TUMOUR METASTASIS AND DISSEMINATION
DURING LAPAROSCOPIC SURGERY

Thesis submitted for the degree of Doctor of Philosophy
in the University of Adelaide
by

Susan J. Neuhaus, MBBS (Adel)

The work described was performed within the
Department of Surgery of the University of Adelaide
and the
Royal Adelaide Centre for Endoscopic Surgery, Royal Adelaide Hospital.
SHORT TABLE OF CONTENTS

SECTION I INTRODUCTION
1.1 Historical overview
1.2 Literature review
1.3 Summary of previous work using the DA rat model of laparoscopic surgery

SECTION II METHODOLOGY
2.1 The DA rat model
2.2 Tumour cell details
2.3 Operative techniques
2.4 Autopsy procedures
2.5 Statistics and ethics

SECTION III INFLUENCES ON TUMOUR IMPLANTATION AND METASTASIS FOLLOWING LAPAROSCOPY
3.1 The effect of different insufflation gases on tumour metastasis following laparoscopy
3.2 The influence of immune function on tumour growth following laparoscopy
3.3 The effect of insufflation pressure on the development of port site metastases
3.4 Extended survival studies
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>xvii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>xviii</td>
</tr>
<tr>
<td>PREFACE</td>
<td></td>
<td>xxi</td>
</tr>
<tr>
<td>1</td>
<td>SECTION I</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>1.1</td>
<td>HISTORICAL OVERVIEW</td>
<td>2</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Recent developments - consequences of a paradigm shift</td>
<td>3</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Laparoscopy and cancer surgery</td>
<td>5</td>
</tr>
<tr>
<td>1.1.2.1</td>
<td>Diagnostic laparoscopy and staging</td>
<td>6</td>
</tr>
<tr>
<td>1.1.2.2</td>
<td>Laparoscopic cancer resections</td>
<td>7</td>
</tr>
<tr>
<td>1.1.2.3</td>
<td>Evidence-based medicine</td>
<td>8</td>
</tr>
<tr>
<td>1.2</td>
<td>LITERATURE REVIEW</td>
<td>9</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Evidence from clinical cases</td>
<td>9</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Clinical presentation of port site metastases and their prognostic significance</td>
<td>15</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Experimental models</td>
<td>17</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Effect of laparoscopy on tumour growth</td>
<td>22</td>
</tr>
<tr>
<td>1.2.5</td>
<td>Mechanisms of metastasis</td>
<td>23</td>
</tr>
<tr>
<td>1.2.5.1</td>
<td>Contamination</td>
<td>24</td>
</tr>
<tr>
<td>1.2.5.2</td>
<td>Haematogenous spread</td>
<td>25</td>
</tr>
<tr>
<td>1.2.5.3</td>
<td>Local factors</td>
<td>26</td>
</tr>
<tr>
<td>1.2.6</td>
<td>Pneumoperitoneum, specific factors</td>
<td>26</td>
</tr>
<tr>
<td>1.2.6.1</td>
<td>Aerosolisation</td>
<td>27</td>
</tr>
<tr>
<td>1.2.7</td>
<td>Influence of specific insufflation gases</td>
<td>28</td>
</tr>
<tr>
<td>1.2.8</td>
<td>Prevention of cutaneous metastases</td>
<td>30</td>
</tr>
<tr>
<td>1.2.8.1</td>
<td>Wound protection</td>
<td>30</td>
</tr>
<tr>
<td>1.2.8.2</td>
<td>Intraperitoneal cytotoxic agents</td>
<td>30</td>
</tr>
</tbody>
</table>
1.2.8.3 Treatment of the port site wound 31
1.2.8.4 Exclusion of carbon dioxide - gasless laparoscopy 32
1.2.9 Conclusions 32

1.3 SUMMARY OF PREVIOUS WORK USING THE DA RAT MODEL OF LAPAROSCOPY SURGERY 33
1.3.1 Laparoscopy vs open surgery in a solid tumour model 33
1.3.2 Laparoscopy with carbon dioxide vs without carbon dioxide in a solid tumour model 34
1.3.3 The effect of laparoscopy on the movement of radiolabelled tumour cells 35
1.3.4 Adverse impact of pneumoperitoneum on intraperitoneal implantation and growth of tumour cell suspension in an experimental model 36
1.3.5 The role of peritoneal immunity and the tumour-bearing state on the development of wound and peritoneal metastases after laparoscopy 37
1.3.6 Questions raised by this work - that will be addressed in this dissertation 38

