AN INVESTIGATION OF THE WEAK LINKS IN THE SEISMIC LOAD PATH OF UNREINFORCED MASONRY BUILDINGS

Kevin Thomas Doherty
B.E. Hons (Civil) The University of Adelaide

A thesis submitted to the Faculty of Engineering at The University of Adelaide for the Degree of Doctor of Philosophy

Department of Civil and Environmental Engineering,
The University of Adelaide
AUSTRALIA

May 2000
TABLE OF CONTENTS

TABLE OF CONTENTS ... ii
LIST OF FIGURES ... vi
LIST OF TABLES ... xii
ABSTRACT ... xiv
DECLARATION .. xv
ACKNOWLEDGMENT ... xvi

1. INTRODUCTION .. 1
 1.1. Study Objectives and Key Outcomes 5
 1.2. Brief Outline of Report .. 6

2. EARTHQUAKES AND UNREINFORCED MASONRY 9
 2.1. Introduction .. 9
 2.2. Australian Seismicity .. 10
 2.3. URM Building Stock in Australia 13
 2.4. URM Vulnerability in Moderan Seismicity Regions 20
 2.4.1. Failure Modes of URM Elements (Related to Seismic Load Path) 20
 2.4.2. Review of the Seismic Performance of URM Buildings 21
 2.4.3. Common URM Element Failure Modes 25
 2.4.4. 'Weak Link' URM Failure Modes 29
 2.5. 'Capacity' Design for Improved Seismic Response 31
 2.6. Overall Project Aim .. 32

3. DPC CONNECTIONS IN URM CONSTRUCTION 34
 3.1. Introduction ... 34
 3.2. General Friction Review ... 35
 3.2.1. Coulomb Friction Behaviour 35
 3.2.1.1. Classically Behaving Materials 37
TABLE OF CONTENTS

3.2.1.2. Polymers ... 37
3.3. URM Connection: Previous Research .. 38
3.3.1. Plain-Masonry Joint Shear ... 38
3.3.2. Serviceability Requirements .. 41
3.3.3. Positive Anchorage ... 42
3.3.4. Shear Resistant of URM Connection Containing DPC Membrane 44
3.4. Australian Code Provision: URM Connections .. 48
3.5. Implication of the Dynamic Friction Coefficient .. 50
3.6. Specific Research Focus .. 50

4. DYNAMIC SHEAR CAPACITY TESTS ON URM CONNECTION CONTAINING DAMP-PROOF COURSE MEMBRANE .. 51

4.1. Introduction .. 51
4.2. Dynamic Shear Tests .. 51
4.2.1. Instrumentation .. 52
4.2.2. Damp-Proof Course Membrane and Materials .. 53
4.2.3. Dynamic Test Methodology .. 54
4.2.4. DPC Connection Tests ... 55
4.2.5. Slip Joint Connection Tests .. 56
4.3. Results: Formulation and Data Analysis ... 57
4.3.1. Data Filtering .. 58
4.3.2. Dynamic Friction Coefficient Representative Calculation 59
4.3.3. Theoretical Check .. 61
4.4. Dynamic Test Results ... 62
4.4.1. DPC Connection Dynamic Test Results ... 62
4.4.2. Slip Joint Connection Dynamic Test Results ... 64
4.4.3. Comparison of Dynamic with Static and Quasi-Static Test Results 67
4.5. Summary and Conclusion: Implication for Design ... 68

