LEUKOCYTE ELASTASE AND ANTI-ELASTASES IN PULMONARY EMPHYSEMA

A thesis submitted by
ROBERT LEO WALSH B.Sc. (Hons), M.Sc.

to the University of Adelaide
South Australia, Australia
for the degree of
DOCTOR OF PHILOSOPHY

Division of Clinical Biochemistry
Institute of Medical and Veterinary Science

and

Department of Pathology
University of Adelaide

JUNE 2000
ABSTRACT

Although the cause of emphysema is uncertain, the preferred theory to explain the aetiology points to an imbalance in the protease-antiprotease systems within the lung with human leukocyte elastase (HLE) and α₁-protease inhibitor (α₁-PI) being the main candidates. However an inherited deficiency of α₁-PI, is responsible for only a small percentage of all cases of emphysema with the most frequent form occurring in some smokers who have normal α₁-PI levels. This thesis examines some aspects of the protease-antiprotease theory.

The aim of the first part of this thesis was to examine the proposal that there may be a reduced capacity to inhibit HLE activity in serum and bronchoalveolar (BAL) fluid from emphysema patients and susceptible normal smokers when compared to normal individuals. Comparison groups included children, adult non-smokers, and patients with an acute lung disease, adult respiratory distress syndrome (ARDS). The serum α₁-PI concentration was significantly increased in children and in adults with emphysema and ARDS. However, no reduction in the HLE inhibitory and the α₁-PI functional capacity of serum samples from the emphysema and smoking groups was found when compared to the other groups studied, except in the ARDS group, where both were significantly reduced. BAL samples from volunteers were obtained from normal adult non-smokers and smokers and from patients with ARDS. The α₁-PI concentration in BAL samples from ARDS patients was increased by more than 40 fold but was only 37% functional compared to the 70% and 85% seen in non-smokers and smokers respectively. However no significant reduction in the HLE inhibitory and the α₁-PI functional capacity of BAL samples from smokers was noted when compared to non-smokers. The presence of other HLE inhibitors in addition to α₁-PI was demonstrated by increased inhibition towards HLE in all BAL samples. In conclusion, no evidence was found for a reduction in the ability of serum and BAL fluid from emphysema patients and normal smokers to inhibit HLE activity that could explain the increased risk of development of emphysema in smokers.
The second part of this study was to assess the effectiveness of a number of nonspecific and specific inhibitors towards HLE under varying assay conditions including the presence of lung and other surfactants. Overall heparin and the specific HLE inhibitor, ICI 280355, were found to be the most potent inhibitors of HLE using MeO-Suc-A-A-P-V-NA as substrate, although heparin is only most effective as a partial inhibitor (approx. to 25% of residual HLE activity). However, nonspecific proteins such as elastin peptides and even albumin, if present at a high enough concentration (50% inhibition seen with 6 g/l), were found to be capable of partial inhibition of HLE. The effectiveness of glycosaminoglycan (GAG) inhibition of HLE was, under certain conditions, found to be dependent on factors, such as the type of GAG; the HLE assay substrate, the degree of GAG sulphation and the size of the GAG. For example, heparin was the more effective inhibitor with the soluble substrate Suc-A-A-A-NA while heparan sulphate was more effective with insoluble lung elastin as substrate. In general, less inhibition was found with GAGs that were less sulphated and with low molecular weight GAGs (<2000). Carboxypeptidase G is not completely inhibited by the major protease inhibitors, α₁-PI or α₁-AT, unlike HLE, the other major inflammatory serine protease. Pulmonary surfactant had a mild inhibitory effect on HLE activity whereas non-ionic surfactants, such as Brj 55, were found to not only activate HLE but also reduce the effectiveness of some inhibitors, particularly α₁-macroglobulin and those GAGs which are poor inhibitors of HLE.

In the third part of this study high affinity binding fractions towards HLE were isolated from heparin to determine if heparin has some specificity of binding towards HLE. Sulphate content of the heparin fractions fell with increased binding and inhibition of HLE, which suggests that maximum inhibition and binding depend on an ordered sulphate group sequence rather than simply having the strongest polyanion. Heparinase digestion of heparin bound to HLE allowed the isolation of the most tightly bound heparin saccharide fractions that are likely to contain the high affinity binding sequences for HLE.
In conclusion, the significant findings from this study has shown that there was no reduction in HLE and α1-PI functional capacity in adults who smoked or who had emphysema. There was also a significant contribution of other inhibitors in addition to α1-PI in all BAL samples examined. In addition to α1-PI, a number of other compounds were shown to inhibit HLE, including heparin and heparan sulphate, which is clinically significant because of their strong inhibition of HLE and the large amounts of heparan sulphate proteoglycans and heparin that are found in the lung. This study also highlights the importance of the modifying effects of surfactants, including pulmonary surfactant, towards HLE activity and the function of various inhibitors towards HLE. Finally, a study of the interaction of heparin with HLE has revealed new information on the type and degree of specificity of the binding of heparin for HLE.
TABLE OF CONTENTS

