Negative Ion Rearrangements
in the Gas Phase

A thesis presented for the degree of
Doctor of Philosophy

by

Peter Charles Hans EICHINGER
B.Sc. (Hons.)

Department of Organic Chemistry
The University of Adelaide

Sept., 1991
Contents

List of Figures vi

List of Tables xiii

Statement xvii

Acknowledgements xviii

Abstract xx

1. Introduction 1
 1.1 Generation of Negative Ions. 2
 1.2 Formation of Negative Ions. 3
 1.2.1 Primary Formation. 3
 1.2.1.1 Resonance Capture (Electron Capture). 3
 1.2.1.2 Dissociative Resonance Capture (Electron Dissociative Attachment). 4
 1.2.1.3 Ion-Pair Formation. 5
 1.2 Secondary Ions. 6
 1.2.2.1 Proton Transfer. 7
 1.2.2.2 Charge Exchange. 7
 1.2.2.3 Nucleophilic Addition. 8
 1.2.2.4 Nucleophilic Displacement. 8
 1.3 Collisional Activation 9
 1.4 Mass Analyzed Ion Kinetic Energy Spectrometry (MIKES). 10
2. The Wittig Rearrangement.

2.1 Introduction. 64
2.1.1 The Condensed Phase Wittig Rearrangement. 64
2.1.2 The Gas Phase Wittig Rearrangement. 73
2.1.2.1 Alkyl- and Aryl Benzyl Ethers. 74
2.1.2.2 Diallyl Ether. 79
2.1.2.3 Absence of the Wittig Rearrangement from Allyl Alkyl Ethers. 83
2.2 Results and Discussion 85
2.2.1 Dibenzyl Ether. 85
2.2.2 Allyl Phenyl Ether. 87
2.2.3 Allyl Benzyl Ether. 97
2.2.4 A Reinvestigation of the Condensed Phase Rearrangements of Deprotonated Allyl Benzyl Ether. 111
2.2.5 Diphenylmethyl Phenyl Ether. 112
2.2.6 Vinyl Alkyl Ether. 116
2.2.7 Benzyl Vinyl Ether. 130
2.2.8 Divinyl Ether. 131
2.2.9 Allyl Vinyl Ether. 133
2.3 Conclusions and Summary. 145
2.3.1 The Scope of the Wittig Rearrangement in the Gas Phase. 145
2.3.2 Loss of Alkyl Radicals. 147

3. The Smiles Rearrangement.
3.1 Introduction. 159
3.2 Results and Discussion. 166
3.2.1 Phenoxyalcohols. 166
3.2.2 Thiophenoxyalcohols. 180
3.2.3 Phenoxyalkanethiols. 184
3.3 Synthetic studies directed toward Identification of the Intermediates in the Gas Phase Rearrangement. 186

4. The Benзilic Acid Rearrangement and related rearrangements.
4.1 Introduction. 190
4.2 The Gas Phase Benзilic Acid Rearrangement. 191
4.3 Rearrangements of Deprotonated α-HydroxyLactate Esters. 197
4.4 Rearrangement Reactions of Deprotonated Alkyl Pyruvates. 207

5. **The Acyloxyacetate / Acyl hydroxyacetate rearrangement and related rearrangements.**

5.1 Introduction. 218
5.2 The Gas Phase Rearrangement of Acyloxyacetates. 223
5.3.1 Fragmentations of the Alkoxy compounds α-Dicarbonyl α-Dicarbonyl Complex (190). 231
5.3.2 Loss of Alkyl Formate. 231
5.3.3 Fragmentations of the Alkoxy compounds α-Dicarbonyl Complex (191). 237
5.4 The Gas Phase Acyloxyacetonitrile /Acyl Hydroxyacetonitrile Rearrangement. 248

6. **Future Directions.**

6.1 Future Directions. 256
6.2 Dissociation of the deprotonated molecule to form a radical anion -radical or anion - neutral complex. 257
6.2.1 The Wittig rearrangement. 257
6.2.2 Other Rearrangements. 259
6.3 Internal nucleophilic addition of an ion to a suitable π-System. 259
6.3.1 The Smiles Rearrangement. 259
6.3.2 Miscellaneous. 261
6.4 Nucleophilic addition of the base to yield an anionic species which may then undergo rearrangement. 262
6.4.1 Benzilic Acid rearrangement. 262
6.5 Solvolysis reactions. 264
6.6 Miscellaneous Reactions. 264

Experimental. 266

References. 296

Publications. 339
Abstract

In this thesis the investigation of rearrangements known to proceed in solution were examined in the gas phase. Where possible the results obtained in solution are indicated in the text and in this way the behaviour of the compounds in condensed phase and the gas phase may be directly compared.

In solution there are many factors influencing the course of a reaction. The term "intrinsic" reactivity is often applied to reactions occurring in the gas phase. In the introduction, this concept is dealt with to demonstrate the influence of the solvent and counter ions which are seldom considered when dealing with anionic chemistry. In this way, the unique insight that the study of gas phase ion chemistry provides is highlighted.

The systems chosen for study have been carefully selected. In solution there are significant differences in the behaviour of the systems. The Wittig rearrangement was chosen because the mechanism is believed to involve a dissociated intermediate, the Smiles rearrangement involves nucleophilic attack at the ipso position of the aromatic ring, and the Benzilic Acid rearrangement was studied because in solution chelation of a metal ion is important to effect nucleophilic addition of the base.