Functional characterisation of the histone H2A variant, H2A.F/Z.

by

Michael John Clarkson

A thesis submitted for

DOCTOR OF PHILOSOPHY

of the

THE UNIVERSITY OF ADELAIDE

UNIVERSITY OF ADELAIDE

December 2006
ABSTRACT

Since the DNA in eukaryotes is packaged into chromatin it is perhaps not surprising that cellular activities that involve DNA, such as replication, recombination, transcription and mitosis also intimately involve chromatin. In each of these cellular activities, particular chromatin structures have been identified that have characteristic biochemical properties. These different properties can be generated by altering the composition of chromatin and/or by the action of specialised enzymes on chromatin constituents.

The basic subunit of chromatin is the nucleosome which packages 147bp of DNA by wrapping it twice around an octameric protein complex consisting of two molecules each of histones H2A, H2B, H3 and H4. The functional and biochemical properties of chromatin can be altered at the nucleosome level by post-translational modifications of histones, ATP-dependent remodelling of histone-DNA contacts in the nucleosome or by incorporation of histone variants.

This thesis details the characterisation of a histone H2A variant, H2AF/Z. A unique and important role has been ascribed to this protein on the basis of demonstrations that null mutations in the H2A.F/Z gene are lethal in mouse (Thonglairam, 1996), *Tetrahymena thermophila* (Liu et al., 1996a) and *Drosophila melanogaster* (van Dam and Elgin, 1992). Although the actual function of this histone is unknown, an enrichment of H2AF/Z in transcriptionally competent chromatin has led to the hypothesis that it is involved in the establishment or maintenance of transcription in the nucleus (Gabrieli et al., 1981; Wenkert and Allis, 1984; Allis et al., 1986; Huang et al., 1986; Ridsdale and Davie, 1987; Stargell et al. 1993).

In chapter 3, experiments were conducted in *Drosophila* to identify domains of His2AvD that functionally distinguish it from the core H2A histone in vivo. Prior to the commencement of this project, it had been demonstrated that null mutant lethality in *Drosophila* could be rescued with a transgene derived from a 4.1kb genomic DNA fragment containing the His2AvD gene (van Dam and Elgin, 1992). Based on this result, a strategy was employed here where regions or "cassettes" encoding amino acids in the His2AvD rescue fragment were mutated, in vitro, to the equivalently positioned H2A.1 residues. Lines of flies containing stably integrated wild type and mutant His2AvD transgenes were generated by *P*-element mediated transformation of *Drosophila*. These transgenes were then tested for their ability to rescue His2AvD null mutant lethality. Interestingly, this experiment demonstrated that unique features of His2AvD reside in a C-terminal region of the protein not in the histone fold. This C-terminal region is part of a short α-helix that, in H2A, is buried deep inside the nucleosome core and appears to
be important for the stability of the histone octamer (Luger et al., 1997). To characterize the extent of rescue afforded by the mutant transgenes, the null mutant phenotype was characterized using phenotypic and molecular developmental markers. Analysis of the phenotype of His2AvD null mutants found that these individuals undergo a protracted third instar and then die without entering pupation. Consistent with this observation, transcripts from developmental genes activated site in third instar are not detected in His2AvD null mutant individuals. Interestingly, heat shock genes can still be induced after this developmental block.

In chapter 4, the distribution of His2AvD was characterized in Drosophila using a transgene that encoded His2AvD with green fluorescent protein (GFP) fused to the C-terminus. It was demonstrated that the transgene could provide functional His2AvD protein by being able to rescue null mutant lethality. During early embryonic development, the appearance of His2AvD in nuclei coincided with the onset of transcription. Subsequently, GFP associated fluorescence was observed in all nuclei at all stages of embryonic and larval development and in adult somatic tissues. In nuclei, His2AvD was widely, but not homogeneously, distributed. His2AvD-GFP fusion protein remained associated with chromatin throughout the cell cycle, including during mitosis when transcription is shut down.

