KINETIC AND EQUILIBRIUM STUDIES OF
CYCLODEXTRIN-AZO DYE INCLUSION COMPLEXES

Ronald James Clarke, B.Sc.(Hons.) (Adelaide)
Department of Physical and Inorganic Chemistry,
The University of Adelaide,
South Australia.

A thesis submitted for the degree of
Doctor of Philosophy.

February, 1985

Awarded 29/7/85
CONTENTS

INTRODUCTION ... 1

Bibliography ... 10

CHAPTER I HISTORICAL REVIEW

1.1 The Discovery of the Cyclodextrins 13

1.2 The Determination of the Cyclodextrin
 Structure ... 16

1.3 The Formation of the Cyclodextrins
 from Starch .. 20

1.4 Cyclodextrin Inclusion Compounds 24

Bibliography ... 26

CHAPTER II INCLUSION COMPLEX FORMATION

2.1 Detection of Complex Formation 28

2.2 Thermodynamics of Complex Formation 30

Bibliography ... 44

CHAPTER III EXPERIMENTAL TECHNIQUES

3.1 Temperature-Jump Relaxation
 Spectrophotometry 47

3.1.1 Principles of Chemical Relaxation 48

3.1.2 The Temperature-Jump Method 53

3.1.3 Experimental Procedure 58

3.1.4 Data Acquisition and Analysis 59

3.1.5 Calibration of the Temperature Rise 61

3.2 UV/Visible Absorption Spectroscopy 63

3.2.1 Apparatus 63

3.2.2 Experimental Procedure 65

cont'd...
CHAPTER III cont'd.

3.3 Circular Dichroism 66
3.4 Linear Dichroism 67
 3.4.1 Preparation of Films 67
 3.4.2 Measurement of Spectra 68
3.5 Fluorescence Spectroscopy 69
Bibliography 70

CHAPTER IV THE INTERACTION OF METHYL ORANGE WITH THE CYCLODEXTRINS

4.1 Introduction 71
4.2 Properties of the Methyl Orange Anion 79
4.3 The Interaction of Methyl Orange with α-Cyclodextrin 88
 4.3.1 Results at pH 9.0 88
 4.3.2 Results at pH 13.4 93
4.4 The Interaction of Methyl Orange with β-Cyclodextrin 99
 4.4.1 Results at pH 9.0 99
 4.4.2 Results at pH 13.4 106
4.5 The Interaction of Methyl Orange with γ-Cyclodextrin 109
 4.5.1 Results at pH 9.0 109
 4.5.2 Results at pH 13.4 118
Bibliography 128

CHAPTER V THE INTERACTION OF TROPAEOLIN WITH THE CYCLODEXTRINS

5.1 Introduction 131
5.2 Properties of the Tropaeolin Anion 132
5.3 The Interaction of Tropaeolin with α-Cyclodextrin 140
 cont'd...
CHAPTER V cont'd.

5.4 The Interaction of Tropaeolin with
β-Cyclodextrin 140

5.5 The Interaction of Tropaeolin with
γ-Cyclodextrin 145

5.6 The Interaction of the Tropaeolin
Di-anion with the Cyclodextrins 151

Bibliography 155

CHAPTER VI THE INTERACTION OF ROCELLIN WITH
THE CYCLODEXTRINS

6.1 Introduction 156

6.2 Properties of the Roccellin Anion 156

6.3 The Interaction of Roccellin with
α-Cyclodextrin 163

6.4 The Interaction of Roccellin with
β-Cyclodextrin 166

6.5 The Interaction of Roccellin with
γ-Cyclodextrin 168

6.6 The Interaction of the Roccellin
Di-anion with the Cyclodextrins 173

Bibliography 177

CHAPTER VII GENERAL DISCUSSION AND CONCLUSIONS 178

Bibliography 185

APPENDICES

A. Materials 186

B. Computational Methods 188

C. Isosbestic Points 192

D. Molecular Exciton Theory 195

E. Derivation of Reciprocal Relaxation
Time Expressions 210

Bibliography 216
ABSTRACT

The cyclodextrins are cyclic oligosaccharides, which are able to form inclusion complexes with various organic molecules. The guest molecule is held within the hydrophobic cavity of the cyclodextrin by secondary forces alone. Whereas α-cyclodextrin is usually only capable of including a single guest molecule, it has been shown recently that the larger cyclodextrins, β and γ, are able to include two guest molecules simultaneously. This behaviour has been found for the series of azo dyes: methyl orange, tropaeolin and roccellin.

The presence of a guest dimer within the cyclodextrin cavity was detected by spectroscopic techniques: UV/visible absorption, induced circular dichroism and luminescence. The mechanism of one host-two guest complexation, given below, was determined by temperature-jump relaxation spectrophotometry.

\[
\begin{align*}
M + CD & \rightleftharpoons M \cdot CD \\
M \cdot CD + M & \rightleftharpoons M_2 \cdot CD
\end{align*}
\]

where \(M \) = dye monomer

\(CD \) = cyclodextrin

In the case of the dyes investigated, dimer formation within β- and γ-cyclodextrin occurs at dye concentrations at which the amount of dimer in free solution is negligible in the absence of cyclodextrin. Hence, β- and γ-cyclodextrin effectively increase the dimerisation constant of the dyes.
The ability of the cyclodextrins to include two guest molecules simultaneously has significance in the field of directed synthesis. It may be possible to use the cyclodextrins to facilitate the association of molecules, which could lead to an increase in the rate of certain reactions which the two molecules might undergo.