ABSTRACT
DECLARATION
ACKNOWLEDGMENTS
PUBLICATIONS
PRESENTATIONS
ABBREVIATIONS

CHAPTER ONE

THE ROLE OF PROTEASES AND ANTIPROTEASES IN EMPHYSEMA - A REVIEW OF THE LITERATURE.

1.1 INTRODUCTION
1.1.1 DEFINITION OF EMPHYSEMA
1.1.2. PREVALENCE
1.2 EPIDEMIOLOGY OF COPD AND EMPHYSEMA
1.3 AETIOLOGY OF EMPHYSEMA
1.3.1 EARLY STUDIES OF EXPERIMENTAL EMPHYSEMA
1.3.2 CADMIUM AND EMPHYSEMA
1.3.3 EXPERIMENTAL CIGARETTE SMOKE EMPHYSEMA
1.3.4 CONNECTIVE TISSUE DEFECTS
1.3.5 OXIDANTS
1.4 THE PROTEASE-ANTIPROTEASE HYPOTHESIS IN ANIMAL MODELS
1.4.1 ENZYME INDUCED EMPHYSEMA
1.2 LEUKOCYTE ELASTASE INDUCED EMPHYSEMA
1.3 EMPHYSEMA INDUCED BY PULMONARY NEUTROPHILIA
1.4 \(\alpha_1 \)-PROTEASE INHIBITOR (\(\alpha_1 \)-PI) DEFICIENCY
1.5 THE PROTEASE-ANTIPROTEASE HYPOTHESIS IN HUMAN STUDIES
 1.5.1 PULMONARY DEFENCE MECHANISMS
 1.5.2 INFLAMMATORY CELLS OF THE LUNG
 1.5.2.1 LEUKOCYTES
 1.5.2.2 ALVEOLAR MACROPHAGES
 1.5.3 PROTEASES
 1.5.3.1 LEUKOCYTE PROTEASES
 1.5.3.2 MACROPHAGE PROTEASES
 1.5.3.3 OTHER CELL PROTEASES
 1.5.4 DIRECT EVIDENCE FOR ELASTASE INVOLVEMENT IN EMPHYSEMA
 1.5.4.1 PRESENCE OF ELASTASE IN EMPHYSEMATOUS LUNG
 1.5.4.2 DEGRADATION PRODUCTS FROM ELASTASE ACTIVITY
 1.5.5 ANTI-PROTEASES
 1.5.5.1 ALPHA-1-PROTEASE INHIBITOR (\(\alpha_1 \)-PI)
 1.5.5.2 ALPHA-2-MACROGLLOBULIN (\(\alpha_2 \)-MG)
 1.5.5.3 ALPHAT-1-ANTICHYMOTRYPSIN
 1.5.5.4 SECRETORY LEUKOPROTEASE INHIBITOR
 1.5.5.5 ELAFIN
 1.5.5.6 MONOCYTE/NEUTROPHIL ELASTASE INHIBITOR
 1.5.7 OTHER ENDOGENOUS INHIBITORS
 1.6 THE PROTEASE-ANTIPROTEASE HYPOTHESIS: REDRESSING THE IMBALANCE
1.6.1 REDUCING THE PROTEASE LEVELS
1.6.2 INCREASING THE ANTIPROTEASE LEVELS
1.7 SUMMARY