The tissue specific expression and protein distribution of mouse H2A.Z was also examined. Mice were used to examine H2A.Z expression and protein concentration in different tissues because tissue samples from mice are more convenient to obtain and are less subject to contamination by other tissues on dissection than they are from Drosophila. In adult mice, the amount of H2A.Z transcript varies by up to two orders of magnitude between tissues and is directly proportional to the rate of cell turnover. H2A.Z protein is present at the same concentration, relative to the core histones, in all tissues examined. The subcellular location of mouse H2A.Z was also investigated on tissue sections and cell culture monolayers using antibodies directed against the C-terminus of the protein. Histone H2A.Z containing chromatin is generally distributed throughout nuclei but is not associated with transcriptionally silent satellite DNA sequences.

In summary, experiments conducted in this thesis identified that His2AvD provides its unique function through a region at the C-terminus of the protein. In addition, results presented here support the temporal and spatial association of histone H2A.F/Z with transcriptional activity.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATEMENT</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>PUBLICATIONS</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>CHAPTER 1: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Core Histones</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Variant histones</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Histone H2A,F,Z</td>
<td>6</td>
</tr>
<tr>
<td>1.5 Histones and chromatin structure</td>
<td>9</td>
</tr>
<tr>
<td>1.5.1 Nucleosome structure</td>
<td>9</td>
</tr>
<tr>
<td>1.5.2 The chromosome</td>
<td>11</td>
</tr>
<tr>
<td>1.5.3 Higher order chromatin structures</td>
<td>13</td>
</tr>
<tr>
<td>1.5.4 Metaphase chromosome condensation</td>
<td>15</td>
</tr>
<tr>
<td>1.5.5 Centromeric chromatin and chromosome segregation</td>
<td>16</td>
</tr>
<tr>
<td>1.6 Chromatin and gene expression</td>
<td>18</td>
</tr>
<tr>
<td>1.6.1 Chromatin structure of active genes</td>
<td>19</td>
</tr>
<tr>
<td>1.6.2 The influence of chromatin structure on gene expression</td>
<td>21</td>
</tr>
<tr>
<td>1.6.3 Chromatin remodelers</td>
<td>23</td>
</tr>
<tr>
<td>1.6.4 Histone acetylation, gene expression and chromatin structure</td>
<td>26</td>
</tr>
<tr>
<td>1.6.5 Histone acetylases</td>
<td>28</td>
</tr>
<tr>
<td>1.6.6 Histone deacetylases</td>
<td>30</td>
</tr>
<tr>
<td>1.6.7 Gene expression during mitosis</td>
<td>32</td>
</tr>
<tr>
<td>1.7 Thesis aims</td>
<td>33</td>
</tr>
</tbody>
</table>
CHAPTER 2: MATERIALS AND METHODS

2.1 Abbreviations

2.2 Materials

2.2.1 Chemicals and reagents

2.2.2 Enzymes

2.2.3 Kits

2.2.4 Nucleotides

2.2.5 Nucleic acid molecular weight standards

2.2.6 Buffers and solutions

2.2.7 Bacterial strains

2.2.8 Bacterial media

2.2.9 Oligonucleotides

2.2.10 Synthetic peptides

2.2.11 Clones and cloning vehicles

2.2.12 Fly media

2.2.13 Fly strains

2.3 General methods

2.3.1 Large-scale isolation of plasmid DNA using CsCl gradients

2.3.2 Plasmid minipreps

2.3.3 Calculation of the amount of plasmid in DNA solution

2.3.4 Phenol/chloroform extractions

2.3.5 Ethanol precipitation of DNA in solution

2.3.6 Agarose Gel Electrophoresis of DNA

2.3.7 Polyacrylamide gel electrophoresis of DNA

2.3.8 Generation, modification and subcloning of restriction fragments into plasmid vectors

2.3.10 Restriction endonuclease digestion of DNA

2.3.11 End modification of vectors and DNA fragments
(a) 3' overhang end blunting 47
(b) 5' overhang end filling 47
(c) Calf intestinal phosphatase treatment of vector ends 47

