Development in the
Port Jackson shark embryo

by
Kate R. Rodda
B.Sc. (Hons.) Adelaide

This thesis is presented for the degree of Doctor of Philosophy
The University of Adelaide

Department of Environmental Biology
University of Adelaide
September 2000
TABLE OF CONTENTS

Chapter 1 INTRODUCTION .. 1

Chapter 2 MORPHOLOGY AND COMPOSITION OF THE EGG AND EMBRYO

2.1 INTRODUCTION .. 8

2.1.1 The egg and egg capsule .. 8

2.1.2 Staging of *H. portusjacksoni* ... 8

2.1.3 The structure of the clasmobranch gill .. 11

2.1.3.1 Blood flow through the gills .. 11

2.1.3.2 Respiratory surface area ... 12

2.2 MATERIALS AND METHODS .. 14

2.2.1 Examination of eggs and egg capsules ... 14

2.2.2 Osmotic tension of the albumen and yolk .. 14

2.2.2.1 Total osmotic pressure ... 14

2.2.2.2 Chloride concentration .. 15

2.2.3 Rate of egg capsule mass loss .. 15

2.2.4 The effect of the embryo on timing of egg capsule opening 15

2.2.5 Staging procedure .. 17

2.2.6 Gill vasculature .. 17

2.2.6.1 Microvascular casting method .. 17

2.3 RESULTS .. 19

2.3.1 The egg and egg capsule ... 19

2.3.2 Osmotic concentration of yolk and albumen ... 21

2.3.3 Changes in mass and thickness of the egg capsule over time 23

2.3.4 The size of embryo at egg capsule opening ... 23

2.3.5 The role of the embryo on egg capsule opening .. 23

2.3.6 Staging table for *Heterodontus portusjacksoni* ... 25

2.3.7 Effect of temperature on developmental stages ... 36

2.3.8 Microvascular casting .. 38

2.4 DISCUSSION ... 42

2.4.1 Staging procedure .. 42

2.4.2 Effect of temperature on development rate ... 44

2.4.3 Albumen and osmo-regulation ... 45

2.4.4 The rate of egg capsule mass loss .. 46

2.4.5 Opening of the egg capsule .. 47

2.4.5.1 The role of embryo on egg capsule opening ... 47

2.4.6 Yolk sac vascularisation and yolk stalk ... 48

2.4.7 Internal yolk .. 50

2.4.8 Gill vasculature .. 51

2.4.8.1 External gills .. 52

2.4.9 Heart activity ... 54

2.4.10 Development of fins .. 55

2.4.11 Hatching ... 55

2.5 SUMMARY ... 58

Chapter 3 GROWTH

3.1 INTRODUCTION .. 60

3.1.1 Allometry of growth ... 61

3.1.2 Patterns of Growth ... 61

3.1.3 Growth rate and the effect of temperature ... 63

3.1.4 Gross efficiency of growth .. 63
Chapter 4 ENERGETICS OF DEVELOPMENT

4.1 INTRODUCTION
4.1.1 Energy budgets
4.1.2 Cost of development
4.1.3 Gross production efficiency

4.2 MATERIALS AND METHODS
4.2.1 Energetics
4.2.1.1 Embryo mass and percent water
4.2.1.2 Energy density
4.2.2 Cost of development
4.2.3 Production efficiency

4.3 RESULTS
4.3.1 Relative water content in yolks and albumen
4.3.2 Relative water content in embryos
4.3.3 Energy density of yolks and albumen
4.3.4 Energy density of embryos
4.3.5 Energy budget
4.3.6 Energy cost of development 109
4.3.7 Energy allocation and gross production efficiency 109

4.4 DISCUSSION 113
4.4.1 Energy budget 113
4.4.2 Costs of maintenance and growth 113
4.4.3 Cost of development 114
4.4.4 Gross production efficiency 115
4.4.5 Energy sources 119
4.4.5.1 Yolk 120
4.4.5.2 Albumen 120