II SECTION II METHODOLOGY 40

2.1 THE DA RAT MODEL 41
2.1.1 Animal details 42
2.1.2 Animal maintenance 42

2.2 TUMOUR CELL DETAILS 42
2.2.1 Tumour model 42
2.2.2 Morphology 43
2.2.3 Immune composition of DAMA 43
2.2.4 Maintenance of tumour 43
2.2.5 Preparation of tumour cell suspension for cell culture studies 45
2.2.6 Solid flank tumour 46
2.2.7 Natural history of tumour growth 46
2.2.8 Appropriateness of the DAMA model 48
2.3 OPERATIVE TECHNIQUES
 2.3.1 Anaesthesia
 2.3.2 Laparoscopy
 2.3.3 Tumour models
 2.3.3.1 Solid tumour model
 2.3.3.2 Free cell suspension model
 2.3.4 Gasless laparoscopy
 2.3.5 Perioperative monitoring

2.4 AUTOPSY PROCEDURES
 2.4.1 Killing of animals
 2.4.2 Tumour size (solid tumour model)
 2.4.3 Histopathological examination of port sites
 2.4.4 Peritoneal cancer index (free cell suspension model)
 2.4.5 Lymph node dissection/extended autopsy
 2.4.6 Peritoneal macrophage harvest and function assessment
 2.4.6.1 Macrophage harvest and culture
 2.4.6.2 TNF-α measurement
 2.4.6.3 L929 bioassay

2.5 STATISTICS AND ETHICS

III SECTION III
INFLUENCES ON TUMOUR IMPLANTATION AND METASTASIS FOLLOWING LAPAROSCOPY

3.1 THE EFFECT OF DIFFERENT INSUFFLATION GASES ON TUMOURS METASTASIS FOLLOWING LAPAROSCOPY
 3.1.1 Overview
 3.1.2 Effects of a helium or carbon dioxide rich environment on in vitro tumour growth
 3.1.2.1 Aim
 3.1.2.2 Methods
 3.1.2.2.1 Cell culture studies
 3.1.2.2.2 pH studies
 3.1.2.3 Results
3.1.3 The effect of different insufflation gases using the solid
 tumour model
 70
3.1.3.1 Air
 78
3.1.3.2 Methods
 70
3.1.3.3 Results
 71
3.1.4 The effect of different insufflation gases on tumour implantation
 74
3.1.4.1 Aim
 74
3.1.4.2 Methods
 75
3.1.4.3 Results
 79
3.1.5 Discussion
 79
3.1.5.1 Gasless laparoscopy
 79
3.1.5.2 Physiological effects carbon dioxide
 82
3.1.5.2.1 Metabolism
 82
3.1.5.2.2 Cardiovascular
 84
3.1.5.2.3 Local effects
 84
3.1.5.3 Alternative insufflation gases
 85
3.1.5.4 Discussion of results
 87
3.1.5.5 Conclusions
 90

3.2 THE INFLUENCE OF IMMUNE FUNCTION ON TUMOUR
 GROWTH FOLLOWING LAPAROSCOPY
 91
3.2.1 Overview
 91
3.2.2 The effect of immune enhancement and suppression on
 the development of port site metastases
 92
3.2.2.1 Aim
 92
3.2.2.2 Methods
 92
3.2.2.3 Results
 93
3.2.3 The influence of different gases on intraperitoneal immunity
 during laparoscopy in tumour bearing rats
 96
3.2.3.1 Aim
 96
3.2.3.2 Methods
 96
3.2.3.2.1 pH studies
 97
3.2.3.2.2 Peritoneal macrophage harvest and
 function assessment
 98
3.2.3.2 Results
 98
3.2.4 Discussion
3.2.4.1 Systemic immune modulation
3.2.4.1.1 Delayed type hypersensitivity responses
3.2.4.1.2 Growth of primary tumours
3.2.4.1.3 Systemic versus local effects
3.2.4.2 Discussion of results
3.2.4.3 Peritoneal immune environment
3.2.4.3.1 Effect of carbon dioxide on peritoneal macrophage function
3.2.4.3.2 pH changes
3.2.4.4 Conclusions

2.3 THE EFFECT OF INSUFFLATION PRESSURE ON THE DEVELOPMENT OF PORT SITE METASTASES

3.2.1 Overview
3.3.2 Investigation of the effects of insufflation pressure on the development of port site metastases
3.3.2.1 Aim
3.3.2.2 Methods
3.3.2.3 Results
3.3.3 Discussion
3.3.3.1 Discussion of results
3.3.3.2 Conclusions

3.4 EXTENDED SURVIVAL STUDIES
3.4.1 Overview
3.4.2 Investigation of tumour resection and extended survival on the development of port site tumours
3.4.2.1 Aim
3.4.2.2 Methods
3.4.2.3 Results
3.4.3 Discussion
3.4.3.1 Conclusions
4.1 THE EFFECT OF CYTOTOXIC AGENTS ON TUMOUR IMPLANTATION AND METASTASES

4.1.1 Overview

4.1.2 Effects of cytotoxic agents on in vitro tumour growth
 4.1.2.1 Aim
 4.1.2.2 Methods
 4.1.2.2.1 Cell culture studies
 4.1.2.3 Results

