OPTIMAL SYSTEMS FOR ECHO-LOCATION

BY

RODERICK C. BRYANT

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

UNIVERSITY OF ADELAIDE

A thesis submitted for the degree of Doctor of Philosophy in:

SEPTEMBER 1985
ABSTRACT

This thesis is concerned with the factors affecting the performance of pulse echo systems for target localization. Such systems locate a target by estimation of its range and bearing. The thesis is chiefly concerned with situations where Doppler effects are negligible because the relative velocities of receiver, target and scatterers with respect to the transmitter are all small.

In this context, three performance indicators are derived which together can be used to analyze the performance of such a system. By this means, the performance is related to the transmission path characteristics and the energy spectrum of the signal transmitted. Optimal spectra are derived with respect to several performance criteria and their theoretical performances are compared. The theoretical analyses are backed up by computer simulation results.

When the transmission path characteristics are variable or uncertain due to estimation error, a robust system may be required. It is shown that the jointly optimal signal and receiver with respect to a minimax robustness criterion are optimal for a least-favourable transmission path within the class for which the optimization is being performed.

The performance of gated maximum likelihood ranging systems are analyzed to determine the effect of gate width on performance under various conditions. In particular, adaptive systems in which the gate width is coupled to estimated tracking error are analyzed to determine the optimal ratio of gate width to tracking error. A new conditional M.A.P. estimator is then derived which uses the same information but in an optimal way. In particular, the prior information, in the form of a range prediction and a prediction error estimate, is used in a way that minimizes the additional spurious information used. This is done by constructing the conditional prior probability density
function according to a maximum entropy criterion. It is shown that such a system is highly practical, particularly for digital implementation. The performances of various systems are compared by simulation under various conditions and the conditional M.A.P. estimator is shown to consistently yield best performance.

Finally, a case study is undertaken in which robust system optimization and conditional M.A.P. estimation are used. Details of the design of a real time digital system using a linear array of modern signal processing microcomputers are presented. This system was designed for use in robotics experiments for research into automated sheep shearing.
TABLE OF CONTENTS

DEDICATION i
ABSTRACT ii
STATEMENT iii
ACKNOWLEDGEMENTS iv
LIST OF SYMBOLS AND ABBREVIATIONS v

1. INTRODUCTION

1.0 General Remarks 1-1
1.1 Maximum Likelihood Estimation 1-3
1.2 Signal Optimization 1-5
1.3 Robust System Optimization 1-7
1.4 Conditional MAP Estimation 1-8
1.5 Acoustic Sensing Through Fleece 1-9

2. MAXIMUM LIKELIHOOD ESTIMATION 2-1

2.0 Introductory Remarks 2-1
2.1 The Maximum Likelihood Estimator Of Range 2-3
2.2 A Transmission Path Model 2-9
2.3 Stationarity Conditions 2-12
2.4 Performance Indicators 2-14