4.5 SUMMARY 122

Chapter 5 EMBRYONIC RESPIRATION AND VENTILATION 123

5.1 INTRODUCTION 124
5.1.1 Allometry of Respiration 124
5.1.2 Effect of Temperature 125
5.1.3 Effect of Ambient Oxygen 125
5.1.4 Ventilation 126

5.2 MATERIALS AND METHODS 129
5.2.1 Oxygen consumption rate in embryos from open capsules 129
5.2.1.1 Measurement of the partial pressure of oxygen 130
5.2.1.2 Closed respirometry 131
5.2.1.3 Open respirometry 132
5.2.1.3.1 Experimental design 132
5.2.1.3.2 Respiratory chambers 134
5.2.1.3.3 Embryonic preparation 136
5.2.2 Critical PO2 136
5.2.3 PO2 inside the natural egg capsule 137
5.2.4 Gas exchange in the sealed egg capsule 137
5.2.4.1 Albumen PO2 137
5.2.4.2 Role of external gills 138
5.2.5 Ventilation 139
5.2.5.1 Ventilation patterns 140
5.2.5.2 Ventilation rate of capsules 140
5.2.5.3 Ventilation frequency 142

5.3 RESULTS 144
5.3.1 Oxygen consumption of embryos from open capsules 144
5.3.1.1 Open versus closed respirometry 144
5.3.1.2 Effect of embryonic wet mass 144
5.3.1.3 External vs internal gill respiration 145
5.3.1.4 Effect of temperature 146
5.3.1.5 Critical PO2 146
5.3.2 Lower threshold values for PO2 in natural egg capsules 147
5.3.3 Gas exchange in the sealed egg capsule : albumen oxygen tensions 148
5.3.3.1 Role of external gills : effect of hypoxia and anoxia on heart rate 149
5.3.4 Ventilation 149
5.3.4.1 Ventilation patterns 149
5.3.4.2 Ventilation rate of the capsule 149
5.3.4.3 Ventilation frequency 150
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4 DISCUSSION</td>
<td></td>
</tr>
<tr>
<td>5.4.1 Oxygen consumption</td>
<td>152</td>
</tr>
<tr>
<td>5.4.1.1 Effect of body mass</td>
<td>152</td>
</tr>
<tr>
<td>5.4.1.2 Effect of temperature</td>
<td>157</td>
</tr>
<tr>
<td>5.4.1.3 Effect of hypoxia</td>
<td>159</td>
</tr>
<tr>
<td>5.4.2 Gas exchange in the closed capsule</td>
<td>161</td>
</tr>
<tr>
<td>5.4.2.1 Aerobic or anaerobic?</td>
<td>164</td>
</tr>
<tr>
<td>5.4.2.2 Egg capsule permeability</td>
<td>166</td>
</tr>
<tr>
<td>5.4.2.3 Role of external gill filaments</td>
<td>168</td>
</tr>
<tr>
<td>5.4.3 Ventilation</td>
<td>169</td>
</tr>
<tr>
<td>5.4.3.1 Ventilation patterns</td>
<td>169</td>
</tr>
<tr>
<td>5.4.3.2 Ventilation flow rate</td>
<td>170</td>
</tr>
<tr>
<td>5.4.3.3 Effect of hypoxia on ventilation</td>
<td>171</td>
</tr>
<tr>
<td>5.5 SUMMARY</td>
<td>175</td>
</tr>
<tr>
<td>Chapter 6 CONCLUSION</td>
<td>177</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>180</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>194</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>195</td>
</tr>
<tr>
<td>Appendix 4</td>
<td>200</td>
</tr>
<tr>
<td>Bibliography</td>
<td>202</td>
</tr>
</tbody>
</table>
ABSTRACT

The Port Jackson shark (*Heterodontus portusjacksoni*) is an oviparous shark that breeds annually, between the months September and November. Temperatures in the field vary between 12°C to 22°C, producing long incubation periods of over 12 months. Incubation period in the laboratory is strongly temperature dependent, with embryos hatching after 400 days at 18°C and after 310 days at 22°C.

