo m(k+i)a (k) since E{ew(t)e[m"]*(t)} = 1. As the power of mode m is
modelled by the square of the amplitude term A, in Eqn.(4.1) it follows that the power of
the modulations c(t) is also unity (i.e., p;(0) = 1). This implies that )7 |am(k)|? = 1
and that the spatial ACS of the modulations ck,'](t) is equal to the spatial ACS of the
driving noise process given by Eqn.(B.2).

E{cl(t)eli=i (1)} = E{elrl(t)el=i(2)} i lem (k) [* = p4(3) (B.4)

k=0
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Similarly to Eqn.(B.1), the output - J](t — 1) of the process taken at a different receiver
n — j and time instant ¢t — ¢ is given by Eqn.(B.5).

it —i) = Zam Jelr=i(t — i — k) (B.5)
The space-time correlation sequence r(7, 7) is defined as;
r(i,5) = B{eR®)el (1 — i)} = E{ (el (¢ Zam k+i)al(k)  (B.6)

where E{el ()i (1)} = p.(j) = E{c(t)e2™(¢)} from Eqn.(B.2) and Eqn.(B.4)
respectively while > 77 0 o (k + 1)ag, (k) = pu(3) = E{c%‘](t)cgzl*(t — 1)} from Eqn.(B.3).

In other words,

E{ci(t)cl M (t — i)} = E{RIt)cly (O} E{cRI()eh(t — )} = pu(i)pu(5)  (B.T)

which indicates that the space-time ACS r(z, 7) = p:(¢)ps(7) of the model is separable as a
product of the temporal ACS p;(1) and the spatial ACS p,(j). For first order AR process
the normalised correlation functions are given by p:(:) = @' and p,(j) = 37 where a and

B are the coefficients of the temporal and spatial AR(1) processes respectively.
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Modal decomposition of ACS

As described by (Scharf 1991), the discrete time impulse response h(i¢T') of an ARMA(M,

M — 1) process can be expressed as the superposition of M modes;

M
h(iT) = cmziy (C.1)

m=1
where T is the sampling interval (Nyquist rate of the ARMA process) and A(iT) = 0 for

3 < 0 by definition for a causal system. The modes z,, are constructed from the roots of

the AR characteristic equation,

M
A(z) = o™ + @™ 4 o = [] (2 - 2m) (C2)

m=1
where ag,ai,..,ap are the AR process coefficients and z,, are the poles of the ARMA
transfer function H(z) which is given by the Z-transform of the impulse A(:T"). The
residues ¢, are constructed from the following partial fraction expansion evaluated at

2 = Zm,

B(z)
A(z)

Cm = [(1 - Zmz_l) ]z:zm (C-3)
where the moving average characteristic polynomial is defined as B(z) = ZQ’;I bz k.
The power spectral density S(z) of the ARMA(M, M — 1) process is equal to the

modulus squared of the associated transfer function H(z) = B(z)/A(Z) scaled by the
sampling interval T'.

S(2) = TIH(2) = H()H'(2) (C.4)

and is typically evaluated as a function of frequency f with z = ¢/*/T on the unit circle.
The auto-correlation sequence (ACS) of the process r(1T) is given by the inverse

Fourier transform of the (periodic) power spectral density function S(e*IT). Using

231
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Eqn.(C.4) and the convolution theorem, the ACS of the process can be expressed in

terms of the modal impulse response.

o0

r(iT) = h(iT) @ h*(—iT) = Y _ h(j)h*(j +1) (C.5)

i=0

where h*(—iT) is the inverse Fourier Transform of H*(z) and the symbol ® denotes
convolution. The sampling interval T' has been omitted from the discrete convolution
sum in Eqn.(C.5) for notational convenience. Substituting Eqn.(C.1) into Eqn.(C.5) and

expanding the terms yields,

M *
ng s, gm= Y I{";(:T";‘ (C.6)

m'=1

where the identity for the geometric sum Y 72 (2mi25)’ = (1 — zm2},)~" has been used
to simplify the expansion. Note that the poles z,, are inside the unit circle (i.e., |z,,]| < 1
for m =1,2,.., M) in the assumed ACS model.

Hence, the ACS of an ARMA(M, M — 1) model can also be represented as modal
decomposition, and as shown by Eqn.(C.6), the modes of r(:T") are the complex conjugates
of the modes of A(:T'). This result, which does not explicitly appear in (Scharf 1991) or
(Marple 1987), can be exploited to jointly estimate the parameters g,, and z, which
provide a least squares fit to the sample ACS. Once the parameters g,, and z,, have been
estimated from a finite length sample ACS it is possible to extend the ACS to an infinite

number of lags to estimate the power spectral density as,

oo

S(z)=T Y r(iT)z"" 2“1 z* = (C.7)

{=—00

where S(z) = S(e/*™/T).
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Receiver mismatch compensation

The problem is to find the argument ¢, which minimises the quadratic cost function f(c,)

in Eqn.(D.1) subject to the linear constraint cfe = 1.

, |
flea) = D {27 (1)2(t) [a(V)2(t) - Y(t)ca]” [a(t)2(t) — Y(t)ca]} (D.1)

This problem is similar to the weighted constrained least squares optimisation prob-
lems treated in (Albert 1972). However, it differs slightly from these problems because
two different types of data-dependent weights are involved, namely z” (¢)z(t) and of(t).

Let a,p:(t) be the value of a(t) which minimises z¥ (¢)z(t) ||a(t)z(t) — Y (¢)c.||F for an
arbitrary vector ¢, subject to the constraint c'e = 1. The value of a,(t) fort = 1,2,.., P

is given by,
aopt = arg min f(a), f(a) = (az — Yc)¥(az — Yc) (D.2)

where the t-dependence and subscripts have momentarily been dropped for notational

convenience. The cost function f(a) can alternatively be written in expanded form.

~

fla) = ac*zz — a*27Yec — ac?YPz + FYHYC (D.3)

To find a,pt(t) we define ag(:) = %’; (o) 4 jg’; (:‘)] as the partial derivative of f(a) with

Are

respect to the complex scaler variable o = a,e + joim. The value of a,y is found by

setting the partial derivative %}2 to zero.

Bf(a)__ H H _
8 "% z-7 Yc=0 (D.4)

The value of ., is readily derived from Eqn.(D.4).

zHYc

—;ﬁ; (D5)

Qopt =

233
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Substituting a,p:(t) for a(t) in Eqn.(D.1) and simplifying the terms yields the following

cost function.
P
flea) =Y {27 (D)2(t) HYH ()Y (t)ca — HYH (D)2(t)2" ()Y (e} (D-6)

The vector ¢, is fixed with respect to ¢t so it can be taken out of the summation in
Eqn.(D.6). This leads to the following linearly constrained quadratic optimization prob-

lem,
A . H . H,. _
¢, = arg minc; Qc, subjecttoce=1 (D.7)

where Q = Eil{zH(t)z(t)YH(t)Y(t) — YH(t)z(t)z""()Y(t)}. This problem can be
solved using the method of Lagrangian multipliers (Frost 1972).

~ eTQ-le

~

Ca

(D.8)
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