4.1.3 Efficacy of cytotoxic agents for the prevention of laparoscopic port site metastases using the solid tumour model
 4.1.3.1 Aim
 4.1.3.2 Methods
 4.1.3.3 Results

4.1.4 Influence of cytotoxic agents on intraperitoneal tumour implantation
 4.1.4.1 Aim
 4.1.4.2 Methods
 4.1.4.3 Results

4.1.5 Discussion
 4.1.5.1 In vitro studies
 4.1.5.2 In vivo studies - solid tumour model
 4.1.5.3 In vivo studies - tumour implantation model
 4.1.5.4 Conclusions
4.2 THE EFFECT OF INTRAPERITONEAL BLOOD AND
ANTICOAGULANTS ON TUMOUR IMPLANTATION
FOLLOWING LAPAROSCOPY

4.2.1 Overview

4.2.2 In vitro effects of heparin on DAMA cells

4.2.2.1 Aim

4.2.2.2 Methods

4.2.2.3 Results

4.2.3 The effect of intraperitoneal heparin on tumor implantation following laparoscopy

4.2.3.1 Aim

4.2.3.2 Methods

4.2.3.3 Results

4.2.4 Discussion

4.2.4.1 Discussion of results

4.2.4.2 Conclusions

4.3 WOUND TREATMENT STRATEGIES

4.3.1 Overview

4.3.2 Investigation of the effect of wound treatment on the
development of por site metastases

4.3.2.1 Aim

4.3.2.2 Methods

4.3.2.3 Results

4.3.3 Discussion

4.3.3.1 Carbon dioxide laser treatment

4.3.3.2 Port site excision

4.3.3.3 Local treatment with cytotoxicals

4.3.3.4 Conclusions
5.1 TUMOUR METASTASIS AND DISSEMINATION DURING LAPAROSCOPIC SURGERY - A THEORY AND PREVENTIVE STRATEGIES

5.1.1 Is it a real problem?

5.2 CAUSES OF PORT SITE TUMOURS

5.2.1 Contamination

5.2.1.1 Bad surgery

5.2.1.2 Bad instruments

5.2.1.3 Haematogenous or from the peritoneum

5.2.2 Role of laparoscopic insufflation

5.2.2.1 Aerosolisation?

5.2.2.2 Gasless laparoscopy and port site metastases

5.2.3 Mechanical vs metabolic

5.2.3.1 Metabolic

5.2.3.2 Immunological

5.3 STRATEGIES FOR THE PREVENTION TUMOUR DISSEMINATION AND IMPLANTATION FOLLOWING LAPAROSCOPY

5.3.1 Better surgical technique

5.3.2 Dealing with 'split cells'

5.3.2.1 Cytotoxics

5.3.2.2 Heparin

5.3.2.3 Treatment of trocars

5.3.2.4 Treatment of wounds

5.3.2.5 Immune modulation

5.3.3 Alternatives to carbon dioxide

5.3.3.1 Gasless laparoscopy

5.3.3.2 Helium pneumoperitoneum

5.3.3.3 Insufflation using other gases
5.4 CONCLUSIONS

5.5 FUTURE DIRECTIONS

5.5.1 Current models

5.5.1.1 Limitations of small animal models

5.5.1.2 Large animal models

5.5.2 Clinical studies

VI SECTION VI BIBLIOGRAPHY

VII SECTION VII APPENDIXES

Appendix 1 Copies of front pages of published papers from this thesis

Appendix 2 Table: Port site recurrences after digestive laparoscopic surgery

ABSTRACT

Recent applications of laparoscopy to the resection of abdominal and thoracic malignancy have been followed by a burgeoning literature which describes cases of metastatic involvement of laparoscopic port sites, not only in patients with advanced tumours but in patients with early stage carcinoma, and even in patients following laparoscopic procedures during which tumours were not disturbed. The development of a port site metastasis in a patient following laparoscopic tumour resection with curative intent or the 'upstaging' of tumour stage, constitutes a failure of treatment.

Experimental studies incorporating bench-top and large animal models have confirmed that tumour cells are redistributed to port sites during laparoscopic surgery directly from contaminated instruments, or indirectly in the insufflation gas. Of particular concern, a large number of experimental studies have demonstrated an increase in tumour implantation and metastasis to wounds following laparoscopic as compared to laparotomy techniques. Previous work by the Royal Adelaide Centre for Endoscopic Surgery suggests that the addition of a pneumoperitoneum may increase the rate of tumour implantation five-fold. Of pivotal importance is the question of what contribution the laparoscopic environment plays in the process of tumour dissemination and whether these effects can be modulated.

This thesis utilised an established small animal model to investigate the aetiology of port site metastases and the efficacy of preventive strategies in reducing tumour implantation following laparoscopy.