5. STABILITY OF SIMPLY SUPPORTED URM WALLS SUBJECTED TO TRANSIENT OUT-OF-PLANE FORCES ... 69

5.1. Introduction .. 69
5.2. Fundamentals of Out-of-Plane URM Wall Behaviour .. 70
5.2.1. Post-cracked Force-Displacement (F-Δ) Relationship 73
5.2.2. Boundary Condition Impact on Force-Displacement Relationship 79
5.2.3. Un-cracked Force-Displacement Relationship ... 81
5.2.3.1. Low Applied Overburden Force ... 81
5.2.3.2. High Applied Overburden Force .. 83
5.3. Previous Research: Experimental Studies ... 84
5.3.1. Static Tests ... 84
5.3.2. Dynamic Tests .. 88
<table>
<thead>
<tr>
<th>5.4. Critical Review of Current Analysis Methodologies</th>
<th>92</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.1. Quasi-Static Analysis Procedures</td>
<td>92</td>
</tr>
<tr>
<td>5.4.2. Dynamic Analysis Procedures</td>
<td>97</td>
</tr>
<tr>
<td>5.5. Specific Research Focus</td>
<td>101</td>
</tr>
<tr>
<td>6. OUT-OF-PLANE SHAKE TABLE TESTING OF SIMPLY SUPPORTED URM WALLS</td>
<td>102</td>
</tr>
<tr>
<td>6.1. Introduction</td>
<td>102</td>
</tr>
<tr>
<td>6.2. General Test Set Up</td>
<td>103</td>
</tr>
<tr>
<td>6.2.1. Test Specimens</td>
<td>103</td>
</tr>
<tr>
<td>6.2.2. Test Rig</td>
<td>105</td>
</tr>
<tr>
<td>6.2.3. Instrumentation</td>
<td>109</td>
</tr>
<tr>
<td>6.3. Material Tests</td>
<td>111</td>
</tr>
<tr>
<td>6.3.1. Bond Wrench</td>
<td>112</td>
</tr>
<tr>
<td>6.3.2. Modulus of Elasticity</td>
<td>114</td>
</tr>
<tr>
<td>6.3.3. Mortar Compressive Strength</td>
<td>117</td>
</tr>
<tr>
<td>6.4. Out-of-Plane Testing of Simply Supported URM Walls</td>
<td>117</td>
</tr>
<tr>
<td>6.4.1. Data Filter</td>
<td>119</td>
</tr>
<tr>
<td>6.4.2. Un-cracked Natural Frequency of Vibration</td>
<td>119</td>
</tr>
<tr>
<td>6.4.2.1. Comparison with Simple Elastic Beam Theory</td>
<td>120</td>
</tr>
<tr>
<td>6.4.3. Specimen Lateral Capacity Analysis</td>
<td>121</td>
</tr>
<tr>
<td>6.4.4. Harmonic Excitation Tests</td>
<td>124</td>
</tr>
<tr>
<td>6.4.5. Static Push Tests</td>
<td>137</td>
</tr>
<tr>
<td>6.4.6. Free Vibration Tests</td>
<td>142</td>
</tr>
<tr>
<td>6.4.6.1. Non-linear Frequency - Mid-Height Displacement Relationship</td>
<td>143</td>
</tr>
<tr>
<td>6.4.6.2. Non-linear Dynamic Force-Mid-Height Displacement Relationship</td>
<td>145</td>
</tr>
<tr>
<td>6.4.6.3. Non-linear Damping-Frequency Relationship</td>
<td>149</td>
</tr>
<tr>
<td>6.4.7. Transient Excitation Tests</td>
<td>153</td>
</tr>
<tr>
<td>6.4.7.1. Pulse Tests</td>
<td>153</td>
</tr>
<tr>
<td>6.4.7.2. Real Earthquake Excitation Tests</td>
<td>158</td>
</tr>
<tr>
<td>7. NON-LINEAR TIME HISTORY ANALYSIS DEVELOPMENT</td>
<td>163</td>
</tr>
<tr>
<td>7.1. Introduction</td>
<td>163</td>
</tr>
<tr>
<td>7.2. Brief Description of Basic Linear SDOF System</td>
<td>164</td>
</tr>
<tr>
<td>7.3. Negative Stiffness System Modelled as a Basic Linear SDOF System</td>
<td>167</td>
</tr>
<tr>
<td>7.4. Rigid Simply Supported Object Rocking Response About Mid-height - Dynamic Equation of Motion</td>
<td>169</td>
</tr>
<tr>
<td>7.5. Semi-rigid URM Loadbearing Wall Dynamic Equation of Motion</td>
<td>174</td>
</tr>
<tr>
<td>7.6. Modelling of Non-Linear Damping</td>
<td>180</td>
</tr>
<tr>
<td>7.7. Event Based Time-Stepping Analysis</td>
<td>183</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

7.8. Comparison of Experimental and Analytical Results .. 184

8. LINEARISED DISPLACEMENT-BASED (DB) ANALYSIS ... 188
 8.1. Linearised DB Analysis Methodology .. 188
 8.2. Proposed Linearised DB Analysis .. 190
 8.2.1. Derivation of Characteristic SDOF ‘Substitute Structure’ Stiffness 192
 8.2.2. Simply Supported URM Walls Modeled as a SDOF Oscillator 194
 8.2.2.1. Modeled Displacement Capacity .. 194
 8.2.2.2. Modeled Damping Appropriate During Rocking Response 195
 8.3. Effectiveness of the Linearised DB Analysis .. 195
 8.3.1. Effective Resonant Frequency of Simply Supported URM Walls 197
 8.3.2. Linearised DB Analysis ... 199
 8.3.3. THA for Various Transient Excitation ... 200
 8.3.4. Comparison of Predictive Model Results ... 202
 8.4. Conclusion ... 205

9. SUMMARY AND CONCLUSIONS ... 218

REFERENCES .. 221

APPENDIX (A): Band Pass Filter Program Fortran77 Code 241
APPENDIX (B): Representative DPC Connection Test Results 247
APPENDIX (C): Representative Slip Joint Connection Test Results 251
APPENDIX (D): Rigid F-Δ - Various Boundary Conditions 255
APPENDIX (E): Material Test Results ... 261
APPENDIX (F): Simply Supported Wall Test Results ... 275
APPENDIX (G): Non-linear Time History Analysis ROWMANRY - Fortran77 Code .. 319
APPENDIX (H): Non-linear Time History Analysis Experimental Confirmation 339
ABSTRACT

A large proportion of domestic and low-rise building stock in Australia is of unreinforced masonry (URM) construction and has not been designed to resist earthquake loads. Previous researchers have identified that under current Australian design conditions the two predominant weak links in the seismic load path for URM buildings are the shear connections between the walls and floor or roof and out-of-plane wall flexure.

This report documents the experimental and analytical research undertaken at The University of Adelaide aimed at providing the fundamental tools required to successfully avoid the identified brittle 'weak link' failures in the design of new and the assessment of existing URM buildings. This was achieved for the DPC connections through an extensive series of shaking table tests, which provided realistic data on the dynamic capacity of these connections. For the out-of-plane failure of walls in the upper stories of URM buildings, an extensive series of shaking table tests was used to develop a better understanding of the physical processes governing the collapse behaviour. Following this realistic analytical models were developed to provide accurate and reliable assessment of actual wall capacities. Since these were necessarily complex, a further refinement was undertaken to produce a more simplistic but rational analysis procedure for practical applications based on the 'Displacement-based' failure criteria.