2.4.1 Detection Performance 2-14
2.4.2 Range Accuracy 2-17
2.4.3 Transverse Resolution 2-19
2.5 The ML Estimator of Bearing 2-33
2.6 Summary and Discussion 2-35
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>SIGNAL OPTIMIZATION</td>
<td>3-1</td>
</tr>
<tr>
<td>3.0.1</td>
<td>Ambiguity Functions</td>
<td>3-1</td>
</tr>
<tr>
<td>3.0.2</td>
<td>Clutter Rejection</td>
<td>3-4</td>
</tr>
<tr>
<td>3.0.3</td>
<td>Minimizing Effective Ambiguity Volume</td>
<td>3-7</td>
</tr>
<tr>
<td>3.0.4</td>
<td>Maximizing Detection Index</td>
<td>3-7</td>
</tr>
<tr>
<td>3.0.5</td>
<td>The Advantages of Multiple Criteria</td>
<td>3-8</td>
</tr>
<tr>
<td>3.1</td>
<td>Optimization With Respect to Simple Criteria</td>
<td>3-10</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Maximizing Detection Index</td>
<td>3-10</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Minimizing Transverse Resolution Index</td>
<td>3-11</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Minimizing Range Estimate Variance</td>
<td>3-11</td>
</tr>
<tr>
<td>3.2</td>
<td>Performance Comparisons</td>
<td>3-13</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Computation of Optimal Spectra</td>
<td>3-13</td>
</tr>
<tr>
<td>3.2.2</td>
<td>A Practical Example</td>
<td>3-15</td>
</tr>
<tr>
<td>3.2.3</td>
<td>White Environments</td>
<td>3-37</td>
</tr>
<tr>
<td>3.3</td>
<td>Optimization With Respect To Mixed Criteria</td>
<td>3-45</td>
</tr>
<tr>
<td>3.4</td>
<td>Examples of Mixed Criteria Optimization</td>
<td>3-50</td>
</tr>
<tr>
<td>3.5</td>
<td>Signal Waveform Design</td>
<td>3-56</td>
</tr>
<tr>
<td>4.0</td>
<td>OPTIMIZATION FOR UNCERTAIN MODELS</td>
<td>4-1</td>
</tr>
<tr>
<td>4.1</td>
<td>Introductory Remarks</td>
<td>4-1</td>
</tr>
<tr>
<td>4.2</td>
<td>Robust Matched Filters</td>
<td>4-3</td>
</tr>
<tr>
<td>4.3</td>
<td>Discussion</td>
<td>4-9</td>
</tr>
<tr>
<td>5.0</td>
<td>CONDITIONAL MAP ESTIMATION</td>
<td>5-1</td>
</tr>
<tr>
<td>5.1</td>
<td>Using Prior Information</td>
<td>5-1</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Locked Range Gates</td>
<td>5-3</td>
</tr>
</tbody>
</table>
6. A CASE STUDY - Acoustic Sensing Through Fleece
6.0 Acoustic Sensing Through Fleece
6.1 Constructing Transmission Path Models
6.2 Robust Signal Optimization
6.2.0 Preamble
6.2.1 Constructing a Class Description
6.2.2 Identifying The Least Favourable Transmission Path
6.3 Sensing System Design
6.3.1 Current System Design
6.3.2 Trends For The Future
6.4 Some Results

7. CONCLUSIONS
7.0 General Remarks
7.1 Detailed Conclusions
7.1.1 Estimation Theory
7.1.2 Signal Optimization
7.1.3 Robust System Optimization
7.1.4 Digital Implementation
7.2 Extensions Of The Theory
7.3 Concluding Remarks
APPENDIX 3A: PROOF OF THEOREM 1
Extremization in R_1
Band of Zero Power

APPENDIX 3B: PROGRAM LISTINGS FOR CHAPTER 3
AP3B.1 MV Optimization Program
AP3B.2 All-Pole Spectral Estimation Program
AP3B.3 Mixed Criteria Optimization Program
AP3B.4 Non-Linear Chirp Design Program

APPENDIX 3C: PROOF OF THEOREM 4
Reduction to a Single Integral
Substitution Step

APPENDIX 4: PROOF OF THEOREM 5
Maximization of Denominator
Minimization of Numerator
Manipulation into Explicit Forms
Derivation of an Expression for $|H_{RB}(f)|^2$ in R_M
Derivation of an Expression for $|H_{T}(f)|$ in R_M
Derivation of an Expression for $G_{R}(f)$ in R_M
Derivation of an Expression for $G_{R}(f)$ in R_G
Derivation of an Expression for $H_{T}(f)$ in R_G
Derivation of an Expression for $H_{T}(f)$ in R_L
Redefinition of R_0
Redefinition of R_1
Redefinition of R_2
Substitution into Constraint Equations
Existence of Constants in the Solution AP4-9
Constraint Equation 4.25 AP4-10
Constraint Equation 4.26 AP4-10
Constraint Equation 4.27 AP4-11
Statement of Conditions for Solution Existence AP4-11

APPENDIX 6: PROGRAM LISTINGS FOR CHAPTER 6 AP6-1
AP6.1 Class Description Program AP6-1
AP6.2 Robust Optimization Program AP6-5

REFERENCE LIST XVI