Each egg contains one embryo and is encased in a thick (1-2mm) pear-shaped collagenous casing that protects it. A freshly laid egg weighs 170.2 ± 5.0 g and contains a large yolk (38.6 ± 1.3 g), surrounded by a thick gelatinous albumen (70.7 ± 5.0 g). The capsule is 128.6 ± 2.4 mm long and weighs 60.9 ± 3.2 g at laying. The egg capsule is equipped with two respiratory slits, one located at either end of the case. From the time of laying up to the fourth month of incubation, the respiratory slits are plugged with a thick wedge of albumen, and the egg capsule is referred to as sealed. At four months, the plugs dissolve and the embryo is in direct association with the external seawater environment. The egg capsule is referred to as open.

Fifteen morphological stages are described for the developing embryo. In order to increase its effective surface area and therefore its aerobic capacity during the first four months of incubation, the embryo develops vascular external gill filaments, fins and yolk surfaces. The external gill filaments are extensions of the internal gill vasculature. They are thin walled and protrude from the gill openings into the albumen. When the egg capsule is open, the external gill filaments are reabsorbed back into the internal gill structure and the embryo uses its internal gills for respiration.

The embryo grows exponentially until it reaches a short plateau phase near hatching. By hatching it has transformed 77.7, 82.1 or 85.3% at 18°C, 20°C or 22°C, respectively, of the initial dry mass of yolk into hatchling tissue mass. From stage 12 onwards, the nutrients from the external yolk are simultaneously utilised for development and directed into an internal yolk sac which is attached directly to the spiral gut. By the time the embryo hatches as a self-sufficient fish, it has depleted all external yolk and virtually all internal yolk stores.
The initial yolk provides an average of 541.9 kJ of energy for the growth and maintenance of the embryo. The efficiency of growth, measured as the ratio of energy content of the hatchling to the energy content of the yolk, is high compared to embryos of other species (78.9, 83.4 and 86.7% at 18°C, 20°C or 22°C, respectively). The efficiencies are statistically similar at all temperatures despite the significant increase in incubation period at the lower temperatures, although a trend for reduced efficiencies at lower temperature was found.

Between egg capsule opening and hatching, oxygen consumption is correlated to the wet mass of the embryo plus yolk by the equation $\dot{V}_{O_2} = aM^b$ where $a = 53.6, 77.1, 173.4$ and 557.2 and $b = 0.83, 0.77, 0.52$ and 0.22 at 15, 18, 20 and 22°C, respectively.

As the embryo increases in mass, Q_{10} values for O_2 consumption decrease from 7.9 at 5 g to 0.9 at 55 g near hatching. Stage 12 embryos maintain a steady O_2 consumption rate of 0.1 μmol O_2 min.g$^{-1}$ at a P_{O_2} between 69 and 150 Torr. Below 69 Torr, O_2 consumption falls linearly with ambient P_{O_2}. The total O_2 consumed by the embryo increases as the incubation is lengthened at the lower temperatures. An embryo consumes 417, 285 and 267 mmol of O_2 at 18, 20 and 22°C, respectively. Hatchlings at all temperatures are of similar wet (54.9-58.8 g) and dry masses (16.1-17.7 g) and the cost of development is 25.9, 16.4 and 15.1 mmol O_2 per g dry hatching at 18°C, 20°C and 22°C.

The embryo actively ventilates the open egg capsule with vigorous scooping movements of the tail that draws water into and out of the egg capsule through the respiratory slits. The last 8 segments of the tail are curved upwards to form a spoon-shaped ending. Stage 10-12 embryos direct the flow of seawater in one side and out of the other side of the large respiratory slit located at the top of the egg capsule simultaneously, ensuring a fresh supply of oxygen. Stage 13-15 embryos are limited in the space available and simultaneously direct water in through the small respiratory slit at the bottom of the case, and out through the larger slit. A mean ventilation rate of 791 ml O_2 min$^{-1}$.kg$^{-1}$ is sufficient to sustain aerobic metabolism in the stage 12 embryo.