The ecophysiology of terrestrial nesting
in Australian ground frogs (Anura: Myobatrachinae)

Nicola J. Mitchell

Department of Environmental Biology
University of Adelaide

October 2000

This work contains no material which has been accepted for the award of any other
degree or diploma in any university or other tertiary institution and, to the best of my
knowledge and belief, contains no material previously published or written by another
person, except where due reference has been made in the text.

I consent to this copy of the thesis, when deposited in the University Library, being
available for photocopying and loan.

Nicola Mitchell
3 Effects of temperature on energy cost and timing of embryonic and larval development of the terrestrially breeding moss frog *Bryobatrachus nimbus*

Abstract

INTRODUCTION

METHODS

Field measurements

Laboratory maintenance of eggs

Rates of oxygen consumption

Bomb calorimetry

Statistical analysis

RESULTS

Characteristics of eggs

Field incubation times and natural nest temperatures

Effect of temperature on development time

Effect of temperature on \( V_{O_2} \)

Masses and energy contents of ova, hatchlings and froglets

DISCUSSION

Effect of temperature on incubation time and differentiation rate

Effect of temperature on \( V_{O_2} \)

Energy cost of development

Incubation in natural nests

Ecological implications of protracted development

Acknowledgements

4 Constraints on the size of terrestrial masses of large eggs: oxygenation of embryos and larvae of *Bryobatrachus nimbus*

Abstract

INTRODUCTION

METHODS

Study site

Measurement of clutch parameters

Field measurement of clutch \( P_{O_2} \)

Field measurement of larval lashing rate
5 Incubation water potential affects survival, growth, metabolic rate and morphology of terrestrial embryos of the Australian frog, *Bryobatrachus nimbus*
6 Nest characters, site selection, and egg mortality in a frog with protracted development

Abstract

INTRODUCTION

METHODS

Study sites and data collection

Frequency of nest use

Measurement of nest characters

Statistical analysis

RESULTS

Characters of B. nimbus nests in sub-alpine and lowland sites

Frequency of nest use

Do nests containing clutches differ from vacant nests?

Frequency of clutch mortality

DISCUSSION

The Incubation climate of B. nimbus nests

Causes of egg mortality

Potential for nest-based male selection in B. nimbus, and male nesting strategies

Acknowledgements

7 Males call more from wetter nests: effects of substrate water potential on reproductive behaviours of the terrestrial toadlet, Pseudophryne bibronii

Abstract

INTRODUCTION

METHODS

Study species and site

Experimental design and watering procedure

Experimental measurements

Measurement of the plot environment

RESULTS

Experimental conditions

Distribution of nesting males
Calling effort of males in wet and dry nests
Male mating success
Egg hatching success in wet and dry nests

DISCUSSION
Acknowledgements

References cited

Appendices

1 Measurement of oxygen consumption of amphibian eggs
2 Nest and egg mass characteristics of Geocrinia lutea
3 Estimating substrate water potential with filter papers
4 Characters of Bryobatrachus nimbus nests at a lowland site in implicate rainforest.
Abstract

Variability in the microclimate of oviposition sites is a component of biological fitness that has only recently received serious attention. The fittest phenotypes will be produced if nest characters are consistently optimal; therefore selection should favour the ability of parents to select quality nests. In this study of three species of Australian Myobatrachine frogs I examine how the microclimate of terrestrial oviposition sites influences a), phenotypic traits of embryos, and b), the reproductive strategies and success of adults.

1. Geocrinia vitellina and Bryobatrachus nimbus develop without larval feeding and fuel their metamorphosis from yolk (endotrophism). Their production efficiencies are respectively, 59.2% and 61.5%, the first such measures for endotrophic amphibians, and their egg energy densities (26.4 and 26.0 J mg⁻¹) are greater than those of exotrophic amphibians (with feeding larvae).

2. Eggs of B. nimbus require 13 months to complete metamorphosis in sub-alpine moss nests, at an effective temperature of 8.5°C, and overwintering exhausts most of 249 J of energy contained in the ovum. Eggs in warmer nests (about 14.9°C) can reach metamorphosis in 5 months, and save 123 J, however, this saving is inconsequential if winter temperatures are too cold for froglets to feed.

3. The globular egg masses of B. nimbus are vulnerable to hypoxia because of substantial diffusion distances created by extremely large jelly capsules. Models of a spherical, hatching-stage egg mass show that the central embryo in larger clutches (13-21 eggs) experiences profound hypoxia at temperatures above 5°C. However, because broader nests are used as oviposition sites, real masses are typically hemispherical, and embryos are confined to 1-2 layers, which enhances their oxygen supply. Moreover, the photosynthetic nest material enriches jelly oxygen in daylight, when metabolic demands of embryos and larvae are greatest. Laboratory experiments demonstrate that larvae in warm nests (15°C-20°C) seek out oxygen-rich jelly at the surface and walls of nests.
4. Incubation of *B. nimbus* embryos at water potentials between 0 and -25 kPa produces normal hatchlings at 0 and -5 kPa, but markedly stunted and asymmetric hatchlings at -10 and -25 kPa, with reduced rates of oxygen consumption. However, similar effects are not observed in natural nests, where desiccation contributes only a small portion (<7%) of embryonic mortalities. This suggests that embryos are able to uptake sufficient water from the surrounding substrate of bryophyte and lichens, and the capacious jelly capsule may be a valuable moisture reservoir.

5. Previous studies have shown broader tolerance to low water potentials in *Pseudophryne bibronii* embryos (0 to -200 kPa), but wetter incubation produced larger hatchlings. Patterns of male *P. bibronii* nest site selection and call advertisement are examined in a field experiment. Males prefer to nest on substrates of high water potential (≥ -15 kPa) and call from these nests at greater rates, and on three times as many nights as males occupying drier areas, presumably because they are not constrained by a risk of dehydration. Male mating success is coupled with calling effort; consequently, females choose between hydrated males, and in the majority of cases, oviposit in a wet nest that produces viable embryos.