iii Isolation of DNA fragments from agarose gels 41
(a) Bresa-Clean DNA purification kit 47
(b) DNA isolation from agarose gels using silica-coated glass wool 47

iv Isolation of DNA fragments from polyacrylamide gels 48

v Ligation of restriction fragments to vector DNA 48

2.3.9 Transformation of plasmid DNA into bacteria by electroporation 48

i Preparation of cells 48

ii Electroporation of cells 48

2.3.10 DNA Sequencing 49

i Sequencing reactions 49

ii Electrophoresis of sequencing reactions 49

2.3.11 Kinase of oligonucleotides 49

i Radiolabelling of oligonucleotides 49

ii Non-radioactive labelling of oligonucleotides 50

2.3.12 Purification of oligonucleotides 50

2.3.13 Radiolabelling of DNA probes 50

2.3.14 Polymerase chain reactions (PCR) 50

2.4 Containment Facilities 51

CHAPTER 3: HISTONE H2A\(\text{\textsuperscript{\textit{II}}}\) DIFFERS FROM THE CORE H2A IN A FUNCTION PROVIDED BY ITS C-TERMINAL REGION 52

3.1 Introduction 52

3.2 Methods 53

3.2.1 Developmental staging of Drosophila larvae 53

3.2.2 RNA isolation from Drosophila larvae 53

3.2.3 Primer extension analysis of RNA 53

3.2.4 Construction of the transformation vector, pONIX 54
3.2.5 Construction of pONIX.AvD

3.2.6 Construction of phsFLP

3.2.7 Mutagenesis of the histone His2AvD gene on pONIX.AvD
 i Creation of His2AvD mutants M1 and M2
 ii Creation of His2AvD mutants M3 and M4
 iii Creation of His2AvD mutants M5, M6, M7 and MCT

3.2.8 Transformation of Drosophila melanogaster with pONIX.AvD wild type, pONIX.AvD mutants phsFLP
 i Preparation of DNA
 ii Egg collection, dechorionation and desiccation
 iii Microinjection
 iv Post-injection care

3.2.9 Chromosome mapping of the integrated transgene

3.3 Characterisation of His2AvD null mutants

3.3.1 Phenotypic characterisation of His2AvDnull null mutants

3.3.2 Gene expression in His2AvD null mutants
 i 5C actin transcript levels in w^12A and His2AvD^{10}

3.3.3 Selection of phenotypic markers for analysis of His2AvD^{10}
null mutant rescue by mutant His2AvD transgenes

3.4 Domains of His2AvD required for Drosophila development

3.4.1 Rescue of His2AvDnull null mutant lethality by His2AvD mutants

3.5 The effect of His2AvD mutants on position effect variegation (PEV)

3.5.1 Design of the transformation vector, pONIX, for assessing the effect of His2AvD mutants on PEV

3.5.2 Analysis of the w^{mel} phenotype in flies containing mutant His2AvD transgenes

3.6 Summary and discussion

3.6.1 His2AvD is required for gene activation

3.6.2 His2AvD differs from the core H2A in a function provided by its C-terminal region
3.6.3 The essential regions of His2AvD may influence transcription through dimer-tetramer interactions

3.6.4 His2AvD containing nucleosomes could promote transcription by destabilising the dimer-tetramer interface

3.6.5 His2AvD containing nucleosomes may adopt, or stabilise, a nucleosome conformation that facilitates transcription, inter/nucleosomal interactions

3.6.6 Histone H2A.F/Z has the potential to alter

CHAPTER 4: IN Drosophila, His2AvD IS ASSOCIATED WITH CHROMATIN THROUGHOUT THE CELL CYCLE AND IS IMPORTED INTO EMBRYONIC NUCLEI AT THE ONSET OF TRANSCRIPTION IN NUCLEAR CYCLE 9