CHAPTER TWO
MATERIALS AND METHODS

2.1 INTRODUCTION
2.2 MATERIALS
2.2.1 ENZYMES
2.2.2 NON-ENZYME PROTEINS AND PEPTIDES
2.2.3 GLYCOSAMINOGLYCANS
2.2.4 OTHER REAGENTS
2.3 METHODS
2.3.1 BRONCHOALVEOLAR LAVAGE
2.3.2 PREPARATION OF HUMAN LEUKOCYTE ELASTASE-SEPHAROSE GELS.
2.3.3 PREPARATION OF [3H]-HEPARIN AND [3H]-HEPARAN SULPHATE.
2.3.4 PREPARATION OF ANTITHROMBIN-SEPHAROSE
2.3.5 PREPARATION OF 12-22 % ACRYLAMIDE GELS
2.3.6 ELASTIN PEPTIDES (α-ELASTIN) PREPARATION.
2.3.7 ISOLATION OF PULMONARY SURFACTANT.
2.3.8 RABBIT ANTISERUM TO ELASTIN PEPTIDES (α-ELASTIN) PREPARATION.
2.3.9 AFFINITY CHROMATOGRAPHY OF HEPARIN ON HUMAN LEUKOCYTE ELASTASE-SEPHAROSE
2.3.10 AFFINITY CHROMATOGRAPHY OF HEPARIN ON ANTITHROMBIN-
SEPHAROSE.

2.3.11 DIGESTION OF HEPARIN WITH HEPARIN LYASES.

2.3.11.1 HEPARIN BOUND TO HUMAN LEUKOCYTE ELASTASE-SEPHAROSE.

2.3.11.2 HEPARIN BOUND TO HUMAN LEUKOCYTE ELASTASE.

2.3.12 ELECTROPHORETIC SEPARATION OF HEPARIN FRACTIONS WITH
12-22 % POLYACRYLAMIDE GEL ELECTROPHORESIS.

2.3.13 HIGH PRESSURE LIQUID CHROMATOGRAPHY ESTIMATION OF
THE SIZE OF ELASTIN PEPTIDES IN THE PRESENCE OF HEPARIN.

2.3.14 HIGH PRESSURE LIQUID CHROMATOGRAPHY OF HEPARIN
FRACTIONS.

2.4 ASSAYS

2.4.1 α₁-PROTEASE INHIBITOR AND ELASTASE INHIBITORY
FUNCTION OF PLASMA, SERUM, AND BRONCHIAL VEOLAR
LAVAGE.

2.4.1.1 INSTRUMENTATION.

2.4.1.2 ASSAY STANDARDS.

2.4.1.3 SUBJECTS.

2.4.1.4 ASSAY SAMPLE HANDLING.

2.4.1.5 ESTIMATION OF α₁-PROTEASE INHIBITOR WITH PORCINE PANCREATIC
ELASTASE INHIBITION ASSAY.

2.4.1.6 ESTIMATION OF α₁-PROTEASE INHIBITOR WITH HUMAN LEUKOCYTE
ELASTASE INHIBITION ASSAY.

2.4.1.7 IMMUNO-TURBIDIMETRIC α₁-PROTEASE INHIBITOR ASSAY.

2.4.2 MEASUREMENT OF ELASTASE INHIBITION.

2.4.2.1 HUMAN LEUKOCYTE ELASTASE (2.5 μg) WITH SUC-A-A-A-NA AS
SUBSTRATE.

2.4.2.2 HUMAN LEUKOCYTE ELASTASE (0.5 μg) WITH MeO-SUC-A-A-P-V-NA AS
SUBSTRATE (15 μL sample).

2.4.2.3 HUMAN LEUKOCYTE ELASTASE (0.5 μg) WITH MeO-SUC-A-A-P-V-NA AS
SUBSTRATE (75 μL sample).

xiv
2.4.2.4 HUMAN LEUKOCYTE ELASTASE (150 ng) WITH MeO-SUC-A-A-P-V-NA AS SUBSTRATE.