4.1 Introduction

4.2 Methods

4.2.1 Creation of His2AvD-GFP

4.2.2 Generation of transgenic Drosophila melanogaster containing the His2AvD-GFP fusion gene

4.3 Results

4.3.1 The His2AvD-GFP fusion gene is capable of rescuing His2AvD(A10) null mutant lethality

4.3.2 His2AvD-GFP is nuclear and is associated with chromatin throughout the cell cycle

4.3.3 Nuclear localisation of His2AvD-GFP correlates with the start of transcription at the cleavage embryo

4.4 Discussion

CHAPTER 5: PRODUCTION OF RECOMBINANT HISTONE PROTEINS AND ANTIBODIES TO FURTHER CHARACTERISE THE FUNCTION OF H2A.F/Z VARIANTS IN MAMMALS AND Drosophila

5.1 Introduction

5.2 Methods

5.2.1 Chemical decornation of Drosophila embryos

5.2.2 RNA isolation from Drosophila embryos

5.2.3 Reverse transcription PCR

5.2.4 Production of expression vectors containing His2AvD, H2A.Z and H2A.1 coding sequences.
5.2.5 SDS polyacrylamide gel electrophoresis
5.2.6 Production of polyclonal H2A.1, H2A.Z and His2AvD antibodies
5.2.7 Affinity purification of antibodies directed against H2A.1 and H2A.Z using recombinant protein bound to nitrocellulose strips
5.2.8 Affinity purification of antibodies directed against His2AvD using biotinylated peptides and streptavidin agarose
5.2.9 ELISA
5.2.10 Monoclonal antibody production
5.2.11 Western analysis
5.2.12 Histone isolation from Drosophila embryos
5.2.13 Histone isolation from mouse spleen

5.3 Results

5.3.1 Production and purification of recombinant histones His2AvD, H2A-Z and H2A.1
 i Isolation and purification of histones H2A.1 and H2A.Z from inclusion bodies
 ii Isolation and partial purification of histone His2AvD from the insoluble fraction of bacterial lysates

5.3.2 Production of sheep sera containing antibodies directed against the C-terminus of His2AvD, H2A.Z and H2A.1

5.3.3 Affinity purification of polyclonal antibodies from crude sheep sera
 i Affinity purification of antibodies directed against the C-terminus of H2A.Z and H2A.1 proteins
 ii Affinity purification of antibodies directed against the C-terminus of His2AvD protein

5.3.4 Production of monoclonal antibodies directed against the C-terminus of His2AvD and H2A.2 protein

5.4 Discussion
CHAPTER 6: CHARACTERISATION OF MOUSE HISTONE H2A.Z

6.1 Introduction

6.2 Methods
6.2.1 RNA isolation from mouse tissues
6.2.2 RNA isolation from mouse ES cells
6.2.3 Northern analysis
6.2.4 Histone isolation from mouse tissues
6.2.5 Quantitation of proteins by Bradford assay
6.2.6 SDS polyacrylamide gel electrophoresis
6.2.7 Western analysis
6.2.8 Immunocytochemical staining of tissue culture cells and tissue sections using affinity purified antibodies

6.3 Results
6.3.1 Northern analysis of H2A.Z transcript levels in adult mouse tissues
6.3.2 Western analysis of H2A.Z protein levels in adult mouse tissues
6.3.3 Immunohistochemical analysis of H2A.Z protein localization in mouse STO cells and adult mouse tissue sections

6.4 Discussion

CHAPTER 7: FINAL DISCUSSION

7.1 Introduction

7.2 Discussion
7.2.1 Hist2A+/D and transcription
7.2.2 Functional domains of Hist2A+/D
7.2.3 H2A.D/Z histones and the composition of transcriptionally competent chromatin
7.2.4 Hist2A+/D and centromeric chromatin

7.3 Hist2A+/D function

Note added in proof

REFERENCES