2.4.2.5 HUMAN LEUKOCYTE ELASTASE WITH HUMAN LUNG ELASTIN AS SUBSTRATE.

2.4.2.6 PORCINE Pancreatic ELASTASE WITH SUC-A-A-Na AS SUBSTRATE.

2.4.3 MEASUREMENT OF CATHEPSIN G, CHYMOTRYPSIN AND TRYPSIN INHIBITION.

2.4.3.1 CATHEPSIN G AND CHYMOTRYPSIN ASSAY.

2.4.3.2 TRYPSIN ASSAY

2.4.4 ELISA FOR ELASTIN PEPTIDES.

2.4.5 URONIC ACID CONTENT OF GLYCOSAMINOGLYCANs.

2.4.6 TOTAL SULPHATE CONTENT OF GLYCOSAMINOGLYCANs.

2.4.7 QUANTITATION OF SULPHATED GLYCOSAMINOGLYCANs.

2.4.8 ASSAY FOR THE DETERMINATION OF THE KINETIC CONSTANTS OF HLE.

2.5 DATA INTERPRETATION AND STATISTICAL ANALYSIS

CHAPTER THREE

ANTI-ELASTASE ACTIVITY OF PLASMA, SERUM AND BRONCHOALVEOLAR LAVAGE

3.1 INTRODUCTION

3.2 ASSAY EVALUATION

3.3 EFFECT OF ANTI-COAGULANTS

3.4 SERUM α1-PROTEASE INHIBITOR CONCENTRATIONS

3.5 COMPARISON OF α1-PROTEASE INHIBITOR CONCENTRATION IN SERUM WITH BRONCHOALVEOLAR LAVAGE FLUID
CHAPTER FOUR

ELASTASE INHIBITORS

4.1 INTRODUCTION

4.2 DETERMINATION OF HUMAN LEUKOCYTE ELASTASE ACTIVITY

4.3 PROTEIN INHIBITION

4.3.1 INHIBITION OF HUMAN LEUKOCYTE ELASTASE

4.3.2 INHIBITION OF CATHEPSIN G

4.4 HUMAN LEUKOCYTE ELASTASE SPECIFIC SYNTHETIC INHIBITORS

4.4.1 INHIBITION OF HUMAN LEUKOCYTE ELASTASE WITH MeO-Suc-A-AA-V-NA AS SUBSTRATE

4.4.2 INHIBITION OF HUMAN LEUKOCYTE ELASTASE WITH HUMAN LUNG ELASTIN AS SUBSTRATE

4.4.3 INHIBITION OF CATHEPSIN G

4.5 GLYCOSAMINOGLYCAN INHIBITION

4.5.1 INHIBITION OF HUMAN LEUKOCYTE ELASTASE WITH Suc-A-AA-NA AS SUBSTRATE

4.5.1.1 TYPE OF GLYCOSAMINOGLYCAN

4.5.1.2 SOURCE OF HEPARIN AND HEPARAN SULPHATE

4.5.1.3 MOLECULAR WEIGHT OF HEPARIN

4.5.1.4 ASSAY CONDITIONS

4.5.2 INHIBITION OF HUMAN LEUKOCYTE ELASTASE WITH HUMAN LUNG ELASTIN AS SUBSTRATE

4.5.3 INHIBITION OF CATHEPSIN G
CHAPTER FIVE

INTERACTION OF SURFACANT ON ELASTASE AND ELASTASE INHIBITORS

5.1 INTRODUCTION

5.3 EFFECT OF SURFACANT ON HUMAN LEUKOCYTE ELASTASE ACTIVITY

5.3.1 MeO-Suc-A-A-P-V-NA AS SUBSTRATE

5.3.2 HUMAN LUNG ELASTIN AS SUBSTRATE

5.3 EFFECT OF BRII 35 ON HUMAN LEUKOCYTE ELASTASE INHIBITORS

5.3.1 PROTEIN INHIBITION

5.3.2 HUMAN LEUKOCYTE ELASTASE SPECIFIC SYNTHETIC INHIBITORS

5.3.3 GLYCOAMINOGLYCAN INHIBITION

5.4 EFFECT OF LUNG SURFACTANT ON HUMAN LEUKOCYTE ELASTASE INHIBITORS

5.5 DISCUSSION
CHAPTER SIX

ISOLATION OF HIGH AFFINITY HEPARIN FRACTIONS TOWARDS HUMAN LEUKOCYTE ELASTASE

6.1 INTRODUCTION

6.2 AFFINITY CHROMATOGRAPHY OF HEPARIN ON HUMAN LEUKOCYTE ELASTASE-SEPHAROSE

6.3 AFFINITY CHROMATOGRAPHY OF HEPARIN ON ANTITHROMBIN-SEPHAROSE

6.4 ISOLATION OF HLE BINDING FRACTIONS FROM HEPARINASE DIGESTION OF HUMAN LEUKOCYTE ELASTASE BOUND HEPARIN

6.4.1 HEPARIN BOUND TO FREE HUMAN LEUKOCYTE ELASTASE

6.4.2 HEPARIN BOUND TO HUMAN LEUKOCYTE ELASTASE-SEPHAROSE

6.5 DISCUSSION

CHAPTER SEVEN

CONCLUDING REMARKS

7.1 SYNOPSIS AND CONCLUSIONS OF THIS THESIS

7.1.1 FUNCTIONAL α₁ - PROTEASE INHIBITOR CONCENTRATIONS IN SERUM AND BRONCHOALVEOLAR LAVAGE FLUID

7.1.2 ELASTASE INHIBITORS

7.1.3 EVIDENCE FOR SPECIFICITY OF INTERACTION OF HEPARIN WITH HLE

7.2 FUTURE STUDIES

BIBLIOGRAPHY